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Abstract

The classical field theories that underlie the quantum treatments of the electromagnetic,

weak, and strong forces share a peculiar feature: specifying the initial state of the field deter-

mines the evolution of some degrees of freedom of the theory while leaving the evolution of

some others wholly arbitrary. This strongly suggests that some of the variables of the standard

state space lack physical content—intuitively, the space of states of such a theory is of higher

dimension than the corresponding space of genuine physical possibilities. The structure of

such theories can helpfully be characterized in terms of the action of symmetry groups on their

space of states; and the conceptual problems surrounding their strange behavior can be

sharpened in light of the observation that it is usually possible to eliminate the redundant

variables associated with these symmetries—which turn out to be precisely those variables whose

evolution is unconstrained by the dynamical laws of the theory. This paper discusses this

approach, uses it to frame questions about the interpretation of classical gauge theories, and to

reflect (pessimistically) on our prospects of reaching satisfactory answers to these questions.
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1. Introduction

Two types of theory are commonly referred to as ‘‘gauge theories’’: Yang–Mills
theories and constrained Hamiltonian theories. The latter class properly contains the
former. Under either usage, one will observe that the most striking feature of gauge
theories is that they exhibit gauge freedom—their initial value problems fail to be
well-posed in a peculiar, non-disastrous way. The differential equations of most well-
behaved classical theories have well-posed initial value problems: specifying
(sufficiently smooth) values for the dynamical variables at some initial time
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determines the values of these variables at all times; that is, there is only one solution
of the equations consistent with a given set of initial data. This is not the case for
gauge theories: the equations of such theories have infinitely many solutions for each
set of initial values of their dynamical variables. In general, this is a very undesirable
feature of a set of equations: one expects a classical theory to be deterministic, in that
the physical state at one time determines the physical state at all times; and this is
impossible in a theory with an ill-posed initial value problem if the interpretation of
the theory establishes a bijective correspondence between the space of possible
physical states and the space of initial data for the equations of the theory. But the
initial value problem for gauge theories fails in a very special way: there is a partition
of the dynamical variables of such a theory into two classes, such that specifying
initial values of the full set of dynamical variables determines the evolution of the
variables of the first class, while leaving the evolution of the variables of the second
class wholly arbitrary (aside from the constraints imposed by continuity and
differentiability). It is thus possible to view gauge theories (of either sort) as being
deterministic, so long as only the variables of the first sort are taken to have any
representational import—if two dynamical states (or solutions) differ only with
respect to the second sort of variable, then they must be interpreted as representing
the same physical possibility (or history).
The prominence of gauge theories in contemporary physics raises a number of

conceptual and interpretative questions. What is the point of gauge freedom—why
do so many theories exhibiting this curious feature play a role in our physics? What
is the ontology suggested by such theories—how are we to think of degrees of
freedom whose evolution is left unconstrained by the dynamics of the theory? What
significance for such questions has the consideration of the quantum counterparts of
our classical gauge theories?
This paper is intended to make a start on such questions. I take an oblique

approach, spending most of my time characterizing and describing a class of theories
intermediate in size between the class of Yang–Mills theories and the class of
constrained Hamiltonian systems—roughly, the class of constrained theories which
arise when the set of conserved quantities associated with the symmetries of some
Hamiltonian system are set to zero. Such theories: (i) possess the prominent
structural features of paradigmatic gauge theories; (ii) allow us to examine the
symmetries of Yang–Mills theories and more familiar symmetries in the same setting;
and (iii) have the advantage of being relatively well understood at both the classical
level and the quantum level. Thus there is reason to hope they constitute the
‘‘correct’’ level of generality at which to approach our problems—that this class of
theories provides a perspicuous setting for a philosophical discussion of gauge
freedom and related conceptual territory.1

1 I believe, for instance, that this setting illuminates the analogy between paradigm examples of gauge

freedom and the general covariance of general relativity. This analogy is weakest in the case of 3+1

formulations of general relativity (on this issue, see, e.g., Kucha$r, 1988); it becomes stronger as one moves

to progressively more covariant formulations (compare Ashtekar, Bombelli, and Reula (1991) and

Crnkovic and Witten (1987) with Gotay, Isenberg, and Marsden (1998)).
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The next nine sections lay out this framework: four sections which develop the
general picture for classical theories are followed by three sections which situate
important examples (relational classical mechanics, vacuum Maxwell theory, and
vacuum Yang–Mills theory) within this framework; these are followed by two
sections which touch on subtleties involving quantization and singularities. Broadly
speaking, the strategy of this portion of the paper is to characterize the symmetries of
classical physical theories against the background of geometric mechanics; this
allows a precise and general discussion of the associated conservation laws, and of
the procedures of constraint and reduction which they underwrite.2

The final three sections of the paper involve a more direct discussion of conceptual
and interpretative questions. The chief theme is that the peculiar role of classical
(non-abelian) gauge theories in current physics—they are of interest only insofar as
they provide insight into their quantum counterparts—means that interpretative
questions concerning such theories must be approached with especial care, and can
seldom be expected to have determinate answers; but that, nonetheless, there is some
hope that developments in the quantum theory can provide traction for
interpretative questions rooted in the classical domain.

2. Hamiltonian mechanics

Our starting point is the Hamiltonian formalism of classical mechanics.3 In the
simplest case, the dynamics of a set of particles is given by

Hamilton’s equations ’qi ¼
@H

@pi

; ’pi ¼ �
@H

@qi

:

Here qi and pi are the positions and momenta of the particles, and the Hamiltonian,
H ¼ Hðq; pÞ; is the total energy of the system in the state ðq; pÞ ¼ ðq1;y; p1;yÞ—
typically, just the sum of the kinetic energy and the potential energy.
This formalism can be generalized in a rather straightforward manner to treat

almost any classical physical theory, opening up a route to the quantization of any

2The exposition of this material is pitched at a philosophical reader who has assimilated the basic

notions of differential geometry through the geometry of connections on bundles, as presented in, say,

G .ockeler and Sch .ucker (1987). For helpful philosophical discussions of this territory, see Healey (2001),

Liu (2001), and Redhead (2002).

I aim for rigor within reason: given the goal of discussing finite dimensional theories and field theories

in the same setting, it is crucial that definitions and results encompass the infinite dimensional case; but

many details—such as functional analytic niceties—are left in the references.
3For the material sketched in this section and in Sections 3–5 below, see Marsden (1992), Marsden and

Ratiu (1994), Schmid (1987), and the references therein.

Outside of a brief discussion in Section 11, the Lagrangian formalism plays no direct role in this paper.

Considerations of space preclude a thorough discussion of both approaches. And it is the Hamiltonian

formalism that provides the clearer perspective on our problems: the Hamiltonian version of Noether’s

theorem is the more straightforward and powerful; and reduction is considerably more elegant on the

Hamiltonian side.
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such theory.4 To this end, we introduce an arbitrary manifold, M; as our phase

space—this phase space is meant to parameterize the space of dynamical possibilities
for the system under consideration, and corresponds to the set fðq; pÞg in particle
mechanics.5 In constructing field theories, we employ infinite dimensional
manifolds—so that our phase spaces are modelled locally upon an infinite
dimensional Banach space rather than upon some Rn:6 As in the paradigm case of
classical particle mechanics, we want our dynamics to be determined once we have
specified a Hamiltonian, H :M-R; assigning to each dynamical state its total
energy. Thus we require a means to associate with a real-valued function on M a
unique dynamical trajectory through each point (or, equivalently, a vector field on
our phase space which can be integrated to yield such dynamical trajectories).
There are two standard ways to proceed here. Geometrically, we can observe that

a Hamiltonian, H; has a differential, dH ; which is, of course, a one-form on M: So
we would be set if we had a means of associating vector fields on M with one-forms
on M: for then we could take our dynamical trajectories to be the integral curves of
the vector field associated with dH: Our means of implementing this strategy is to
introduce a closed two-form, o; on M ; and to use this to associate a vector field, Xf ;
with any smooth function, f ; on M by solving for Xf in oðXf ; �Þ ¼ df :7 In order that
this procedure be well-defined, we demand that o be non-degenerate in that the map
v/oxðv; �Þ; which sends vectors vATxM to covectors in Tn

x M ; be injective for each
xAM (so that there is at most one Xf which solves oðXf ; �Þ ¼ df for any f ).8 Such an
o is called a symplectic form; we call a manifold equipped with such a form a
symplectic manifold. Our dynamics is determined by solving for the Hamiltonian

vector field, XH ; in our

Fundamental dynamical equation oðXH ; �Þ ¼ dH ;

then integrating to find the dynamical trajectories.
Note that with o in hand, we can define a new operation on the set of smooth

functions on M: for f ; gACNðMÞ; let ff ; gg ¼ oðXf ;XgÞ: This makes CNðMÞ into a
Lie algebra satisfying Leibniz’s rule, ffg; hg ¼ f fg; hg þ gff ; hg:We can re-write our
dynamics in terms of this bracket, by declaring that ’f ¼ ff ;Hg for any function, f ;
onM : Since the observables of our theory are represented by functions on our phase

4In our framework, the space of states is a manifold and the dynamics are given by the flow associated

with a vector field on that space. This is a familiar setting for the ordinary differential equations of classical

mechanics, but it is only relatively recently that the partial differential equations of field theory and

continuum mechanics have found a home there. See Olver (1993, pp. 461–463) for discussion and

references.
5As we will see in Section 10 below, it is sometimes helpful to drop even the requirement that M be a

manifold, and require only that the phase space be a union of nicely meshing manifolds.
6See Lang (1999) for a unified treatment of finite dimensional and infinite dimensional differential

geometry.
7We require that o be anti-symmetric in order to implement conservation of energy (in terms of the

Poisson bracket discussed below, the anti-symmetry of o is equivalent to ’H ¼ fH;Hg ¼ oðXH ;XH Þ ¼ 0Þ:
We require that o be closed to ensure that it too is preserved by dynamical evolution; see, e.g., Bates and
Weinstein (1997, pp. 23–24).
8We will later relax this requirement.

G. Belot / Studies in History and Philosophy of Modern Physics 34 (2003) 189–225192



space, this completely characterizes the dynamics (which is just that given by the
fundamental dynamical equation). In particular, we can plug coordinates into this
equation to recover a local description of the dynamics, thus recovering Hamilton’s
equations (or their appropriate generalization for the system at hand).
A second approach to dynamics proceeds directly via the Poisson structure of the

set of smooth functions on our phase space, without reference to the geometrical
structure of that space. We begin with the set of smooth functions, CNðMÞ; on some
space M : Equipping this set with a Poisson bracket—i.e., making it into a Lie
algebra obeying Leibniz’s rule—determines the dynamics via ’f ¼ ff ;Hg: This
approach is strictly more general than the first: given a Poisson bracket, f�; �g, on
CNðMÞ; it is sometimes true that M is a manifold and that there is a symplectic
structure, o; onM such that ff ; gg ¼ oðXf ;XgÞ for all smooth f and g; but there are
many Poisson spaces which are not symplectic manifolds.9

We will call a manifold together with a Hamiltonian and either a symplectic or a
Poisson structure a Hamiltonian system. We are primarily interested in a very special
subclass of Hamiltonian systems: simple mechanical systems. These are specified by
selecting a Riemannian manifold ðQ; gÞ together with a smooth real-valued function,
V ; on Q; the corresponding simple mechanical system is denoted ðTnQ; g;V Þ:10 We
will call Q our configuration space; we take its cotangent bundle, TnQ; as our phase
space. We note that the metric g defines a function, T ; on TnQ via
T : ðq; pÞ/gqðp; pÞ; this give the kinetic energy for the state ðq; pÞ: Taking the
function V as the potential energy, we stipulate that our Hamiltonian is Hðq; pÞ ¼
Tðq; pÞ þ V ðqÞ:
Any cotangent bundle comes equipped with a canonical symplectic structure,

which we employ to determine our dynamics. Each cotangent bundle is equipped
with a canonical symplectic potential, a one-form, a; defined by aððq; pÞÞðvÞ ¼ pðp

