
Estimating the rise in expected inflation from
higher energy prices*

Paula Patzelt

LSE

Ricardo Reis

LSE

September 2024

Abstract

When the price of electricity increases by 1%, households’ expected inflation increases
by 1.2 to 1.5 basis points. But, if those expectations have become unanchored, then
the effect is higher by 0.2 to 1.5 bps. This paper arrives at these estimates by exploit-
ing variation both in the time series, and especially in the cross section, from newly-
available public data on expected inflation by Euro area households across region,
gender, education, and income, and on the cost of energy across region and source.
New measures of supply shocks to energy prices derived from the structure of the
electricity market raise expected inflation gradually for 8 to 12 months. The rise in en-
ergy prices in 2021-23 accounts for only a small share of the rise in expected inflation.

JEL codes: D84, E31, Q43.
Keywords: Great Inflation, Monetary policy, Inattention.

*Contacts: p.h.patzelt@lse.ac.uk and r.a.reis@lse.ac.uk. We are grateful to Carola Binder, Ju-
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1 Introduction

The correlation between households’ expected inflation and real oil prices is 0.54.1 At
the same time, when people are asked about their sources of information about inflation,
they invariably mention energy bills in the top three (D’Acunto and Weber, 2024). A naive
conclusion from these two facts is that energy prices are a major driver of inflation expec-
tations and, potentially, that expectations are too sensitive to energy prices. Yet, a long
literature has found that people are inattentive and that expectations move sluggishly.
Moreover, the standard reference in the empirical literature (Coibion and Gorodnichenko,
2015) finds that a 1% increase in oil prices raises expected inflation by a measly 1.6 basis
points.

This puzzling connection came to the forefront of economic debates during the recent
inflation disaster. Between May of 2021 and 2022, annual inflation in the euro area (EA)
went from 2% to 8.1%. At the same time, energy prices rose by 33%, and expected in-
flation increased by 2.3 percentage points.2 Because sharp changes in energy prices are
often temporary, there is a policy view to “see through them” and not respond by chang-
ing policy rates. But, because changes in expected inflation are often persistent, a clashing
policy view calls for aggressive monetary tightening to re-establish the expectations an-
chor of inflation. Teasing out how much of the increase in expected inflation was solely
due to the rise in energy prices, as opposed to other more persistent causes (including a
lack of credibility of monetary policy) is a crucial question to understand the roots of this
inflation disaster.

This paper makes progress on the empirical connection between energy prices and
expected inflation by asking three related questions. The first of these is: by how much
does expected inflation over the next year increase on average when energy prices rise by 1%?
Much of the literature linking energy prices to expected inflation has used time-series
variation and has focused on oil and gasoline prices. We provide new estimates by relying
on cross-sectional variation, by focusing on electricity prices, by using recently-available
expectations data, and by proposing new series of exogenous energy supply shocks.

More specifically, we use the Consumer Expectations Survey (CES) for the EA, which
has between 9,000 and 22,000 monthly respondents across 11 countries between 2020:4

1This is the correlation between the mean expected inflation in the household survey by the Michigan
survey research centre, and the ratio of West Texas Intermediate spot crude oil prices and the consumer
price index, for a sample between January of 2020 and August of 2024.

2Inflation measured using the 12-month change in the log HICP, energy prices using the energy compo-
nent of the HICP, and expected inflation is the median answer to the consumer expectations survey.
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and 2023:12. We exploit both the sharp changes in energy prices during this time, as well
as (and especially) their large variation across countries, while using the many respon-
dents per country to control for the large fixed national differences in expected inflation.
Variation across regions within a monetary union differences out the potential monetary
policy response to energy shocks, as well as other confounding omitted aggregate de-
mand factors that affect both inflation expectations and the demand for energy. The short
but large panel with plenty of cross-sectional variation can deliver precise estimates.

By focusing on the price of electricity paid by households, as opposed to oil and gaso-
line prices as the literature before us, we are also able to provide new measures of energy
supply shocks. Electricity is, arguably, just as relevant as gasoline for households, and it
has a larger share of energy spending.3 The features of the European electricity market
allow us to propose three new plausibly exogenous measures of energy prices to address
the reverse causality from expected inflation potentially driving demand for all goods
including energy, and thus affecting electricity prices. The first relies on a shift-share
strategy that exploits cross-region differences in the weight of energy in consumers’ bas-
kets. The second uses differential regional exposure to conventional time-series shocks to
oil supply. The third exploits variation in the use of wind to generate electricity across
time and region. We complement regressions that estimate the cumulative effect of the
shocks with local projections that separate their dynamic effect from month to month.

All combined, we find that a 1% increase in electricity prices raises expected inflation
by 1.17–1.53 basis points (bps). This effect is significantly smaller than either the weight of
energy in the consumption basket, or the empirical connection between energy prices and
actual inflation. This leads us to conclude that people are inattentive in absolute terms to
energy prices, even if in relative terms they may be more attentive to energy than to other
pieces of information. Moreover, we find that a one-standard deviation exogenous shock
to energy prices raises expected inflation by 19–61bps, with the impact growing until 10 to
12 months after the shock. Again, this is consistent with inattention and the sluggishness
of expectations, as opposed to excessive sensitivity to energy.

The second question is: by how much more does the 1% rise in energy prices increase in-
flation expectations when those expectations are less well anchored? All central banks strive
to anchor inflation expectations since expectations that are sensitive to shocks will am-
plify these shocks. The theoretical literature has emphasized the importance of the ex-

3In the European HICP energy consumption basket, electricity has a weight of 25% versus 10% for oil
and petroleum products.
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pectations anchor for stabilizing inflation. Yet, as far as we know, there are no empirical
answers available to this question.

The cross-sectional size and richness of the CES data provide measures of unanchor-
ing based on disagreement about the long-run that are systematically different both across
countries, as well as across demographic and socio-economic groups. Because of the sig-
nificant cross-sectional variation in the time-series change of both energy prices and unan-
choring across countries and groups, we can provide sharp estimates of their connection.

We find that when measures of the expectations anchor drift between their average
level during 2021 and the one during 2023, the 1% increase in electricity prices raises ex-
pected inflation by an additional 0.20–1.50bps. Further, the peak of the impulse response
to exogenous energy shocks can be twice as high when disagreement in expectations in-
creases more than average versus less than average. That significant boost empirically
confirms the importance of keeping inflation expectations anchored, as has been sug-
gested by theory.

Armed with these estimates, we answer a third question: how much of the up and down
of expected inflation in 2021-23 was due to energy shocks? Using our empirical model, we first
calculate the predicted increase in expected inflation in 2021-22 solely from the rise in
energy prices. This turns out to be very little. Then, we calculate the impact on expected
inflation of a rise in electricity prices at each point in the sample. When expectations were
most unanchored, in the first half of 2022, a doubling of electricity prices over six months
would raise expected inflation by 90–120bps. By the end of our sample, a doubling of
electricity prices in the second half of 2023 would raise expected inflation by only 55–
75bps.

Contribution to the literature: Starting with the first question, an old literature empha-
sized the correlation between households’ average inflation expectations and oil prices,
or the food and energy component of inflation (Trehan, 2011, Arora, Gomis-Porqueras
and Shi, 2013). As with most time-series correlations between two aggregate variables,
this one is not reliable: it is unstable across samples and countries, and the two variables
are mutually correlated with so many other aggregate time series that controlling for any
number of them easily flips the sign of the partial correlation.

Moving beyond correlations, Coibion and Gorodnichenko (2015) followed by Binder
(2018) answered the first question by regressing household expectations of inflation over
the year ahead on the rate of change of wholesale oil prices over the past 6 months and
gasoline prices at the pump, and obtained estimates of 1.6bp and 1.0bp, respectively. Be-
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cause the oil price is the same for all, and the micro data from the Michigan survey is
mostly a repeated cross-section with households interviewed only twice, the Coibion and
Gorodnichenko (2015) estimate used almost entirely time-series variation.4 Yet, there is
a time-series bias in the estimates because central banks closely watch both variables,
they respond to them, and monetary policy affects inflation and aggregate demand and
through them expectations and energy prices. Related, a shock to aggregate demand
will both raise inflation and expectations of it directly, as well as increase the demand
for all goods including energy, and so raise energy prices.5 Our estimates instead use
the country-group variation within a currency union where common monetary policy
and aggregate demand factors are controlled for. We are introducing to the literature on
expectations a strategy that has been useful to answer other classic macroeconomic ques-
tions, like fiscal multipliers and business cycles (Nakamura and Steinsson, 2014, Beraja,
Hurst and Ospina, 2019).

In terms of approach, like us, two recent papers exploited cross-sectional variation.
Binder and Makridis (2022) used state-level variation in real gasoline prices, but mea-
sured their impact on indices of consumer sentiment, as opposed to inflation expecta-
tions. Wehrhofer (2023) used cross-household variation on when electricity contracts are
renewed to find that, in a context of rising energy prices, a renewal raises expected infla-
tion by 1.8bp. However, lacking information on how much the electricity price rose with
the new contract, it cannot estimate the coefficient of interest for our first question.6

Next, using the new focus on electricity, as opposed to oil, we put forward three new
instruments for supply shocks to energy prices. Kilian and Zhou (2022) used a combi-
nation of sign and zero restrictions in a vector autoregression to identify the effects of
gasoline price shocks. Känzig (2021) constructed high-frequency changes in the oil price
expectations reflected in oil price futures around OPEC production announcements in a

4With time fixed effects, there is little variation left, and the estimates become quantitatively and statis-
tically indistinguishable from zero (Armantier et al., 2016).

5A complementary literature looked at the impact of changes in oil prices on the expected inflation over
the next 5 years in the Michigan survey (Celasun, Mihet and Ratnovski, 2012, Binder, 2018), which arguably
may respond less to other short-term shocks. These measures of long-term expectations move much less
than the one-year-ahead ones. With this limited time-series variation, it is harder to estimate the effect
precisely, and results are varied. The few estimates that are statistically significant and different from zero
point to a negligible impact of oil prices on expected inflation.

6Earlier studies used the very limited US cross-sectional variation to show that estimates could vary
across states and groups. Coibion and Gorodnichenko (2015) had a version of their baseline estimate broken
by states and groups. More explicitly, Binder (2018) used the 4 regions in MSC to separately estimate the
impact of oil prices on inflation expectations, and found that these line up with expenditure shares, and
also correlated expected gas prices and expected headline inflation across the regions.
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local projection. Closer to this paper, Miyamoto, Nguyen and Sergeyev (2024) followed
Känzig (2021) but separated periods where nominal interest rates were at the zero lower
bound in Japan to control for the confounding effect of monetary policy and aggregate
demand. Together, these studies found that a 1% increase in gasoline prices raises ex-
pected inflation by 1.8–3bp within the first three months, but zero within 6 months.7 Our
instruments are different and, hopefully, can be applied to learn about the impact of en-
ergy prices on other outcomes. Our estimates are also different, since we find a larger
and more persistent effect, perhaps because we focus on a sample where there were large
shocks and much variation in expected and actual inflation.

Closer to us in identification strategy (and written contemporaneously) two studies
also use cross-sectional strategies but focusing on gasoline prices. Hajdini et al. (2024)
regress weekly expected inflation on gas prices times the share of households in a US
county that use their own car for commuting. However, they explain levels of expecta-
tions within one week alone, whereas we focus on their changes over six months or more,
so we can answer macro questions. Our impact results are consistent with theirs. Jo and
Klopack (2024) measured the impact of temporary changes in gasoline taxes on inflation
expectations in five US states in 2022. Their estimates are one order of magnitude larger
(13bp) than any other, but they combine the signaling impact of energy with its fiscal
implications, and are boosted by intertemporal substitution.

