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Abstract It is shown that the Unruh effect, i.e. the increase in temperature indicated
by a uniformly accelerated thermometer in an inertial vacuum state of a quantum field,
cannot be interpreted as the result of an exchange of heat with a surrounding gas. Since
the vacuum is spatially homogeneous in the accelerated system its temperature must be
zero everywhere as a consequence of Tolman’s law. In fact, the increase of temperature
of accelerated thermometers is due to systematic quantum effects induced by the local
coupling between the thermometer and the vacuum. This coupling inevitably creates
excitations of the vacuum which transfer energy to the thermometer, gained by the
acceleration, and thereby affect its readings. The temperature of the vacuum, however,
remains to be zero for arbitrary accelerations.

Keywords Unruh effect · Tolman-Ehrenfest law · Vacuum temperature

1 Introduction

In a well-known paper, Unruh [24] considered an idealized, pointlike detector which
follows a worldline of constant proper acceleration in Minkowski spacetime while
its degrees of freedom are coupled to a quantum field in the inertial vacuum state.
He has shown that in the limit of large measuring times and of weak couplings the
detector state will be found in a Gibbs ensemble corresponding to a temperature which
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is proportional to the detector’s proper acceleration; see also [6,7,19,26]. The relation
is

TD = a

2π
(1)

whereTD is the Gibbs ensemble temperature of the detector,a is the proper acceleration
along its worldline, and we use units where the velocity of light, Planck’s constant and
Boltzmann’s constant have the values c = h̄ = k = 1.

Constant acceleration can be described as the effect of a constant gravitational field
(by the equivalence principle) which in turn can be described by a static spacetime
metric. In the case at hand this is Rindler space whose metric is given in appropriate
coordinates (assuming that the acceleration points into the 1–direction) by

ds2 = (ax1)
2 dt2 − dx2, x = (x1, x2, x3) . (2)

The orbit of the thermometer is given in these (Rindler) coordinates by x1 = 1/a,
x2 = x3 = 0 and t denotes its proper time.

It has been suggested to interpret the temperature TD of the detector as the temper-
ature of a relativistic gas which appears in the vacuum because of the acceleration, cf.
[10, p. 167], [25, p. 3721], [26, p. 115]. If this picture is correct, i.e.if one is effectively
dealing in the accelerated vacuum with an equilibrium state of a gravitating gas, one
can apply a classical result of Tolman [22] and Tolman–Ehrenfest [23] who observed
that the temperature in such systems is spatially varying. In the case at hand they obtain
for the temperature T (x) at point x in Rindler space the relation

T (x) ax1 = const. (3)

where the constant depends on the system.
If the Unruh temperature TD at x1 = 1/a is identified with the temperature of

a gravitating gas one obtains const. = a/2π , so the temperature of the vacuum
depends on the position in the comoving system according to T (x) = 1/2πx1. Hence
it is strongly varying with x and one would expect that the gas should also exhibit
corresponding pressure and density variations.

We will show in this article that this conclusion leads to contradictions, so there is no
such gas. In particular, the (macroscopic) Tolman temperature and the (microscopic)
Unruh temperature cannot be identified. This applies not only to the vacuum, but in
fact to any accelerated equilibrium (KMS) state of a quantum field with respect to the
time coordinate t . We will indicate the origin of this discrepancy, explain why Unruh
detectors do not describe perfect local thermometers and outline how local temper-
atures can be determined otherwise, leading to results which consistently unify the
Unruh effect and Tolman’s law. Most arguments rest on results of our recent work [5].

These results appear to have consequences also for other discussions in which
relation (3) is of relevance, such as considerations of black branes [16], or the idea
of a fundamental link between time and temperature (“thermal time”) [14]. At any
rate, one has to be cautious when identifying the Tolman temperature of (3) with
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temperature readings distorted by quantum effects, such as the Unruh temperature of
an accelerated detector.