*
vÞ;

where p : TnQ-Q is the projection ðq; pÞ/q; and p
*
is the tangent map of p: The

canonical cotangent bundle symplectic form is then o ¼ �da; we call the associated
Poisson structure the canonical Poisson structure. In finite dimensions these objects
assume a familiar form: choosing arbitrary coordinates fqig on Q; and writing
covectors pATn

x Q as p ¼ pi dqi; so that ðqi; piÞ provide canonical coordinates on TnQ;
we find that a ¼ pi dqi and o ¼ dqi4dpi; the associated Poisson bracket is then just

ff ; gg ¼
@f

@qi

@g

@pi

�
@g

@qi

@f

@pi

;

and Hamilton’s equations are the equations of motion.
A diffeomorphism on a symplectic manifold which preserves the symplectic form

is also called canonical. Coordinates in which the symplectic form or Poisson
brackets assume the forms noted in the previous paragraph are also termed canonical

9See footnote 16 below for examples where M is a manifold which is not symplectic; see Section 10

below for cases where M is not a manifold. In both sorts of case, M is a union of symplectic manifolds

whose Poisson brackets mesh to give the Poisson bracket on M:
10 It suffices that the metric be only weakly non-degenerate, in the sense that it induces a merely injective

map from TxQ to Tn
x Q for each xAQ; of course for finite dimensional Q this will amount to the same thing

as requiring a bijection.
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(the q’s and p’s of such coordinates are said to be canonically conjugate to one
another). Darboux’s theorem tells us that every finite dimensional symplectic
manifold looks locally like a cotangent bundle, in the sense that it is possible to
choose a set of coordinates ðqi; piÞ in which the symplectic form is just dqi4dpi:

11 It
follows that every finite dimensional symplectic manifold has an even number of
dimensions.

3. Symmetries and mechanics

Let G be a Lie group, with 0odimGpN: Recall that an action of G on a
manifold, M ; is a smooth homomorphism, F :G-DiffðMÞ; from G to the group of
diffeomorphisms of M; that is such an action associates each gAG with a smooth
map onM; which we write as FgðxÞ or, sloppily, as g � x:12 We call an action proper if
the convergence of fxig and fgi � xig; for sequences fxigCM and fgigCG; implies
the convergence of fgig: An action is free if Fe is the only Fg which fixes any points
of M; a weaker condition is that it be fair—that the isotropy subgroups for any two
points of M are conjugate to one another in G:13

Let us suppose that we are given a simple mechanical system ðTnQ; g;V Þ together
with a Lie group, G which acts on Q by isometries which leave V invariant; we
further suppose, for reasons which will emerge by and by, that this action is both
proper and fair.14 In this case, we say that ðTnQ; g;V ;GÞ is a simple mechanical G

system. The action of G on Q lifts to an action on TnQ (if we know how gAG acts on
points of Q; then we know how it acts on curves in Q; and hence how it acts on
vectors and covectors). The lifted action is proper and fair. And, of course, it leaves
invariant our Hamiltonian—sinceH is the sum of two terms which are by stipulation
G-invariant. Less obviously, the canonical cotangent symplectic potential and
symplectic form are also invariant under the G action.15 Thus, the action of G

preserves all of the structure employed in defining our dynamics on ðTnQ; g;V Þ: It
follows that G maps dynamical trajectories to dynamical trajectories.
If x; yATnQ are such that x ¼ g � y for some gAG; then x and y are qualitatively

identical from the point of view of dynamics: they share all of their dynamically
relevant properties, and hence play identical roles in the structure of ðTnQ; g;V ;GÞ:
This implies, of course, that if we write our dynamics in terms of some coordinates
around x and y which are related by g then we find that the corresponding

11An infinite dimensional generalization of Darboux’s theorem holds for those symplectic manifolds for

which v/oxðv; �Þ is a bijection at each x:
12Equivalently: we require F to be smooth and to satisfy ðghÞ � x ¼ g � ðh � xÞ and e � x ¼ x for

g; hAG; xAM; and e the identity in G:
13The isotropy subgroup of a point xAM is Gx ¼ fgAG: g � x ¼ xg; subgroups H and K of G are

conjugate if there is a gAG such that K ¼ gHg�1:
14 In this context, the action of G is proper iff FðGÞ is closed in the full group of isometries of ðQ; gÞ:
15 Indeed, the lift of any diffeomorphism of Q to TnQ preserves the symplectic potential, and hence also

our symplectic form. In the finite dimensional case, this follows from the fact that the expression for the

symplectic potential assumes the same form in every coordinate system on Q:
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coordinate expressions for the dynamical trajectories around these two points
assume the same form.
Taking into account the fact that G is a continuous group, we can say a bit more.

The orbit, G � x ¼ fyATnQ: y ¼ g � x for some gAGg; of x under the action of G is a
regular submanifold of TnQ. This means that for any xATnQ; we can choose local
coordinates of the form fx1;y; z1;ygon some neighborhood UCTnQ of x; such
that G � x-U ¼ fz1 ¼ 0; z2 ¼ 0;yg: Thus setting the zi to zero while allowing the xi

to vary carries one along the orbit of x: But each point of G � x is qualitatively
identical. Because the points of such orbits are dynamically indifferent, the xi are
dynamically irrelevant—any way of setting their values leads to the ‘‘same’’
evolution. This suggests in turn that it may be possible to drop the xi from our
theory altogether.
This would amount to identifying G-related points of TnQ; and projecting down

to the resulting quotient space the Hamiltonian and the canonical Poisson structure.
Something like this is indeed possible, and the space which results encodes the G-
invariant dynamics of our simple mechanical G system. But this space—a Poisson
manifold which is not symplectic—has a rather convoluted structure and lies off of
our present track.16 So let us set that strategy aside, and pursue a less ambitious one,
which requires us to restrict our attention to a submanifold of TnQ before
identifying G-related points. To this end, we next consider the conserved quantities
associated with the action of G on TnQ:

4. Symmetry and constraint

The infinitesimal generator of an element of a Lie group G is an element of g; the
Lie algebra of G; the infinitesimal generator of a diffeomorphism of a manifoldM is

16Here is an instructive sort of example; for details see Arnold (1989, Appendix 2) or Marsden and

Abraham (1970).

The configuration space for a rigid body constrained to rotate about a fixed point is just SOð3Þ; the
phase space is TnSOð3Þ: The Hamiltonian is just the kinetic energy induced by a (right) invariant metric on
the group. Allowing the group to act on itself, we have a six-dimensional simple mechanical SOð3Þ system.
Identifying points related to each other by the action of SOð3Þ on the phase space yields a system living on
R3 carrying an interesting Poisson bracket (this reduced phase space is the dual of the Lie algebra of

SOð3Þ). Being odd-dimensional, R3 cannot be a symplectic manifold. But it is foliated by symplectic

manifolds—the spheres of radius R about the origin. The volume form on each sphere is a symplectic

form. And the sphere of radius R is the image under the quotient map of the set of points in TnSOð3Þ with
angular momentum of magnitude R: The conservation of the magnitude of angular momentum, a
consequence of the dynamics of the original theory, is now built into the geometry of the reduced phase

space (the Poisson structure keeps you on the sphere you start on, no matter what Hamiltonian is

imposed). The resulting dynamical equations are Euler’s equations for a rigid body.

A directly analogous route leads from the treatment of a perfect fluid in a given spatial domain, O; in
which one keeps track of the location of the fluid particles (so that the configuration space is SDiffðOÞ; the
infinite dimensional (ILH) group of volume-preserving diffeomorphisms on OÞ to the familiar treatment in
which one keeps track only of the velocity field of the fluid (so that the phase space is the space of

divergence free vector fields on O—i.e., the dual of the Lie algebra of SDiffðOÞ) and in which the
equations of motion are Euler’s equations for a perfect fluid.
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a vector field on M; so the action of a Lie group on a manifold, which associates a
diffeomorphism, Fg; of M with each gAG; yields a means of associating a vector
field, xM ; on M with each xAg:17

In our case, the group G acts on both the configuration space, Q; and the phase
space, TnQ: So each xAg is associated with both a vector field xQ on Q and a vector
field xTnQ on TnQ: In the case of xTnQ; we can ask whether it is the Hamiltonian
vector field of any function on TnQ—that is, for xAg we can look for a function
JxACNðTnQÞ; such that xTnQ ¼ XJx : We do not have to look far: Jxðq; pÞ ¼
/p; xQðqÞS does the trick (the bracket on the right-hand side is the pairing between
tangent and cotangent vectors at qAQ).18 The correspondence is linear. Moreover,
J ½x;z
 ¼ fJx; Jzg so xAg/JxACNðTnQÞ is a Lie algebra homomorphism.19 In the
context of a simple mechanical G system, for each xAg; Jx is a conserved quantity of
the dynamics: that ’J

x
¼ fJx;Hg ¼ 0 is just the infinitesimal restatement of the

invariance of H under the action of G:
We will see below that the standard examples of conserved quantities in physics

arise out of this construction.
Let Gx be the isotropy subgroup of some arbitrary xATnQ; consisting of the

elements of G which fix x (so that Gx ¼ feg for all xATnQ if the action of G on TnQ

is free). Then the fact that G acts fairly implies that dimGx is independent of x: It
turns out that g is mapped by J onto a subspace of CNðTnMÞ of dimension
dimact G :¼ dimG � dimGx:

20 Thus we have a strong Hamiltonian version of
Noether’s theorem: choosing a basis fxig for g gives us dimact G independent
conserved quantities, which generate a Poisson algebra that is a homomorphic image
of g: When, as in the examples of Sections 6–8 below, the action is free, we obtain
dimG conserved quantities, whose Poisson algebra is isomorphic to g:
Our strategy is to start with a simple mechanical G system ðTnQ; g;V ;GÞ; then to

investigate the dynamics which arises when we restrict attention to the constraint
surface G ¼ fxATnQ: 0 ¼ Jðx1ÞðxÞ ¼ Jðx2ÞðxÞ ¼ ?g; with fxig a basis for g:21 That
is, we set the conserved quantities associated with the group action to zero.22

17That is: xM ðxÞ ¼ ðd=dtÞðexpðtxÞ � xÞjt¼0 for xAg:
18Note that it is more common to work with the dual momentum map, J : TnQ-gn defined by

/JðxÞ; xS ¼ JxðxÞ (here the pairing is between elements of the Lie algebra and of its dual).
19Something stronger is true. J is equivariant with respect to the adjoint action of G on g: JAdgxðg � xÞ ¼

