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Chapter 4: All the worlds encoded in the quantum state of the cosmos 

 
This Chapter expounds the multiverse proposed by the Everettian interpretation of quantum 
theory. The first half is largely independent of previous Chapters’ philosophical discussions. But 
philosophical themes will emerge as the Chapter unfolds. 

The Chapter proceeds in four stages. First, I introduce quantum theory (Chapters 4.1 to 
4.3). I build on the last Chapter’s discussion of state-space (Chapter 3.3), so as to emphasize how 
strange the conception of quantum state is. This leads, in the second stage, to the measurement 
problem, symbolized by Schroedinger’s cat (Chapters 4.4 and 4.5). This problem has no agreed 
solution. But I will, in the third stage, (Chapters 4.6 to 4.10) develop just one approach: the 
Everettian interpretation, with its multiverse. In this approach, a physical process called 
decoherence will be crucial.  

These first three stages will all emphasize what one might call ‘synchronic issues’: issues 
about the quantum state at a single time. The topic of time, or diachronic issues, will enter only 
at the last stage (Chapters 4.11, 4.12), which focus on how the Everettian treats probability. 
There, I will press one philosophical question that this multiverse raises---what exactly is 
objective probability? 
 
Chapter 4.1: What is matter? From lumps in the void to fields  
So far, our rapid review of physics has consisted of: (i) the rise of mechanics, especially Newton’s 
theory of gravity (Chapter 2.3 to 2.6), and the idea of a state-space (Chapter 3.3).    
To understand the Everettian multiverse, we need to understand how in quantum physics, the 
notion of state is very different from the notion in classical physics.  

To prepare for that, the clearest and most vivid route is to review how our conception of 
matter developed historically, from ancient times to the end of the nineteenth century.  

In this development, the main theme is that the idea of matter as a lump of stuff 
surrounded by void (vacuum) gave way to the idea of a field that pervaded all of space. Here, I 
hasten to explain that ‘field’ has nothing to do with corn, or any cereals, or the countryside. A 
field is, rather, there being a physical quantity associated with each place in space; and a state of 
the field is therefore an assignment of a value to the quantity at each place. An elementary 
example is the temperature of the air throughout a room: hotter here, cooler there. Strictly 
speaking, temperature does not make sense at an extensionless point of space: it is an average 
property of the air in a small volume, say a cubic millimetre, around the point. But let us idealize, 
and speak of a temperature at every point of space in the room. Then an assignment of 
temperature values to all points is a state of the temperature field. 

So let us begin with lumps in the void. We discussed this conception of matter in 
Chapter 2.2 and 2.3. We saw that it was advocated not just by ancient atomists like Democritus 
and Lucretius, but by many seventeenth-century mechanical philosophers, including Newton 
himself. In particular, we discussed how non-obvious, indeed unclear, it is: as regards both how 
it might explain the very varied phenomena we see around us, and how such lumps might 
interact (whether by contact-action, or by action-at-a-distance).  

Then in Chapter 3.3, we noted how complicated a collision between two such lumps 
really is. This led to the idea of the point-particle: mass concentrated at an extensionless spatial 
point. So on this conception, ordinary objects are clouds, more or less dense, of such point-
particles. This idea was introduced as an idealization by Euler (1707-1783), and then advocated 
as physically real, i.e. the true nature of matter, by Boscovich (1711-1787).  

Again, we should pause over how non-obvious, even problematic, the idea is. For any 
point-particle, its density, i.e. the ratio of mass to volume, is infinite. So if one advocates point-
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particles with different masses, one must accept different sizes of infinity, in order to describe 
their mass-densities. Besides: how do point-particles exert force on each other? And what 
happens if they ever collide? Boscovich himself---writing in an era when Newton’s theory of 
gravity with its action-at-a-distance was accepted---suggested that at very short distances, a 
repulsive force, that is ever stronger at shorter distances, comes in to play and overcomes the 
particles’ gravitational attraction: so that collisions never occur. But whatever you say about 
collisions, the question arises: can you give a good account of the contact and interaction of 
ordinary objects?  

Difficult questions like these suggest a rival conception of matter, as continuous. On this 
view, there is no void anywhere, not even on the tiniest length-scales: matter fills space 
completely. As we mentioned in Chapter 2, Descartes endorsed this conception. He explicitly 
identified matter and extendedness; (while in his metaphysics, mind was essentially unextended). 
During the eighteenth century, this conception went on being developed. Indeed, the exact 
mathematical description of how continuous matter moves, and how one part of it exerts forces 
on, and responds to forces from, various other parts, is a very subtle affair. It requires a lot of 
advanced calculus, as well as physical insight. Unsurprisingly, there was, from the time of Euler 
onwards, a century-long struggle to achieve this description. 

The result, in brief, is to describe matter as a field, in the above sense. For think of a 
continuous piece of matter. To begin, let us suppose for simplicity that the matter is utterly rigid. 
That is: the distance between any two of its material parts, no matter how tiny, remains constant 
over time. So think of a metal bar, and set aside your knowledge that it has layers of microscopic 
structure, i.e. crystals, atoms etc. Although it is rigid, properties such as mass-density and 
temperature may well vary across its expanse; and so these properties call for a field description. 
Besides, for continuous matter that is not rigid---that can be deformed (like an elastic solid: think 
of a pencil eraser) and-or compressed (like a liquid or gas)---the positions and velocities of its 
material parts are not “locked-in-step” together. So the parts’ positions and velocities, as well as 
of their density and temperature, also call for a field description. No wonder that some advanced 
calculus is required. 