Turning to the second question, to our knowledge, this is the first paper to use house-
hold micro data to empirically investigate whether the impact of energy prices on ex-
pected inflation is different when expectations are unanchored. Theories of inattention
naturally link unanchoring to responsiveness to shocks (Angeletos and Lian, 2016, Mankiw
and Reis, 2010), and we theoretically justify our regression building on models by Angele-
tos, Huo and Sastry (2020), Flynn and Sastry (2024), and Reis (2020). There are only two
(distant) related papers. Bonomo et al. (2024) finds unanchoring linked to a change in
monetary policy in Brazil, while we find a smaller but still significant amount of unan-
choring during 2021-22 in the EA linked to energy prices. Pfäuti (2023) proposes a model
in which after an energy shock, inflation surges, the public’s attention to inflation rises,
and negative supply shocks become more inflationary. It estimates that between a low-
and high-attention regime the impact of a negative supply shock on inflation expectations
doubles. This is consistent with our estimates.

7Kilian and Zhou (2024), Wong (2015) and Aastveit, Bjørnland and Cross (2023) found even weaker
responses.
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Finally, turning to the third question, a recent literature has tried to explain the 2021-
23 inflation disaster with measures of inflation expectations (Reis, 2023), measures of en-
ergy prices (Gagliardone and Gertler, 2023), interactions between the two (Acharya et al.,
2023), and propagation over time (Vlieghe, 2024). Quantifying the relative contribution
of expectations and energy prices (and other supply shocks) is hard since both affect each
other and are related to other major macroeconomic aggregates. We make progress by
isolating one specific channel between two of these factors.

Outline: The paper is structured as follows. The next section discusses the data and the
variation we will exploit. Section 3 presents a model of the link between energy prices and
expected inflation that justifies our empirical strategy to answer the questions posed in
this introduction. Sections 4, 5 and 6 present the estimates that answer the three questions
in turn. Section 7 concludes.

2 The setting and variation in the data

Our setting has data on expected inflation with rich variation in time as well as in the cross
section by person, group and country, combined with also rich variation in energy prices.
Our focus on electricity prices leads to three suggested supply drivers of this variation.

2.1 Expected inflation

Let πe
i,c,g,t be the answer by household i, who is a resident of region/country c, and is

part of a demographic or socio-economic group g, in month t, to the question: “How
much higher (lower) do you think prices in general will be 12 months from now in the
country you currently live in?” The data come from the ECB’s CES, where i goes from
9,000 to 22,000 respondents, depending on the month, c are eleven countries in the euro
area, there are eight demographic groups g from crossing gender (male/female), income
bracket (above/below 60th percentile), and education (college/below), and the months t
go from April of 2020 to December of 2023 for six countries, and from April 2022 for the
remaining five (first available in February of 2024).

Panel (a) in figure 1 shows the variation in the data, by plotting average expected
inflation for the eight groups in two of the countries, following Fofana, Patzelt and Reis
(2024). Noticeably, Italians always expect higher inflation than Germans. At the same
time, separate groups within each country also systematically disagree on what inflation
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Figure 1: Time-series and cross-sectional variation in the data

(a) Expected inflation: Germans and Italians (b) Anchored expectations: Germans and Ital-
ians

(c) Electricity prices across countries (d) Wind electricity generation across countries

Note: Panel (a) plots the average expected inflation 12-months ahead by country (for Germany and Italy)
and by demographic group. Panel (b) plots the average inter-quartile range of expected inflation three years
ahead within country (for Germany and Italy) and demographic group. Groups are defined as follows:
male (1,2,3,4) or female (5,6,7,8); college education (3,4,7,8) or below (1,2,5,6); and income bracket above
60th percentile (2,4,6,8) or below (1,3,5,7). Panel (c) plots HICP electricity rescaled with base period 2020:4
for the 6 largest countries in the survey. Panel (d) plots wind electricity generation for the 6 largest countries.

will be, and switch roles between optimists and pessimists during the sample. At an
extreme, a woman resident of Italy without college that is poorer usually expects much
higher inflation than a richer German man with a college degree.

Even though we have a short time series, covering less than four years, it is one where
inflation varied more over time than in the previous two decades of the life of the euro.
We measure actual inflation as the log change between the harmonised index of consumer
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prices from Eurostat in date t and 12 months earlier, per country: πc,t, and denote average
year-on-year inflation in the last year by π̄c,t = ∑12

j=1 πc,t−j/12.8

2.2 Inflation expectations anchor

The degree of anchoring of inflation expectations within a country-group is ac,g,t, where
a higher ac,g,t stands for more unanchored.

The literature has used data on longer-term inflation expectations to measure unan-
choring in two ways.9 One uses higher-order moments of the distribution of inflation
expectations, arguing that disagreement among households reflects an unanchoring of
expectations. This would be the case in models with incomplete information and dis-
persed expectations. The other uses the difference between expected inflation and the
inflation target, arguing that unanchoring reveals itself as a loss of credibility of the tar-
get. Models of learning and reputation support these measures.

We use one measure from each of these two classes: the 6-month change in the in-
terquartile range of expected inflation 3-years ahead within country-group, and the 6-
month change in the absolute difference between expected inflation 3-years ahead and
the ECB’s inflation target averaged by country-group.

Panel (b) in figure 1 shows the first of these measures for the same two countries and
eight groups. Again, there is a clear country fixed effect: Italians have less anchored ex-
pectations than Germans. Again as well, there is significant variation across group-time,
as the expectations of different groups unanchor and then reanchor during this sample.

2.3 Energy prices

Eurostat provides an index for harmonised electricity prices per country paid by house-
holds inclusive of taxes and subsidies. Let ec,t denote the log of that index, while et is its
counterpart for the whole EA.10

Electricity markets in the EA are segmented across regions (that can include more
than one country) connected by distribution networks that use different sources of energy
(like renewables, nuclear, or natural gas). The Russian invasion of Ukraine raised prices
everywhere at the end of 2021, but both the size of this increase and its reversal were

8Appendix figure A7 shows that inflation varied greatly across countries and over time.
9See, for instance, Bonomo et al. (2024).

10This is a nominal variable, but since we will include inflation as a control variable in all regressions,
using instead its real equivalent makes little difference.
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very different across regions. Panel (c) of figure 1 shows that changes in electricity prices
varied considerably in 2020-23, both in the cross-section and the time series.

2.4 Supply shocks to energy prices

The literature on energy prices has focused on the impact that shocks to the supply of
energy have on aggregate variables.11 Our instruments are different and, hopefully, can
be applied to learn about the impact of energy prices on other outcomes. Our estimates
are also different, since we find a larger and more persistent effect, perhaps because we
focus on a sample where there were large shocks and much variation in expected and
actual inflation.

In part, this is because energy plays a central role in production so changes in the
macroeconomy feed into shifts in the demand for energy and so drive the price. Supply
shocks are arguably more driven by changes specific to the energy sector. Moreover, in
most macro models, the supply of energy is exogenous, so estimating the response of
inflation expectations to a supply shock maps into the model objects of interest.

In our sample, it may well turn out that the actual prices mostly reflected supply
shocks. The increase in electricity prices was driven by the invasion of Ukraine, to which
each country responded with different measures. While these differential responses may
have been correlated with that country’s inflation experience (which we will control for),
they were plausibly not a response to differences in expected inflation.

Using the cross-sectional variation in the data, we can move further. First, note that
there are large differences in how much households spend on energy across regions. This
is in part because of country differences in temperature, whether home heating is mostly
based on gas, electricity, or solar panels, and the share of electric vehicles, among other
factors. The literature has further shown that household characteristics—like income,
location, home ownership, housing tenure—and building characteristics—like heating
systems, size of the house, and age—drive a great deal of this variation.12 The shares
of electricity in household consumption per region in 2019 (before the rise of inflation)
from the Eurostat HICP, sc, capture this cross-country variability in the impact of higher
electricity prices on household budgets. They should proxy for the visibility of energy
prices to households in forming expectations of inflation, and they are likely exogenous
with respect to the future expected inflation.

11See, for instance, Känzig (2021) and Kilian and Zhou (2024).
12See, for instance, Krishnamurthy and Kriström (2015) and Longhi (2015).
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Consider then a shift-share shock series, which multiplies the aggregate time-series
variation in energy prices with the cross-sectional ex-ante variation in energy spending:
zc,t = etsc. Insofar as cross-country differences in expected inflation may drive cross-
country spending and electricity prices, but they do not affect EA aggregate demand for
energy and prices, then this is a shock series to the price of energy. It should not be
affected by reverse causality from expectations to demand for energy and its price.13

Going further, the electricity market in the EA has the following feature. The supply
curve is at first approximately horizontal, as electricity is produced using renewable and
nuclear sources, which have a large fixed cost but a low marginal cost. These sources are
hard to expand or contract in the short run, so they are therefore almost always infra-
marginal, that are fully used until installed capacity. Afterwards, the supply curve slopes
upwards. The marginal production of electricity uses oil, natural gas, and solid fossil fuels
(like coal), with a competitive market switching between them. As a result, the price of
electricity and of these energy sources usually, but not always, moves closely together.

Following a cut in the supply of natural gas from Russia, the upward-sloping section
of the supply curve becomes steeper (or shifts left). Given the environmental and capacity
constraints on expanding fossil fuels, oil prices become a proxy for the marginal cost of
production of electricity in the EA. Känzig (2021) built shocks for oil supply expectations
by measuring high-frequency changes in oil futures prices following OPEC production
announcements, kt. These shocks are plausibly exogenous in the sense that inflation ex-
pectations between 2020 and 2023 did not directly affect them. Using them leads to a
second shift-share measure of energy shocks in Europe: zc,t = ktsc. Both the shifter and
the share are plausibly exogenous.

Finally, an increase in the production of electricity using renewables will shift the flat
part of the supply curve for electricity to extend to the right, and so lower electricity
prices. Using data from Ember, we measure the monthly change in total energy generated
through wind in each region, wc,t, plotted in panel (d) of figure 1. Since the marginal cost
of producing electricity for installed turbines is very low, variations in wind shift the
supply curve, and since they are mostly driven by exogenous fluctuations in the weather,
they are not driven by changes in expected inflation. Therefore, zc,t = wc,t provides a

13One concern (implausible to us) is that some households in 2019 foresaw the energy shock that was
coming and adjusted their consumption of energy accordingly affecting the sc. Appendix C considers two
alternatives for the shares. First, the average expenditure shares over a longer period, between 2015 and
2019. Second, to purge from any quantity variation, the network cost of electricity for households in euro
per KWh in 2019. This varies considerably across energy markets.
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third alternative shock series for energy shocks.14

3 A flexible model of expectations

This section puts forward a model of expectations linking energy prices to expected in-
flation. The micro-foundations are relegated to appendix B, but they build on the main
ingredients from the theoretical literature on inattention. Here, we present the reduced-
form that follows, which indicates how the variation in the data can answer our questions.

3.1 Components of expectations

To start, actual inflation depends mechanically on energy because it has a weight of ω on
the consumption basket.15

Beyond this direct effect, energy prices provide a signal on how other prices will
change, both because they change costs of production, and because they trigger responses
by monetary policy. Let that information component be denoted by xi,c,g,t, which may be
different for each household in a country and a group depending on their attention to
news.

Each group in a country has characteristics that persistently affect both their expec-
tations, as well as how sensitive they are to individual signals. The former is already
captured in xi,c,g,t. The latter is captured by an extra term λε

c,gεi,c,g,t, which can be corre-
lated with the price of energy.

