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Chapter 2: Physics and Philosophy from 1600 to 1900 

 
The main aim of this Chapter is to review some aspects of philosophy and of physics in the three 
centuries from 1600 to about 1900. That may seem a tall order. But we will only need those 
aspects that will help me explain how by about 1970, both philosophy and physics were “ripe” 
for formulating the three multiverse proposals, on which Chapters 3, 4 and 5 will focus. So those 
Chapters will also review developments in the twentieth century. (The time-frames will vary 
between these three cases. For example, the relevant developments in logic and philosophy 
cover a century, from 1870 to 1970; while for cosmology, the period will be some sixty years, 
from 1910 to 1970.)  

These historical aspects, reviewed in this Chapter, and in the early Sections of Chapters 
3, 4 and 5, are not just stage-setting. They will also help us to assess the multiverse proposals.  

For philosophy, this Chapter will mostly be about how a modest conception of scientific 
enquiry, separated from the idea of necessity and from the framework of logic, emerged in the 
eighteenth century. For physics, the Chapter will mostly be about the rise of mechanics.  
 I begin with the tradition of natural philosophy: a tradition from which both physics and 
philosophy, as we now conceive those disciplines, sprang. This will lead in to the rise of 
mechanics, especially Newton’s mechanics. I will emphasize how accepting action-at-a-distance 
in Newton’s theory of gravity paved the way to the modern, modest---one might even say: 
pessimistic---conception of what it is to understand the natural world. At the end of this 
Chapter, we will see that this conception, and the emergence in the nineteenth century of the 
distinction between applied mathematics and pure mathematics, contributed to the rise of logic 
as central to philosophy. These factors also prompt a philosophical question, ‘What is pure 
mathematics about?’: which has been at the centre of twentieth-century philosophy.  
 
Chapter 2, Section 1: The tradition of natural philosophy  
‘Natural philosophy’ is a venerable phrase. It refers to enquiry into the natural world. It 
encompasses enquiry that is empirical, including experiments as well as everyday observation; 
and also enquiry that is conceptual, including using quantitative e.g. mathematical methods. It is 
especially associated with the seventeenth century. Figures such as Galileo, Descartes and 
Newton all saw themselves as engaged in natural philosophy. Indeed, Newton’s masterpiece that 
propounds his theory of mechanics and gravitation (published in 1687) is entitled: ‘The 
Mathematical Principles of Natural Philosophy’. But this field of enquiry goes much further 
back, to ancient times: as the seventeenth century thinkers of course recognized. Thus when 
figures such as Aristotle, Lucretius, Aquinas, Galileo and Newton asked what was the nature of 
space, or of time, or of matter, or of causation, they shared a common field of enquiry---
however great the disagreements of their resulting answers.   
 Various developments from the eighteenth century onwards broke up this intellectual 
unity between philosophy and what we now call ‘the sciences’, especially physics. The parting of 
the ways is symbolized by the invention of the word ‘scientist’ (by Whewell in 1834), and the 
phrase ‘natural philosophy’ falling completely out of use by the late nineteenth century. (But the 
phrase remains, even today, in some British universities’ title of one of their Professorships of 
physics. This is, for anyone enthusiastic about the connections between physics and philosophy, 
an evocative reminder of yesteryear’s synergy between the disciplines.) 

The broadest of these developments that broke up the unity might be summed up as: the 
growth of knowledge. For our purposes, the main development within physics was the 
establishment of Newtonian mechanics as describing with increasing detail, and quantitative 
accuracy, not just astronomical observations but also many terrestrial phenomena. (I will give 
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some more details below.) As the eighteenth century went on, this success increasingly used 
technical notions and advanced mathematics: which of course made for intellectual 
specialization.  

Agreed: great figures in physics, such as Euler, continued to write natural philosophy: as 
did some great figures of nineteenth century physics, such as Helmholtz, Maxwell and Mach---
despite the explosion of knowledge within physics, during the 1800s. But broadly speaking, the 
increasing specialization of physics over the course of these two centuries, 1700 to 1900, meant 
that such writings became less central to physicists’ detailed researches. 

So much by way of a lightning summary of how physics grew away from philosophy 
between 1700 and 1900. During the same period, philosophy also grew away from physics, and 
more generally from science. This was not only due to the obvious point that philosophy is 
about so many topics other than the natural world and our knowledge of it (such as moral and 
political philosophy). Also there was, even within metaphysics (i.e. the theory addressing the 
general nature of all entities) and epistemology (the theory addressing what knowledge is), a self-
conscious turning away from the details of physics, and of science. This occurred as part of the 
legacy of Kant (and so it occurred especially in German philosophy). The reason in short is that 
Kant announced a new and ambitious conception of metaphysics and epistemology that 
rendered them autonomous from other disciplines, and in particular independent of the details 
of the sciences. Though Kant himself wrote a lot of natural philosophy, German philosophy got 
more and more separated from science after his death, in the work of figures like Fichte and 
Hegel. (In my opinion, it also got more and more obscure and high-falutin’.)  

Then in the early twentieth century the quantum and relativity revolutions erupted, and 
brought tumult to physics; (more details in Chapter 4). The controversies about how to develop, 
and even how to “just” understand, these new theories threw physicists back to addressing basic 
conceptual questions, like those I listed above: what is space, what is time, what is matter, what is 
causation? The ensuing debates in which philosophers, especially in Vienna and Berlin (which 
were centres of the new physics), took part, had an enormous influence on philosophy. Indeed, 
they moulded the logical positivist movement; and this led to the idea of philosophy of science 
as a sub-discipline of philosophy. In this way, natural philosophy---under the new name ‘the 
metaphysics and epistemology of the sciences’--- became again, by the mid-twentieth century, a 
research subject.  