In the nineteenth century, electricity and magnetism “went the way” of continuous 
matter such as fluids. That is: it turned out that, whatever the ultimate micro-structure of matter 
was (point-particles or continuous), electric and magnetic forces take time to propagate across 
space, between, say, positively and negatively charged matter. As discussed in Chapter 2.3, this is 
unlike the gravitational force, as it had been described by Newton. According to him, 
gravitational force propagates instantaneously.  

Besides, these propagating electric and magnetic forces call for a field description. That 
is: one needs to attribute to each point of physical space, a vector, i.e. a line-segment in physical 
space (given by three real numbers relative to a coordinate system at the point) which is the 
(value of the) electric field at that point. This vector represents the electric force that would 
accelerate a stationary point-like electric charge, if the charge were at that point. And similarly for 
the magnetic field: though with the difference that it represents the force felt by a moving 
electric charge. (Here, the phrases ‘if it were at’, and ‘would accelerate’ signal a counterfactual 
conditional. This is another example of science being up to its neck in modality: cf. Chapter 3.3, 
3.7.) 

Besides, this field description of the electric (or the magnetic) field is not “just” a very 
convenient way of stating an infinite conjunction of counterfactual conditionals: namely, as a 
mathematical function from spatial points to vectors located there. For Maxwell (1831-1879), in 
his stupendously successful theory of the electric and magnetic fields, showed that there is much 
more to these fields that their describing how a charge would accelerate.  

His theory unified electricity and magnetism as two aspects of a single field: the 
electromagnetic field. It also showed light (and later: radio waves etc.) to be waves in this field. 
That is: light is an oscillating pattern of electric and magnetic vectors at points of apparently 
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empty space. It is a pattern that propagates, like a wave-form on the surface of the ocean.  But it 
propagates at the speed of light.  

Furthermore, this field has energy and momentum: quantities previously attributed only 
to matter, i.e. to stuff that had mass. That is: the field can convey energy and momentum from 
one place to another. Thus when you listen to the radio, your aerial is energetically excited by the 
arriving pattern in the electromagnetic field; and the pattern of excitation is then decoded and 
amplified into sound.  

To sum up:  by the end of the nineteenth century, classical physics had a broadly dualist 
ontology of matter and field. The picture was that matter with mass (and with energy and 
momentum) is localized in space. It was unknown, and controversial, whether it consisted 
ultimately of point particles or of continuous, space-filling, matter.  But in the space between 
localized pieces of matter, there was: not just Newtonian gravity, with its action-at-a-distance; 
but also an all-pervading electromagnetic field that is the medium by which electromagnetic 
interactions between bits of charged matter occur, and that also itself possesses energy and 
momentum. 

In the twentieth century, this dualism was overcome---with all-pervading fields getting 
the upper hand. This happened in various ways. But we need only state two.  

First: Einstein’s relativity theory (from 1905) identified mass and energy; so that one 
speaks of ‘mass-energy’. So the quantity, mass, that had from Newton onwards been attributed 
only to matter, was now seen as also an attribute of the electromagnetic field.  

Second and more important for us: from the mid-1920s, quantum theory replaced 
classical physics’ matter---even a single point-particle, not only extended matter---by a field. But 
it is a very strange field. And it replaces the classical electromagnetic field by another field that is 
also strange, in a way exactly parallel to the strange fields for matter.   

This strangeness is the source of all the problems about interpreting quantum theory, 
and it will dominate this Chapter.   

     
Chapter 4.2: The quantum state: probabilities for classical alternatives 
The clearest way to grasp this strangeness is to go back to the idea of that a theory attributes to 
the physical systems it describes, instantaneous states.  

We saw in Chapter 3.3, that in classical physics, specifically Newtonian mechanics, the 
state of a point-particle is given by an ordered set of six real numbers, a 6-tuple: three numbers 
for its position in space, and three for its momentum. This meant that the state-space of a point-
particle, that can be anywhere and have any momentum, is the set of all 6-tuples of real numbers. 
This is a six-dimensional space: where we use the word ‘space’ because, although this is not 
physical space, we can use geometrical ideas in describing it. And we saw that for more 
complicated systems, the state-space rapidly becomes more complicated and intricately 
structured. Even if we set aside all the momenta, and consider only the positions of the 
component parts---which is called the configuration of the system---the space of configurations 
(called ‘configuration-space’) rapidly becomes complicated.    

Now that we have the idea of a classical field, we can also say talk about an instantaneous 
state of such a field. Think for example of the electric field throughout 3-dimensional physical 
space. Its state is of course the assignment of an electric field vector at each spatial point. Such a 
state is also called a field-configuration. So this requires infinitely many real numbers to specify 
it: because, for each of infinitely many points in physical space, we must specify three real 
numbers. We say the field’s state-space, i.e. its set of instantaneous states or configurations, is an 
infinite-dimensional space. (Again, we say ‘space’ and ‘dimensional’ because we can again use 
geometrical ideas: much of the intuition, and precise results, about finite-dimensional spaces 
carries over to infinite-dimensional spaces.) 