Finally, all other individual-group-country-time determinants of expectations that are
orthogonal to energy prices are captured in the variable ui,c,g,t.

All combined, expected inflation depends on energy prices directly, through informa-
tion, and through sensitivity to information, and depends on other independent factors
as well:

πe
i,c,g,t = ωec,t + xi,c,g,t + λε

c,gεi,c,g,t + ui,c,g,t (1)
14One concern might be that higher expected inflation could lead to building more wind turbines. Yet,

installing this capacity takes time. Moreover, the correlation between our wc,t series and a monthly series
for mean wind speed by region is high for most countries, especially for those where wind power is a large
share of electricity production. This confirms that most of the variation is indeed exogenous.

15It is straightforward to allow this weight to be country specific, so that the regression described below
will measure the average of these weights.
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3.2 Inattention

The information in energy prices can be decomposed into a union-wide component et and
what is specific to the region, ec,t − et. If the household pays attention, it will put some
weights on these two pieces of information that reflect their value (optimally or not),
call them ϕ and ϕc, respectively. With rational expectations and imperfect information,
we would have: xi,c,g,t = ϕet + ϕc(ec,t − et) + ux

i,c,g,t. The term ux
i,c,g,t absorbs all other

information beyond energy prices (but which may be correlated with it) that is useful to
forecast, including constants.16

However, only a share λ of respondents at that date are paying attention to these
signals. The remainder, 1 − λ are either completely inattentive (so their individual x is
zero) or partially so, only paying attention to their local conditions as a signal.17 The
weight they put on these conditions is ϕa, which could be the optimal weight from the
Kalman filter, or some sub-optimal weight. Either way, for these inattentive agents:
xi,c,g,t = ϕaec,t + ux

i,c,g,t.
18

For inattentive agents, their signal is filtered through a noisy channel. Expectations
deviate from the average of xi,c,g,t by an individual random error that reflects idiosyn-
cratic noise. It is a general result in rational inattention that how much noise is in these
signals depends on the costs of attention as well as on the marginal benefit of informa-
tion. Under a linear-quadratic approximation to a rational inattention model, εi,c,g,t is a
standard normal variable and so λε

c,g is the cross-sectional standard deviation of these
signals. This depends on group and country, because these have different marginal costs
of attention. It also depends on energy prices because of diminishing returns to the value
of knowing their precise value.

The appendix further shows that the interquartile range of forecasts ac,g,t is a statis-
tic for this intensity of attention. Therefore, we can approximate: λε

c,gεi,c,g,t ≈ λεec,tac,g,t +

uε
i,c,g,t, where the last term is an individual-specific component associated with this noise.19

16For an early version of this model of rational expectations, see Muth (1961).
17As with the consumption baskets, it is also the case that we could allow this weight to be country-

specific, and the regression estimate would be of the average attention parameter.
18This formulation nests the combined approaches of Lucas (1972) and Mankiw and Reis (2002), or more

recently Angeletos and Lian (2016).
19This follows the formulation in Flynn and Sastry (2024) of the classic approach of Sims (2003).
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3.3 An empirical specification

Combining all of the ingredients, summing over agents within a country-group, and
grouping terms, gives the following model for observed expectations:

∑
i

πe
i,c,g,t = (ω + λϕc + (1 − λ)ϕa)(ec,t − et) + (ω + λϕ + (1 − λ)ϕa)et

+ (1 − λ)λεec,tac,g,t + ∑
i
(ui,c,g,t + ux

i,c,g,t + uε
i,c,g,t) . (2)

Starting with the last term, that sums over the u’s, it is not independent of energy, nor
it is zero when averaged over time. The term ux

i,c,g,t includes both a constant, associated
say with the inflation target, as well as other time-varying variables that may be useful to
forecast inflation, like past inflation or the state of monetary policy. Moreover, the group
and country specific features of inattention in uε

i,c,g,t would appear as group and country
specific constants in this term. Finally, even outside of information, there are persistent
differences in actual inflation across countries (e.g., due to Balassa-Samuelson effects) that
make the ui,c,g,t not zero.

The other term in the second line shows the interaction between energy prices and a
measure of the dispersion of expectations. A higher dispersion captures a higher cost of
attention, which comes with more noise in individual signals. The inattention parameter
λε captures how sensitive the relative value of that attention is.

The top line shows the combined effect of energy prices on inflation expectations
through: the direct impact on the price index (ω), the rational expectations information
effect on making forecasts (ϕ, ϕc), and the limited information effect of local variables (ϕa).
Inattention captured by λ mitigates the value of information.

If a regression includes time fixed effects, then those would absorb the second term,
so the estimate would be: ω + λϕc + (1− λ)ϕa. Without those fixed effects, the coefficient
on country energy prices would instead be ω + λϕ + (1 − λ)ϕa. The second estimate is
larger if ϕ > ϕc. This is likely the case, since aggregate energy prices are more relevant
to forecast inflation than region-specific ones. A simple regression of actual inflation on
et and ec,t − et in our sample period delivers an estimate of the first coefficient that is
between 4.6 and 5.7 times larger than the second one, depending on the specification.
Recalling that ϕ and ϕc were defined in terms of rational expectations, this suggests that
ϕ is about five times larger than ϕc.

From a macroeconomic perspective, the regression without time fixed effects is plau-
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sibly more relevant. Since energy markets have a strong global component, keeping the
aggregate time-series variation would provide a more appropriate answer to the question
stated in the introduction. Our baseline regression will therefore not have time fixed ef-
fects, but we present results with them as well, and discuss their connection to the relative
sizes of ϕ and ϕc.

3.4 Baseline regression

We take equation (2) to the data by estimating the following unbalanced-panel regression:

∆6πe
i,c,g,t = β∆6ec,t + γ∆6ec,t × ∆6ac,g,t + αc + ηg + θππ̄c,t−6 + ρ∆6rt + εi,c,g,t. (3)

The operator ∆h refers to the change in a variable relative to its value h months ago.
Therefore ∆6πe

i,c,g,t = πe
i,c,g,t − πe

i,c,g,t−6, as long as a household answered the survey both
in month t− 6 and again in month t. In turn, αc are country fixed effects, ηg are group fixed
effects, and θπ and ρ are coefficients from controlling for past inflation (π̄) and changes in
ECB monetary policy (rt). The two coefficients of interest are β and γ.

We take the theory to the data in 6-month first differences because there was a marked
difference in the updating of average expected inflation across countries during the sam-
ple period of rising inflation. This may be due to different levels of trust in monetary
policy across countries, or to country-specific characteristics affecting prices. First differ-
ences over time partly eliminate some of these differences across group-countries, with
the remainder absorbed by the country and group fixed effects.20

The controls for inflation and monetary policy that are suggested by the theory deal
with the delayed effect of inflation on slow-moving expectations, and with the common
monetary policy that responds to both energy prices and expected inflation. This baseline
regression does not include time fixed effects, so they estimate the differential impact of
energy prices on the expected inflation of two people both at the same time and across
time. As discussed in the theory, we will also consider specifications with month fixed
effects, which answer a slightly different question.21

20Choosing h = 12 ensures that there is no overlap between the observation frequency and the forecast
horizons, while choosing h = 1 maximizes the number of observations but introduces noise both in expec-
tations and in energy prices, which are volatile and transient. We choose h = 6 as a compromise. Appendix
C reports estimates with h = 1, 4, 12 as well.

21Appendix C discusses results with a full set of time-country-group joint fixed effects, to further isolate
the role of the cross-regional variation.
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Note that there is no variation in i in any of the right-hand side variables. These
are seemingly unrelated regressions, which use the individual variation within country-
group to sharpen the estimates of the common coefficients of interest. It is the cross-
sectional c, g variation, the novelty in this paper, that sharpens the estimates of β and is
crucial to identify γ on the effects of anchoring.

Finally, on the interpretation of the estimates, we multiply the left-hand side variable
by 100, so that β measures the impact on expected inflation in basis points of a 1% increase
in energy prices. Therefore, β answers our first question.

From a steady state where the anchor remains stable, γ measures by how many ba-
sis points more will 1-year ahead expected inflation rise with the increase in electricity
prices if un-anchoring increased, as measured by a 1-percentage point higher interquar-
tile range of 3-year ahead inflation expectations. This answers our second question. Given
the group fixed effects, γ is identified from the change in expected inflation in one coun-
try relative to another where electricity prices rose by less and expectations were more
anchored relative to the other country-groups. Coincidentally, the average disagreement
across all households in 2023 was 1.05 percentage points higher than on average in 2021,
so γ measures the approximate extra impact of an energy shock between these two years.

3.5 Energy supply shocks

The model is static. Making it dynamic would justify a similar specification to the one in
equation (2), but the coefficients would now capture the impact of shocks to the energy
prices on expectations. A focus on dynamics leads to further predictions on how the
coefficients vary with the horizon.

The informativeness coefficients, (ϕ, ϕc, ϕa) should decline with the horizon. Energy
shocks are often transitory, and they quickly lose forecasting power for inflation as the
horizon increases. Instead, the inattention coefficient λ will tend to rise with the hori-
zon approaching one. The more time elapses after the shock, the more households have
learned about it. Therefore, the impact of energy shocks on expected inflation may rise or
fall at first over the horizon, depending on which of the two effects is stronger. Eventually
though, if the shock is transitory, this impact should die out.

Theory is more decisive on the effect of unanchoring. As the horizon rises, and more
households learn about the shock, the noise around their signals will fall. Therefore, λε

falls with horizon, as does 1 − λ, so the effect of the initial unanchoring dissipates over
time.
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We test these predictions by estimating a local projection in the panel of data for each
horizon h = 1, ..., 24:

πe
c,g,t+h =βhzc,t + γhzc,t Ac,g,t +

P

∑
p=1

(
β̃h

pzc,t−p + γ̃h
pzc,t−p Ac,g,t + ψh

pπe
c,g,t−p

)
+ αh

c + ηh
g + θhπ̄c,t + ρhrt + ϕh + εc,g,t+h (4)

This measures the impact on average expected inflation in h months of an energy
shock in the current month. We include the shock and the expectations in the last P =

2 months as a control, although the results are insensitive to this choice. The dummy
variable Ac,g,t captures whether unanchoring was above average for that country-group.
Therefore, βh is the impact when expectations unanchor by less, while βh + γh is the
impact when they unanchor by more. As before, and for the same reasons, we include
country fixed effects αh

c and group fixed effects ηh
g at each horizon, and control for past

inflation with coefficient θh and the policy rate with coefficient ϕh. Since the left-hand side
variable is in levels, we include a horizon intercept ϕh.

Theory predicts that βh may rise over h temporarily, as inattention beats informative-
ness, but eventually will fall, while γh will decline towards zero as unanchoring becomes
less important as time elapses. Note that βh and γh do not answer the two first questions
posed in the introduction, but two related ones: by how much does expected inflation
over the next year gradually increase on average after a 1-standard deviation supply shock to
energy? By how much more does the supply shock gradually increase inflation expectations
when those expectations are less well anchored? The difference is in the italicized parts,
replacing energy prices with supply shocks and asking how the response changes over
time.

The shift to focus on supply shocks, when combined with the cross-sectional identi-
fication, goes further in dealing with the confounding factors from other aggregate vari-
ables, since most of them work through aggregated demand raising demand for energy
goods and so energy prices. Moreover, these are shocks, not instruments. Their impact
on expected inflation may work through multiple channels that we care about, aside from
isolating the channel that goes solely through the price of electricity.
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4 Results: energy prices and expected inflation

This section presents the estimated impact of energy prices on expected inflation.