JxðxÞ (recall that for matrix groups, Adg x ¼ gxg�1). Equivalently, the momentum map, J; is equivariant
with respect to the coadjoint action of G on gn: Adn

g�1
3J ¼ J3Fg: Much of the theory of conserved

quantities and reduction sketched below can be recovered in more general contexts—such as proper group

actions on arbitrary symplectic or Poisson manifolds—so long as the momentum maps involved are

equivariant.
20That is, dimact G is just the dimension of any orbit of the action. Here and below, expressions

involving algebraic operations on dimensions should be interpreted informally when infinite dimensional

objects are in play. In Section 10 below we will be interested in a case where dimG is infinite while dimGx

is finite; in this case, as our (now ill-formed) formula suggests, we recover infinitely many conserved

quantities.
21G is independent of the basis chosen. Equivalently, G ¼ J�1ð0Þ:
22 In each of the applications of Sections 6–8 below, there is strong physical motivation for imposing the

constraint.
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There are two perspectives from which we can study the dynamics induced on G by
our fundamental dynamical equation, oðXH ; �Þ ¼ dH: Thinking of G as a subset of
TnQ—which latter we henceforth call the extended phase space—, we know that the
symplectic form and Hamiltonian of the ambient space determine a unique trajectory
through each point of TnQ; of course, trajectories through points of G lie entirely on
G; since the constraint surface is characterized by the vanishing of a set of conserved
quantities.
It turns out that this perspective involves treating G extrinsically—it makes

essential use of information about the behavior of the Hamiltonian and the
symplectic structure off of G: This becomes clear when we consider the alternative,
intrinsic approach to the dynamics on G: Let us consider G as a manifold in its own
right, and demand that the objects appearing in our fundamental dynamical
equation be defined on G: we require XH to take values in TG; and replace H byH jG;
by restricting the arguments of the Hamiltonian function to points on the constraint
surface. We accomplish this by noting that the embedding i :G+TnQ gives us the
ability to identify vectors in TG with vectors tangent to G in TnQ; and allows us to
pull back o to a form, ojG :¼ ino; defined on G:23 We are interested in vector fields,
XH ; living on G, that solve ojGðXH ; �Þ ¼ dðH jGÞ:
Now, o is a symplectic form on TnQ: a closed, non-degenerate two-form. It

follows immediately that ojG is a closed two-form on G: But ojG is degenerate: at
each point xAG; the set of null vectors, fvATxG: oðv;wÞ ¼ 0 8wATxGg; is just the
set of infinitesimal generators of the G action at that point, fxTnQðxÞ: xAgg: Thus the
null vectors are the tangent vectors to the orbits of the action of G:
The dynamical trajectories on G determined by the extrinsic dynamical problem

give us a set of curves on G: These curves will be integral curves of some vector field
XH tangent to G that solves the intrinsic dynamical problem. But XH is by no means
the only solution to the intrinsic version of the fundamental dynamical equation. The
others arise as follows. Let NðxÞ be a null vector field on G: Then XH þ N also solves
the intrinsic dynamical equation:

ojGðXH þ N; �Þ ¼ojGðXH ; �Þ þ ojGðN; �Þ

¼ojGðXH ; �Þ

¼ dðH jGÞ:

Thus at each point of G; the dynamical equation determines the tangent vector to the
dynamical trajectory only up to the addition of an arbitrary infinitesimal generator
of the action of G: Upon integration, this means that dynamical trajectories
determined by the intrinsic equation are of the form hðtÞ � xðtÞ; where xðtÞ comes from
a solution of the extrinsic dynamical equation, and h :R-G0 is a smooth function
which selects for each time, t; an element of the connected component of the identity
in G:24 In particular, since we can always choose hð0Þ ¼ e (where e is the identity in

23The tangent map i
*
:TG-TnQ is an isomorphism onto its image. For v;wATG; ojGðv;wÞ ¼

oði
*

v; i
*

wÞ:
24Recall that only elements in G0 can be reached by exponentiating elements of g:
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G), we see that there is a dimact G dimensional family of intrinsic dynamical
trajectories through each point x of G (each of which, in fact, arises as a solution of
the extrinsic dynamical equation for some Hamiltonian, Hn; on TnQ that restricts to
H on G).
So the initial value problem for the dynamics on G; considered intrinsically, is well-

posed only up to a time-dependent transformation from G0—and specifying a point
x in G determines the evolution of only those quantities which are invariant under
the action of G0:

5. Symmetry and reduction

We now identify points on G related by the action of G:25 If x; yAG with y ¼ g � x

for some gAG; then we write xBy: This is an equivalence relation; we denote the
equivalence class of x by ½x
: We are interested in the quotient space, G=G ¼
f½x
: xAGg (equipped with the quotient topology whose open sets are those with
open pre-images in G).
Let x; yAG with x ¼ g � y; and let xðtÞ and yðtÞ be the extrinsic dynamical

trajectories through x and y: Since the action of G maps dynamical trajectories to
dynamical trajectories, it follows that xðtÞ ¼ g � yðtÞ for each tAR—i.e., ½x
 ¼ ½y

implies ½xðtÞ
 ¼ ½yðtÞ
: So extrinsic dynamical trajectories through points of G which
project to the same point of G=G themselves project to the same curve in G=G:
Now consider an intrinsic dynamical trajectory on G: This will be of the form

hðtÞ � xðtÞ; with h :R-G0; for some extrinsic dynamical trajectory, xðtÞ: But ½hðtÞ �
xðtÞ
 ¼ ½xðtÞ
 for each t; so xðtÞ and hðtÞ � xðtÞ project down to the same curve in G=G:
Indeed, by the same reasoning the complete pencil of intrinsic dynamical trajectories
through a given point of G projects down to a single curve in G=G:
So we have a unique curve through each point of G=G; the image of all of the

dynamical trajectories, intrinsic as well as extrinsic, through all of the points on G
which project down to that point of G=G: Remarkably, these curves on G=G are
generated by a Poisson structure and Hamiltonian which G=G inherits from the
embedding of G in TnQ:We take the smooth functions on G=G to be the restrictions
to G of the G-invariant functions on TnQ: This latter set has a Poisson structure,
which we can now think of as the Poisson structure of CNðG=GÞ:26 Since our original
Hamiltonian on TnQ; H; is G-invariant, it projects down to a well-defined function,
*H; on G=G: As usual, our Poisson structure and Hamiltonian determine a set of

25The construction described in this section is known as cotangent bundle reduction. Like its

generalizations, symplectic reduction (alias Marsden–Weinstein reduction) and Poisson reduction, this

procedure has its roots in nineteenth century techniques for eliminating variables from dynamical

problems, but has only been developed in a fully general and global form since the 1970s.
26This is induced from the canonical Poisson structure of CNðTnQÞ by taking the quotient of the

algebra of G-invariant functions on the extended phase space by the ideal of functions which vanish on the

constraint surface.
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dynamical trajectories—which are just the images of the dynamical trajectories of G
under the projection to G=G:27

In the present context—where our dynamical system has a nice cotangent bundle
structure and our group acts properly and fairly on Q—we can say quite a bit more
about G=G and the dynamics defined upon it. Consider the quotient space Q=G

which results when we identify points of Q related by the action of G: We call this
space the reduced configuration space; it is a manifold of dimension
dimQ � dimact G:28 Because the metric, g; and potential, V ; on Q are G-invariant,
they project down to yield a metric, *g; and potential, *V; on Q=G: Thus we have a
simple mechanical system ðTnðQ=GÞ; *g; *VÞ: We call the cotangent bundle TnðQ=GÞ
the reduced phase space. Remarkably, the dynamical theory which we have reached
via quotienting Q by the action of G coincides with the one constructed above by
quotienting G by the action of G (i.e., there is an isomorphism which preserves all
relevant structures).
Proceeding via either route, we end up with a dynamical system living on a phase

space of dimension 2ðdimQ � dimact GÞ which encodes the G-invariant dynamics of
the sector of the original theory in which the conserved quantities associated with the
action of G vanish.
We now have three spaces in play, each carrying its own dynamics: the extended

phase space, TnQ; the constraint surface, G; and the reduced phase space,
G=GCTnðQ=GÞ: We are interested in two quotients: the quotient of G by G is the
reduced phase space, the quotient of Q by G is the reduced configuration space.
Note, finally, that G-G=G and Q-Q=G are principal G-bundles when the action of
G is free.29

6. Relational mechanics

We can now turn to a concrete example. The idea is to examine the action of the
group of Euclidean isometries on a system of N gravitating Newtonian point
particles.30 Here identifying points in the configuration space related by the action of

27The picture developed in this paragraph holds for a very general class of systems—one needs a

Hamiltonian system on a symplectic or Poisson manifold, together with a proper group action which

admits an equivariant momentum map. See Bates and Lerman (1997) and Ortega and Ratiu (1998).
28Note that the dimension of the orbits of the actions of G on Q and TnQ are equal. When dimQ ¼

dimact G ¼ N; dimQ � dimact G; interpreted informally, can turn out to be either infinite or finite.
Indeed, Yang–Mills theories provide examples of both sorts of behavior: see Sections 7 and 8 below for

infinite dimensional reduced configuration spaces; see Gotay (1989) and Rajeev and Rossi (1995) for finite

dimensional ones.
29Or, rather, this is known to hold in the finite dimensional case. Some extra work is required for infinite

dimensional systems; see Mitter (1980) for the Yang–Mills case. Note further that because Q carries a

metric, the bundle Q-Q=G carries a natural connection; for applications and discussion, see Batterman

(2002), Koiller, Ehlers, and Montgomery (1996), and Littlejohn and Reinsch (1997).
30Galileian boosts can be handled in generalizations of the present framework, but do not satisfy all of

our present conditions. (i) They do not arise as lifts of transformations of the configuration space. (ii)

While they leave invariant the dynamical trajectories of the theory, they do not leave the Hamiltonian itself

invariant.
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the group means taking as the space of possible configurations the space of possible
relative distances between the particles. The corresponding phase space is the space
of possible relative distances and relative velocities of the particles—so the reduced
theory is, in an interesting sense, a fully relational dynamical theory.31 Of course, the
discussion of the previous section shows that this theory can also be viewed as the
result of restricting attention to dynamical states for which the conserved quantities
(i.e., the linear and angular momenta of the system) vanish, then identifying points
related by isometries, and projecting down the Hamiltonian and the Poisson
structure.
In slightly more detail, we begin by considering R3N ; the space of possible

dispositions of the N particles in three dimensional Euclidean space. This space
carries a flat metric, g; encoding the kinetic energy of the particles, and a potential
function, V ; encoding the gravitational potential energy. Thus we have a simple
mechanical system, ðTnR3N ; g;V Þ:We are interested in the action of Eð3Þ; the group
of Euclidean isometries (i.e., products of shifts, rotations, and reflections). This
group acts in an obvious way on the configuration space, R3N—simply shifting,
rotating, or reflecting the position of each of the particles in physical space. Of
course, this action leaves invariant the kinetic energy (which derives from the
Euclidean metric on the space in which the particles move) and the potential energy
(which sees only relative distances between particles), and lifts to a canonical action
on TnR3N (translations leave the momenta of each particle invariant, while rotations
and reflections act upon them in the obvious way).
But the action of E(3) on R3N ; while proper, is not fair. Generic points of R3N are

not fixed by any non-trivial isometries; but there is a set of measure zero consisting of
points which have higher symmetry (e.g., szygial configurations—in which the
particles are collinear—are fixed by rotations about the line on which the particles
lie). In order to obtain a fair (indeed, free) action, we restrict, until Section 10 below,
our attention to Q; the set of generic points of R3N representing asymmetric particle
configurations.32 Of course, g and V still live on Q; so we can take ðTnQ; g;V ;Eð3ÞÞ
as our simple mechanical G system.
The conserved quantities associated with the Euclidean symmetry of our theory

are just (the components of) the linear momentum and the (center of mass) angular
momentum of the system. So our constraint surface, G; comprises the states with
vanishing linear and angular momentum. From the extrinsic point of view, the
dynamical initial value problem on G is, of course, well-posed—while from the
intrinsic point of view, the motion of the system is determined only up to a time-
dependent translation and rotation (the connected component of the identity, SEð3Þ;

31 I take the liberty of speaking of velocities rather than momenta. The sort of theory discussed here can

be constructed via other methods. For a distinctive and influential approach see Barbour and Bertotti

(1982); for an insightful commentary on that scheme, see Pooley and Brown (2002).
32We ought to also exclude collision singularities. That leaves us with a Hamiltonian vector field that is

smooth but incomplete. This is unpalatable, but appears to be unavoidable, since it is known that some

collision singularities are unregularizable; see Abraham and Marsden (1985, p. 699) or Diacu and Holmes