Now we can state how quantum theory is strange. It lies in a striking contrast between 
states in classical physics and states in quantum physics. This contrast applies equally to a point-
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particle, and to a finite set of them---any such set would have a finite-dimensional classical state-
space---and even to a field (which has an infinite-dimensional classical state-space).  

In short, the contrast is this. A classical state is an assignment of specific values to 
appropriate quantities. For our purposes here, we can neglect ideas about momentum, and focus 
only on position and similar quantities, i.e. on configurations. So a classical state is an assignment 
of specific values: either to the positions of a material object’s component parts, or to field-
quantities at all the points of physical space.  But a quantum state is an assignment of a “square 
root of a probability” to every possible configuration of the corresponding classical system.  

So a quantum state is a function in the mathematical sense. Its inputs (as we discussed: 
also called ‘arguments’) are the classical configurations, and its outputs are “square roots of 
probabilities”.  Here, what matters most---and what is most revolutionary about quantum 
theory---is, not the curious “square root of probability” outputs (which I will discuss shortly), 
but: the fact that a single quantum state mentions, i.e. takes as its domain of inputs, all possible 
classical configurations. 

 This fact will be the origin of both the measurement problem, and of the Everettian 
proposal about how to solve it. 

Even for a point-particle, the proposal is hard to get one’s mind around. For classical 
physics posited a point-particle. Its possible configurations were its possible spatial positions. 
Agreed, the theory is involved in modality (as discussed in Chapter 3.3). But only one 
configuration is actual: where the point-particle happens to be. Now quantum physics tells us: 
there are no such point-particles, each with a single actual position. Each such is replaced by 
what gets called a ‘quantum particle’. But this entity hardly deserves the name ‘particle’.  For it 
has no single position. Indeed, it seems thoroughly smeared out in space. For the actual state of 
this entity, at some time, is an assignment to each point of space---i.e. to each possible 
configuration of yesterday’s classical point-particle---of a number, which (once squared) gives a 
probability. In short, the state of this so-called quantum particle is a field.  

But it is not a field like Newton’s gravity, or Maxwell’s electric field. For the so-called 
particle is not, as I put it, ‘thoroughly smeared out in space’, in the sense of being a cloud of 
mass or of electric charge. It is a field of probabilities (or rather, of their square roots). This field, 
this function on classical configurations that assigns to each configuration a square root of a 
probability, is called a wave-function. It is almost always written as the Greek letter Psi.  

Besides, where classical physics posited two point-particles, and so configurations that 
are 6-tuples, and so a six-dimensional configuration space: quantum theory says the state is a 
wave-function on this six-dimensional space. So the ‘smearing’ of what is (undeservedly) called 
the ‘quantum two-particle system’ is a smearing, not in physical space, but in the abstract space 
of 6-tuples. And so on, for the quantum replacements of more complicated classical systems. 
That is: the quantum state, the wave-function, has as its domain of inputs (its arguments) the 
more complicated classical configuration space. 

So far, I have summarized the mathematical idea of the quantum state as a function on 
classical configurations. But the picture gets yet stranger, when we ask what is the physical 
meaning of this function. Again: stranger, even for a point-particle---or rather for what replaces 
the classical point-particle and is honorifically labelled ‘quantum particle’. For one asks: 
probability of what? And the answer is a mouthful, that refers to the outcome of a possible 
measurement, if you were to undertake one, on the system.  

For the answer is, for a quantum particle: for each place (i.e point) x in space, the value 
of Psi at the argument x gives the probability, were you to measure the quantity position on the 
system, that you would get the outcome ‘It is at x’. Equivalently, we can think of measuring a 
quantity with just two values ‘Yes’ and ‘No’ (or if you prefer: ‘1’ and ‘0’) that is defined in terms 
of the place x. In effect, to measure this quantity is to ask the system the question ‘Are you at x?’. 
Thus the value of Psi at the argument x gives the probability of getting the answer ‘Yes’ to this 
question.  
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The reason why I call this answer ‘strange’ is that it means the basic interpretation of the 
theory’s most central mathematical notion, its very concept of state, is in terms of measurement. 
For think what this implies. Suppose I ask the quantum theorist what their theory of, say, an 
atom, written in their mathematical language, means in physical terms. I ask: what information 
about the atom is contained in this mathematical notion Psi that they ascribe to the atom? And 
their official reply is that Psi gives probabilities of measurement outcomes: measurements using 
an apparatus that (for an experiment on an atomic system) is typically more than a million 
million million times bigger than the system being measured.  

One naturally asks: how can this interpretation of Psi possibly hold up? For it invokes 
systems, viz. measurement apparatuses, that are not only utterly different from the system we are 
concerned with, but also vastly larger---and vastly varied. Can such a grossly extrinsic conception 
of state, for e.g. an atom, really be true?  

To this, the short answer is that until now, more than eighty years after this conception 
of state was formulated, it is indeed still unrefuted. It is unrefuted for the simple but all-
important reason that calculating with it, with due care, delivers the right answers to countless 
experiments---right answers that underpin countless modern technologies. But on the other 
hand: not only does every newcomer, every student of quantum theory, find this conception of 
state very hard to believe---indeed, bewildering. Also, most physicists and philosophers who 
consider in detail this conception, and the questions it raises, conclude that it is not satisfactory.  