We will see later (in Chapter 4) how since 1970, the metaphysics and epistemology of 
physics has really taken off: being nowadays called ‘the philosophy of physics’. But in this 
Chapter, I will develop three themes from natural philosophy in the earlier period, between 1650 
and 1900. We will need these themes in order to understand our multiverse proposals, especially 
the first two proposals (from philosophy, and from quantum physics).  

The first theme is about what the natural philosophers believed. The second is about 
their optimism that, by adopting their views, humans could achieve an understanding of the 
natural world that was completely clear and satisfying. Here my point will be that this optimism 
was dashed by the success of Newton’s physics, and indeed, by Hume’s philosophy. The third 
theme is the status of logic during these three centuries. In short, logic was for most of this 
period in the doldrums; but from the mid-nineteenth century, it was vigorous. 
 
 
Chapter 2, Section 2: The mechanical philosophy  
Several of the greatest natural philosophers of the seventeenth century believed that all the 
processes in the natural world would ultimately be explained in terms of objects’ parts, including 
their tiniest parts, interacting with one another by causal “pushes and pulls”. Here, the phrase 
‘the natural world’ was to include biological processes, such as the growth of plants. For some of 
these authors, it was to include also psychological processes, such as perception, both in humans 
and in animals. And for most of these authors, the causal “pushes and pulls” required that the 
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two objects (usually called ‘bodies’) touch one another, i.e. be in contact, like the gear-wheels in a 
machine such as a windmill. Hence the phrase ‘mechanical philosophy’. Other jargon: the 
principle that there could be no interaction without contact came to be called ‘the principle of 
contact action’. Another slogan for the same idea was that there should be no ‘action-at-a-
distance’. 
 Advocates of this view included Galileo, Hobbes and Descartes. They knew, of course, 
that their view had ancient precursors: in particular, the ancient atomists, Democritus and 
Lucretius, who maintained that matter ultimately consisted of small indivisible lumps in a void 
(vacuum). Thus Democritus (ca. 460-370 BC) said: ‘The first principles of the universe are atoms 
and empty space; everything else is merely thought to exist . . . Sweet exists by convention, bitter 
by convention, colour by convention; atoms and Void [alone] exist in reality.’ (Here of course, 
‘by convention’ means something like ‘as a result of how humans’ sensory organs happen to 
work’; rather than the modern meaning, viz. ‘by a human decision that could have been made 
otherwise’.)  

Of course, the mechanical philosophers disagreed amongst themselves. Some, such as 
Descartes, denied that there is a void (vacuum). They said instead that matter fills space 
completely (even on the tiniest length-scales), and what seems to be empty space, e.g. between 
the planets, is filled with a “very thin” fluid through which solid objects pass easily, rather like a 
boat through water. And some (including again Descartes) denied that all biological and-or 
psychological processes could be thus explained. So they limited the scope and ambition of their 
mechanical philosophy to explaining, in terms of contact-action, all processes in the inanimate 
world: or all processes in either the inanimate world or within organisms that are not sentient.       

Nowadays, the conception of matter as lumps in the void is the everyday conception. It 
is so-called ‘common sense’. For we all learn in primary school that matter is made of atoms, 
which are separated from each other by empty space i.e. a vacuum. (Agreed: our atoms differ 
from Democritus’, in that they can be divided.) But it is important to recognize that this vision 
was hard-won over the centuries. At the time, the mechanical philosophers’ vision seemed not 
just radical, but thoroughly implausible.  

Indeed, there are four points here.   
First: to the extent that the lumps-in-the-void conception of matter is true, it is not at all 

obvious that it is true. This is so even for inanimate objects, nevermind the objects involved in 
biological and psychological processes. It is far from obvious that air and other gases are mostly 
empty space; or indeed that liquids and solids consist of tiny particles jostling each other, with 
interstices between them. On the contrary, the naïve appearance of all the gases, liquids and 
solids we see around us is that they consist of matter that fills space completely (even on the 
tiniest length-scales): such matter is called ‘continuous’.   

Second: even if we accept that all matter consists of tiny lumps in a void, these 
philosophers’ other claim---that all processes can be explained as accumulations of microscopic 
interactions, “pushes and pulls”, occurring when the lumps are in contact---by no means follows. 
Indeed, it seems a radical, even thoroughly implausible, speculation. One naturally asks: how 
could all the variety and complexity of the processes we see, including biological and even 
psychological processes, be explained in such simple terms? It is really only in the last hundred 
years or so that the claim has become believable---indeed well-confirmed by countless pieces of 
detailed evidence. Think of how the existence of atoms, and the way they compose molecules, 
was understood only in the early twentieth century, together with how they explain chemical 
processes. And the understanding of biological processes, such as how muscles contract, how 
nerves send signals, or how genes are passed from parent to offspring, came only with the rise, 
in mid-twentieth century, of physiology and molecular biology.  

There is, of course, another aspect to these achievements. Namely, they require much 
more subtle interactions between the tiny lumps in the void than the phrase “pushes and pulls”, 
i.e. collisions or impacts, suggests. In fact, they require quantum physics with its strange features. 
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A classical physics of “tiny billiard balls bouncing off each other” certainly cannot explain all 
these processes. But I postpone quantum physics till Chapter 4. At the moment, I want to stress 
two other ways in which the claims of the mechanical philosophers were radical: and so, at the 
time, hard to believe. Again, the moral will be that we should recognize that their later 
acceptance was not “common sense”, but was hard-won. So these will be my third and fourth 
points. 