(1996, Chapter 3).
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is generated by translations and rotations).33 Equivalently, at each point on G; the
null space of the restriction of the symplectic form of TnQ to G is spanned by the
infinitesimal generators of rotations and translations.
Identifying points on G related by Euclidean isometries leads to a dynamical

theory on TnðQ=Eð3ÞÞ which captures the Eð3Þ-invariant dynamics of systems of
particles with vanishing linear and angular momentum. The manifold Q=Eð3Þ is the
space of spatial configurations of the particles modulo isometries. A point in this
space is specified by the set of relative distances between the particles. Now, the
number of relative distances is NðN � 1Þ=2 while Q=Eð3Þ is 3N � 6 dimensional. For
Nb4; the former number is much larger than the latter, and the relative distances
provide a vastly over-complete set of coordinates on Q=Eð3Þ: Correspondingly,
TnðQ=Eð3ÞÞ is (in general) over-completely parameterized by the set of relative
distances and velocities of the particles.
So the fact that our reduced theory has a well-posed initial value problem means

that specifying the initial values of the relative distances and velocities determines
their past and future values—something which is not true in general in Newtonian
mechanics, of course, but is true when the total angular momentum and linear
momentum vanish. Since, our cosmos does, in fact, appear to have vanishing angular
momentum, this relational theory enjoys the same degree of empirical adequacy as
Newtonian celestial mechanics.34

7. Vacuum Maxwell theory

We now consider the simplest Yang–Mills theory: vacuum electromagnetism.35

We forget about relativity—so our theory describes the evolution in time of the
electric and magnetic field on physical space, S rather than the behavior of the
electromagnetic field on spacetime. For convenience, we assume that S is a flat
Riemannian three manifold (typically, a three-torus or R3). In this setting, Maxwell’s
equations for the magnetic and electric fields, B and E; are just:

ðiÞ ’B ¼ � curlE

ðiiÞ ’E ¼ curl B

ðiiiÞ div B ¼ 0

ðivÞ div E ¼ 0:

33See Lynden-Bell (1995) for a Lagrangian formulation corresponding to our Hamiltonian account of

the intrinsic dynamics on G:
34The orthodox view is that the cosmic background radiation puts a fantastically small bound on the

magnitude of the angular momentum of the universe; see Obukhov (2000) for references, orthodox and

otherwise.
35See Marsden and Weinstein (1982), Schmid (1987), or Marsden and Ratiu (1994) for details.
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These equations can be derived within our framework.36 A vector potential, A; is a
smooth vector field, A : S-R3; on physical space. We take as our configuration
space A ¼ fAg; the space of vector potentials on S: A is an infinite dimensional
vector space.37 BecauseA is a vector space, we can identify TAA; the tangent space
at A; withA itself. Thus a cotangent vector at A is something which eats elements of
A and spits out real numbers—for instance, another vector field E : S-R3, with the
pairing between vectors and covectors given by integrating the scalar product of A
and E over S: So we can take as our phase space TnA ¼ fðA;EÞ : A;E : S-R3g;
itself an infinite dimensional vector space.

TnA carries the canonical cotangent bundle symplectic and Poisson structures.
These are given by obvious analogs of the finite dimensional formulae:

oððA1;E1Þ; ðA2;E2ÞÞ ¼
Z

S

ðE1 � A2 � E2 � A1Þ dx

and

fF ;Gg ¼
Z

S

dF

dE
dG

dA
�

dF

dA
dG

dE

� �
dx:

(See Schmid (1987) or Marsden and Ratiu (1994) for functional derivatives such as
dF=dE:) We take HðA;EÞ ¼ 1

2

R
S
jEj2 þ jcurlAj2 dx as our Hamiltonian. Note that

this is, as usual, the sum of a kinetic term (arising from a flat metric on A) and a
potential term (given by a scalar on A)—so we have in hand a simple mechanical
system.
Hamilton’s equations on TnA are just ’A ¼ �E and ’E ¼ curl curlA: Defining, as

usual, B :¼ curlA; we see that these equations of motion imply the first two Maxwell
equations. The third follows from the identity div curl� ¼ 0: The fourth, div E ¼ 0;
will emerge shortly.
Our next step is to consider the action of the group, G; of gauge transformations

on our theory. This group is just (a subgroup, picked out by appropriate boundary
conditions, of) the additive group of smooth functions on S; and acts on A via
f : A/Aþ grad f :38 The corresponding action on TnA is f : ðA;EÞ/ðAþ
grad f ;EÞ: Being a lift, this action preserves the canonical cotangent bundle
symplectic form on TnA: Leaving E invariant it leaves the kinetic energy invariant.
It also leaves invariant the potential energy: jcurlðAþ grad f Þj2 ¼ jcurlAj2; because
curl grad � ¼ 0: But G fails to act fairly on A and TnA—symmetric fields have
larger-than-generic isotropy groups. In order to circumvent this problem, we restrict

36 It may bear emphasizing that it is possible to formulate a Hamiltonian theory of the behavior of B and

E directly, avoiding the excursion via the vector potential. That this is possible in practice is an interesting

and important feature of Maxwell theory. That it is possible in principle follows from the discussion of

Section 5.
37Here and below all infinite dimensional spaces are taken to be appropriate Sobolev spaces; see

references. The scalar potential plays no role in this approach—from the perspective of the standard route

to Maxwell’s theory, this amounts to choosing to work in the temporal gauge (i.e., we fix the gauge; see

footnote 79 below). But no conceptual questions are begged, since freedom to perform (spatial) gauge

transformations quickly re-emerges.
38Here and below all groups of gauge transformations are Hilbert Lie groups; see Schmid (1987).
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our attention to the subgroup of G consisting of pointed gauge transformations:
G
*
¼ ffAG: f ðx0Þ ¼ 0g for some arbitrary but fixed x0AS:39 G

*
acts fairly (indeed,

freely) on A and TnA:
Thus we have a simple mechanical G

*
system. Since our group is infinite

dimensional, there are infinitely many conserved quantities associated with our
symmetries. These are encoded in the function div EðxÞ which remains constant at
each point xAS as E evolves in accord with the equations of motion.40

In accord with our usual procedure, we now set these conserved quantities to zero,
and investigate the constraint surface G ¼ fðA;EÞATnA : div E ¼ 0g: Thus,
restricting attention to G amounts to imposing the fourth Maxwell equation! The
null directions of the restriction of the symplectic form of TnA to G correspond, of
course, to the infinitesimal generators of the action of G

*
on TnA: So the intrinsic

equations of motion on G are well-posed only up to a time-dependent (small) gauge
transformation: if ðAðtÞ;EðtÞÞ is a solution then so is each ðAðtÞ þ grad gðtÞ;EðtÞÞ; for
g :R-G

* 0
:41 As always, the extrinsic dynamics has a well-posed initial value

problem.
Identifying gauge-related points on G leads to a Hamiltonian theory on the

reduced phase space: TnðA=G
*
Þ equipped with its canonical cotangent bundle

symplectic structure, and carrying the Hamiltonian HðA;EÞ ¼ 1
2

R
S
jEj2 þ jBj2 dx:

Once again, the Hamiltonian of the reduced theory is the sum of a kinetic term
arising from a metric on the reduced configuration space and of a potential term
defined on the reduced configuration space. Thus we have recovered a simple
mechanical system as our reduced theory.
The reduced configuration space A=G

*
is the infinite dimensional manifold of

vector potentials modulo pointed gauge transformations. In the special case where
S ¼ R3; this space is just the space of possible magnetic fields (i.e., divergence free
B : S-R3); and the reduced phase space can be taken to be fðB;EÞ : div B ¼
div E ¼ 0g; carrying the Poisson bracket

fF ;Gg ¼
Z

S

dF

dE
curl

dG

dB
�

dG

dE
curl

dF

dB

� �
dx:

(Note that B and E are not canonically conjugate with respect to the cotangent
bundle Poisson structure on TnðA=G

*
Þ:) The equations of motion are then just

’B ¼ �curl E and ’E ¼ curl B—we recover the Maxwell equations in their most
familiar form.
If, however, space is non-simply connected (e.g., a torus), then specifying the

magnetic field fails to determine a point inA=G
*
: there are vector potentials A and

A0 such that curl A ¼ curlA0 but there is no fAG
*
such that A0 ¼ Aþ grad f—so

specifying a magnetic field fails to determine a gauge-equivalence class of vector

39Note that we lose little in the shift from G to G
*
: G

*
is a normal subgroup of G; and G=G

*
is just the

one-dimensional group Uð1Þ:
40For a statement in line with our official notion of conserved quantities in terms of Jx; see !Sniatycki

(2000, Eq. (5)).
41Gauge transformations lying in the connected component of the identity are referred to as small gauge

transformations.
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potentials. In this case, a better parameterization ofA=G
*
is provided by the set of

holonomies: for each closed curve g starting and ending at our basepoint x0AS; we
define the holonomy of A around g; HgðAÞ ¼ exp i

H
g A ds: For any fAG

*
; HgðAÞ ¼

HgðAþ grad f Þ; so Hg is a gauge-invariant quantity on A for each g: In fact, two
vector potentials yield the same holonomies iff they are gauge-equivalent. So the set
of holonomies provides a good set of coordinates onA=G

*
: But this set, like the set

of relative distances in relational mechanics, forms a vastly over-complete set of
coordinates on the reduced configuration space. Just as relative distances must
satisfy, e.g., the triangle inequality, so must the holonomies satisfy certain
constraints (these are surprisingly elegant; see Barrett (1991)).
Of course, one might well prefer to avoid spacetime non-local quantities such as

holonomies. And this may appear to be possible in the case at hand: even when the
magnetic fields fail to exhaust the content of the reduced configuration space, it
remains true that the familiar Maxwell equations for B and E exhaust the content of
the Hamiltonian equations of motion. Surely, then we are justified in eschewing the
representational resources of the reduced configuration space, insofar as they outrun
those afforded by the space of magnetic fields? But trouble is not far away: the
magnetic field alone fails to contain all of the information necessary to construct an
account of a quantum charged particle moving in a classical electromagnetic field on
a non-simply connected space.42 And, in any case, there is no avoiding such non-
local quantities once one moves from Maxwell’s theory to non-abelian Yang–Mills
theories.

8. Vacuum Yang–Mills theory

We now turn to more general vacuum Yang–Mills theories. Let M be a compact
three dimensional Riemannian manifold representing physical space. Let G be a
compact connected finite dimensional Lie group; from the compactness of G; it
follows that we can equip the Lie algebra, g; with an inner product, /�; �S; invariant
under the adjoint action of G on g; for notational convenience, we assume that G is a
matrix group, so that Adg x ¼ gxg�1: Let P-M be a principal G-bundle over M:
The configuration space for our Yang–Mills theory will be the space of connections
on P—physically, the space of field potentials.43

We focus, initially, on the case where P is a trivial bundle (the machinery necessary
for non-trivial P is sketched below, set off from the main text by square brackets). In
this case we can fix an arbitrary trivialization of P; this allows us to pull back forms
on P to forms onM ; so that we can take the relevant fields to live on physical space.

42Because of the Aharonov–Bohm effect; see Belot (1998) for this story.
43For this approach to Yang–Mills theories, see Arms (1981), Mitter (1980), and Moncrief (1980).