More precisely: either they conclude that though unsatisfactory, this conception is the 
best we can now do, and we must hope that the future will bring insight, maybe even a whole 
theory replacing quantum theory; or they conclude that we already have some special account of 
the mathematics of quantum theory, and-or how we apply this mathematics to the empirical 
world, that vindicates this conception. But there are many such special accounts, which get called 
‘interpretations of quantum theory’. There are about half a dozen main ones, each with many 
distinctive varieties. The debate between them still rages, decades after quantum theory was 
formulated---and one such interpretation is the Everettian interpretation, with its multiverse. 

But before discussing that, there is more to say about this strange conception of state.  
 

Chapter 4.3: Amplitudes and quantum fields 
We can sum up the exposition so far, in terms of how quantum theory replaces the classical 
physical description of two or more particles.  For two particles, the quantum state is an 
assignment, to each pair of points of physical space, of a number which (once squared) gives the 
probability, were you to measure the two position quantities, of getting the answer “Yes” to the 
two specific questions, “Is one of the particles here?”, for the two points. And similarly for how 
quantum physics replaces classical physics’ description of N particles. The state is an assignment 
to each N-tuple of points of physical space, <x1,y1,z1,x2,y2,z2,…,xN,yN,zN> (i.e. each sequence of 
3N real numbers) of a square root of a probability. 

There are two further comments to make.  
(1): The first is about the wave-function’s outputs, i.e. the values of the function: which I 

called “curious square roots of probabilities”. The explanation is that there is a kind of number 
which this book has so far not mentioned, called a complex number.  In effect, a complex 
number encodes a pair of real numbers in ways that are fruitful. In particular: taking the square 
of a complex number delivers a third real number; (in almost all cases, different from both the 
given real numbers). So the values of the wave-function are complex numbers. They are called 
amplitudes (also: probability amplitudes).  

Using complex numbers is fruitful for quantum theory because it underpins the 
treatment of quantities apart from position. Recall how our interpretation of the wave-function, 
above, was in terms of probabilities for outcomes of measurements of position. I said nothing 
about other quantities such as momentum. But it is natural to expect quantum theory’s 
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conception of state to say something about them. Indeed it does, by encoding the extra 
information in its use of complex numbers, rather than real numbers.  

Amazingly, the system’s wave-function gives, for any quantity (momentum, energy, what-
not), the probabilities of the various possible outcomes of measuring that quantity on the system. 
So again, the conception of state is bewildering. For it invokes a gross and extrinsic apparatus. 
But I should also note that the mathematics of how the wave-function encodes all the 
probabilities for all the quantities is unified and very elegant. Calculating probabilities for various 
different quantities turns out to be a matter of expressing a vector (not in physical space, but in 
an abstract space) as a sum of vectors, in various different ways.  

(2): Finally, let me return to the idea of fields. I introduced this idea for classical fields. 
Recall the classical description of a fluid, taken as being made, not of atoms jostling each other in 
a void, but as made---on all length-scales, no matter how minuscule---of extended stuff. Or recall 
the electric field, whose state is an electric vector at each point of physical space. But then we 
learnt that the quantum replacement of a classical point-particle is a field of (square roots of) 
probabilities, defined on configuration space. So one naturally asks: what about the quantum 
replacement of a classical field, such as the electric field?  

Amazingly, the same strange idea of state works again; as follows. We saw that the 
configuration of a classical field is given by an infinite number of real numbers (not by 3N real 
numbers for some whole number N). Thus the quantum replacement of such a field has as its 
state an assignment, to each configuration of the classical field (that we used to imagine was 
physically real), of a complex number: a probability amplitude. This quantum replacement is 
called, of course, a quantum field; and the theory of them is called quantum field theory.  

Note the dizzying mathematical abstraction. The configuration space of the classical field 
was itself infinite-dimensional; and now quantum theory posits a state space of functions with 
arguments in that infinite-dimensional space. This makes quantum field theory much more 
complicated, mathematically, than the theory of quantum particles, i.e. the theory of wave-
functions on finite-dimensional classical configuration spaces. 

Besides, quantum field theory gives a supremely successful replacement not just of what 
classical physics called fields, like the electric field, but also of what classical physics called 
particles. So it revises what I have said so far about quantum particles---though ‘revises’ means 
here ‘extends’ rather than ‘overturns’. 

Thus consider the electron. As we have seen: classical physics treats it as a point-particle, 
located in space at some actual position, moving with some momentum. And similarly for a pair, 
or any finite number N, of electrons. In short: once you fix the number N, a classical state-space 
is defined. And so far in this Section, we have learnt that quantum physics replaces this with 
something probabilistic. Namely: the state provides, for any quantity, a probability distribution 
over its possible values, where ‘values’ are understood to be outcomes of a possible 
measurement. But we can deduce all these distributions from a single representation of the state, 
the wave-function. And as in the classical case: once you fix the number N, the quantum state-
space, consisting of wave-functions assigning amplitudes to each possible classical configuration 
of N point-particles, is defined.  