2 The Unruh detector, encore

Turning to the details, let φ(x) be a real, scalar quantum field on Minkowski space
R

4, where we use inertial coordinates x = (x0, x1, x2, x3) (sans-serif letters). The
action of spacetime translations y ∈ R

4 and Lorentz transformations Λ ∈ L ↑
+ on the

field is given by the map φ(x) �→ φ(Λx + y) and the field is assumed to be local,
i.e.[φ(x), φ(y)] = 0 if x, y are spacelike separated.

We will consider different Hilbert space realizations (representations [11]) of this
field which correspond to globally differing states. The basic reference state is the
inertial vacuum, simply called vacuum in the following, which is described by a
unit vector Ω0 in the vacuum Hilbert space H0. On H0 there exists a continuous
unitary representation U0 of the Poincaré group P↑

+ = R
4

� L ↑
+ such that (1) Ω0

is invariant under its action, (2) the generator (Hamiltonian) P0 of the inertial time
translations is positive and (3) U0(y,Λ)φ(x)U0(y,Λ)−1 = φ(Λx + y). For the sake
of concreteness, we take as a simple example fitting into this setting the theory of a
free field of mass m = 0, acting on Fock space. But our arguments are, to a large
extent, model independent.

Since we are interested in the spatial dependence of temperature in accelerated
systems we consider a Minkowski space based observer who enters with his clock
a laboratory which, at some instant of time, is at rest and then undergoes constant
acceleration a > 0 into the 1–direction. The laboratory is assumed to have rigid
walls which can withstand the tidal forces caused by the acceleration, cf. [5]. Using
Rindler coordinates, the laboratory occupies at proper time t ≥ 0 of the observer some
region in the half–space Lt = {x ∈ R

3 : x1 > 0} where the observer stays at xo =
(1/a, 0, 0). Proceeding to Minkowski coordinates, this half–space corresponds to the
half–hyperplane Lt = {x ∈ R

4 : x0 = th(at)x1, x1 > 0} = Λ1(at)L0, where Λ1
denotes the one–parameter group of Lorentz boosts into the 1–direction, parametrized
byat . Thus the time evolution of all points in the laboratory is determined by this action.

The observables carried along by the observer, testing the properties of the field
are, at time t = 0, described by polynomials A = ∑

cnφ( f1)...π( fn) of the field
operators φ and their canonical conjugates π which are integrated with test functions
f having support in the region L0. Taking into account the preceding remarks about the
evolution of points in L0 and the transformation properties of the field under Lorentz
transformations, it follows that the observables at time t are given by (Heisenberg
picture) A(t) = Ua(t)AUa(t)−1, where we have put Ua(t)

.= U0(0,Λ1(at)).
Since the vacuum vector Ω0 is invariant under Lorentz transformations, the accel-

erated observer finds with his observables A, B that the vacuum state ω0 is stationary,
i.e.ω0(A(t)) = 〈Ω0,Ua(t)AUa(t)−1Ω0〉 = ω0(A). Moreover, as observed by Unruh
[24] and independently by Bisognano and Wichmann [2] (see also [9]), the corre-
lation functions t �→ ω0(BA(t)) satisfy the KMS condition which is a distinctive
feature of equilibrium states [12,15]. This condition can be presented in the form
ω0(B Ã(k)) = ek/TDω0( Ã(k)B), k ∈ R, where the tilde denotes the Fourier transform
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(in the sense of distributions) of the operator functions t �→ A(t) and TD is the Unruh
temperature given above. Thus there arises the question of the physical significance
of the parameter TD .