!Sniatycki (1999) and !Sniatycki, Schwarz, and Bates (1996) provide details for the case where P-M is

trivial. Maxwell theory is the special case where G ¼ Uð1Þ: The complications introduced by taking
sources into account are briefly touched upon in Section 11 below. We are again choosing the temporal

gauge; see footnote 37 above.
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Recall that, just as an ordinary p-form on M eats vector fields on M and yields a
real number for each xAM ; so a g-valued p-form on M eats vector fields and yields
an element of g for each xAM : The wedge product of a real-valued one-form and a
real-valued two-form on M is a real-valued three-form—which, because M is three
dimensional, we can think of as being the multiple by some real-valued function of
the volume form on M associated with the Riemannian metric on M: We want a
similar mechanism for pairing g-valued one- and two-forms on M to produce a real-
valued function on M: We achieve this by employing the following rule: let a and b
be, respectively, a g-valued one-form and a g-valued two-form on M; and let fxig be
a basis for g; then we can write a ¼

P
i aiðxÞ#xi and b ¼

P
i biðxÞ#xi; where each ai

is a real-valued one-form on M ; and each bi is a real-valued two-form on M;
employing the inner product on g; we can now construct the pairing 0a;bT ¼P

i;j /xi; xjSai4bj; this yields the desired real-valued three-form on M : Note, in
particular, that this allows us to construct a norm, jjajj ¼

R
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0a; *aT

p
; on the

spaces of g-valued one- and two-forms overM (here *a is g-valued ð3� pÞ-form dual
to a by the Hodge star).
In our present context, we can think of connections on P as g-valued one-forms on

M :We take the space of such connection one-forms,A; as our configuration space.
A is an infinite dimensional vector space; so we identify the tangent space at AAA
with A itself. Then a cotangent vector at AAA eats elements ofA and returns real
numbers. So we can take a cotangent vector, EATn

AA, to be a g-valued two-form on
M ; with the pairing given by

R
M
0A;ET: So our phase space is TnA ¼ fðA;EÞg;

which, as usual, we equip with its canonical cotangent bundle symplectic structure.44

As our Hamiltonian, we take HðA;EÞ ¼ 1
2
ðjjEjj2 þ jjFAjj2Þ; where FA ¼ DAA is the g-

valued curvature two-form, associated with the connection A via the action of DA;
the covariant exterior derivative associated with A: Note that this Hamiltonian is, as
usual, the sum of a kinetic term (deriving from a flat Riemannian metric onA) and a
potential term (given by a function on A). So we have a simple mechanical system,
with equations of motion ’A ¼ E and ’E ¼ �curl B � ½½A�;B

 (where B :¼ curlA þ
½½A�;A

 and where ½½a; b

 :¼

P
i;j½xi; xj
 ai4bj for a ¼

P
i aiðxÞ#xi and

b ¼
P

i biðxÞ#xi).
We now turn to the symmetries of this theory. Depending on the geometry of M;

the theory may be invariant under a group of spatial isometries. Let us set those
aside. Our interest lies in the action of G; the infinite dimensional group of gauge
transformations. In our present context, a gauge transformation is of the form
xAM/gðxÞAG; a smooth assignment of an element of G to each point ofM: These
act on A via AðxÞ/gðxÞ�1AðxÞgðxÞ þ gðxÞ�1 dgðxÞ: This action lifts to an action on
TnA which preserves the symplectic structure; this action is just ðA;EÞ/ðg�1Ag þ
g�1 dg; g�1EgÞ (omitting this time the arguments). FA; like E; transforms under a
gauge transformation by conjugation. The invariance under gauge transformations
of jjEðxÞjj and jjFAðxÞjj then follows immediately from the invariance under
conjugation of the inner product on the Lie algebra of G: Thus G is a symmetry

44See !Sniatycki (2000, Eq. (3)) for the symplectic potential.
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group for our theory, leaving invariant both the symplectic structure and the
Hamiltonian.
We do not quite have a simple mechanical G system though, for the action of G on

A is proper but not fair—since symmetric field potentials have larger-than-generic
isotropy groups. To get around this problem, we restrict our attention to the group,
G
*
; of pointed gauge transformations, which acts freely on A (i.e., we require our

gauge transformations to assign the identity element in G to some fixed but arbitrary
x0AM). G

*
is an infinite dimensional subgroup of G (indeed, G

*
is a normal

subgroup of G; with G=G
*
¼ G—so not much is lost).

The conserved quantities associated with this group action are encoded in the g-
valued three-form DAE; which we think of as a g-valued function onM ; preserved by
the dynamics of the theory.45 So our constraint surface, G; is given by imposing
Gauss’ Law: DAEðxÞ ¼ 0 at each xAM : The null directions on this constraint surface
correspond to the infinitesimal generators of gauge transformations, which are just
given by assignments xAM/xðxÞAg: We can, of course, study the dynamics on G
either extrinsically or intrinsically. The former point of view yields a well-posed
initial value problem, while the latter yields the more familiar formulation in which
the initial value problem is well-posed only up to a time-dependent (small) gauge
transformation.46

[Before discussing the structure of the reduced configuration space, let me remark
that the picture is much the same when we work in the more general context in which
P-M is allowed to be a non-trivial bundle.47 A; E; and FA must now be thought of
as g-valued forms on P; while G; the group of gauge transformations, is now the set
of vertical automorphisms of P:
In the case where P was trivial, we were able to take one or more g-valued forms,

a;y; living on M; perform some operation Tða;yÞ on them to yield a scalar
function onM ; then work with the integral

R
M

Tða;yÞ: This played a crucial role in
our definition of the pairing between tangent and cotangent vectors to our phase
space, and in the definition of the kinetic and potential energies. In the case at hand,
we still need to integrate scalars over M to define the necessary structures—but now
the forms we start with are forms on P:We deploy a somewhat klunky apparatus to
get around this problem. We choose a set of distinguished disjoint open sets UiCM;
the union of whose closures cover M ; and over which we are able to define local
sections of P: Given a form, a; on P; we can use our local sections to construct
pullbacks, ai, living on the Ui; we can then perform some operation, Tðai;yÞ, on our

45See !Sniatycki (2000, Eq. (5)) for the official statement.
46Gauge transformations lying in the connected component of the identity are again referred to as small

gauge transformations. The fact that G and G
*
are not in general connected has important consequences

for quantum gauge theories; see Jackiw (1984) on y angles.
47Some accounts of gauge theories leave the impression that a non-trivial P is required iff a monopole is

being described. This is not so. On the one hand, the ’t Hooft–Polyakov monopole lives on a trivial bundle;

see G .ockeler and Sch .ucker (1987, Sections 10.3 and 10.6). On the other hand: if our physical space is R4;
we may treat N as a point, compactifying R4 to S4; in order to give a consistent global description, we
may require a non-trivial P-S4; although the original bundle over R4 was necessarily trivial; see Singer
(1982, pp. 38–40).
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pull backs, yielding a scalar on each Ui; finally, we can define
R

M
Tða;yÞ ¼P

i

R
Ui

Tðai;yÞ: This construction will be independent of our choice of Ui and local
sections, so long as each of the Tðai;yÞ is gauge invariant in the sense that
TðaiðxÞ;yÞ ¼ TðgðxÞaiðxÞg�1ðxÞ;yÞ for any map x/gðxÞ defined on Ui:

48

Our configuration space, A; will be the infinite dimensional space of connections
on P: A connection, A; is a g-valued one-form on P which has two special features:
(i) AðxÞðxPðxÞÞ ¼ x for each xAg and xAP (where xP is the vector field on P

associated to x in virtue of the action of G on each fiber of PÞ; (ii) it is equivariant in
that Fn

gA ¼ Adg�13A (where Fg is the action of gAG on P and Fn
g is its tangent map).

A is an affine subspace of the space of g-valued one-forms on P: Indeed, choosing
an arbitrary connection A0; we can writeA ¼ fA0 þ ag where a ranges over tensorial

g-valued one-form on P—where a g-valued p-form on P is tensorial if it is
equivariant and horizontal, in that aðx1P;y; xp

PÞ ¼ 0 whenever x
1;y; xpAg: For each

p; the space of tensorial g-valued p-forms on P is a vector subspace of the space of g-
valued p-forms on P: Tensorial g-valued forms on P have the following gorgeous
property: if a is tensorial, and a0 and a00 are pullbacks to Ui associated with two local
sections of P over Ui related by the transformation xAUi/gðxÞAG; then a0ðxÞ ¼
gðxÞa00ðxÞgðxÞ�1:
Our discussion of the affine nature ofA shows that the tangent space toA is just

the space of tensorial g-valued one-forms on P: We can take a cotangent vector
EATn

AA at an element of A to be a g-valued tensorial two-form on P; the pairing
between tangent vectors and cotangent vectors is given by pulling them back to M

via our arbitrary local trivializations, to yield a g-valued one-form and a g-valued
two-form defined on each of our privileged neighborhoods of M ; proceeding with
these pullbacks as in the case where P is trivial, then summing. The construction is
kosher because the pullbacks transform by conjugation, and the inner product on g

is invariant under conjugation.
As usual, we equip TnA with its canonical cotangent bundle symplectic structure.

We construct our Hamiltonian on TnA by pulling back E and FA to M ; employing
the expression from the trivial case on each of our privileged neighborhoods, then
summing; again it follows from the fact that FA; like E; is tensorial on P that the
resulting expression does not depend on our choice of local sections. Thus we have a
simple mechanical system on TnA:
The expressions for the transformation of A and E under gauge transformation

are unchanged; in order to achieve a fair (indeed, free) action, we again restrict to
G
*
; the group of pointed gauge transformations (required to reduce to the identity

on the fiber over some fixed but arbitrary x0AM). The conserved quantities are again
encoded in the three-form, DAEðxÞ; defined now on P: Imposing Gauss’ law,
DAEðxÞ ¼ 0 gives us a constraint surface G: The null directions on the constraint

48There is an elegant alternative to this procedure. Associated with our P-M; there is a vector bundle
ad P-M with typical fiber g; on which G acts via Ad; and which has the same transition functions as P:
There is a natural correspondence between the tensorial g-valued forms on P (discussed below) and forms

onM which take values in the space of sections of adP—our local pullbacks can be sewn together to yield

such sections, and the necessary pairings, norms, etc. can be defined in a manifestly invariant fashion on

the space of such sections. See, e.g., Marathe and Martucci (1992, Section 6.4).
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surface are given by the infinitesimal generators of the gauge transformations (given,
now, by G-equivariant functions from P to g). As usual, the extrinsic dynamics on
this constraint surface has a well-posed initial value problem, while the initial value
problem for the dynamics under the standard, intrinsic, construal is well-posed only
up a time-dependent small gauge transformation.]
Whichever context we choose to work in, the infinite dimensional reduced

configuration space—the space of connections modulo pointed gauge transforma-
tions—is a complicated object. For non-abelian G; A=G

*
is non-linear and carries a

non-flat Riemannian metric.
Holonomies provide the best known parameterization ofA=G

*
: If we fix a point b

in the fiber of P above our basepoint x0AM and a connection AAA; then we can
associate a gAG to each smooth curve, g; in M which begins and ends at x0; we say
that g is the holonomy of A around g for b:49 Keeping b fixed, we can observe that a
connection gives us a map from the space of closed curves through x0 to G; called the
holonomy map. It turns out that two connections yield the same holonomy map if
and only if they differ by a pointed gauge transformation. Again, though, this set of
coordinates on the reduced configuration space is highly over-complete.
We can also start from the other end: with only a little care, we can turn the space

of closed curves through our basepoint into a topological group, LM
*
(with

concatenation as the multiplication; see Barrett, 1991). Then any homomorphism
fromLM

*
to G which is appropriately smooth determines a G

*
-equivalence class of

connections on some principal fiber bundle P-M : Thus such a smooth
homomorphism determines the topology of P as well as the geometry of the
connection.

9. Quantization

Our reduced theories are standard Hamiltonian theories living on cotangent
bundles, and can in principle be quantized via any procedure adapted to such
theories. In practice, however, the theories discussed in Sections 6–8 above exhibit
features which complicate the execution of standard recipes (here I am thinking of
the over-completeness of the natural sets of coordinates on the reduced configuration
spaces, and, in the case of Yang–Mills theories, of the non-locality of the
holonomies). In such situations, an alternative approach pioneered by Dirac
(1964) becomes very attractive. We first construct a quantization for the extended
phase space. Then we restrict attention to a subset of states which obey a quantum
version of the classical constraints—if the classical constraints are of the form
CiðxÞ ¼ 0 for some functions, Ci; on the extended phase space, then the quantum
constraints are #Cic ¼ 0 (i.e., we restrict our attention to states annihilated by the
operator corresponding to C). The hope is that this procedure yields the same result
as would a direct quantization of the reduced theory.