Quantum field theory goes beyond this. Its state-space is “even bigger” than those we 
just mentioned. Thus we have mentioned: the space of wave-functions for one particle (i.e. 
complex-valued functions of position in physical space), the space of wave-functions for two 
particles (i.e. complex-valued functions of pairs of positions in physical space), … , the space of 
wave-functions for N particles (i.e. complex-valued functions of N-tuples of points of physical 
space). But for quantum field theory, the state-space contains all these infinitely many spaces of 
wave-functions. More precisely: there is a way of adding together two or three or … even 
infinitely many spaces (defined in terms of all the ways of adding together elements of the 
spaces). So for quantum field theory, the state-space is the sum of all the spaces just mentioned, 
for all positive whole numbers N. This vast sum state-space is called Fock space.  
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Thus quantum field theory envisages the number of particles as a property of the system, 
that can vary from one state to another. That is: it envisages the number of particles as a quantity 
of the system. This amounts to treating the system as a field; and to treating the quantum 
particle, discussed above, as itself a state: a state of this field.  

So quantum field theory’s conception of an electron is that it is an excitation (an 
“agitation” with an associated energy) of the field. Similarly, two particles are a pair of such 
excitations; and so on. Thus the treatment of, say, five electrons that a quantum theorist first 
learns (using wave-functions on 5-tuples of points of physical space) turns out to be just the five-
particle part of a treatment that encompasses any number of electrons. (In the jargon: the 
elementary quantum state-space for five electrons is a subspace of Fock space.) 

Again, the degree of abstraction is dizzying. But so is the empirical success. The quantum 
field theoretic treatment, both of what classical physics called ‘fields’, e.g. the electric and 
magnetic fields, and of what classical physics called ‘particles’, e.g. electrons, yields vastly many 
precise predictions that have been confirmed. So much so, that quantum field theory is now 
regarded as the lingua franca of physics.  

And yet . . .  questions remain. For the official interpretation of the state of a quantum 
field is exactly parallel to what I reported, and questioned, in the last Section. Thus for the 
electric field, the state (i.e. the function on configurations of the classical electric field) encodes 
probabilities for the various possible values of any quantity, such as energy or momentum of the 
field, that you might decide to measure on it. So our interpretative worries at the end of the last 
Section---can such a grossly extrinsic conception of state really be true?---persist. 
 
Chapter 4.4: The measurement problem: Schroedinger’s cat  
The worries raised in the last Section about how to interpret the quantum state can be sharpened 
into an argument, whose conclusion is that quantum theory makes a wealth of flagrantly false 
predictions about the macroscopic world around us. This argument is called the measurement 
problem (also: ‘the reality problem’). It is vividly illustrated---indeed, symbolized---by 
Schroedinger’s cat: which is a thought-experiment presented by Schroedinger in 1935. So in this 
Section, I will expound the measurement problem, and then the cat.  
 So far, we have seen that a quantum state prescribes, for any quantity, a probability 
distribution over the possible outcomes of measuring that quantity (on a system in the given 
state). For example, a quantity might have four possible values, whose probabilities are 1/4, 
1/3,1/3, 1/12: (these add up to 1). Of course: a probability equal to 1 for one value, with 
probability 0 for any other value, counts as a legitimate probability distribution. It is called a 
trivial distribution (though ‘dogmatic’ would be a better name). And for a given quantum state, 
there are quantities that get such a distribution: one outcome is ascribed probability 1, all the 
others probability 0.  Quantum theory has jargon for this. We say the state is an eigenstate of the 
quantity, and that the outcome that is “favoured”, i.e. gets probability 1, is the eigenvalue. 

As to the more general situation, viz. each outcome getting a probability less than 1 
(maybe some get 0, but all together, they add up to 1): it turns out that quantum states can be 
added in a way analogous to adding numbers. (And even more analogous to adding vectors: 
think of adding directed line segments, nose-to-tail, in the plane, or in three-dimensional physical 
space.) If you add two eigenstates for a quantity, ascribing probability 1 to two different 
eigenvalues, the result is a state that ascribes probability 1/2 to each eigenvalue. This state is 
called a superposition of the two given eigenstates. We write a ‘+’ sign for addition of states. 

This example was one of equal weighting. (One could also call it ‘50-50 weighting’.) But 
we can also increase one weight and decrease the other, like lengthening one directed line-
segment and shrinking the other, before we add them, nose-to-tail. The resulting state (which is 
again called a ‘superposition’, and written with a ‘+’ sign) will give the two eigenvalues different 
probabilities: the first one greater than 1/2 (say 6/10), the other less (say 4/10).   
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Note two further points. (1): For any given quantity, almost all states are superpositions: 
its eigenstates are a small, special set of states.  

(2) Just as classical theories have equations of motion that describe how the system’s 
state changes over time (cf. Chapters 2.6, 3.3, 3.8, 4.1), so does quantum theory. Its equation is 
called the Schroedinger equation; (he published it in 1926). It has two crucial features.  

First: it is deterministic, in the sense of our previous discussions (Chapter 3.3, 3.8). That 
is: given the system’s quantum state at a time, and the forces exerted on it in past and future, the 
equation prescribes what the state is at all other times. As we put it there: the equation prescribes 
a unique curve through the quantum state-space, i.e. the space of wave-functions. Later (in 
Sections 5 and especially 11), we will confront the obvious question: how can this determinism 
be reconciled with quantum theory’s use of probabilities?  