In order to answer this question, Unruh studied in [24] the effect of the coupling of
the accelerated vacuum state with a small system (probe). The simplest such example
is a two level system with Hilbert space C

2 and internal Hamiltonian Ho = Eo σ3,
where σ0, σ1, σ2, σ3 are the Pauli matrices and Eo is the internal energy relative to
the time scale of the observer. The generator of the time translations of the field in the
accelerated laboratory is aK1, where K1 is the generator on H0 of the boosts in the
1–direction. In order to describe the coupling between the vacuum and the probe on
the product Hilbert space H0 ⊗ C

2 we choose some smooth non–negative function
x �→ p(x) that integrates to 1 and has support in L0 about the chosen position of the
probe which may be distant from the position of the observer. Taking into account the
redshift factor ax1, which scales energies at the points x in the accelerated laboratory,
the generator of time translations of the coupled system is modeled by

Gg,p
.= aK1 ⊗ 1 + 1 ⊗ Ep σ3 + g φ(p) ⊗ σ1, (4)

where Ep = ∫
dx p(x)ax1Eo is the internal energy of the probe at its respective

position, g is a coupling constant and φ(p) is the field integrated with the function
p. Thus the time translations of the coupled system relative to the proper time of the
observer are described by the unitaries Vg,p(t) = eitGg,p .

Now let Ω⊗
.= Ω0 ⊗ η ∈ H0 ⊗ C

2 be the product of the vacuum vector and any
given state vector η of the probe and let A⊗ = ∑

i Ai ⊗ σi be the observables of
the coupled system. It has been shown by de Biévre and Merkli [7] that for arbitrary
coupling functions p the expectation values of observables in the coupled state exist
at large times,

lim
t→∞〈Ω⊗, Vg,p(t)A⊗Vg,p(t)−1Ω⊗〉 .= ωg,p(A⊗). (5)

These limits define stationary KMS states ωg,p for the coupled dynamics correspond-
ing to the same KMS parameter TD as for the uncoupled vacuum. Moreover, if one
proceeds to small couplings one obtains

lim
g→0

ωg,p(A⊗) =
∑

i

ω0(Ai ) Tr
(
(1/Z)e−Epσ3/TD σi

)
. (6)

Even though the proof is rather involved, this result is physically not so surprising.
For it says that a microscopic probe cannot disturb an infinite equilibrium state, whilst
it is itself driven to equilibrium, described by a Gibbs ensemble.

In a similar manner one can treat the case of several probes, placed at different
positions in the laboratory. There the internal Hamiltonian of the probe, appearing
in the resulting Gibbs ensemble (6), has to be replaced by the sum of the respective
internal probe Hamiltonians.

This observation has been taken as justification to interpret probes as thermometers
and to relate the KMS parameter TD of their ensembles to the temperature of the

123



Unruh versus Tolman: on the heat of acceleration Page 5 of 9 32

vacuum in the accelerated system, cf. [7,19,24]. As is apparent from the preceding
relation, TD does not depend on the position of the probes within the laboratory, fixed
by the support of p. This is in accordance with the known fact that the KMS parameter
of infinite equilibrium states is a global, superselected quantity [21]. But it shows that
probes cannot be used offhandedly to determine the temperature at their respective
position. In fact, as has been explained, the local temperature of equilibrium states in
the accelerated laboratory varies according to Tolman’s law (3).

Commonly, one copes with this problem by a reinterpretation of the readings of
probes. Thinking of some fixed hardware, one compares the properties of the probe in
the accelerated system with those in an inertial equilibrium state [24]. By a rearrange-
ment of the redshift factors, appearing in (6) in the energy Ep, one argues that each
probe behaves at its respective position in the laboratory as if it were exposed to an
inertial equilibrium state of temperature TD/

∫
dx p(x) ax1. Thus one defines as “true

local temperature” of the vacuum at point x the quantity TD(x) = TD/ax1, seemingly
in accordance with Tolman’s law. However, there then appears another conceptual
problem.

3 The vacuum seen from an accelerated laboratory

The observer can determine, besides the temperature, other intensive properties of
the vacuum, such as densities and pressures at different points in the laboratory.
These observables are described by operators A of the form given above. Note
that the interpretation of these observables does not depend on the motion of the
observer, he can rely on their readings independently of the dynamics. A spatial shift
y and evolution in time t of the observable A results in the corresponding opera-
tor A(t, y) = Ua(t)U0( y, 1)AU0( y, 1)−1Ua(t)−1, where we have identified Rindler
and Minkowski coordinates at time t = 0. Because of the invariance of the vacuum
under Poincaré transformations, all expectation values of observables (hence also their
variances etc) satisfy

ω0(A(t, y)) = 〈Ω0,Ua(t)U0( y, 1)AU0( y, 1)−1Ua(t)
−1Ω0〉 = ω0(A). (7)

Thus the vacuum is homogeneous also in the accelerated system, there appear no non-
zero density or pressure gradients. This fact is incompatible with a locally varying
temperature of the vacuum state, in conflict with the above ad hoc definition. Thus
there is no hot gas appearing in accelerated vacuum states.