49Here is the recipe: construct the horizontal lift of g which begins at b; the end point of this curve lies in
the same fiber as b; g is the element of G which maps b to this point.
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This hope is borne out for a large class of finite dimensional systems.50

Suppose that we have a finite dimensional simple mechanical G system
ðTnQ; g;V ;GÞ; in which G is connected and unimodular and the action of G on Q

is free.51 We undertake to construct a quantization of this system—i.e., a
representation of an interesting Poisson subalgebra of CNðTnQÞ as an algebra of
self-adjoint operators on L2ðQÞ: In general, there is considerable choice available
here, even in the finite dimensional regime to which we are presently restricting our
attention—the case of R2n; where the Stone–von Neumann theorem assures us that
there is only a single irreducible representation of the usual algebra of p’s and q’s, is
quite exceptional (on this point, see, e.g., Isham (1984)). We fix our attention on
geometric quantization (see Woodhouse (1980) or Bates and Weinstein (1997)),
where the imposition of further geometric structure upon TnQ determines a
quantization. It is natural to impose the further condition that the quantization
respect the structure of our theory as a simple mechanical G system: that the new
structure imposed be compatible with the cotangent bundle structure of TnQ and
with the action of G:
With a quantization of the extended phase space in hand, we can proceed to

construct a Dirac quantization of the constrained theory. Recall from Section 4 that
the basis elements, xi; for the Lie algebra g of G are associated with functions, Jxi ; on
the extended phase space which generate the action of G on this space, and whose
Poisson brackets represent the Lie bracket relations between the xi: Our constraint
surface, G; is determined by setting the Jxi equal to zero. Now, G also acts on L2ðQÞ;
the Hilbert space of our quantization of the extended theory. The infinitesimal
generators of that action are just the #J

xi ; the operators corresponding to the Jxi (this
follows from the compatibility assumed above). We construct a quantization of the
constrained system by imposing the Dirac condition: we restrict our attention to
those cAL2ðQÞ such that #J

xic ¼ 0:52 This amounts to restricting our attention to the
G-invariant states in L2ðQÞ:53 The states satisfying this condition form a Hilbert

50What follows is a sketch of the central result of Gotay (1986a). See Sjamaar (1996) and Huebschmann

(2002) for related results in other finite dimensional cases. See !Sniatycki (2000) for the status of this

program in the Yang–Mills case—where, of course, there is the additional problem of the construction of

the correct inner product on the space of states. There is some reason to think that the Dirac program

falters in the context of singular quotients; see R .omer (1988).
51G is unimodular if it carries a bi-invariant measure; for this, it suffices that G be abelian or compact.
52Complications, such as rigged Hilbert spaces, may be necessary to handle the case where 0 lies in the

spectra of these operators, but not in their discrete part.
53The #J

xi are the infinitesimal generators of the action of G; so we can recover the action of G by

exponentiating their action (since G is connected): for the states we are interested in, the #J
xi act like the

zero operator; so their exponentials act like the identity.

If we lift the requirement that G be unimodular, then the Dirac condition must be amended to read
#J
x
c ¼ �ði=2Þ trðad xÞc (for unimodular groups, trðad xÞ ¼ 0Þ; in order to ensure that the Dirac

quantization matches the standard quantization of the reduced theory (see Duval, Elhadad, Gotay, and

Tuynman (1990) for an example where this is essential). This formula, which ought to look surprising in

light of the first consideration adduced in this footnote, arises naturally within BRST quantization; see

Loll (1992) and Tuynman (1992) for accessible treatments. This scheme, with its ghost and anti-ghost

variables offers a nice illustration of the theme, flagged in Section 13 below, that mathematical tractability

can sometimes be secured by introducing non-physical degrees of freedom.
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space which inherits a representation of some G-invariant observables from the
extended quantization.
Now, because we take our quantization of the extended theory to be determined

by new structures which mesh with the cotangent bundle structure and the group
action of the extended theory, we find that these new structures project down to
TnðQ=GÞ; inducing a quantization of the reduced theory (i.e., a representation of a
Poisson subalgebra of CNðTnðQ=GÞÞ as an algebra of observables on L2ðQ=GÞ). This
Hilbert space is canonically unitarily equivalent to that of the corresponding Dirac
quantization (the states of the constrained quantization are, after all, G-invariant
functions in L2ðQÞ; and thus may be thought of as functions in L2ðQ=GÞ); this
isomorphism also relates the well-behaved observables of the two quantizations.54

This sort of result shows that one can often avoid working directly with the
reduced theory. But note that it shows only that quantizations of the extended theory
that respect its structure as a simple mechanical G system are associated with
quantizations of the reduced theory via the Dirac procedure. It does not follow that
imposing the Dirac condition gives us a way of moving from arbitrary quantizations
of the extended theory to quantizations of the reduced theory. Indeed, there exist
constrained systems lying just outside of our ambit that admit geometric
quantizations that: (i) fail to respect the constraint structure; and (ii) do not arise
as quantizations of the reduced theory.55

10. Symmetry and singularities

We now want to dispense with the assumption that G acts fairly on Q:We will see
that this means countenancing reduced spaces Q=G and G=G which are singular
spaces, not manifolds.
We begin with some generalities about quotients of finite dimensional manifolds

by proper group actions.56 Let G act properly on a finite dimensional manifold, X :
Then the topological space X=G (equipped with the projection topology) is
Hausdorff. We count a function on X=G as smooth if it corresponds to a G-invariant
smooth function on X :Now, X=G will not be a manifold unless the action is fair. But
it can always be taken to be composed of manifolds, in the following sense.
Construct an equivalence relation on the set of subgroups of G by declaringH and K

to be equivalent if they are conjugate in G—i.e., if there is a gAG with K ¼ gHg�1:
Writing the equivalence class of H as ðHÞ; we define XðHÞ :¼ fxAX : ðGxÞ ¼ ðHÞg; the
set of points of X whose isotropy subgroup is in ðHÞ: Each XðHÞ is a submanifold of
X ; called the stratum of points of symmetry type ðHÞ; and X is the disjoint union of

54Problems may arise at this stage with the quantum Hamiltonian. This is not unusual in geometric

quantization.
55See Ashtekar and Horowitz (1986) and Gotay (1986b) for such systems; the constraints in question are

not associated with momentum maps. Loll (1992) broaches some related questions.
56For finite dimensional systems; see, e.g., Pflaum (2001a, Chapter 4; 2001b, Section 5). Much of the

picture is known to carry over to interesting infinite dimensional cases; see Isenberg and Marsden (1982),

Kondracki and Rogulski (1986), and !Sniatycki et al. (1996).
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the XðHÞ:
57 Similarly, each ðX=GÞðHÞ :¼ XðHÞ=GCX=G is a manifold, the stratum of

points of type ðHÞ; and X=G is the disjoint union the strata ðX=GÞðHÞ:
58 We will say

that X=G has a non-trivial stratum structure if it has more than one non-empty
stratum. If we consider two subgroups of G; H and K ; such that there is a gAG with
HCgKg�1; then we can say that ðHÞ corresponds to points with less symmetry than
those corresponding to ðKÞ: In this case, XðKÞ is contained in the boundary of XðHÞ in
X and ðX=GÞðKÞ is in the boundary of ðX=GÞðHÞ in X=G: There will be a minimal
symmetry type, ðHminÞ; often corresponding to the identity subgroup of G; the
corresponding sets of generic points with minimal symmetry, Xreg :¼ XðHminÞ and
ðX=GÞreg :¼ ðX=GÞðHminÞ; are open and dense in X and X=G; respectively.
When X has the additional structure of a configuration space or a phase space, the

quotients that we are interested in will inherit some corresponding structure.59 If Q is
a Riemannian manifold, there is a standard technique for making Q=G into a metric
space: the distance between two points of the quotient space is given by taking the
infimum over the lengths of curves joining the corresponding orbits in Q (the
minimizing curves are geodesics orthogonal to the orbits of G). Of course, Q=G will
not be a Riemannian manifold in the ordinary sense if it is singular. But it can be
equipped with a sort of generalized metric tensor (Pflaum, 2001a, Section 2.4), and
we will, in any case, be able to pursue dynamics on Q=G in the form of a geodesic
principle.60

If G acts properly on a configuration space, Q; then it also acts properly on the
corresponding phase space, TnQ; and constraint surface, G:61 In this case each
stratum, ðTnQÞðHÞ; of TnQ is a symplectic submanifold of TnQ; each stratum, GðHÞ; is
a submanifold of TnQ with a null space of dimension dimG � dimH; and each
stratum, ðG=GÞðHÞ; of the reduced phase space is a symplectic manifold. Each such
quotient stratum forms a dynamically closed subset: a dynamical trajectory through
a point of a given stratum is confined to that stratum (since it is a symplectic
manifold). The corresponding Poisson brackets on the quotient strata mesh to give
us a Poisson bracket on G=G: Together with the projection of the G-invariant

57Strictly speaking, XðHÞ and the other strata discussed in this section may be S-manifolds—finite or
countable disjoint unions of manifolds which need not all be of the same dimension (see Pflaum, 2001a, b).

I describe the situation for the case where each stratum consists of a single connected component; the more

general theory can be recovered via some fairly obvious modifications—such as relativizing the claims of

the next note to connected components.
58Each XðHÞ-ðX=GÞðHÞ is a G=H bundle, so we have dim ðX=GÞðHÞ ¼ dimX � dimG þ dimH:
59For configuration spaces, see Alekseevsky, Kriegl, Losik, and Michor (2001) and Pflaum (2001a,

Section 2.4) for the finite dimensional case and Kondracki and Rogulski (1986) for the Yang–Mills case.

For phase spaces, see Bates and Lerman (1997) and Ortega and Ratiu (1998) for the finite dimensional

case, Isenberg and Marsden (1982) for general relativity, and !Sniatycki et al. (1996) for Yang–Mills.
60This is the proper setting for the theory of Barbour and Bertotti (1982), which is based upon Jacobi’s

principle. Note that in quantization of simple mechanical systems, the Laplacian associated with the metric

on configuration space plays a prominent role. Presumably, in order to quantize a singular system, one will

need to find an operator related in an appropriate way to the generalized metric on the reduced

configuration space.
61 If there is more than one non-empty stratum of TnQ corresponding to an isotropy group of positive

dimension, then G itself possesses singularities and fails to be a submanifold of TnQ:

G. Belot / Studies in History and Philosophy of Modern Physics 34 (2003) 189–225 211



Hamiltonian, this allows us to formulate a dynamical theory on the reduced phase
space, G=G:
How does dropping the requirement that the action be fair bear upon our

examples?
One consequence in the Yang–Mills case is that we can work with the full group of

gauge transformations rather than with the subgroup of pointed gauge transforma-
tions. We then get dimG further conserved quantities (see, e.g., Landsman (1998a,
Section IV.3.6)). In the abelian case, the holonomies remain invariant under the
larger group; but in the non-Abelian case, this is not so, and one has to work instead
with the traces of the holonomies, the so-called Wilson loops (these are maps from
loops to the complex numbers). In any case, one advantage of shifting to the larger
group is that we no longer have to fuss with base-points—we can now work with the
set of all smooth loops on M :62

There has been a good deal of work on the structure of the reduced configuration
spaces of Yang–Mills theories (that is, the spaces of connections modulo the full
group of gauge transformations; see, e.g., Kondracki and Rogulski (1986),
Huebschmann (1996) and Rudolph, Schmidt, and Volobuev (2002)). And there
has been some speculation that the singularity structure of such spaces may play an
important role in non-perturbative aspects of QCD (see Asorey, 1999; Vilela
Mendes, 2000). There has been rather less work on the stratum structure of the
reduced phase space of Yang–Mills theory.63 The problems are somewhat different,
as the singularities in the reduced configuration space derive from symmetric vector
potentials, while the singularities in the reduced phase space derive from states in
which both the vector potential and canonically conjugate electric field are
symmetric.
This important difference, which we may roughly characterize by saying that the

reduced phase space is not the cotangent bundle of the reduced configuration space,
arises whenever the group action on our configuration space is not fair. It is easiest to
visualize in the case of particle mechanics. There, allowing non-free group actions
means that it is no longer necessary to excise symmetric points from the phase space
in setting up the theory. In our previous treatment of this example, we took as our
phase space TnðR3NregÞ; the set of states whose configuration variables were symmetry
free. We now want to investigate the full phase space, TnR3N :64 Thus our extended
phase space will include states whose configuration variables have non-trivial
symmetries. So our reduced phase space will include non-empty strata corresponding
to such states, each such stratum forming a dynamically closed subset. Now, one
might have hoped that, as in the regular case, the reduced phase space,
ðTnR3N Þ=Eð3Þ; would be isomorphic to TnðR3N=Eð3ÞÞ; the cotangent bundle of the