Third: the mechanical philosophers fashioned concepts with which to describe with 
quantitative accuracy the contact, and collisions, of bodies. I mean concepts such as velocity, 
acceleration, mass, momentum, and energy. Nowadays these concepts are everyday notions: 
broadly familiar from e.g. car travel, and taught in detail in school. But we should remember how 
non-obvious they are. For example: it took decades for physics to settle on each of the following. 
(i): The idea that acceleration is change in velocity during a given interval of time; rather than 
change in velocity during traversal of a given distance. (ii): The idea that mass is an intrinsic 
property of a body, different from its weight, measuring its resistance to being accelerated. (iii): 
The idea that although in most cases the sum of bodies’ momenta is evidently not conserved (i.e. 
constant over time) before and after a collision---think of a car-crash, or more safely, of 
throwing two marshmallows together---nevertheless, it is useful to consider the special, simple 
cases where the sum of the bodies’ momenta is indeed the same before and after the collision. 

Fourth: So far, I have summarized mechanical philosophy’s claims that matter consists 
simply of lumps, and that mere contact-action among such lumps (especially tiny ones), 
theorized in terms of momentum etc., can explain the great variety we see around us. And I have 
praised these claims as bold and implausible, at the time---but vindicated by history. But I 
confess: I have over-simplified. There is an elephant in the room. Namely, Newton and his 
theory of gravity. 
 
Chapter 2, Section 3: Newton’s theory of gravity: unbelievable? 
For Newton’s theory denies the principle of contact action, that bodies cannot interact unless 
they are in contact. And in its description of gravity, the theory’s replacement for this principle 
could not be more precise. What came to be called ‘Newton’s universal law of gravitation’ says 
that any two bodies at any time attract one another with a force along the line between them. 
(The law also says how the force decreases with the distance between them, and how it depends 
on the bodies’ masses. I will discuss these other features in a moment.) 

So the law proclaims action-at-a-distance: exactly what Galileo, Descartes and the other 
mechanical philosophers denied. It is indeed very hard to believe. Take as the two bodies, the 
Sun and the Earth; and think of how light takes eight minutes to travel from the Sun to the 
Earth. Newton’s law says that if somehow you could shift the entire Sun during the course of, 
say, a minute, by some distance, say a thousand miles, then the direction along which the Sun 
pulls the Earth would be different at the end of the minute---before the light arrived. Indeed, the 
direction would change instantaneously during the course of the minute, sweeping through the 
sky like a lighthouse-beam. Of course, the angle through which it sweeps would be tiny, because 
the Sun-Earth distance is so much greater than a thousand miles. But that is only because I 
imagined shifting the Sun by a “modest” astronomical distance. If instead I had imagined 
shifting the Sun by, say, half the radius of the Earth’s orbit, then the direction of the Sun’s pull 
would have changed---again, instantaneously during the course of the shift---by about half a right 
angle, i.e. 45 degrees. So the important point is that the change in direction is instantaneous. 

This law is all the more hard to believe when one notices that it claims this instantaneous 
attraction-at-a-distance occurs between any two bodies; for example, between an apple and a 
planet.  

Besides, the law says that the attractive forces are equal in size (though opposite in 
direction). So the apple pulls on the planet with exactly the same “strength” that the planet pulls 
on the apple. That is well-nigh incredible. In particular, notice that it goes far beyond the familiar 
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anecdote about Newton seeing the apple fall and thinking of the Earth as pulling the apple 
down. In that anecdote, as it is usually told, there is no suggestion that the apple pulls the Earth 
upward---let alone with equal force. 

Newton’s explanation of our not noticing the Earth’s upward acceleration is that the 
Earth’s mass is so vastly greater than the apple’s mass, that its acceleration is correspondingly 
smaller. For according to Newton, force = mass times acceleration. So the equal and opposite 
forces make the small mass of the apple accelerate enough for us to observe and measure; but 
they make the vast mass of the Earth accelerate only a minuscule, and unobservable, amount. 

What are we to make of all this? As regards physics and its history, the verdict has been, 
in short: gradual acceptance that was eventually so entrenched that by about 1800 or 1850, 
physicists were sanguine, even placid, about the idea of action-at-a-distance, and about the idea 
that the gravitational forces between any two bodies are equal in size (though oppositely 
directed).   

Let me spell this out in a bit more detail. Initially, Newton’s readers were unbelieving. 
Besides, Newton himself wrote that he had endeavoured to find a means, a mechanism, by 
which gravity acted, and had been unsuccessful. (I will shortly return to this admission.) He also 
argued, with considerable justice, that as regards the gravitational force between each planet and 
the Sun, the detailed astronomical observations he had in hand (especially those encapsulated in 
what became known as ‘Kepler’s laws’) meant that he could deduce that the gravitational force 
acted along the instantaneous line between the planet and the Sun. 

Furthermore, he could deduce that the force decreased with distance in the precise way 
his law of gravitation said. (Namely, by what is called ‘the inverse-square’. This means: doubling 
the distance reduces the force by a factor of 4, i.e. multiplies it by a quarter; tripling the distance 
reduces the force by a factor of 9, i.e. multiplies it by a ninth; and so on.)  

This quantitative precision of Newton’s theory meant that, once combined with 
astronomical observations, it made precise predictions about the planets’ movements. Many of 
which were tested in the decades following his theory’s publication (i.e. after 1687), and they 
turned out to be true. These successes depended of course on developing the calculus that 
Newton and Leibniz had invented, and applying it in ever greater detail to mechanics and 
astronomy. (These successes were mostly achieved, not in Britain, but in continental Europe by 
figures such as Euler and Lagrange.)  

Thus by about 1800, most natural philosophers accepted the claims that gravity involved 
action-at-a-distance, and equal and opposite forces that decreased with distance according to the 
inverse-square. And so it went. The theory garnered more and more successes; so that by 1850, 
physicists---by then professionally identified as such---were sanguine, even placid, about these 
claims.  