4.1 Baseline

The first column of Table 1 reports the results from estimating equation (3). A 1% increase
in electricity prices raises expected inflation by 1.40bp if there is no change in anchoring.
However, if disagreement increases by as much as the difference between 2021 and 2023,
then the higher electricity prices add an extra 0.60bp effect, for a total effect of 2bp. Both
effects are statistically significant.

The fit of the regression is low, as expected given that no explanatory variable cap-
tures the household variation in expected inflation. The second column instead pools ob-
servations within country-group, by replacing the left-hand side variable with ∆6πe

c,g,t =

∆6 ∑i πe
i,c,g,t/Ic,g,t, the change in the average expected inflation within a country-group.

The R2 dramatically rises, as expected. The effect without unanchoring stays roughly the
same, at 1.17bp, while the impact of unanchoring falls to 0.20bp. Both remain significant.

The third column uses as the measure of unanchoring the distance of 3-year expected
inflation from target. The effect of higher electricity prices with no change in anchoring is
similar, at 1.22bp. Since this measure of unanchoring increased by 76bp between 2021 and
2023, its coefficient now implies that unanchoring contributed to an extra 1.98bp increase
in expected inflation following a 1% rise in electricity prices, a much stronger effect than
in the baseline.

The next two columns explore the role of the cross country-group variation in driving
the results. Column four shows the results using only country, but no group, variation by
aggregating across the groups, thus replacing ac,g,t by ac,t. The impact without unanchor-
ing is slightly larger, while the extra boost from unanchoring is much larger with a point
estimate of 1.50bp. With less identifying variation, the confidence bands are wider.

In the other direction, column five includes country-group fixed effects to ascertain
whether there is a bias from systematic differences in the way groups within countries
changed their expectations during this time. It seems not to be the case, as the estimates
are very close to the baseline.

The sixth and final column includes month fixed effects. This soaks much of the vari-
ability leaving only the variation across 11 countries and 8 groups to estimate the coef-
ficients, making it hard to pin down the effect of anchoring, which now has wide confi-
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Table 1: The impact of electricity prices on expected inflation

Revision of expectation (1) (2) (3) (4) (5) (6)

Change in electricity prices 1.404∗∗∗ 1.167∗∗∗ 1.222∗∗∗ 1.531∗∗∗ 1.397∗∗∗ 0.372∗∗

(0.296) (0.103) (0.229) (0.329) (0.294) (0.181)

Change in electricity prices 0.596∗∗∗ 0.199∗∗∗ 2.609∗∗∗ 1.499∗∗∗ 0.617∗∗∗ 0.146
× Unanchoring (0.171) (0.061) (0.466) (0.374) (0.173) (0.089)

Average past inflation 0.004 -0.025∗∗∗ -0.001 0.009 0.005 0.004
(0.028) (0.009) (0.025) (0.027) (0.028) (0.079)

ECB deposit rate change -0.436∗∗∗ -0.449∗∗∗ -0.442∗∗∗ -0.438∗∗∗ -0.437∗∗∗

(0.119) (0.031) (0.113) (0.118) (0.119)

Observations 362756 2472 362756 362756 362756 362756
R2 0.016 0.343 0.018 0.016 0.016 0.032
Country & group fixed effects Yes Yes Yes Yes Yes Yes
Month fixed effects No No No No No Yes
Country-group fixed effects No No No No Yes No

Note: This table presents estimates of the regression in equation (3): ∆6πe
i,c,g,t = β∆6ec,t +γ∆6ec,t ×∆6ac,g,t +

αc + ηg + θπ̄c,t−6 + ρ∆6rt + εi,c,g,t. Column (1) has the baseline estimates, (2) uses the average πe
c,g,t as the

dependent variable, (3) uses as measure of unanchoring the deviation of long-run expected inflation from
target, (4) uses anchoring at the country level only ac,t, (5) includes country-group fixed effects, and (6)
includes time fixed effects. In parentheses are standard errors clustered by month for the regressions using
individual expectations.

dence bands.22 More interestingly, as predicted by the theory, the estimated coefficient on
the price of energy is smaller.

How large are our estimates? A simple way to judge this is to estimate equation (3) but
with actual inflation, as opposed to expected, on the left-hand side. Across specifications,
the estimates are on average 6.5 times higher (see table A3 in the appendix). They are
also 3-4 times higher than the weight of energy in the HICP basket. Expected inflation
responds significantly less than actual inflation to electricity prices.

Going back to the theory, this is consistent with significant inattention. Households
choose how much attention to devote to energy to forecast inflation, and this turns out
to be little. Households are not overly sensitive to energy prices. Rather, they are less
sensitive than what rational expectations would predict.

Moreover, the theory predicted that the estimate with fixed effects would be about 5
times smaller than the one without. In the data, it is about 3 times smaller, consistent with

22Appendix C reproduces table 1 using always month fixed effects and confirms that the estimates are
less precise, since there is less variation to pin them down, and lower.
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the relative contributions of aggregate and region-specific components of energy prices.

4.2 Robustness

Appendix C shows estimates for several alternative specifications to explore the robust-
ness of the results.

First, we consider alternative compositions of the panel to understand the role of the
cross-sectional variation in the data. Table A4 considers a balanced panel of only six
countries, weights observations by the number of respondents in the country-group, or
uses median as opposed to mean expected inflation. These make little difference. Sim-
ilarly, different interactions of fixed effects in table A5 confirm the role played by the
cross-sectional variation in pinning down our estimates.

As for the time-series variation, estimating equation (3) separately for each country
gives a set of {βc, γc} estimates that only use the variation in anchoring across groups,
and so is close to a time-series regression. Confirming the importance of the country-
group variation, this results in very imprecise estimates that are widely different across
countries (table A6). Table A7 instead includes time fixed effects across all the baseline
regressions. This confirms that estimates are smaller, as predicted by theory.

Turning to alternative measures of the variables, table A8 varies horizon h, by using 1-
month, 4-month, and 12-month changes in expected inflation and electricity prices. This
makes little difference.

For the measures of energy prices, we consider three alternatives: the consumer price
index for energy as opposed to electricity, a measure of wholesale electricity prices, and a
regulatory-funded public project’s measure of electricity prices in capital cities. Appendix
A describes their sources, and that they are all positively correlated, although sometimes
not strongly so, again reflecting the difference across regional and national markets. Table
A9 shows that the link between energy prices and expected inflation is robust to using the
different measures.

Table A9 also shows that including a control for the squared price of energy does not
change the results. It could be that sharp changes in energy prices have a large impact on
expected inflation even for unchanged disagreement in expectations, and our anchoring
measure was proxying for this. That is not the case. Table A10 uses instead the change in
electricity price inflation as opposed to its price level, in case of concerns for stationarity
of energy price inflation. The estimates are harder to interpret but remain significant.

Turning to anchoring, table A11 we also include the measure of anchoring by itself at
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the same time as its interaction, to deal with some possible bias from omitted variables,
but the results barely change.

Finally, in table A12, we instead calculate Huber-White standard errors, Driscoll-Kray
standard errors, as well as clustered standard errors per demographic group and two-way
clustered standard errors. They confirm the baseline results.

4.3 United States data and estimates

The FRB New York Survey of Consumer Expectations provides US household inflation
expectations πe

i,c,g,t from June of 2013 onwards. It only covers approximately 1,300 re-
spondents, across the 50 US states, so that each group-state (c, g) cell often only has a few
respondents. Our measures of anchoring are therefore imprecise, and often impossible
to calculate. Boldly, only when there are less than 5 respondents within a group, do we
exclude a measure of ac,g,t and proceed to estimate our baseline regression in the unbal-
anced panel. For state-level electricity prices we use residential retail electricity prices
from the US Energy Information Administration.

Table 2 presents the estimates. As expected, given the noise in measuring anchoring,
all of the estimated coefficients on this variable are statistically insignificant and have
wide confidence intervals. The US data do not allow us to answer the second question.

Turning to the first question, the US results are broadly consistent with those for the
EU. The baseline estimate in the first column is that a 1% increase in electricity prices
raises expected inflation by 1.80bp, compared with 1.40bp for the EU. This is robust to
using the average expectation as the dependent variable (second column) or to the alter-
native measure of unanchoring (column three). Again, time fixed effects leads to a smaller
estimate, which is now 1/6th of the size of the previous one, still suggesting a similar ratio
between the relative informativeness of aggregate and local prices in the theory.

Column five instead changes the measure of energy prices from electricity to log na-
tional retail gasoline prices, calculated by the Energy Information Administration, while
column six uses national oil prices for West Texas Intermediate (WTI). The impact of gaso-
line prices turns out to be similar to that of electricity prices. This suggests that, in com-
paring our baseline results with those from the literature before us, the different measure
of energy prices is not the source of the difference. Using oil prices though, which are
arguably less visible to the consumer than gas at the pump, leads to a coefficient that is
half as large.

In appendix D, we show results using instead the Michigan survey of consumer expec-
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Table 2: The impact of energy prices on expected inflation in the US Fed SCE

(1) (2) (3) (4) (5) (6)

Change in energy prices 1.804∗∗ 1.942∗∗∗ 1.939∗∗ 0.300 1.690∗∗∗ 0.864∗∗∗

(0.740) (0.721) (0.743) (1.049) (0.301) (0.220)

Change in energy prices × Unanchoring -0.024 0.058 0.766 0.002 0.062 0.043
(0.132) (0.100) (0.478) (0.137) (0.086) (0.049)

Average past inflation 0.002 -0.094 0.005 -0.003 -0.064 -0.067
(0.085) (0.061) (0.085) (0.097) (0.077) (0.081)

Change in FFR 0.047 -0.058 0.033 -0.169 -0.160
(0.397) (0.408) (0.401) (0.343) (0.421)

Observations 17903 7100 17903 17903 17907 17907
R2 0.016 0.008 0.017 0.022 0.018 0.017
Country & group fixed effects Yes Yes Yes Yes Yes Yes
Month fixed effects No No No Yes No No

Note: This table presents estimates of the regression in equation (3): ∆6πe
i,c,g,t = β∆6ec,t +γ∆6ec,t ×∆6ac,g,t +

αc + ηg + θπ̄c,t−6 + εi,c,g,t for the US SCE. Columns 1–4 show estimates for state-level electricity prices. Col-
umn (1) has the baseline estimates, (2) uses the average πe

c,g,t as the dependent variable, (3) uses as measure
of unanchoring the deviation of long-run expected inflation from target, and (4) includes time fixed effects.
Columns (5) and (6) respectively use the national gas and oil price instead of regional electricity prices.
Past inflation is computed using the state-level CPI from Hazell et al. (2022). We exclude all individuals
part of state-demographic groups with less than 5 members in the month. In parentheses are standard
errors clustered by month for the regressions using individual expectations.

tations. Its main virtue is that it covers a much longer sample, starting in 1978. However,
it has many limitations. First, it splits the respondents into only four large US regions.
Even though we can use the variation over socio-economic groups g as before, there is
much less variability over regions c, constraining our empirical strategy to answer the
first question. Second, the sample of individuals i is even smaller, covering 500 to 700
households per wave. Even over only 4 regions, disagreement is calculated over groups
that half of the times have fewer than 50 respondents, and sometimes as few as 4. It is im-
possible to answer the second question with much precision. Third, the longer time-series
span also means that any estimates rely more on time-series variation, so the concerns
with omitted aggregate variables are stronger.

With all these caveats in mind, table A13 in the appendix D shows that a 1% rise in
US electricity prices raises expected inflation by 2.41 to 3.33bp, significantly more than in
the Euro area but also with wider confidence bands. The effects of the (poorly measured)
unanchoring series are imprecise and unstable across specifications.
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5 Results: energy shocks and expected inflation

This section presents estimates of the impact of energy supply shocks on expected infla-
tion.