62However, the characterization of those maps from the space of loops into the complex numbers which

correspond to connections on fiber bundles is slightly cumbersome and depends upon G; see Loll (1994).
63See !Sniatycki et al. (1996) for the case where physical space is three dimensional, Rajeev and Rossi

(1995) for the case where physical space is taken to be a circle.
64More properly: the space which results upon the excision of points corresponding to collisions.
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reduced configuration space.65 But this is not so: the former space includes states in
which the configuration variables have a higher degree of symmetry than the
momentum variables; the latter does not.66 Indeed, consider a state in which the
particles are collinear, but this configurational symmetry is fleeting because the
momenta exhibit no symmetry. Such states exist in ðTnR3NÞ=Eð3Þ; lying in the strata
of generic points (since the asymmetry of the momentum variables means that the
state as a whole is not left invariant under any symmetries). But these states are not
to be found in TnðR3N=Eð3ÞÞ: since they involve a szygial configuration, they would
have to sit in the cotangent bundle of the stratum of R3N=Eð3Þ consisting of szygial
configurations; but this cotangent bundle only has as many momentum variables as
the reduced stratum of szygial configurations has configuration degrees of freedom,
which means that it contains only states in which the symmetry of the momentum
variables is at least as great as those of the configuration variables.
Now, it might well be thought that this sort of disparity between the reduced phase

space and the cotangent bundle of the reduced configuration space could not be of
any genuine importance. The real interest of the classical theories under discussion
lies, it is natural to think, in their quantum analogs. And, after all, the set of generic
points of minimal symmetry is open and dense in the reduced phase space; indeed,
the cotangent bundle of the quotient of the generic stratum of the reduced
configuration space is open and dense in the reduced phase space. So surely the
singular points, being of Borel measure zero, can make little difference to the
quantum theory? This suggests that it suffices to quantize the theory on
TnðQreg=GÞ:67

But it is not clear that this approach is the only one, or that it is in general to be
preferred to an attempt to quantize the full reduced theory, singular strata and all.
Indeed, in some examples it appears that the singularity structure of the reduced
phase space plays a role in determining crucial boundary conditions for the
operators of the quantum theory.68 The quantization of singular spaces remains ill-
understood.69

65We interpret the latter space as the disjoint union of the cotangent bundles of the strata of the reduced

configuration space. For details, see Pflaum (2001a, Section 2.3).
66Both spaces include states in which the momenta exhibit a higher degree of symmetry than the

configuration variables—e.g., generic configurations in which each particle is at rest.
67See Emmrich and R .omer (1990) for this approach, and for indications that quantum states have some

tendency to cluster near singularities. One advantage of this approach is that Qreg=G is a genuine

Riemannian manifold, so that one can as usual employ the associated Laplacian in defining the

Hamiltonian on the relevant Hilbert space, L2ðQreg=GÞ:
68See Baker and Mulay (1995) and Landsman (1998b). It is also perhaps worth noting that a reduced

phase space, considered as a singular topological space, does not automatically come equipped with a

notion of smoothness—although it does inherit one if it arises via reduction from a manifold; see Pflaum

(2001a, Section 4.4; 2001b, Section 5).
69See Tanimura and Iwai (2000) for an approach to the quantization of the singular reduced n-body

problem. The quantization of singular quotients is an active area of mathematical research. See, e.g.,

Huebschmann (2002), Pflaum (2002), and the papers in Landsman, Pflaum, and Schlichenmaier (2001).
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11. A puzzle and two solutions

I turn at last to direct consideration of conceptual and interpretative questions.
Let us begin with a puzzle. We can study systems of gravitating point particles with
or without imposing the (observationally underwritten) constraint that the angular
and linear momenta should vanish. We can study the Yang–Mills dynamics of
connections on principal bundles with or without restricting our attention to the
vacuum case by imposing Gauss’ Law, DAE ¼ 0; as a constraint.70 But if we do

choose to impose these constraints, the dynamics of the resulting constrained
theories will very likely receive different readings: the Yang–Mills case is almost
always viewed intrinsically while the particle case is usually given an extrinsic
construal. Why do the standard treatments of these constraints differ?

A solution. At this point it is helpful to consider the complementary Lagrangian
formalism—and the Legendre transform relates the Lagrangian formulation of a
theory to the corresponding Hamiltonian formulation. Roughly speaking, a regular

Lagrangian leads to equations of motion with a well-posed initial value problem
and to a Legendre transform that leads to an ordinary Hamiltonian system, while a
degenerate Lagrangian leads to equations of motion with an ill-posed initial value
problem and to a Legendre transform that leads to a constrained Hamiltonian
system (whose equations of motion may also have an ill-posed initial value
problem).71

We are faced with two approaches to Lagrangian mechanics (for regular
Lagrangians, these lead to equivalent equations of motion for systems in the
intersection of their domains of applicability). In the first, one considers a
Lagrangian, L; defined on a tangent bundle, TQ (Marsden & Ratiu, 1994, Sections
7.1–3 and 7.7). L determines a Legendre transform FL : TQ-TnQ; which can be
used to pull back the canonical symplectic form from TnQ to TQ; allowing one to
solve for the vector field on TQ determined by the Lagrangian energy. This recipe
leads to a non-degenerate form on TQ and well-behaved dynamics iff the Lagrangian
L is regular. And the Lagrangian is always regular when—as in our cases—it is just
the difference between a kinetic energy determined by a (weak) Riemannian metric
on Q and a potential energy defined upon Q: So this framework does not serve to
ground a distinction between the status of the constraints in the particle case in the
Yang–Mills case.
A second sort of Lagrangian approach views fields as sections of bundles over

spacetime, and determines the dynamics via the Euler–Lagrange equations (histories
of finite dimensional systems are sections of bundles over time). If one adopts this
approach to Yang–Mills theories, and works not with the Lagrangian of the

70Jackiw observes (1984, p. 257) that the unconstrained theory admits a straightforward quantization at

the heuristic level.
71The precise meaning of the italicized terms varies from context to context. For details, see Henneaux

and Teitelboim (1992, Chapters 1 and 2), Kosmann-Schwarzbach (1985), and Marsden and Ratiu (1994,

Chapter 7). Earman (2002) provides a synthetic overview of this complicated territory from one

perspective.
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previous paragraph, but with the traditional Yang–Mills Lagrangian—given by
integrating0FT over spacetime, whereF is the curvature associated with the four-
potential—one finds under-determined Euler–Lagrange equations and a Legendre
transform that gives rise to the Hamiltonian constraint surface for our Yang–Mills
theory.72 So it becomes entirely plausible that our two constrained Hamiltonian
systems deserve to be treated differently if this second Lagrangian formulation of
Yang–Mills theories is taken as fundamental.

Another solution. The extrinsic approach to the dynamics on the constraint surface
relies essentially upon the behavior of the Hamiltonian and the symplectic structure
off of the constraint surface—and hence will be suspect whenever there is reason to
question whether states off of the constraint surface represent genuine physical
possibilities. In this situation the intrinsic dynamics will naturally be preferred. This
observation provides some insight into our puzzle.
For in the particle mechanics case, orthodoxy endorses the possibility of rotating

closed systems, and the correctness of the usual Newtonian account of their
dynamics. This explains, as well as do considerations involving the Legendre
transform, why the orthodox majority accepts an extrinsic approach to the
Newtonian constraint surface. But this new consideration offers us something more:
a clue as to the source in classical relationalism about space and motion—with its
traditional wariness of a rotating universe—of the intuitions of the those who prefer
an intrinsic reading of the dynamics.73

In the Yang–Mills case, meanwhile, there is a much less contentious reason to
deny that states violating the constraint represent genuine physical possibilities. This
may sound implausible—after all, in some contexts one does assign DAE non-zero
values. Indeed, in one familiar form, Maxwell’s equations include div E ¼ r; for
charge density r; an analogous procedure is followed in the non-abelian case. Now,
this amounts to working off of the constraint surface in order to study the field
dynamics in the presence of external sources painted onto spacetime independently
of the behavior of the fields. This is, of course, an ad hoc maneuver—if one wants to
study Yang–Mills with sources honestly, one must introduce matter which not only
acts upon the field but is also acted upon by it. And when one pursues this upright
course, one ends up with a constraint which is a direct analog of the usual Gauss
constraint—the null directions of the constraint surface correspond to the

72See, e.g., Arms (1981) for this formulation and the corresponding Legendre transform. See Kosmann-

Schwarzbach (1985) for the relations between the various Lagrangian and Hamiltonian formalisms. See

Kosmann-Schwarzbach (1987) or Olver (1993) for precise statements of Noether’s second theorem, which,

roughly speaking, says that a Lagrangian field theory has under-determined Euler–Lagrange equations iff

it possesses an infinite dimensional family of variational symmetries parameterized by arbitrary functions

on spacetime.
73One need not think of the two proposed solutions as being in competition: relationalists will be

attracted to Lagrangian formulations of particle mechanics along the lines of that of Lynden-Bell (1995),

where the constraints are enforced by Lagrange multipliers—resulting in a singular Lagrangian, under-

determined Euler–Lagrange equations, and a Legendre transform which maps the velocity phase space

onto the Hamiltonian constraint surface.
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infinitesimal generators of gauge transformations.74 Under this more fundamental
approach, there is no physical interpretation for points lying off of the constraint
surface—and so we have an excellent reason to prefer an intrinsic reading of the
theory.

12. Ontology?

It is easy to imagine people who find holonomies and Wilson loops repugnant, and
express their dismay by asking whether it is being seriously proposed that spacetime

non-local quantities describe physical reality. But is hard to know what to do with the
worry in this form—after all, holonomies and Wilson loops are well-defined
quantities on the spaces of states of the standard formulations of Yang–Mills
theories. If it is accepted that these theories describe reality, does not it follow that
the quantities in question are as real as any others?
Consider some arbitrary quantity associated with a classical system of particles—

say, p raised to the power of the square-root of the magnitude of total angular
momentum. Imagine someone remarking that while this is a well-defined function on
the phase space of the system, no one ought to accept such a monster as real. This
seems like mere mistake: if it is conceded that the components of the system have
positions and momenta, then it follows that the system possesses some determinate
property from the determinable picked out by our function. If there is a defensible
strategy in the neighborhood, it is to grant that this quantity is indeed real, but to
insist that it is derivative.
Let, analogously, us ask whether holonomies enjoy a primary or a derivative

status in the proper understanding of Yang–Mills theories. What is the alternative to
taking holonomies as basic? Recall how we were led to them in the first place: they
determine, up to a gauge transformation, the geometry of a connection on a
principal G-bundle P-M; together with the topology of the bundle. Let us for short
simply say that the holonomies determine the geometry of a bundle. Now it seems we
could insist that what Yang–Mills theories are fundamentally about is the geometry
of bundles—a solution to the equations of the theory describes how this geometry
changes in time. Stipulating, for convenience that spacetime is the sort of thing which
carries a Lorentzian metric, we would then want to say that the theory describes the
geometry of a world dim G dimensions larger than spacetime.75 It would, of course,
remain true that such a geometry is determined by the values of certain functions on
the space of loops in spacetime.