Agreed: there were dissenting voices, such as the physicist-philosopher Ernst Mach. And 
calm comes before a storm. In the early twentieth century, Einstein (inspired in part by Mach’s 
misgivings) created an amazing new theory of gravity, which he called ‘general relativity’ (1915). 
According to this theory, there is no action-at-a-distance. Gravitational influence does take time 
to propagate across space: namely, it travels at the same speed as light.  

In Chapters 4 and 5, I will briefly return to general relativity. But for this book’s 
purposes, it is the philosophical consequences of Newton’s postulate of action-at-a-distance that 
will matter---more than its two centuries of success, followed by its demise at the hands of 
Einstein. 

For as I shall explain in the next Section, the success of Newton’s theory also 
contributed to the decline of the mechanical philosophers’ extraordinary “cognitive optimism” 
about our ability to understand nature’s innermost workings. Another factor in that decline was 
David Hume’s philosophy: which, together with Newton’s theory, paved the way for what is 
now the mainstream “modest”, or “pessimistic”, picture of how much humans can understand 
nature.  
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Chap 2, Section 4: Optimism about understanding nature: ‘we will soon deduce the cause from 
the effect’ 
We have seen that the mechanical philosophers had a bold and ambitious vision, about 
understanding all the processes of nature as mechanical. Some of them, including Galileo and 
Descartes, were also accomplished proselytizers---one might say, propagandists---for the 
movement. They confidently proclaimed that detailed and successful mechanical explanations 
would soon be achieved---“if not tomorrow, then the next day”. (And of course, they promised 
that the explanations would conform to their own principles, rather than some rival’s favoured 
principles.) 
 But there was also another strand to the mechanical philosophers’ confidence. It is about 
the quality of understanding that such prospective explanations were expected to provide. 
Crudely and metaphorically: the quality was going to be the very best. To go beyond metaphor, I 
need to invoke a topic that my account has so far suppressed. It is the ultimate “elephant in the 
room”: namely, God and God’s understanding of nature.  

Thus the mechanical philosophers believed that God had complete insight into the 
innermost workings of nature; any natural process was completely “intellectually transparent” to 
God. So far, so unsurprising. After all, He is meant to have created the natural world. But they 
believed also that we humans, being made ‘in the image of God’ (Genesis 1:27), can hope to 
emulate this complete insight and understanding. Of course, we are finite creatures, and God is 
infinite. So we cannot hope for such understanding all at once, and for all of nature: to hope for 
that would be grossly hubristic. But for individual “patches” of nature, perhaps “small” ones---
for example: the collisions of solid bodies moving in straight lines---we can attain an insight and 
understanding, as complete and intellectually transparent as God’s own. (Or rather, most of the 
mechanical philosophers believed these claims. Of course, theological controversies abounded as 
much as philosophical ones; even to the extent that some of them, for example Hobbes, were 
accused of atheism.) 

One main way in which this idea of complete understanding was made more precise was 
in terms of deduction. So here at last we broach the discipline of logic. In the Western tradition, 
Aristotle had founded the subject, mainly by classifying valid patterns of argument.  

Thus recall what it means to say that an argument with premises and conclusion is valid: 
in other jargon, that one can deduce the conclusion from the premises, or that the premises 
imply, or entail, the conclusion. All these different jargons are synonymous. Namely: if all the 
premises are true, or (supposing them to be in fact false) if they were true, then the conclusion 
must be true. That is: any way in which all the premises are made true must also make the 
conclusion true.  

In many cases, the validity of an argument turns on the placing within the premises and 
conclusion of words like ‘all’, ‘some’, ‘none’, ‘and’, ‘or’ and ‘not’, irrespective of the other words. 
In such cases, we say there is a valid pattern. An elementary Aristotelian example turns on the 
behaviour of the word ‘all’. Consider the argument-pattern: ‘Premise: all As are Bs. Premise: all 
Bs are Cs. Therefore, Conclusion: All As are Cs’. This pattern is evidently valid, whatever ‘A’, ‘B’ 
and ‘C’ stand for, i.e. whatever plural nouns or noun phrases (‘horses’, ‘red things’ etc.) one puts 
in for them. 

Since medieval times, logic had been a basic part of university studies. (Along with 
grammar and rhetoric, the three disciplines together comprised the ‘trivium’, the ‘three ways’). So 
it was natural for the mechanical philosophers to conceive the complete understanding, that they 
were proclaiming as imminent in their description of nature, in terms of deduction.  

Besides, there is a tempting metaphor that yields an analogy between, on the one hand, 
the relation between premises and conclusion, and on the other, the relation between cause and 
effect. Namely, the metaphor of containment. Since the premises being true forces the 
conclusion to be true, it is natural to say that the conclusion is contained in the premises. Or 
rather, since the premises and conclusion are sentences, i.e. pieces of language, we should 
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express this as: the proposition expressed by the conclusion, the content of the conclusion, is 
contained in the conjunctive proposition expressed by all premises taken together. And 
analogously for causation. It is natural to say that the effect is contained in the cause: at least, 
provided that the cause is described in sufficient detail so that all relevant factors are included.  

This analogy suggests that from a sufficiently detailed description of the cause, one 
should be able to deduce a description of the effect: rendering the effect completely 
comprehensible “to the light of reason”. Indeed, Descartes says just this in his famous 
Meditations (the Third Meditation). He writes: ‘Now it is already clear by the light of nature that 
the complete efficient cause must contain at least as much as the effect of that cause. For where, 
pray, could the effect get its reality if not from the cause? And how could the cause supply it, 
without possessing it itself?’  