5.1 Baseline regressions

Table 3 shows the estimated impact on expected inflation of an energy price shock, by
simply replacing energy prices c,t with energy shock zc, t in regression equation (3). The
numerical answers are not directly comparable to those in table 1, since one standard
deviation does not match a 1% price increase. As each shock series is in different units,
we standardize them, so that β and γ now measure the impact on expected inflation of a
one-standard deviation energy shock and we can compare across shocks.23

The first column still uses electricity prices per country and month. The only differ-
ence from the first column in table 1 is that the energy price series is now standardized.
Insofar as these estimates were dominated by the unexpected supply shocks from the in-
vasion of Ukraine, this estimate may still mostly reflect a supply shock. The other three
columns though use the three shock series that arguably clean out demand effects better.

The first, in the second column, is the shift-share shock series with exogenous energy
expenditure shares. The effect of a shock on expected inflation if there is no unanchoring
is almost four times larger, while if there is unanchoring, the effect is almost twice larger.
This is consistent with the use of exogenous shares dealing with the reverse causality that
would be biasing the coefficients downwards in the first column. The third column uses
exogenous time-series variation in oil prices. The impact of the energy shock remains
large, but unanchoring no longer plays a role. Finally, the fourth column uses exogenous
time-series variation in wind electricity. Both effects now go to zero.24

5.2 Local projections

Figure 2 shows the dynamic effects from the local projections following each of the four
energy shocks in one month. In black-bold are pooled estimates that leave out the anchor-

23Since our approach to build instruments for supply shocks relies on the features of the EU electricity
market, it cannot be applied to the US.

24Anticipating the results in the next section, when we raise the horizon h to 12 months, then the impact
of and oil-driven energy shock almost doubles to 0.595, and the effect of unanchoring becomes 0.120 and
statistically significant.
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Table 3: The impact of energy shocks on expected inflation

Revision of expectation (1) (2) (3) (4)

Energy price shock 0.185∗∗∗ 0.613∗∗∗ 0.339∗∗∗ 0.044
(0.060) (0.061) (0.102) (0.100)

Energy price shock 0.244∗∗∗ 0.138∗∗∗ -0.002 -0.042
× Unanchoring (0.031) (0.029) (0.062) (0.076)

Average past inflation -0.025 0.081∗∗∗ -0.079 -0.051∗

(0.025) (0.021) (0.086) (0.027)

ECB deposit rate change -0.352∗∗∗ -0.423∗∗∗ -0.103 -0.370∗∗

(0.117) (0.061) (0.228) (0.142)

Observations 362756 362756 305037 362224
R2 0.018 0.027 0.015 0.012

Note: This table presents estimates of the regression equation ∆hπe
i,c,g,t = β∆hzc,t + γ∆hzc,t × ∆hac,g,t +

αc + ηg + θπ̄c,t−6 + ρ∆hrt + εi,c,g,t where the first four columns use different measures of zc,t. The energy
shocks are, in order: (1) the h-month change in HICP electricity prices by country, (2) the h-month change in
EA-wide HICP electricity times country-specific electricity expenditure weights in 2019, (3) OPEC supply
shocks to oil prices cumulated over h months times country-specific expenditure weights in 2019, and (4)
the h-month change in wind-source electricity generation, all standardised to increase electricity prices. In
parentheses are standard errors clustered by month.

ing interaction term, with their confidence bands in the appendix C. The other two series
and their confidence bands show the estimates with below and above average unanchor-
ing.

Across the first three specification, the impact builds up with time, reaching between
5bp and 45bp twelve months later. Wind is the exception, with smaller estimates that
peak after 4 months. After 12 months (not shown), all the estimates quickly approach
zero.

These results are consistent with theory. It suggests that the impact of slow learning
and gradual attention is stronger than that of the depreciation of the informativeness of
the shock.

Also consistent with theory is the impact of anchoring. For all the shocks with the
exception of wind, more unanchored expectations lead to a larger impact of energy prices
on expected inflation. Depending on the horizon considered, higher than average unan-
choring can as much as double this impact. Moreover, the difference between anchored
and unanchored becomes negligible once h is high, just as predicted by theory.
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Figure 2: Impulse response of expected inflation to a shock in energy prices

(a) Country electricity prices (b) EA electricity prices with country shares

(c) Oil shifts and energy shares (d) Wind

Note: Local projection of average expected inflation within a region and group on a 1-month energy price
shock, controlling for past inflation, the policy rate, country and group fixed effects, pooled across states
(thick black line), when unanchoring in the first 6 months is higher (red dashed line) or lower (blue solid
line) than average for the country and demographic group. The shocks are scaled by their standard devia-
tion to increase energy prices. The shock in panel (a) is the change in electricity price by country and time.
The shock in panel (b) is the time-varying EA-wide electricity price change times the country-varying ex-
penditure shares. The shock in panel (c) is time-varying oil OPEC supply shocks times the country-varying
expenditure shares. The shock in panel (d) is to the country-time contribution of wind to the production of
electricity. Standard errors are clustered by country.
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6 The contribution of energy price to the 2021-23 changes

in expected inflation

Armed with these estimates, we investigate how much did energy prices and unanchor-
ing contribute to the sudden rise in expected inflation in 2021-22.

6.1 How much of the increase in expected inflation in 2021-22 was due

to higher energy prices?

Between May 2021 (when inflation was on target) and one year later, expected inflation
on average across all the households, groups and countries increased by 2.9 percentage
points. Aggregating the fitted values from our baseline equation (3), which explains
expected inflation using past inflation and energy prices, predicted expected inflation
would have risen by a meagre 0.53 percentage points, as shown in figure 3.

Moreover, most of this increase is explained by the rise in past inflation. The R2 of
a partial regression isolating the contribution of energy prices alone to these predicted
values is 0.39. It falls to 0.24 if we focus on the six major countries during the whole
sample period, and this is already starting from only 0.53/2.9 explained. The predicted
increase in expected inflation due to energy prices is negligible.25

The conclusion is that energy prices are important for inflation expectations but, by
themselves, they fall well short of explaining the movements in expected inflation during
the inflation disaster.

6.2 How sensitive was expected inflation to electricity prices during

2021-23?

Figure 4 uses the estimates in table 1 to plot, at each date in time, the impact of a doubling
of electricity prices over the following 6 months. That is, it plots a 3rd-order centered
moving average of (β + γ∆6at) ln(2), where the time variation comes from the smoothed
unanchoring, averaged across countries and groups.

The estimates show that EA expected inflation was significantly more sensitive to en-
ergy prices at the start of 2022 than it was at the start of the sample. The scar of the

25For the US, energy prices also explain little of the variation in overall expected inflation, with our
regression predicting less than one quarter of the observed increase between March of 2021 and 2022, and
with partial R2’s from energy prices ranging between 0.01 and 0.24.
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Figure 3: The contribution of electricity prices to expectation revisions

Note: The figure plots the survey-weighted average of actual revisions of expected inflation and the cor-
responding prediction based on equation (3), over the following six months. The energy prediction series
shows the counterfactual expectation revisions due to changes in energy prices and anchoring alone, so
including only the β and γ terms.

Figure 4: The time-varying impact of electricity prices on expected inflation

Note: The figure plots the predicted effect on average expected inflation from doubling electricity prices
over the following 6 months as a function of the extent of unanchoring over the same period, using the
coefficients in the first column of table 1 in red and in the third column in green.
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inflation disaster is noticeable. Reassuringly, the re-anchoring of inflation expectations
that came with the tightening of monetary policy and the fall in inflation in 2023 have
reduced the impact of energy prices today to their pre-disaster level.26

7 Conclusion

Ever since the 1970s, when large oil price shocks came with a sharp and persistent rise in
inflation, economists have been studying the connection between these two variables.
An important, but still poorly understood, channel is through inflation expectations.
An often-repeated fact is that household expectations of inflation and energy prices are
strongly correlated.27 Sometimes, this is used to assert that this channel is strong, and
other times to dismiss expectations data through the same “see through principle” that
justifies dismissing energy shocks. If energy prices matter for expected inflation, how
much do they matter?

This paper answered this question following in the footsteps of a wave of research in
empirical macroeconomics that has used cross-regional variation within a currency union
to make progress on identification. We used the theory of expectations to show how cross-
sectional variation, with or without time-series variation, can identify the role of energy
prices on expected inflation both through their informativeness and through household’s
inattention to them. Taking advantage of the recently-released household survey of ex-
pectations in the EA that has many more respondents identified by country and group,
and of the large variability in energy prices across Europe in the 2020-23 period, we pro-
vided new estimates of the impact of energy prices on expectations. Further, we used the
specific features of the electricity market in Europe and the cross-country variation they
induce to build new exogenous shocks to energy prices.

We found that energy prices matter more and for longer for expected inflation than
previous estimates. At the same time, they matter less than they likely would under ra-
tional expectations. Households are inattentive with respect to this piece of information,
rather than excessively sensitive, and the average expectation therefore adjust sluggishly
to shocks. We found that the impact of energy prices is larger when inflation expectations

26As part of the energy cycle, anchoring and the sensitivity of expectations will fluctuate. Flynn and
Sastry (2024) incorporate a model of attention similar to ours it in a business-cycle framework, and note
that this will lead firms to under- and over-produce, depending on whether energy prices are high or
low, creating wedges. Energy shocks will then generate endogenous attention wedges that will appear as
markup shocks in a Phillips curve.

27And yet, in the 1970s, US inflation expectations rose well before the oil price shocks (Reis, 2021).
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are unanchored, providing empirical justification foe theories of price-level determinacy,
and for the long-held belief of central bankers.

The energy shocks of 2021-23 explain a small share of the rise in expected inflation.
Something else was afoot, perhaps loose monetary policy. Once policy tightened, inflation
expectations re-anchored so that, by the end of 2023, the impact of energy price shocks
dropped back to what it was at the start of the sample. This may have helped keep
inflation expectations unchanged when there were significant shifts in the price of energy.
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Appendix

A Data: additional information

Our data on inflation expectations comes from the ECB, and was downloaded on 6 Febru-
ary 2024. It ends in December of 2023, and starts in April of 2020 for six countries—
Belgium, France, Germany, Italy, the Netherlands, and Spain—and in April of 2022 for
another five—Austria, Finland, Greece, Ireland, and Portugal. We censor the individual
response if individual point forecasts for inflation exceed 20% in absolute value to ensure
robustness to outliers.

Table A1 provides additional information per country-group, with the averages over
time of: the number of respondents per group, expected inflation, disagreement, and the
average 6-month change in expected inflation. This makes clear that there is significant
variation in the cross-section, which our estimates rely on.

Figures A1, A2, A3, and A4 complement the table by showing plots of that variation
per group for each of the 6 major countries over time for: average expected inflation, dis-
persion of expectations, anchoring measured by disagreement over time, and anchoring
measured as distance from target.

Turning to energy, our data for energy prices from HICP suffers from revisions to
the methods to calculate them in the Netherlands in June of 2023. We use their research
series to have a consistent series throughout our sample. There was also a change in
the methods used for the HICP in Spain from January of 2023 onwards, but there is no
research series available.

We also use three alternative series for energy prices. They are: the HICP energy
price index that includes all energy prices, not just electricity; wholesale electricity prices
from the European Network of Transmission System Operators for Electricity (ENTSO-
E) collected by Ember; and the household energy price index (HEPI) from https://

www.energypriceindex.com, commissioned by VaasaETT and funded by Energie-Control
Austria and the Hungarian Energy and Public Utility Regulatory Authority MEKH, copy-
right 2024 VaasaETT Ltd. Their respective correlations with our HIPC series are in table
A2.