74See Marsden and Weinstein (1982) for the coupling of the Maxwell field to a plasma, Weinstein (1982)

for the coupling of the Maxwell field to a charged quantum particle; !Sniatycki et al. (1996) for the coupling

of the Yang–Mills field to the Dirac field; and Kuperschmidt (1992) for a large number of related

constructions.
75 It is important to distinguish the strategy here considered from the quite distinct Kaluza–Klein

strategy. The latter involves spacetimes (in the sense stipulated in the text) of dimension greater than four,

and (in field theory, though perhaps not in string theory) is beset by technical difficulties at the quantum

level.

G. Belot / Studies in History and Philosophy of Modern Physics 34 (2003) 189–225216



Now, it seems, we have a genuine dispute. For we can easily imagine philosophers
who take themselves to live in a world correctly described by some non-abelian
Yang–Mills theory, and for whom the question whether holonomies ought to be
considered primary or derivative assumes the form of the question whether the world
should be thought of as exhausted by spacetime, or as being some dimensions larger,
with a geometry described by a Yang–Mills theory. Let us call our two contending
interpretations the holonomy interpretation and the connection interpretation,
respectively.
We can imagine how the dispute will go.

* The partisans of the connection interpretation will hope for a quick victory under
the banner of Quineanism. They will maintain that, although there is a nice
mathematical correspondence between the constrained and reduced formulations
of any Yang–Mills theory—and hence a sense in which, to a first approximation,
the two formulations must be compatible with the same (deterministic)
interpretations of the theory—, they can nonetheless make out a finer sense in
which the connection interpretation sits more nicely with the constrained
formulation than does the holonomy interpretation. This motivates the suggestion
that we ought to make like ‘‘Quine’’ and settle the ontological dispute by seeing
which formulation is more useful scientifically—declaring victory for the
connection interpretation once it is observed that holonomies are unwieldy and
physicists are quite wedded to the variables of the constrained approach.

* The other party can afford to grant everything up to the appearance of ‘‘Quine’’;
then remark that they want nothing to do with this character if he seeks to
extinguish their right to draw a distinction between a computationally convenient
set of variables and a perspicuous formulation of a theory. By way of countering
the impression that holonomies are too intractable to play any real role in physics,
they may also want to add that these variables in fact play an important and
increasing role in the quantum theory.76

* At this stage, the debate will likely come down to metaphysical intuitions. The
holonomy crowd may mount a counterattack, pointing out that their interpreta-
tion is the more parsimonious. And if even the connection interpretation cannot
not offer locality in spacetime, why baulk at the non-local nature of holonomies?
The other side can rejoin that it is a shortcoming of holonomies that, satisfying
non-trivial constraints, they violate certain combinatorial principles (if this is
possible and that is possible, then so is their juxtaposition).77 And away we goy

We can imagine all of this—with relish even. But there is, I think, a serious
question about whether we ought to let this dispute spill over into our world.
My worry here is not simply that our world is not fundamentally described by

classical Yang–Mills theories. Indeed, I think we are in general entirely reasonable in

76 In addition to their starring role in the loop quantum gravity program, holonomies are a crucial

ingredient in standard definitions of quark confinement, and figure in such highbrow topics as holography

(on this last point, see Susskind and Toumbas (2000) and Rehren (2000)).
77This suggestion is due to Frank Arntzenius.
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debating the correct interpretation of less-than-fundamental theories. Understanding
how this could be so is an outstanding philosophical problem. But this much, I
suppose, is uncontentious: judgments about the interest and correctness of
interpretations of theories which are (in the strictest sense) false must rest ultimately
upon judgments about the extent to which various interpretations of a given theory
contribute to, and integrate smoothly with, our understanding of the world. Here the
following sorts of considerations play a role: background metaphysical commitments
and hopes; judgments about the relative perspicuity of various alternative
formulations of the theory that we are interested in, and about the links between
variant formulations and competing interpretations; and considerations—operating
at the technical, conceptual, and metaphysical levels—that arise when we consider
how our theory is related to neighboring theories, both more and less fundamental.
Now, classical non-abelian Yang–Mills theories are very unusual—perhaps

unique?—among our menagerie of physical theories in making virtually no direct

contribution to our understanding of the world. They are subservient to their
quantum counterparts: their formulation under-girds the construction of quantum
gauge theories; the study of their solutions provides a toe-hold for the construction
of solutions of the quantum equations; it is always the quantum theories, never the
classical ones, that play a role in applications and predictions. Classical Yang–Mills
theories contribute to our knowledge of the world only via the contributions of their
deeper, quantum cousins. At the same time, the vast bulk of our understanding of
quantum gauge theories derives from perturbative calculations—which rely upon
gauge fixing schemes and hence cast little light on the interpretative questions
surrounding the gauge invariance of quantum and classical gauge theories.78

I conclude that clarification of our interpretative questions likely awaits deeper
investigations of non-perturbative aspects of quantum gauge theories—for therein
lies our best hope of anchoring interpretative claims about the classical theories. It is,
however, far from clear that such investigations would ever give any traction to our
present relatively simple-minded questions about the proper understanding of
classical gauge freedom.
One final point: the same features of the role of classical Yang–Mills theories

within our overall physics that generate the mushiness surrounding interpretative
questions generate a similar mushiness surrounding questions of formulation—and
this latter phenomenon is potentially unhealthy for the connection interpretation.
Prior to quantizing a field theory, it is normally necessary to complete the
configuration space—replacing the space, Q; of smooth solutions of the classical
equations by some space, %Q; of distributional solutions; informally speaking, the
states of the resulting quantum theory are wave functions over %Q rather than Q:79 In

78Gauge fixing: the goal is to circumvent gauge freedom by (smoothly) choosing a single representative

of each gauge equivalence class on the constraint surface. If successful, the space of representatives is a

symplectic manifold isomorphic to the reduced phase space—indeed, gauge fixing amounts to selecting a

section of the principal G
*
bundle G-TnðA=G

*
Þ: This is always possible locally, but is often globally

impossible. Indeed, a global obstruction can arise even when P-M is trivial andM simply connected; see

Singer (1978).
79See Wald (1994, Section 3.2) for this sort of construction in the linear case.
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our case, there is a straightforward and widely investigated means of effecting this
strategy: replace the configuration space, A=G

*
; which consists of smooth

assignments of holonomies to loops, by a space in which distributional assignments
are allowed. In making this transition, we lose our interpretation of the configuration
space as parameterizing the geometries of a ð4þ dimGÞ-dimensional space (see
Lewandowski, 1993). Now, given the peculiar role that classical gauge theories play,
we have scant grounds for insisting that one or another candidate formulation of the
classical theory is the correct one; it becomes especially difficult to insist that the
classical theory is a theory of smooth rather than distributional solutions; and the
connection interpretation is in peril.

13. What is the point of gauge freedom?

Most classical physical theories have standard formulations as simple mechanical
systems: their dynamical variables split into (generalized) position variables and
(generalized) momentum variables; their dynamics are given by Hamilton’s
equations for a Hamiltonian which is the sum of a kinetic term and a potential term.
A few important classical theories have standard formulations as gauge theories

(in the sense delineated in Sections 2–4), in which the dynamical variables are
separable into position variables and momentum variables and the Hamiltonian
assumes the standard form, but the specification of initial data is subject to certain
constraints and the initial value problem is well-posed only up to a time-dependent
group transformation. In this situation, we can always choose local coordinates
ðq1;y; p1;y; r1;yÞ so that the evolution of the ri is arbitrary, while the evolution of
the qi and pi are given by a set of Hamilton’s equations.
Why do some, but only some, theories assume this strange form?
One of the important lessons of the discussion of Sections 2–5 above is that every

such gauge theory can be reduced, yielding a simple mechanical system as the
reduced theory.80 Obversely, every (well-behaved) simple mechanical system can be
enlarged to yield a gauge theory—that is, for any given simple mechanical system, it
is (almost always) possible to construct a gauge theory whose reduced theory is the
given system.81

These observations show that each of our theories normally formulated as a
simple mechanical system could be reformulated as a gauge theory, while each of our
theories normally formulated as a gauge theory could be reformulated as a simple
mechanical system. So our question becomes: Why do we tend to prefer to formulate
some of our theories as gauge theories, and others as simple mechanical systems?

80There also exist physically interesting constrained theories—such as general relativity in its standard

3+1 Hamiltonian formulation—that lie outside of our class but admit a variety of reduction.
81This follows for finite dimensional systems from the results of Gotay and Tuynman (1989, 1991);

enlargements constructed in this manner may well be rather dull. But a given simple mechanical system

can admit a number of distinct enlargements; see Guillemin and Sternberg (1990, Sections 8–12) for

interesting enlargements of the Kepler problem (i.e., the physics of a planet orbiting a fixed sun).
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For a given theory, there are two virtues that we might appeal to in explaining
our preference for one sort of formulation over the other: convenience and
perspicuity.
I believe that we must appeal to convenience alone, so long as we restrict ourselves

to considerations drawn from the classical domain. For to say that the constrained
formulation of a classical Yang–Mills theory is more perspicuous than the
corresponding reduced formulation is to say that the former gives us deeper insight
into what the classical theory is telling us about the world. It was the burden of the
previous section to show that, in the present state of play, purely classical
considerations are incapable of underwriting any such judgement concerning Yang–
Mills theories.
It is not difficult to discern senses in which the constrained formulations of the

theories discussed in Sections 6–8 are more convenient than their reductions.

* In particle mechanics, we start with a configuration space which is just (a subset
of) 3N dimensional Euclidean space. In Yang–Mills theory we start with the space
of connections on some principal bundle over physical space. In both cases, we
have a linear (or, at worst, affine) space equipped with a flat Riemannian metric.
And in both cases, the corresponding reduced configuration space is a non-linear
space carrying a curved Riemannian geometry.82 There is, then, a considerable
increase in complexity in moving from the standard configuration space to the
reduced configuration space—an increase which, as we saw in Section 10, is only
increased if we allow singular reduced spaces.

* In these cases one has quite straightforward parameterization of the extended
configuration spaces (positions relative to an inertial frame, values of the vector
potential) while the available parameterization of the reduced configuration space
are quite awkward (both relative distances and holonomies are grossly
overcomplete in physically interesting cases; the nonlocality of the latter pose
serious technical difficulties).

Thus in our examples there is a considerable gain in mathematical tractability in
working with the extended configuration space rather than the reduced configuration
space.83 It is no surprise that these theories were first written down as constrained
theories with gauge freedom—nor that it continues, for the most part, to be
worthwhile to put up with this gauge freedom rather than struggle with the
conceptually simpler, but technically unpleasant, reduced formulations of the
theories.
Now, one hopes that there lurks, somewhere, a deeper account of the grounds of

this sort of gain in convenience—relative to which the considerations mentioned just
now will appear quite superficial. All that I want to insist upon here is that pragmatic
considerations—mathematical elegance, tractability, and convenience—will drive

82See Littlejohn and Reinsch (1997, Section IV.C) and Babelon and Viallet (1981), respectively.
83See Kazhdan, Kostant, and Sternberg (1978) and Marsden and Weinstein (1983) for other important

sorts of example in which simplification is achieved through the introduction of additional variables.
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any such explanation of the importance of gauge freedom in Yang–Mills theories
that functions exclusively at classical level.
But attention to quantum considerations could easily change this situation. For

instance, our discussion of Sections 9 and 10 suggests the following possibilities: a
constrained theory may admit quantizations which do not arise as quantizations of
the corresponding reduced theory; the quantization of a singular reduced theory may
require exogenous structure which is most naturally viewed as deriving from a
classical or quantum constrained theory.84 If one of these scenarios were to occur in
a physically important case, it would be very natural to conclude that the
constrained formulation of the classical theory enjoyed an advantage in perspicuity
over the reduced formulation, in that it offered us deeper insight into what the
classical theory told us about our world. And if the constrained formulation
(in either intrinsic or extrinsic form) enjoyed a closer association with one or
another ontological picture than did the reduced formulation, then these quantum
considerations would appear to have considerable interpretative consequences
at the classical level.85 In this case, our analysis of the interest of gauge freedom
would carry us far beyond the merely pragmatic domain of mathematical
tractability.86
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