This argument (with, of course, variations in its exact formulation) occurs frequently in 
the writings of Descartes and his contemporaries. As an illustrative example, one variation 
appeals to the idea that there can be no creation ex nihilo, i.e. creation out of nothing; (except of 
course by God, as in the creation of the world). So the effect with ‘its reality’ (as Descartes puts 
it) must somehow be latent in what occurred before: which prompts the argument above.   

Thus the common theme is that over the next hill---“if not tomorrow, then the next 
day”---there will be a science (“mine, not that of my rivals”) whose concepts and claims will be 
so clear to the light of reason that they do not merely command our assent, but also provide 
complete understanding and certain knowledge. In particular, this science will provide 
deductions of effects from their causes: the premises describing the causes will entail the 
conclusion describing the effect.  
 
Chap 2, Section 5: Lowering our sights: Hume  
In the eighteenth century, this optimistic view withered away. Two main reasons for this were 
Hume’s critique of the view, and the success of Newton’s theories.  

Thus Hume argued (in his Treatise of Human Nature (1739) and his Enquiry concerning 
Human Understanding (1748)) that, whatever the concepts and claims of a successful science 
might turn out to be, there is no hope at all of a genuine deduction of effect from cause. No 
matter how detailed one’s description of the cause, it is hopeless to aim for a deduction. For one 
can conceive, i.e. imagine, that the cause occurs as described, with the effect being absent. Thus 
two of Hume’s examples are that an impact of a body, say of a billiard ball, causes another body, 
another ball, to move; and that bread causes nourishment. He points out that one can imagine 
that the impact occurs without the second ball moving away; and that I eat the bread (just as it is, 
in look, smell and composition) without getting nourished, but instead, say, poisoned.  

To make a genuine deduction of the effect, i.e. a valid argument whose conclusion states 
that the effect occurs, one obviously needs an extra premise. This could be a general premise. It 
could be along the lines: all impacts of such-and-such a kind (including the one in question) are 
followed by the second ball moving. And similarly for the bread example: anyone eating a loaf of 
such-and-such a kind, is later nourished. Here, I say ‘followed by’ and ‘is later’, since for the aim 
of validly implying that the effect occurs, the extra premise need not claim a causal relation. It is 
enough---but essential---that it claims the effect’s occurrence. Or the extra premise could be a 
specific one, along the lines: this impact is followed by the second ball moving; my eating this 
bread is followed by my being nourished.  

With such an extra premise, either general or specific, there is undoubtedly a valid 
argument to the effect. Indeed, these arguments will illustrate the simple and familiar pattern, 
modus ponens, viz: ‘Premise: P; Premise: if P then Q. Therefore, Conclusion: Q’. For we  have 
here the pattern: ‘Premise: The cause occurs; Premise: If the cause occurs then the effect occurs. 
Therefore, Conclusion: The effect occurs’. Here, the second premise, the if-then premise, can be 
either general or specific; as we have seen. And in both premises ‘the cause’ is to be understood, 
i.e. described, in sufficient detail as to warrant the second premise. The impact must be 
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sufficiently forceful, the first ball rigid enough (not made of jelly) etc.; the bread must be made 
from wheat or barley or … but not from cyanide. 

All this is nowadays so obvious to us that it is tempting to criticize Hume as flogging a 
dead horse. One thinks: ‘Of course, the later effect---the second ball moving away, the person 
being nourished---does not follow with sheer logical necessity from the earlier state, no matter 
how detailed our specification of it. Only on the assumption of a suitable linkage, like the extra 
premises above, can there be a deduction.’ Agreed: that is so. But it being so does not mean that 
Hume’s critique was misdirected, i.e. that all Hume’s predecessors acknowledged the point. As I 
have urged: they did not. 

This point is often put in terms of the idea of rationality. For the topic of whether or not 
there is, in cases like the billiard balls or the bread, a deduction can be put in terms of the 
question: why is it rational to believe that, given a sufficiently detailed specification of the impact 
or of the bread, the second ball will move, or the person be nourished? Of course we all do 
believe this. But why? And is it rational to do so?  

When we put the question in this way, the temptation to criticize Hume is very likely to 
be expressed as follows. ‘Yes it is rational to believe these propositions: though it is not a matter 
of deduction, as Hume emphasizes. But Hume’s emphasizing this shows that he is using an 
unduly narrow notion of rationality. He recognizes only deductive rationality: that is, the 
obligation on rational beings to believe the deductive (sheer logical) consequences of what they 
believe. But not everything that it is rational for us to believe follows by sheer logic (a 
deductively valid argument) from other propositions we already believe. In short: Hume should 
loosen up about what rationality requires of us.’ 

To which I reply, on behalf of Hume---at least, the historical Hume---as follows. Once 
we set aside deductive rationality---which is a notion, and an obligation, that we can surely all 
agree on---rationality is a contested concept, in the sense I discussed in Chapter 1. For let us ask: 
given some collection of propositions we already believe, what else should we believe (additional 
of course to the deductive consequences of the collection)? That is: what principles, additional to 
deduction, should govern the formation of beliefs from other beliefs, taken as evidence? That is 
a very difficult and multi-faceted question which philosophers, and of course scientists and 
statisticians, have addressed in many different ways since Hume’s time. For example, some 
appeal to probability, some abjure it. Large bodies of theory, with specialist names like ‘inductive 
logic’, ‘statistical inference’ and ‘causal inference’, have been developed---and debated. For the 
jury is still out concerning how best to make this question precise (perhaps as several sub-
questions); and accordingly, about what the answers are.  