But here in this Section, what matters is the second crucial feature of the Schroedinger 
equation. Namely: it preserves the addition structure of quantum states. That is: if a system’s 
quantum state, Psi, would evolve (i.e. change), in say five seconds, to a state Psi’, and another of 
its states, Phi, would evolve in that same five seconds to a state Phi’, then any superposition, for 
example ((6/10)Psi + (4/10)Phi) would evolve to ((6/10)Psi’ + (4/10)Phi’). The addition 
structure, and the numbers that are the weights, 6/10 etc., are preserved under time-evolution. 
This property of the Schroedinger equation is called linearity: the Schroedinger equation is linear.  
(Here, for simplicity, I have written familiar real numbers, 6/10 and 4/10, for the weights, rather 
than the complex amplitudes, i.e. ‘curious square roots of probabilities’, mentioned in (1) of 
Section 3. The point about linearity is unaffected.) 

So far, this Section has just done some stage-setting: the addition of vectors, and the 
jargon of eigenstates, eigenvalues, superpositions and linearity. But now quantum theory, in its 
orthodox formulation, makes an interpretative claim. It is a very important claim, since it is 
restrictive---and it leads directly to the measurement problem.  

Namely: quantum theory says that if for a given quantity, the state is a superposition for 
that quantity (so: not an eigenstate---it ascribes a non-trivial, “non-dogmatic”, distribution over 
possible measurement outcomes), then the system has no value whatsoever of the quantity.  

The paradigm case is the quantity position, for a quantum point-particle: as in Section 
4.2. The state is a wave-function Psi that assigns a complex number to positions in space, whose 
squares give probabilities of outcomes of position measurements: in picturesque language, 
probabilities of getting the answer ‘Yes’ (‘1’) to asking the system ‘Are you at position x?’.  

Now imagine that the value of Psi is non-zero only in two separated spatial regions, 
which we call ‘L’ and ‘R’. Here, ‘L’ and ‘R’ are mnemonics for ‘Left’ and ‘Right’. For nothing 
here will depend on space being three-dimensional; so we may as well imagine it as one-
dimensional---“life on a railway line”. So if we draw a graph of the values of Psi (more precisely: 
their squares), it looks like two humps with a flat line between them. (Think of the road-sign for 
‘Bumps in the road ahead.’)  

So quantum theory says that Psi is a superposition of two states. One is an eigenstate for 
being in L; (and so: would with probability 1 be found in L, if measured). The other is an 
eigenstate for being in R; (and so, correspondingly: would with probability 1 be found in R, if 
measured). This superposition can be written with a ‘+’ sign for addition of states. We could 
write: Psi = in L + in R.  

It is also common to write states between a vertical line and an angle bracket; (a notation 
invented by Dirac (1902-1984), one of the great quantum physicists). So for the equal or ‘50-50’ 
weighting of L and R, we write: |Psi > = |in L > + |in R > .   

But, says quantum theory: a system in state Psi has literally no position at all. So the 
system exists but it has no location. It only has dispositions to be found in L, or in R, if we were 
to measure position.   

Similarly for other quantities, such as momentum. A particle might be in a superposition 
of momentum eigenstates, for two different values (measurement-outcomes) of momentum, say 
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‘1’ and ‘2’. So for equal weighting of ‘1 and ‘2’, we can write the state as: |momentum 1> + 
|momentum 2>. Again, quantum theory says that a system in this state has literally no 
momentum at all. 

To sum up: since for any given quantity, almost all states are superpositions, quantum 
theory’s denial that systems in superpositions have a value (for that quantity) makes the lack of 
values endemic. Obviously, this situation prompts the question: how can this lack of values be 
reconciled with the apparent fact that objects do have values for position, momentum and other 
quantities such as energy?  

Besides: recall how classical physics gives supremely successful descriptions and 
explanations of the physical behaviour of macroscopic objects, by ascribing them definite values 
of position, momentum etc., subject to equations of motion (cf. Chapters 2.6, 3.3, 3.8, 4.1). Once 
we recall this, the question becomes more pointed: how can quantum theory’s denial of values be 
reconciled with the supreme success of classical physics?       

This question is now easily sharpened in to an argument: an argument that the lack of 
values contradicts countless facts that macroscopic objects have definite values. We only need to 
transmit the lack of values from the microscopic realm of electrons, atoms etc., for which 
quantum theory is indeed successful, to the macroscopic realm of tables, chairs etc., where 
classical physics with its definite values is successful. This is done by describing, within quantum 
theory, a measurement of a quantity on a microscopic system (say, an electron) that is in a 
superposition (for that quantity). In such a description, we can see how the lack of values is 
transmitted to the macroscopic realm---surely contradicting countless facts of definiteness. 

So let us assume we have a measurement apparatus for measuring an electron’s 
momentum that is reliable on each of the two eigenstates, |momentum 1> and |momentum 2>, 
in the following sense. Starting the apparatus in an appropriate ‘ready’ state, the state of the pair 
of systems changes over time, so that at the end of the measurement interaction, the pointer on 
the apparatus reads the corresponding eigenvalue of momentum. Thus we think of the pointer as 
being, at the end of the measurement, in front of the digit, ‘1’ or ‘2’, painted on a dial.  

Let us use an arrow, ---->, to symbolize the change of state over the period of the 
measurement. And let us write the state of the pair of systems by simply juxtaposing their states 
on the paper. This state of the pair is, in the jargon of logic or philosophy, the conjunction of the 
two components’ individual states. In physics jargon, it is called a product state (or ‘the product 
of the individual states’).  