The electricity expenditure shares from the HICP sc are in figure A5, while the exoge-
nous oil price shocks are from Känzig (2021). The data on wind speeds, used to check the
correlation with our wind electricity generation series, are sourced from Visual Crossing.
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We average the daily mean wind speed by EA country and month.
One might be worried that expenditure shares on electricity are correlated with other

variables persistently related to inflation expectations. Figure A6 shows that during our
sample there is no significant relation between expenditure shares and inflation expecta-
tions directly, either across the sample or by country and year. The correlation between
average expectations and electricity expenditure shares over the sample is 0.10 and sta-
tistically insignificant.

Finally, figure A7 plots actual inflation during this period. This figure shows the im-
portance of controlling for country fixed effects as well as for the level of inflation in the
regression.

B Expectations with limited information and inattention

A household chooses expected inflation πe with an objective function that depends on
other relevant state variables including aggregate (ē) and local (e). That objective function
is E [V̄(πe, ē, e, .)], where the missing attribute captures the random variables over which
the expectation is taken. This objective is concave and differentiable. We omit all known
constants and deterministic parts, since they play no useful role.

A fraction λ of agents form rational expectations. They are attentive, so they simply
maximize this objective. Their optimal forecast is the solution x(ē, e, .) to the equation
E (∂V̄(πe, ē, e, .)/∂πe) (x(ē, e, .)) = 0. A linear approximation of this optimality condition
(or quadratic approximation of the objective function) delivers: x(ē, e, .) ≈ ϕē + ϕce. The
two weights come from the well-known least-squares regression formulae.

A fraction 1 − λ are inattentive. They have incomplete information, (potentially) ob-
serving only e. Their objective function is then to maximize: V(πe, e) ≡ Eē [E [V̄(πe, ē, e, .)]]
where they must take expectations over the unknown aggregate energy prices as well.

Moreover, these agents have limited information, which prevent them from observing
e perfectly. Rather, each of them observes energy prices with a noise, which in turn makes
her optimal choice noisy as well. As is standard in the literature on inattention, we model
this as the agent choosing a stochastic decision rule p(πe|e), taking into account that in the
map from energy prices to her expectation, there will be a noise created by her inattention.
The agent faces the constraint that the function p(πe|e) is everywhere non-negative and
it integrates to one over all the actions.
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Her expected payoff is:

Ee

[∫ (
V(πe, e)− λ̄ log (p(πe|e))

)
p(πe|e)dπe

]
. (A1)

which takes expectations over the unknown e, as well as over the noise induced by the
noisy signal (in the integral). The second term inside the integral is the cost of paying
attention. It is written here in terms of the entropy of the decision rule, following Flynn
and Sastry (2024)’s formulation. They modify the cost function from the classic Sims
(2003) formulation to depend on the entropy of the decision function, as opposed to the
mutual information between prior and posterior, and so eliminate the influence of the
prior on the final solution. A crucial parameter is λ̄: the marginal cost of an extra bit of
attention.

If λ̄ = 0, then the imperfectly informed inattentive agent forms her expectation ac-
cording to x(e), which is the solution to: (∂V(πe, e)/∂πe) (x(e), e) = 0. A linear approxi-
mation of this is x(e) ≈ ϕae. It is well-known that, if e is Gaussian, then ϕa will just be the
optimal gain from the Kalman filter.

Using the implicit function theorem:

x′(e) = −
(
∂2V(πe, e)/∂πe∂e

)
(x(e), e)

(∂2V(πe, e)/∂(πe)2) (x(e), e)
(A2)

It then follows that a quadratic approximation of the objective function around x(e) is:

V(πe, e) ≈ V(x(e), e) + 0.5
[
(∂2V(πe, e)/∂(πe)2)(x(e), e)

]
(πe − x(e))2

∝
(

v(e)
x′(e)

)
(πe − x(e))2 (A3)

where we define v(e) = −
(
∂2V(πe, e)/∂πe∂e

)
(x(e), e).

Letting e have a density f (e), the optimization problem has the Lagrangian:

L =
∫

e

∫ e

π

((
v(e)/x′(e)

)
(πe − x(e))2 − λ̄ log (p(πe|e)) + κ(πe, e)

)
p(πe|e)dπe f (e)de

+
∫

e
γ(e)

(∫ e

π
p(πe|e)dπe − 1

)
f (e)de. (A4)

The κ(πe, e) are the Lagrange multipliers for each choice and state so that their probability
is non-negative. The γ(e) are the Lagrange multipliers so that, at every state, the choice
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probabilities integrate to 1.
The first-order condition for optimality is:

(
v(e)/x′(e)

)
(πe − x(e))2 + κ(πe, e) + γ(e) = λ log (p(πe|e)) + λ̄. (A5)

Integrating over πe and using the constraint that
∫ e

π p(πe|e)dπe = 1, this optimality
condition becomes:

p(πe|e) =
exp

(
(πe−x(e))2

|λ̄x′(e)/v(e)|

)
∫ e

π exp
(

(πe−x(e))2

|λ̄x′(e)/v(e)|

)
dπe

. (A6)

From this it follows that πe follows a normal distribution, with mean x(e) and with vari-
ance

∣∣λ̄x′(e)/v(e)
∣∣.

In other words, the expectation of the inattentive agent is:

πe = x(e) +

√∣∣∣∣ λ̄x′(e)
v(e)

∣∣∣∣︸ ︷︷ ︸
≡λε(e)

ε, (A7)

where ε has a standard normal distribution.
Intuitively, the larger is the cost of attention, λ̄, the less attention she pays, and so

the larger are the errors she makes λε(e). In the other direction, the larger is the impact
of errors from inattention on her well-being, captured by a lower x̄′(e)/v(e), the more
attention she will pay leading to a lower λε(e).

Now, going back to the linear solution for x(e), this delivers πe = ϕae + λε(e)ε just
as in the text. However, λε(e) depends on x̄′(e)/v(e), which depends on e. There is a
relevant second-order term there, which leads to an interaction effect of attention with
energy prices.

The standard deviation of expectations across agents who each make an idiosyncratic
error is λε(e). In turn the interquartile range of a standard normal distribution is 1.34898.
Therefore the interquartile range of πe across the agents is:

a(e) = 1.34898
√∣∣λ̄x′(e)/v(e)

∣∣ ⇒ x′(e) =
(

v(e)
2λ̄

)
a(e)2. (A8)

More unanchoring is associated with a larger response of inflation expectations to energy
prices. The intuition is that when expectations are very sensitive to shocks, then the mis-
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takes in forming those expectations must not be so costly. Therefore, she is less attentive,
and so there is more unanchoring.

But then, a linear approximation is λε(e) ≈ λεec,tac,g,t, just as we wrote in the text.

C Alternative specifications

This appendix shows alternative specifications. They complement the baseline results,
and inform what drives the variation, as explained in the text.

Table A3 replaces expected inflation with actual inflation in the baseline specification.
The estimates are much larger, showing that there is inattention, as opposed to excess
sensitivity.

Table A4 restricts the sample to a balanced panel of 6 countries, pools the individual
observations via the median as opposed to the average, or weights the country-group av-
erages by their respective number of respondents. The main inferences on β are relatively
robust to these different specifications. At the same time, they highlight the importance
of taking disagreement into account when investigating micro data on expected inflation.

Table A5 adds different interactions of fixed effects to the baseline regression with time
fixed effects, using either country-group, country-time, or group-time fixed effects, each
for individual and mean expectations. Results are similar to the version in column 6 of
table 1 using only country, group and time effects separately, except for electricity prices
without unanchoring when adding country-time fixed effects, since electricity prices only
vary on this level.

Table A6 shows the regression equation estimated separately for each country. The
estimates vary significantly across countries showing the importance of exploiting this
cross-country variation.

Table A7 reproduces table 1 but using month fixed effects throughout. The estimates
for β are of similar magnitude as the last column in table 1. The effect of unanchoring has
wide confidence bands, as expected, since anchoring is imprecisely measured and there
are only 11 countries with different energy prices, and 8 groups, on which the estimation
is based on. The coefficient is significantly positive when using the distance from target
as its measure. The difference from the baseline estimates may be because there were
omitted time-series variables in this short sample that drove both electricity prices and
expected inflation up, biasing estimates up. Or, it may instead show that our baseline
estimates further capture the macro impact of the higher energy prices relative to these
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which leave it out because it is absorbed by the time fixed effects.
Table A8 compares the results across choices of the revision horizon h. The data is

much more noisy so, as expected, with h = 1 the R2 falls and the standard errors rise. At
the same time, in size and sign, the estimates remain similar. With h = 12, as opposed to 6
months, on the one hand, some of the effect may reverse with the horizon, as the estimate
is a little lower at 1.13bp. On the other hand, because now we consider a 12-month change
in anchoring as well, the impact of this prolonged unanchoring is larger at 0.81bp.

Table A9 reproduces the first and second columns of table 1, but replaces the energy
estimates with the three alternatives we discussed above. Interestingly, wholesale prices
do not seem to be salient in the sense of moving expected inflation as much. The two
measures of prices paid by consumers give similar results to our baseline case. In turn
including squared energy prices as a separate control makes little difference.

Table A10 replaces energy prices with energy inflation.
Table A11 includes anchoring as a separate regressor.
Table A12 repeats table 1 but now lists three alternatives to account for estimation un-

certainty: standard errors with Huber-White adjustment for heteroskedasticity, clustering
per demographic group, and Driscoll-Kraay standard errors accounting for serial corre-
lation. The errors rise, but the two key estimates of interest remain statistically significant
at conventional significance levels.

Figure A8 shows the impact of exogenous shocks on expected inflation with error
bands, omitting the anchoring dummy variable. In the first two rows, effects are, as
expected, in between the ones in figure 2, and statistically significant. The figure also
shows, in the bottom row, the impact of the oil shift-share, but now using the average
expenditure shares between 2015-19, or the network cost of electricity paid by households
in 2019. The effects are very similar.

D US estimates using the Michigan data

Table A13 shows the results of estimating equation (3) on the Michigan data for gas price
changes. A 1% rise in gasoline prices raises expected inflation by 2.80–3.99bp, signifi-
cantly more than in the Euro area, while the effects of the (poorly measured) unanchoring
are not statistically distinguishable from zero. This last conclusion is not robust though,
as slight changes in the specification (like the choice of h) lead to large changes on the
coefficient on unanchoring. For instance, column two simply lags the unanchoring vari-
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able, and its extra boost rises to a large and statistically significant coefficient of 0.49bp.
Column three further confirms this by using the alternative measure of anchoring based
on the distance from target. The coefficient on anchoring is now quite large, but very
imprecise, while the impact of oil prices falls by one third to 2.80bp.