To which I say: ‘More power to your elbow: tough work, and we should all look forward 
to, and value, the answers’. But what is relevant here is that Hume also, not just we moderns, can 
say this. He need not deny---he has no reason to deny---that there are principles about belief-
formation that go beyond deductive rationality.  

For his point is that his predecessors thought they did not need to formulate and assess 
any such principles. They thought their new science would need only deductive rationality. Thus 
the objection that Hume is using an unduly narrow notion of rationality, and should loosen up 
about what rationality demands, is doubly wrong. For first: Hume is merely examining the same 
deductive notion that his predecessors touted as both sufficient for science, and as promising a 
complete understanding of cause-effect relations. Hume shows that it is not sufficient, and does 
not usher in such understanding. And second: Hume can and should accept (along with the rest 
of us) that there are principles about non-deductive formation of beliefs. And he, like us, can 
investigate what they are. 
 
Chap 2, Section 6: Newton again 
So much by way of expounding, and defending, Hume. I turn to my second reason why the 
mechanical philosophers’ optimism died way: why, to use the jargon above, eighteenth century 
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natural philosophers stopped claiming that their description of an effect, or of how it came 
about, was ‘clear to the light of reason’. This second reason is: the success of Newton’s theory of 
gravity with its action-at-a-distance. 

We saw above how radical, indeed unbelievable, Newton’s theory was. The point now is 
that in the eighteenth century it had ever more empirical successes, so that the conclusion 
became inescapable: our most successful framework for quantitative empirical knowledge 
explicitly abjures there being any intelligible (‘clear to the light of reason’) causes of gravitation.  

For it is not intelligible that a change in the position of the Sun would instantaneously 
alter the direction of pull felt by the Earth; since any process propagating from the change of 
position would take time to arrive at Earth. For example, a process at the speed of light would 
take eight minutes. But though unintelligible, this conditional proposition, ‘If the Sun were to 
move …, the Earth’s direction of pull would instantaneously alter’, is a consequence of our well-
confirmed theory---and we should accept it. Thus the idea of understanding the effect as 
necessarily connected to the cause, in particular by its being somehow contained in the cause, 
withers away. We must accept that the effect is just an event that invariably succeeds the cause.  

This situation shows that intelligibility in the above sense is not a sine qua non, a 
necessary condition, of exact empirical knowledge. And it shows that, although you might want 
intelligibility in your scientific theory, seeking intelligibility is sometimes (i.e. at some stages in 
enquiry, and for some aspects of nature---here, mechanics) not fruitful. 

This lowering of one’s sights about what understanding of nature should involve was 
formulated already by Newton himself in a famous passage in the General Scholium that he 
added to the second edition (1713) of his 1687 masterpiece The Mathematical Principles of 
Natural Philosophy. The passage includes his reporting that (as I mentioned above) he had tried, 
but not succeeded, to understand gravity other than as action-at-a-distance. Thus he writes:  
 
‘Thus far I have explained the phenomena of the heavens and of our sea by the force of gravity, 
but I have not yet assigned the cause of gravity. This force must arise in any case from some 
cause that penetrates to the very centres of the sun and planets, without suffering the least 
diminution of its power  . . .  But hitherto I have not been able to deduce from phenomena the 
reason for these properties of gravity, and I do not contrive hypotheses. . . . And it is enough 
that gravity really exists, and acts according to the laws which we have explained, and sufficiently 
accounts for all the motions of the celestial bodies and of our sea.’ 
  

Newton’s final words neatly sum up this discussion. His magisterial ‘it is enough’ (in 
Latin: ‘satis est’) lowers our sights about what to require in scientific theories: we cannot require 
intelligibility in the strong sense above. But it also offers the solace that even without such 
intelligibility, we can achieve amazing quantitative accuracy. Thus Newton resolutely sets the 
path of the future of physics. 
 
 
Chapter 2, Section 7: Logic in the doldrums---and its revival 
For this Chapter, one task remains: to describe the changing fortunes from 1600 to 1900 of the 
discipline of logic. In short, it went from bad times (1600 to 1850) to good (1850 to 1900). But 
the revival of logic in the late nineteenth century can only be understood as part of a wider 
change within mathematics: namely, the emergence of the distinction between applied 
mathematics and pure mathematics. So the next (and final) Section will be about that distinction, 
and its impact on the landscape of logic and philosophy.  
 But let us start with the earlier period, after 1600. I have said that the mechanical 
philosophers knew their logic, and envisaged a science in which one could validly deduce the 
effect from the cause. Nevertheless, it is fair to say that in their time, and more generally in the 
period 1600 to 1850, logic was in the doldrums. Indeed, in two senses.  
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First, it was generally regarded as a completed subject, in which the last word had been 
said. Logic was of course to be respected in any discourse. But there was no recognition that 
valid patterns of argument additional to those codified by Aristotle and his successors (including 
medieval successors) might yet be discovered and codified. (For the mechanical philosophers, 
this indifference was part of their rebellion against the Aristotelian tradition.) Thus in 
philosophical texts, the teachings of logic were sometimes summed up as the principle of 
‘excluded middle’, i.e. ‘P or not-P’; or as the principle of non-contradiction, i.e. ‘not both P and 
not-P’. Venerable principles indeed: but there is so much more to the subject.   

Second, and of course connected with the first point: philosophers in this period do not 
address what for us are natural philosophical questions about logic: such as what exactly is the 
nature of logical necessity, and exactly which propositions are indeed necessary. Their 
discussions of such questions often presuppose that Euclidean geometry and arithmetic are both, 
indeed, necessary; but what makes them necessary is not a question that is much engaged with. (I 
shall return to these questions shortly.) 