Then our assumption of reliability, that measuring either of the electron eigenstates yields 
a veridical reading at the end, can be written as: 

|momentum 1> |ready>   ---->   |momentum 1> |reads ‘1’> 
and 

 |momentum 2> |ready>   ---->   |momentum 2> |reads ‘2’>  .       
So far, so good. But now suppose the electron’s initial state is a superposition: for 

example, of our two eigenstates, |momentum 1> and |momentum 2>. Then the composite 
system of electron and apparatus has the initial state: (|momentum 1> + |momentum 2> 
)|ready>. This can be written as: |momentum 1>|ready> + |momentum 2> |ready>.  Then 
because the Schroedinger equation is linear, we must accept: 

(|momentum 1> + |momentum 2> )|ready>    ---->   
|momentum 1> |reads ‘1’> + |momentum 2> |reads ‘2’>  .   

This is the punchline. For consider the state of the composite system after the 
measurement: i.e. the second line, or right-hand-side, of this formula. Consider what it says 
about the apparatus, in particular the position of its pointer. The main point to notice is that it is 
not an eigenstate of pointer-position, i.e. of the quantity position, for the pointer. (There is also 
another point to notice about this state. It is not a product state, i.e. a conjunction of states for 
the components. Such a state is called entangled; and the theory having such states is called 
entanglement. We will return to this in Section 4.7.)     
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So quantum theory denies that the pointer has any position. Like in the example 
above,|Psi > = |in L > + |in R > : the pointer only has dispositions to be found in front of the 
numeral ‘1’ on the dial, or in front of the numeral ‘2’ on the dial---if we were to measure it.  

But the pointer not having any position surely contradicts the fact that macroscopic 
apparatuses give definite readings. Besides, the argument is so simple---depending only on 
microscopic superpositions and the Schroedinger equation being linear---that it suggests more 
generally that orthodox quantum theory’s denial of values in the microscopic realm will 
contradict countless facts of definiteness about the macroscopic realm. 

So this is the measurement problem. As I said at the start of this Chapter, it has no 
agreed solution. So our first job, in the next Section, will be to consider some possible solutions: 
including the Everettian proposal, on which we will then focus.  

But before that, it is worth summing up the measurement problem, with Schroedinger’s 
own description of his eponymous cat. In his paper of 1935---which is still worth reading for 
many reasons, some of which we will touch on later---he writes (at the end of Section 5; 1935 
(1980)):            
 
One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with the 
following diabolical device (which must be secured against direct interference by the cat): in a 
Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in the course of 
one hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, 
the counter tube discharges and through a relay releases a hammer which shatters a small flask of 
hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the 
cat still lives if meanwhile no atom has decayed. The first atomic decay would have poisoned it. 
The wave-function of the entire system would express this by having in it the living and the dead 
cat (pardon the expression) mixed or smeared out in equal parts.  

It is typical of these cases that an indeterminacy originally restricted to the atomic 
domain becomes transformed in to macroscopic indeterminacy. 
 
Chapter 4.5: Solving the problem: the usual suspects 
There are three main strategies for addressing the measurement problem. It will be clear that 
each is a broad church that includes many versions; and that jointly, they are exhaustive. So one 
has to endorse one of the three. But I will not try to formulate the strategies precisely, and will 
only give two or three examples of each strategy. Nor is this trio of strategies, and their versions. 
original to me. Many surveys of the measurement problem give a similar trio. Hence this 
Section’s title: the usual suspects.  

I especially like the survey by Bell, which I will follow (1986). It is a brilliant, and 
equation-free, introduction to quantum theory and its interpretation. Bell describes, for each of 
his three strategies, a pair of versions; and for each pair, he gives what he wittily calls a romantic 
version, and an unromantic version. Unsurprisingly, the Everett interpretation will be the 
romantic version within its pair.  

Bell also makes it clear that for each pair, he prefers its unromantic version. That is 
perhaps disappointing. But as I discussed in Chapter 1.4, we each have an intellectual 
temperament which is hard to change, and about which we are obliged only to be self-aware. 
(John Bell (1928-1990) was a profound quantum physicist, as well as a gifted writer. He also 
originated what is now called ‘Bell’s theorem’: it is about how correlations between quantum 
systems defy a very natural form of probabilistic explanation.)     

The first strategy is to reject, somehow or other, the formulation of the problem. That is, 
one rejects the premises of the argument leading to the contradiction. The main idea must be to 
deny that the quantum state is “physically real”, in any sense of that phrase that makes the final 
post-measurement state (at the end of the last Section) contradict the macroscopic pointer 
having a definite position.  
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Bell calls his two versions of this strategy: ‘pragmatism’ (the unromantic version) and 
‘complementarity’ (the romantic version). Here, ‘pragmatism’ means---not the philosophical 
tradition launched more than a hundred years ago by American philosophers such as Peirce, 
James and Dewey---but ‘being practical’. That is: using the theory to calculate probabilities of 
outcomes, without taking its words and concepts to describe any reality other than those 
outcomes. (Philosophers often call this ‘instrumentalism’: the theory is an instrument, a tool for 
predicting observable facts, but not a description of the world, especially not the world beyond 
observations.) Obviously, pragmatism, in this instrumentalist sense, shades in to simply not 
wishing to ponder whether the theory goes beyond predicting observable facts, rather than the 
firm view that it does not go beyond such predictions.  