This raises the question as to why the probe gains energy from the vacuum in the
accelerated system. As has been pointed out long ago, cf. [1, pp. 54–57] and [18], the
answer rests upon the quantum nature of the coupling between the probe and the field,
given by the last term in relation (4). The operator φ(p) appearing there describes a
local operation in the region fixed by p whose quantum effects inevitably change the
energy content of the underlying ensemble, excitations are randomly created.

Upon maintaining the acceleration of the laboratory, these excitations gain energy
from the external forces, and they deliver parts of this energy to the probe in the course
of time. Thus, due to these quantum effects, the probe also exchanges mechanical
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energy with its environment, not only heat as is expected from a perfect thermometer.
The increase of energy of the probe due to this effect leads to an increase of temperature
in its readings. In inertial systems or for small accelerations this effect causes errors
in the temperature readings which lie beyond any measuring accuracy, so they do not
matter. But for large accelerations this systematic effect becomes prominent and can
no longer be neglected.

The replacement of φ(p) by another operator, coupling the probe with the vacuum,
does not cure this problem. In fact, there does not exist any non-trivial operator A that
is localized in the region L0 and does not change the energy content of the vacuum;
this is a consequence of the Reeh–Schlieder theorem [20] according to which the only
local operators preserving the vacuum are multiples of the identity. Moreover, if one
replaces in relation (4) the field φ(p) by another local operator A one obtains in the
limit of large measuring times and small couplings always the same final state of the
probe, given in (6), cf. [8]. So the KMS parameter TD does not depend on the specific
nature of the coupling. All probes exhibit the same systematic error and indicate at
asymptotic times their own temperature, induced by the measuring process, instead of
the temperature of the vacuum.

So what is the local temperature of the accelerated vacuum state? In order to answer
this question it has been proposed [4] to exhibit sufficiently many local observables A
which are appropriate to determine intensive properties of equilibrium states and to rely
on the zeroth law of thermodynamics and the Gibbs phase rule according to which the
temperature of equilibrium states is uniquely fixed by these data. Quantum fluctuations
can be suppressed by proceeding to large time limits, respectively averages, of these
observables.

This idea has been applied in [5] to, both, inertial and accelerated observers. Denot-
ing by U0(t) the time translations on H0 in the inertial system, the expectation values
of all observables A in states of H0 attain sharp values at asymptotic times. Their
(weak) limits are given by

lim
t→∞U0(t)AU0(t)−1 = ω0(A) 1, (8)

fixing all intensive parameters in this case. Performing the analogous limits in the
accelerated laboratory with the corresponding time translations Ua(t) one obtains

lim
t→∞Ua(t)AUa(t)

−1 = ω0(A) 1, (9)

i.e.the asymptotic expectation values of the intensive observables are not affected by
the acceleration. Since all intensive parameters of the accelerated vacuum coincide
with those in the inertial system one may conclude that the temperatures coincide as
well, i.e.the accelerated vacuum has temperature zero everywhere.

4 Local temperature observables

The consistency of this approach has been tested in [5] for arbitrary inertial and accel-
erated equilibrium states. Assuming for simplicity that for each temperature (KMS
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parameter) T > 0 there exists only a single equilibrium state ωT in the inertial sys-
tem, one finds that on the corresponding thermal Hilbert spaces HT there holds the
analogue of relation (8), where on the right hand side the vacuum state ω0 has to be
replaced by ωT . The functions T �→ ωT (A) are the macroscopic equations of state
for the intensive observables A in the inertial system. (If, for given T , there exist
several equilibrium states, these functions also depend on chemical potentials, the
phase structure, etc.) It is evident that the value of T can be recovered from the col-
lection of these data, i.e.temperatures can be determined with the help of the localized
observables.