Column four replicates the specification of Coibion and Gorodnichenko (2015) with
our longer sample and slightly different treatment of outliers in the data. Our estimate is
close to theirs. This involve using oil as measure of energy prices. Columns five and six
replicate the baseline regression using gas at the pump and oil prices.
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Table A1: Descriptive statistics by country and group

Country Group
Number of
respondents

Inflation
expectation

Dis-
agreement

6-month
revision

AT 1 210 5.66 4.90 -1.07
AT 2 143 5.12 4.47 -1.02
AT 3 75 5.48 3.86 -0.93
AT 4 79 5.50 2.95 -0.41
AT 5 268 5.41 5.75 -1.37
AT 6 126 5.16 5.00 -1.62
AT 7 85 5.52 5.69 -1.17
AT 8 78 4.63 5.35 -0.97
BE 1 148 3.59 4.40 -0.03
BE 2 74 3.66 4.13 0.05
BE 3 131 3.69 3.95 0.03
BE 4 157 3.31 2.84 0.06
BE 5 182 4.11 5.24 -0.08
BE 6 59 4.17 3.89 -0.07
BE 7 159 4.00 4.20 0.21
BE 8 125 3.95 4.19 0.04
DE 1 419 3.44 4.10 0.15
DE 2 199 2.81 3.63 0.04
DE 3 348 3.18 4.04 0.31
DE 4 421 3.16 3.72 0.16
DE 5 495 3.46 4.52 0.06
DE 6 201 3.10 4.01 0.22
DE 7 306 3.09 3.97 0.22
DE 8 266 3.18 3.99 0.11
GR 1 137 6.32 10.00 -0.24
GR 2 42 7.03 8.83 0.17
GR 3 163 8.27 11.28 0.07
GR 4 170 6.41 9.72 -0.05
GR 5 148 7.14 10.09 -0.44
GR 6 45 6.53 8.49 0.06
GR 7 204 6.88 9.76 -0.23
GR 8 124 6.89 9.48 -0.14
ES 1 372 3.55 5.23 0.17
ES 2 168 3.07 4.28 0.35
ES 3 340 3.40 4.34 0.09
ES 4 487 3.51 3.40 0.17
ES 5 435 3.71 5.90 0.34
ES 6 115 4.00 5.71 0.12
ES 7 466 3.69 5.52 0.11
ES 8 364 3.69 4.69 0.18
FI 1 189 4.78 4.92 -1.31
FI 2 81 4.08 4.53 -1.19
FI 3 111 4.72 4.80 -1.24
FI 4 133 4.48 3.77 -1.21
FI 5 187 4.79 5.44 -1.39
FI 6 84 5.01 4.76 -1.34
FI 7 177 5.52 4.78 -1.59
FI 8 119 4.56 4.33 -1.33

Country Group
Number of
respondents

Inflation
expectation

Dis-
agreement

6-month
revision

FR 1 273 2.98 4.45 -0.14
FR 2 154 2.83 3.88 0.08
FR 3 443 3.25 4.09 0.10
FR 4 489 3.30 3.67 0.06
FR 5 377 3.13 4.62 -0.09
FR 6 117 3.14 4.61 0.02
FR 7 540 3.51 4.62 0.07
FR 8 373 3.49 4.11 -0.18
IE 1 94 4.93 6.31 -1.93
IE 2 38 4.02 5.94 -1.88
IE 3 132 5.57 4.54 -1.15
IE 4 120 5.34 4.80 -1.28
IE 5 163 5.36 8.03 -1.45
IE 6 49 4.62 6.30 -1.57
IE 7 219 5.37 6.87 -1.30
IE 8 171 5.51 5.88 -1.25
IT 1 488 4.17 5.72 0.03
IT 2 240 4.23 4.92 0.01
IT 3 308 3.94 5.26 0.19
IT 4 324 4.01 4.35 0.07
IT 5 636 4.57 6.73 -0.04
IT 6 195 4.87 6.50 0.05
IT 7 392 4.16 5.33 -0.03
IT 8 268 4.38 5.26 -0.13
NL 1 161 3.63 3.43 -0.03
NL 2 80 3.84 2.81 0.03
NL 3 88 3.44 2.82 -0.08
NL 4 147 3.58 2.22 0.22
NL 5 230 3.99 3.98 -0.03
NL 6 75 3.84 3.20 0.04
NL 7 113 3.55 3.72 0.01
NL 8 103 3.76 3.30 -0.01
PT 1 188 5.22 7.04 -1.01
PT 2 80 5.45 6.22 -1.26
PT 3 117 5.04 5.50 -0.79
PT 4 159 4.74 4.59 -1.27
PT 5 169 4.92 7.66 -1.36
PT 6 46 6.00 6.06 -1.19
PT 7 205 5.24 6.81 -1.02
PT 8 151 5.49 5.63 -0.88

Note: The table shows average values by country and demographic group across survey waves. Groups
are split by: Male (1,2,3,4) or female (5,6,7,8); college education (3,4,7,8) or below (1,2,5,6); and income
bracket above 60th percentile (2,4,6,8) or below (1,3,5,7).
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Table A2: Correlation of energy price measures

HICP electricity HICP energy Wholesale electricity price HEPI index

HICP electricity 1.00
HICP energy 0.60∗∗∗ 1.00
Wholesale electricity price 0.37∗∗∗ 0.63∗∗∗ 1.00
HEPI index 0.59∗∗∗ 0.78∗∗∗ 0.54∗∗∗ 1.00

Note: This table shows estimated correlations between the four different energy price measures used for
the EA, calculated in a pooled cross-country panel.

Table A3: Results for changes in actual and expected inflation

Actual inflation Expected inflation

(1) (2) (3) (4) (5) (6)

Change in electricity prices 10.000∗∗∗ 10.164∗∗∗ 6.524∗∗∗ 1.523∗∗∗ 1.602∗∗∗ 1.238∗∗∗

(0.641) (0.639) (0.506) (0.228) (0.226) (0.221)

Change in electricity prices × Unanchoring 2.046∗∗ 1.037∗ 0.986∗∗∗ 0.797∗∗∗

(0.835) (0.597) (0.295) (0.261)

Average past inflation -0.629∗∗∗ -0.018
(0.044) (0.019)

ECB deposit rate change 0.100 -0.457∗∗∗

(0.148) (0.065)

Observations 309 309 309 309 309 309
R2 0.514 0.523 0.760 0.319 0.344 0.495

Note: This table shows estimates of equation (3) with variation only across countries and time, to compare
estimates for changes in actual inflation, ∆6πc,t, to those for changes in inflation expectations, ∆6πe

c,t as
dependent variable. All regressions include country fixed effects.
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Figure A1: Variation in expected inflation by major EA country

(a) BE (b) DE

(c) ES (d) FR

(e) IT (f) NL

Note: The figure plots the average expected inflation 12-months ahead by country and by demographic
group. Groups are defined as follows: male (1,2,3,4) or female (5,6,7,8); college education (3,4,7,8) or below
(1,2,5,6); and income bracket above 60th percentile (2,4,6,8) or below (1,3,5,7).
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Figure A2: Variation in expectations (1-year SD) by major EA country

(a) BE (b) DE

(c) ES (d) FR

(e) IT (f) NL

Note: The figure plots the standard deviation of expected inflation one year ahead within country and
demographic group. Groups are defined as follows: male (1,2,3,4) or female (5,6,7,8); college education
(3,4,7,8) or below (1,2,5,6); and income bracket above 60th percentile (2,4,6,8) or below (1,3,5,7).
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Figure A3: Variation in anchoring (3-year IQR) by major EA country

(a) BE (b) DE

(c) ES (d) FR

(e) IT (f) NL

Note: The figure plots the average inter-quartile range of expected inflation three years ahead within coun-
try and demographic group. Groups are defined as follows: male (1,2,3,4) or female (5,6,7,8); college edu-
cation (3,4,7,8) or below (1,2,5,6); and income bracket above 60th percentile (2,4,6,8) or below (1,3,5,7).
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Figure A4: Variation in anchoring (distance to target) by major EA country

(a) BE (b) DE

(c) ES (d) FR

(e) IT (f) NL

Note: The figure plots the average absolute distance from the inflation target of expected inflation three
years ahead within country and demographic group. Groups are defined as follows: male (1,2,3,4) or
female (5,6,7,8); college education (3,4,7,8) or below (1,2,5,6); and income bracket above 60th percentile
(2,4,6,8) or below (1,3,5,7).
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Figure A5: Electricity expenditure shares by country

Note: The figure plots the weight of HICP electricity in the HICP by country and year during the pre-
sample.

Figure A6: Electricity expenditure shares and average expectations

(a) Country averages (b) By country and year

Note: The figure plots the weight of HICP electricity in the HICP and average inflation expectations by
country over the sample. Panel a) plots sample averages by country, while panel b) plots annual averages
by country.
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Figure A7: Actual inflation during this sample period over the 11 countries

Note: The figure plots HICP 12-month inflation for the EA as a whole and for the 11 countries in our sample.

Table A4: Alternative panel composition and weighting

Balanced panel Weighted mean Median

(1) (2) (3) (4)

Change in electricity prices 1.402∗∗∗ 1.127∗∗∗ 0.733∗∗∗ 0.705∗∗∗

(0.305) (0.097) (0.118) (0.118)

Change in electricity prices × Unanchoring (Disagreement) 0.643∗∗∗ 0.409∗∗∗ 0.226∗∗∗

(0.171) (0.063) (0.069)

Change in electricity prices × Unanchoring (Target distance) 0.899∗∗∗

(0.175)

Average past inflation 0.009 0.004 -0.106∗∗∗ -0.108∗∗∗

(0.030) (0.009) (0.010) (0.010)

ECB deposit rate change -0.444∗∗∗ -0.444∗∗∗ -0.283∗∗∗ -0.286∗∗∗

(0.126) (0.030) (0.035) (0.035)

Observations 322987 2472 2472 2472
R2 0.014 0.287 0.288 0.292

Note: This table shows estimates of equation (3) using alternative panel composition or aggregation. In
column (1) we estimate the baseline regression but restrict the sample to a balanced panel of 6 countries.
Column (2) weights the country-group averages by their respective number of respondents. Columns (3)
and (4) show results for median instead of mean expectations for the baseline with each anchoring measure.
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Table A5: Baseline results with different fixed effects

(1) (2) (3) (4) (5)

Change in electricity prices 0.372∗∗ 0.386∗∗ 0.193∗∗ 0.327∗ 0.368∗∗

(0.181) (0.182) (0.094) (0.173) (0.182)

Change in electricity prices × Unanchoring 0.146 0.140 -0.013 0.758∗∗∗ 0.145
(0.089) (0.093) (0.050) (0.260) (0.087)

Average past inflation 0.004 0.002 -0.049∗∗ -0.007 0.004
(0.079) (0.079) (0.023) (0.080) (0.078)

Observations 362756 362756 2472 362756 362756
R2 0.032 0.034 0.573 0.032 0.032
Country & group fixed effects Yes Yes Yes Yes Yes
Month fixed effects Yes Yes Yes Yes Yes
Group-month fixed effects No Yes No No No
Country-group fixed effects No No No No Yes

Note: This table shows estimates of equation (3) adding different time fixed effects and further fixed effect
combinations. Column (1) includes time fixed effects, column (2) adds group-time fixed effects, and column
(3) shows results for average expectations within country-group with time fixed effects. Columns (4) repeat
column (1) but uses the average absolute distance from target as anchoring measure. Column (5) adds
country-group fixed effects to the specification in column (1).