The main qualification to what I have just said lies in the philosophy of Leibniz; 
(admittedly a major qualification). This is in part because Leibniz aimed to reconcile the insights 
of the new learning of the mechanical philosophers with the doctrines of the Aristotelian 
tradition. And famously, his philosophy engaged with the nature of necessity. He proposed that 
there is a realm of all possible worlds, and a proposition’s being necessary is a matter of it being 
true in any, and so in all, of them. Similarly, a contingent proposition is true in some but not all 
worlds; and an impossible proposition is true in none. He also said that God in his omnipotence 
created just one world; and in his benevolence, created the best possible world---a claim later 
satirized devastatingly in Voltaire’s Candide. 

As to why logic was thus side-lined, one obvious reason was its being associated with the 
Aristotelian tradition, so that it became a target of the mechanical philosophers’ rebellion. But 
another reason arises from the cognitive optimism of these philosophers. As I discussed above, 
they believed their forthcoming science would be certain, and “intellectually transparent”: clear 
to the light of reason. Being convinced of achieving such certainty naturally prompted them to 
ignore questions about whether their science’s doctrines are necessary. Besides, if such questions 
had been pressed, the doctrine that the science would indeed deduce an effect from a cause 
would prompt the confident reply, that Yes, the doctrines are necessary. For after all: to every 
valid argument---say: Premise: P1, Premise: P2; Therefore, Conclusion: C---there corresponds a 
necessary proposition, viz: ‘If P1 and P2, then C’. In short: if these philosophers’ optimistic 
programme had succeeded, the proposition saying that the effect is deducible would indeed be 
necessary. 

The broader context of mathematical, indeed scientific, thought is that from ancient 
times until the mid-nineteenth century, mathematics was taken to consist of, on the one hand, 
the study of numbers (arithmetic, and later algebra); and on the other hand, the study of space, 
viz. Euclid’s geometry. And both these were universally regarded as providing an absolutely 
certain body of knowledge, that could never be overturned.  

Here, I use the single word ‘mathematics’ very deliberately. For no distinction was made, 
as we now do, between: (i) applied mathematics, which describes the physical world, objects in 
space and time, using mathematical concepts (numbers and geometrical concepts); and (ii) pure 
mathematics, which is about numbers, triangles etc. “in themselves”, regardless of what is in the 
physical world.  

From a modern philosophical viewpoint, the first thing to say about this distinction is 
that pure mathematics, so understood, is obviously problematic: no matter how certain its claims 
may be, resulting as they do from rigorous mathematical proofs. For we are physical organisms, 
embodied in space and time. So presumably our ideas, beliefs and knowledge originate in our 
experience of the physical world. But since the subject-matter of pure mathematics (numbers, 
triangles etc.) is not in the physical world, i.e. not located in space and time, it is then a pressing 
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question how we come to have any ideas about that subject-matter. Besides, assuming we have 
such ideas: how can we come to believe, even know, propositions about this subject-matter, by 
following mathematical proofs? 

This is a central, perhaps the central, question of the philosophy of (pure) mathematics 
since about 1850, i.e. after the applied/pure distinction gets articulated. I will briefly discuss this 
question in the next Section and the next Chapter. But to philosophers and mathematicians of 
the eighteenth century, this question was simply invisible. One main reason for this was that they 
conceived numbers in terms of lines within physical space. This conception, we will see, led to 
trouble. 
 
Chapter 2, Section 8: Houses built on sand---and how to repair them 
To introduce this, let us recall how we learn in school that besides the integers, positive and 
negative, there are, firstly, the rational numbers, where ‘rational’ stands for ratio or proportion. 
These numbers are a ratio of integers like 1/3, 2/5, 10/2 (= 5), or - 42/9. Expressed as a 
decimal, they either terminate, e.g. 2/5 = 4/10 = 0.4, or recur, e.g. 1/3 = 0.333… with the 3s 
going on forever. Here, the idea of recurring includes eventually settling down to a finite 
sequence of digits that then repeats forever, e.g. 137.95421372137213721372137… . But as the 
ancient Greeks discovered, there are also irrational numbers, e.g. the square root of 2, that 
cannot be expressed as a ratio of integers. When expressed as a decimal, these numbers neither 
terminate nor recur. The decimal expression goes on forever. But it never settles down into a 
repeating digit, nor even into a repeating sequence of digits. For example, the square root of 2 
begins as 1.41421… but it never settles down. Another example is pi, defined as the ratio of the 
length of a circle’s circumference to its diameter. It begins as 3.14159… but it never settles 
down. The set including all rational numbers (taken as including the integers, as in 10/2 = 5), 
and also all irrational numbers, is called the set of real numbers.  

So for our purposes, the point here is that until the mid-nineteenth century, philosophers 
and mathematicians conceived of real numbers in an intuitive way, as segments of physical space. 
For example, they took the square root of 2 to be the diagonal of a square whose sides are of 
length 1. With this intuitive treatment, mathematicians produced amazing developments in the 
theory of real numbers and the calculus that Newton and Leibniz had invented, and in the 
applications of these theories within mechanics and astronomy.  

But it was a house built on sand. For the intuitive treatment I have just sketched led to 
paradoxes. One could construct apparently valid arguments within the calculus whose 
conclusions were contradictions. Agreed: with talent and care, mathematicians could insulate 
their work from these paradoxical arguments. But they remained as discomforts, so to speak; and 
they prompted efforts in the nineteenth-century to make the calculus more rigorous, and thereby 
expunge the paradoxes.  