In the uniformly accelerated laboratory there likewise exist for all KMS parameters
Ta > 0 equilibrium states ωTa with regard to the accelerated dynamics, given by the
adjoint action of the unitaries Ua(t) on the observables [13]. In order to simplify the
notation we adopt here the convention that all quantities with an index a refer to this
dynamics. In particular, the vacuum corresponds to the Unruh parameter Ta,0 = a/2π ,
i.e. ωTa,0 = ω0 on all observables in the accelerated laboratory. Again, there holds
an analogue of relation (9) on the Hilbert spaces HTa attached to the accelerated
equilibrium states, where one now has to replace ω0 = ωTa,0 by ωTa for given KMS
parameter Ta .

In order to determine the thermal interpretation of the KMS parameters Ta in the
accelerated system one compares the expectation values of local observables A in
the accelerated equilibrium states with those in the inertial system. This approach is
analogous to that used for probes, where the temperature scale is likewise calibrated
in inertial equilibrium states.

In the present simple free field model one may take as a “local thermometer” [3,4]
the normal ordered square of the field, Θ

.= 12 :φ2 : (or any other of its even powers).
The numerical factor is suggested by calibration in the inertial equilibrium states ωT ,
giving ωT (Θ(x )) = T 2 for any T ≥ 0. So the readings of Θ indicate the square
of the temperature which is equal at all points x in the inertial system. Plugging this
observable into the accelerated equilibrium states one obtains [4]

ωTa (Θ(x)) = (
T 2
a − (a/2π)2)/(ax1)

2. (10)

Hence, for given KMS parameter Ta ≥ a/2π , the thermometer indicates at any given
point x in the accelerated laboratory the temperature

Ta(x) =
√

(T 2
a − (a/2π)2

)
/ax1. (11)

This relation is consistent with Tolman’s law (3) with const. = √
(T 2

a − (a/2π)2).
Notably, the systematic error in the readings of probes is corrected and the result is in
accord with the statement that the temperature is 0 everywhere for Ta = a/2π , i.e.in
the vacuum state. Note that Tolman’s law in this concrete form is obtained here as a
result, it is not put in by hand.

It also follows from relation (11) that the temperature tends to zero in all accelerated
equilibrium states at sufficiently large distances from the boundary of L0. As a matter
of fact, in these remote regions the expectation values of all local observables in the
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accelerated KMS states coincide with those in the vacuum [5]. Thus the observer can
calibrate his observables up there according to inertial standards.

For KMS parameters Ta < a/2π , the expectation values of Θ in the corresponding
KMS states are negative; hence one cannot assign to them a meaningful temperature.
This can be understood if one notices that also all densities and pressures are negative in
these states (taking the remote vacuum as a reference). In the presence of acceleration,
the excitations created by local measurements effectively equilibrate these states, but
from an inertial point of view they are to be regarded as ensembles which are far
from (local) equilibrium. Note that the restriction of any accelerated KMS state to the
observables in any given compact region can be represented by density matrices in
Fock space [17]. Hence an accelerated observer, launched in Minkowski space where
he has calibrated his observables, can interpret in these terms the properties of the
states and has no reason to rely on elusive Rindler quanta.

So we conclude that the vacuum does not exhibit any thermal properties in accel-
erated laboratories, its temperature remains to be zero. The increase in temperature
indicated by microscopic probes is due to the quantum induced creation of excitations
caused by the interaction; they transmit energy to the probes, gained from the accel-
erating forces. This energetic quantum effect can be understood in rough analogy to
the production of heat by friction, but it is not the result of an exchange of thermal
energy between probes and a heat bath (Rindler gas). As we have shown here, the
latter interpretation is not tenable on several theoretical grounds.
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