Table A6: Baseline results by country

AT BE DE ES FI FR GR IE IT NL PT

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Change in electricity prices 0.204 2.410∗∗∗ 2.596∗ 0.896 1.391 5.457 -0.951 -0.886 2.570∗∗∗ 0.307 1.133
(1.111) (0.452) (1.415) (0.709) (1.199) (5.389) (4.271) (3.172) (0.372) (0.787) (1.582)

Change in electricity prices × Unanchoring -0.176 0.483∗∗ 4.302∗∗∗ 0.511∗ -0.385 11.650∗∗∗ 0.113 -0.195 0.238∗ -0.292 -0.406
(0.309) (0.218) (1.011) (0.253) (0.332) (1.009) (0.202) (0.195) (0.124) (0.222) (0.363)

Average past inflation -0.340∗∗ -0.036 0.046 0.115∗∗ -0.337∗∗ -0.342∗∗∗ -0.120 -0.589∗ 0.214∗∗∗ -0.253∗∗∗ -0.207
(0.124) (0.055) (0.042) (0.048) (0.127) (0.106) (0.291) (0.326) (0.060) (0.059) (0.127)

ECB deposit rate change -1.341∗∗∗ -0.204 -0.546∗∗ -0.685∗∗ -1.420∗∗∗ 0.573∗∗∗ -1.059∗ -1.686∗∗∗ -1.175∗∗∗ -0.379∗ -1.066
(0.440) (0.196) (0.203) (0.313) (0.229) (0.136) (0.578) (0.382) (0.177) (0.212) (0.802)

Observations 9473 25618 68611 66437 10034 71166 4738 6614 66480 24675 8910
R2 0.016 0.040 0.022 0.011 0.019 0.028 0.010 0.026 0.032 0.052 0.018

Note: This table shows estimates of equation (3) separately by country.
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Table A7: Baseline results with month fixed effects

(1) (2) (3) (4) (5)

Change in electricity prices 0.372∗∗ 0.193∗∗ 0.327∗ 0.395∗∗ 0.368∗∗

(0.181) (0.094) (0.173) (0.185) (0.182)

Change in electricity prices × Unanchoring 0.146 -0.013 0.758∗∗∗ -0.056 0.145
(0.089) (0.050) (0.260) (0.191) (0.087)

Average past inflation 0.004 -0.049∗∗ -0.007 0.007 0.004
(0.079) (0.023) (0.080) (0.079) (0.078)

Observations 362756 2472 362756 362756 362756
R2 0.032 0.573 0.032 0.032 0.032
Country & group fixed effects Yes Yes Yes Yes Yes
Month fixed effects Yes Yes Yes Yes Yes
Country-group fixed effects No No No No Yes

Note: This table re-estimates table 1 of the regression in equation (3), adding month fixed effects in every
specification. Column (1) has the baseline estimates, (2) uses the average πe

c,g,t as the dependent variable, (3)
uses as measure of unanchoring the deviation of long-run expected inflation from target, (4) uses anchoring
at the country level only ac,t, (5) includes country-group fixed effects. In parentheses are standard errors
clustered by month for the regressions using individual expectations.

Table A8: Results for h-month changes in all variables

1-month changes 4-month changes 12-month changes

(1) (2) (3) (4) (5) (6)

Change in electricity prices 0.963∗∗ 0.602∗∗∗ 1.298∗∗∗ 1.100∗∗∗ 1.133∗∗∗ 0.879∗∗∗

(0.407) (0.175) (0.279) (0.112) (0.216) (0.110)

Change in electricity prices × Unanchoring 0.255 -0.169 0.544∗∗∗ 0.318∗∗∗ 0.810∗∗∗ 0.446∗∗∗

(0.454) (0.126) (0.148) (0.069) (0.137) (0.051)

Average past inflation -0.013 -0.018∗∗∗ -0.005 -0.032∗∗∗ -0.063 -0.016
(0.012) (0.005) (0.028) (0.007) (0.049) (0.022)

ECB deposit rate change 0.001 0.002 -0.241∗ -0.216∗∗∗ -0.665∗∗∗ -0.918∗∗∗

(0.052) (0.017) (0.127) (0.025) (0.128) (0.054)

Observations 518748 2912 414988 2648 237269 1944
R2 0.001 0.022 0.007 0.197 0.043 0.625

Note: Columns (1), (3) and (5) show results for individual expectations, ∆hπe
i,c,g,t, while columns (2), (4) and

(6) show results for average expectations within country and group, ∆hπe
c,g,t.

48



Table A9: Alternative measures of energy prices

HICP energy Wholesale prices HEPI index HICP electricity squared

(1) (2) (3) (4) (5) (6) (7) (8)

Change in energy prices 4.243∗∗∗ 3.555∗∗∗ 0.138 0.375∗∗∗ 2.130∗∗∗ 1.758∗∗∗ 1.344∗∗∗ 1.144∗∗∗

(0.500) (0.151) (0.252) (0.051) (0.264) (0.085) (0.260) (0.103)

Change in energy prices × Unanchoring 1.252∗∗∗ 0.636∗∗∗ 0.220∗ 0.100∗∗∗ 0.305∗∗ 0.169∗∗∗ 0.540∗∗∗ 0.165∗∗∗

(0.221) (0.086) (0.121) (0.024) (0.150) (0.050) (0.154) (0.061)

Change in electricity prices, squared 1.156 0.853∗∗∗

(0.801) (0.283)

Average past inflation 0.016 -0.006 -0.060 -0.081∗∗∗ 0.019 -0.021∗∗ 0.006 -0.023∗∗

(0.023) (0.008) (0.038) (0.012) (0.030) (0.010) (0.028) (0.009)

ECB deposit rate change -0.206∗∗ -0.181∗∗∗ -0.270 -0.131∗∗∗ -0.356∗∗∗ -0.277∗∗∗ -0.481∗∗∗ -0.491∗∗∗

(0.081) (0.029) (0.237) (0.042) (0.104) (0.032) (0.137) (0.033)

Observations 362756 2472 330729 2112 344597 2296 362756 2472
R2 0.024 0.446 0.013 0.334 0.021 0.438 0.016 0.345

Note: This table re-estimates the first two columns of table 1 using alternative measures of energy prices.
The first two columns replace the HICP electricity index, with the HICP energy index, the next two with
the wholesale electricity price index, and columns (5) and (6) with the household energy price index. The
last two columns show results for the HICP electricity index, adding the squared log change.

Table A10: Results for electricity inflation rate change

(1) (2) (3) (4) (5) (6)

Change in electricity inflation 0.200∗∗ 0.125∗∗∗ 0.197∗∗∗ 0.209∗∗ 0.198∗∗ -0.066
(0.077) (0.022) (0.072) (0.079) (0.077) (0.041)

Change in electricity inflation × Unanchoring 0.048 0.029∗∗ 0.226∗∗ 0.023 0.051 0.005
(0.043) (0.015) (0.110) (0.118) (0.046) (0.023)

Average past inflation -0.020 -0.074∗∗∗ -0.027 -0.017 -0.018 -0.185
(0.048) (0.016) (0.048) (0.050) (0.048) (0.149)

ECB deposit rate change -0.431∗∗ -0.416∗∗∗ -0.406∗∗ -0.445∗∗∗ -0.435∗∗∗ 3.774∗∗

(0.159) (0.044) (0.158) (0.162) (0.160) (1.524)

Observations 241379 1408 241379 241379 241379 241379
R2 0.020 0.459 0.020 0.020 0.020 0.039
Country & group fixed effects Yes Yes Yes Yes Yes Yes
Month fixed effects No No No No No Yes
Country-group fixed effects No No No No Yes No

Note: This table shows estimates of equation (3), replacing the change in electricity prices with the change
in the year-on-year inflation rate in electricity prices, ∆6πe

c,t
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Table A11: Alternative specification of anchoring

(1) (2) (3)

Change in electricity prices 1.548∗∗∗ 1.327∗∗∗ 1.002∗∗∗

(0.358) (0.242) (0.185)

Unanchoring (Disagreement) 0.354∗∗∗

(0.035)

Change in electricity prices × Unanchoring (Disagreement) 0.290∗∗

(0.117)

Unanchoring (Target distance) 1.016∗∗∗

(0.067)

Change in electricity prices × Unanchoring (Target distance) 0.917∗∗∗

(0.331)

Average past inflation 0.007 0.015 0.040∗∗

(0.029) (0.023) (0.019)

ECB deposit rate change -0.458∗∗∗ -0.406∗∗∗ -0.502∗∗∗

(0.122) (0.097) (0.079)

Observations 362756 362756 362756
R2 0.015 0.023 0.028

Note: This table shows estimates of equation (3) using alternative specifications of anchoring. Column (1)
excludes anchoring, while (2) and (3) include the respective anchoring measures as a separate regressor in
addition to the interaction term.

Table A12: Results with different types of standard errors

Huber-White Group clustering Two-way clustering Driscoll-Kraay

(1) (2) (3) (4)

Change in electricity prices 1.404∗∗∗ 1.404∗∗∗ 1.404∗∗ 1.404∗∗∗

(0.064) (0.124) (0.488) (0.453)

Change in electricity prices × Unanchoring 0.596∗∗∗ 0.596∗∗∗ 0.596∗∗ 0.596∗∗

(0.046) (0.166) (0.267) (0.240)

Average past inflation 0.004 0.004 0.004 0.004
(0.006) (0.017) (0.076) (0.045)

ECB deposit rate change -0.436∗∗∗ -0.436∗∗∗ -0.436 -0.436∗∗

(0.019) (0.045) (0.272) (0.190)

Observations 362756 362756 362756 362756
R2 0.016 0.016 0.016 0.016

Note: This table re-estimates the first column of table 1 using different types of approaches to calculate the
standard errors. Two-way clustering is applied by month and country.
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Figure A8: Impulse response of expected inflation to a shock to energy prices

(a) Country electricity prices (b) EA electricity prices with country shares

(c) Oil shifts and energy shares (d) Wind

(e) Oil shocks with 2015-19 expenditure shares (f) Oil shocks with network-cost weights

Note: Local projection of average expected inflation within a region and group on 3-month cumulated
energy price shock, controlling for inflation, country and group fixed effects. The shocks are scaled by their
standard deviation and the standard errors are clustered by country. Panels (a) to (d) show the confidence
bands corresponding to the pooled estimates in figure 2. Panels (e) and (f) investigate the robustness of the
oil series by using alternative variables to measure the shares.

51



Table A13: The impact of energy prices on expected inflation in the US Michigan survey

(1) (2) (3) (4) (5) (6)

Change in energy prices 3.075∗∗∗ 3.331∗∗∗ 2.409∗∗∗ 1.980∗∗∗ 4.210∗∗∗ 2.297∗∗∗

(0.712) (0.141) (0.722) (0.231) (0.325) (0.274)

Change in energy prices × Unanchoring 0.209 0.114∗∗ 1.589∗∗ 0.077 0.078
(0.210) (0.044) (0.754) (0.092) (0.065)

Average past inflation 0.036 0.124∗∗∗ 0.109∗∗∗ -0.067∗∗∗ -0.060∗∗

(0.036) (0.007) (0.033) (0.024) (0.024)

Change in FFR -0.126 -0.047∗∗∗ -0.580∗∗∗ -0.126∗∗ -0.077
(0.107) (0.013) (0.095) (0.049) (0.049)

Observations 44650 8380 24597 89144 59205 65129
R2 0.003 0.116 0.011 0.011 0.024 0.017
Country & group fixed effects Yes Yes Yes No Yes Yes
Month fixed effects No No No No No No

Note: This table presents estimates of the regression in equation (3): ∆6πe
i,c,g,t = β∆6ec,t +γ∆6ec,t ×∆6ac,g,t +

αc + ηg + θπ̄c,t−6 + ρ∆6rt + εi,c,g,t for the US. Columns 1–4 show estimates for regional electricity prices.
Column (1) has the baseline estimates, (2) uses the average πe

c,g,t as the dependent variable, and (3) uses as
measure of unanchoring the deviation of long-run expected inflation from target. Column (4) replicates the
result of Coibion and Gorodnichenko (2015) with wholesale oil prices for our updated sample and censoring
procedure: ∆6πe

i,t = β∆6et + α + εi,t. Columns (5) and (6) respectively use the national gas and oil price
instead of regional electricity prices in our baseline specification. Regional electricity prices are constructed
as within-region unweighted averages of state-level prices. Past inflation is computed using the regional
CPI from the BLS, which coincides with the MSC regions used except for the inclusion of Guam, Puerto
Rico, and the US Virgin Islands. In parentheses are standard errors clustered by month for the regressions
using individual expectations.
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