These efforts went along with a more general movement towards rigour, and especially 
rigorous proof, and therefore towards formalizing and axiomatizing mathematical theories. Here, 
‘formalizing’ means writing the theory, not in a natural language such as English or Latin 
(augmented of course with technical terms like ‘isosceles triangle’ or ‘limit of a sequence’), but in 
an artificial language with: a precisely specified vocabulary (usually a very small one); and precise 
rules of grammar dictating exactly which sequences of vocabulary items count as grammatical 
sentences; and precise rules of inference dictating exactly which passages from finite sequences 
of such sentences (thought of as premises) to another sentence (thought of as conclusion) count 
as an allowed inference. Accordingly, ‘axiomatizing’ means that, having written all the claims of a 
theory in a formal language of this sort, one finds a small subset of these claims with the feature 
that any claim of the theory can be inferred from some choice of finitely many elements of the 
subset as premises, using only the proclaimed rules of inference. Thus the small subset are the 
axioms, and all the other claims are theorems. (In almost all cases, the set of axioms is not 



 12 

unique: even assuming a fixed formal language, there are several equally good ways to axiomatize 
the theory.)          

This movement towards formalization and axiomatization was prompted by two other 
developments, additional to rigorizing the calculus.  

First: new mathematical theories were proposed that surprised, even shocked, 
mathematicians by their subject-matters (numbers and geometrical figures) explicitly disobeying 
the familiar postulates and rules, that had traditionally been considered necessary. Yet these new 
theories seemed consistent: scrutinizing the arguments within the theories revealed no 
contradictions. The best-known examples of such theories are the non-Euclidean geometries. 
But there were also new notions of quantity different from the familiar real numbers. For 
example, both Hamilton and Grassmann introduced (in two different ways) theories in which 
multiplication of numbers was not commutative, i.e. did not obey the rule that x times y = y 
times x. So these new theories were, to put it mildly, unintuitive. They were hard to understand; 
and indeed, hard to accept as correct mathematics. To do so, mathematicians needed to adopt, 
and did adopt, an abstract and formal approach. The idea was: “Just follow the postulated rules, 
and you will see they they lead to a novel, but consistent and even elegant, geometry or algebra”. 
And the claim of consistency, the reassurance, could be secured more easily if the theory was 
written in a formal language, with its precise rules of grammar, and of inference.  

Here I should stress that until these developments, the only mathematical theory that had 
been conceived as an axiomatized theory was Euclidean geometry. And viewed by these new 
nineteenth-century standards of ‘formal’ and ‘rigorous’, the venerable textbook that had been 
used for two millennia, Euclid’s Elements, was very informal and unrigorous---whether written 
in English or in Latin. Accordingly, mathematicians developed axiomatisations of Euclidean 
geometry in the modern style. Thus their formal languages had very small vocabularies. For 
example, the language might have just four basic predicates, such as ‘… is a point’, ‘… is a line’, 
‘… lies on …’ (ascribed to a point and a line), and ‘… is between … and …’  (ascribed to three 
points). From a few axioms making claims, using only this tiny set of predicates, about points 
and lines, all the hundreds of theorems of Euclidean geometry would follow.  

Second, another new theory from the late nineteenth-century led to paradox: to another 
house built on sand. Namely, mathematicians developed the theory of sets: and although its 
basic ideas are simple (e.g. the intersection of two sets of objects is the set of those objects that 
are in both the given sets), it led, like the calculus had done earlier, to paradoxes. Again, one 
could construct apparently valid arguments, with plausible premises about sets (especially about 
infinite sets), whose conclusions were contradictions.  

Taken together, these various problems---about calculus, about the new theories of 
geometry and algebra, about sets---amounted to a crisis in the foundations of mathematics. In 
response, over the years 1870 to 1930, various different “repairs” were proposed. That is, several 
mathematical research programmes were launched, with distinctive proposals about how to 
rigorize, and thereby vindicate as free of paradoxes, all these mathematical fields: the real 
numbers, the new geometries and algebras, the theory of sets. Thus ensued a vigorous multi-
faceted debate, that lasted some sixty years.  

And in all this, the role of logic was second to none. This was not just because 
diagnosing the errors in paradoxical arguments is obviously a job for logic. Also, paradoxes 
apart, the effort to rigorize proofs was a matter of breaking them down in to simpler steps that 
can be explicitly checked as conforming to some announced rule of inference: clearly, a matter of 
logic.  

Furthermore, there were deep similarities between logic and set theory. Since arguments 
can be about anything, and sets can be made up of any objects, both fields seem to have no 
specific subject-matter. In philosophical jargon, they are topic-neutral. And the truths of the two 
fields seem similar, or even the same. For example, recall the valid argument pattern I 
mentioned: ‘All As are Bs, and all Bs are Cs; therefore all As are Cs’. That corresponds exactly to 
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the truth of set theory that if a set A is a subset of a set B, and B is a subset of another set C, 
then A is a subset of C.  

Indeed, these similarities inspired one of the research programmes mentioned above. 
The great German logician Frege created the logicism programme. He proposed that all of pure 
mathematics was really logic. And since he saw logic as consisting of necessary propositions, this 
explains why pure mathematics is necessary. The details of how this was meant to work 
depended on writing all of mathematics, e.g. arithmetic, the calculus, geometry etc., in terms of a 
(paradox-free) theory of sets, and then arguing that this theory of sets is really logic in disguise.  

Logicism was enormously influential in philosophy from 1900 to 1930, partly through 
the writings of Russell and Whitehead, and later, the logical positivists. Nowadays, the consensus 
is that it failed: essentially because, after all, the theory of sets is not really logic. But for our 
purposes, what matters is the historical role of logicism, and its legacy. In this Section, we have 
sketched how it arose from the applied/pure mathematics distinction, and the concurrent crisis 
in the foundations of mathematics. In the next Chapter, we will see its legacy: placing logic, and 
so the nature of logical necessity, at the centre of philosophy. 
 
 