On the other hand, ‘complementarity’ is Bohr’s word for his views that attempted to go 
beyond pragmatism and, by explicitly philosophical argumentation, to solve the measurement 
problem. His core idea was that since measurement outcomes must be stated using the concepts 
of classical physics, there is no contradiction with, in Schroedinger’s phrase, ‘macroscopic 
determinacy’. And this is so, even though: (1) the Schroedinger equation, with its linearity, is 
always correct; and (2) quantum systems have no values for quantities except the eigenvalue for 
those quantities for which they are in an eigenstate.  

The other two strategies deny, respectively, these claims, (1) and (2). These were, of 
course, the premises of our formulation of the measurement problem. So one might say that the 
first strategy aims to dissolve, rather than solve, the problem; while these two strategies accept 
that the problem is genuine, and then propose to solve it. Bell himself clearly prefers these two 
strategies (in their unromantic versions) over the first. As he puts it in another paper: ‘either the 
wave-function, as given by the Schroedinger equation, is not everything or it is not right’ (1987, 
p. 201). Here, ‘the wave-function is not everything’ means that a system has values for quantities 
additional to the eigenvalues ascribed by orthodoxy, i.e. (2) is wrong. And ‘the wave-function is 
not right’ means that the system is being attributed the wrong state, because (1) is wrong. In our 
paradigm case of the pointer: we should attribute to it a state of definite position, not a 
superposition of position eigenstates, and to do so, we should revise the Schroedinger equation. 

So suppose we deny (1), that the Schroedinger equation is always correct. Again, this 
strategy comes in various versions.  

The simplest version says that at the end of a measurement process (like that at the end 
of the last Section), the troubling superposed final state is replaced by an eigenstate of pointer 
position, so that indeed, the pointer has a definite position. (Usually, advocates of this version 
also say that the measured system goes in to an eigenstate of the measured quantity: in our 
example, the electron goes in to a momentum eigenstate. But we can concentrate on the 
measurement apparatus and its pointer.) Besides, which eigenstate replaces the troubling 
superposed state is said to be a matter of sheer chance, with each eigenstate occurring with a 
probability equal to its weight (more precisely: the square of its complex amplitude weight) 
within the superposed state.  

Again, there is jargon: this replacement of the superposition by the eigenstate is called 
‘the projection postulate’, or ‘the collapse of the wave-function’. (But this second phrase is also 
used as a vivid label for the measurement problem, not just for this approach to solving it.) And 
the prescribed probabilities (the squares of the complex amplitude weights) are called ‘Born-rule 
probabilities’. (This is in honour of Max Born (1882-1970), one of the half-dozen co-discoverers 
of quantum theory who realized this role of probabilities in a 1926 paper.)     

This simplest version of denying (1) occurs in many textbooks of quantum theory. But 
evidently, it is vague and contentious. For when exactly is the state calculated from the 
Schroedinger equation to be ‘replaced’? Or in other words: what is the exact definition of ‘the 
end of the measurement process’? And since a measurement is, after all, a physical process, how 
is this suspension of the theory’s equation of motion to be justified? Clearly, this version is close 
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to what Bell called ‘pragmatism’: and we are back at our initial bewilderment that the notion of a 
system’s state should invoke such an extrinsic idea as measurement.  

Two other versions of this strategy, developed in response to these difficulties, are worth 
mentioning. The first is very speculative; the second is down-to-earth. So Bell calls them, 
respectively, romantic and unromantic; (and as I said, he prefers the latter). 

The first says, in a slogan, that consciousness collapses the wave-function. The idea is 
that the Schroedinger equation only falters at the interface between mind and matter. Although 
the inanimate physical world may get in to states superposing macroscopically distinguishable 
alternatives (e.g. of positions of a pointer), once a conscious being “looks”, the state changes to a 
macroscopically definite state.  

Obviously, people will differ about how plausible they find this proposal. Someone who 
is a physicalist (cf. Chapter 3.8) will almost certainly reject it. Yet it might at first sight appeal to 
the practically-minded physicist, on the grounds that it makes the measurement problem 
“someone else’s problem”. They might say: ‘surely, physics has no responsibility to describe the 
relation between mind and matter’. But I would say that this response is just a verdict about 
disciplinary boundaries, or the division of cognitive labour: about who needs to worry. 
Whichever discipline one takes the problem to fall within, the proposal is obviously hard to 
make precise, hard to gather evidence for, and indeed: hard to believe. In particular, why should 
these collapses of the wave-function due to consciousness respect the Born-rule probabilities? 

The other version of this strategy is much more down-to-earth: as Bell says, unromantic. 
It seeks, as quantum theory’s fundamental equation of motion, a “cousin” of the Schroedinger 
equation. This equation is to be chosen so as: (i) to agree with the Schroedinger equation for 
microscopic systems like atoms, so that it also gets the vast amount of confirmation that the 
Schroedinger equation has gathered over the last ninety years; and yet (ii) to disagree with the 
Schroedinger equation for macroscopic systems like pointers, and cats. So according to this 
version, the wave-function of a quantum system does indeed collapse i.e. transit to an 
appropriate eigenstate, in suitable---in particular suitably large---systems. And this occurs in the 
inanimate world, wholly irrespective of consciousness: the collapse of the wave-function is an 
indeterministic physical process. So our task is to find the equation that describes these collapses 
precisely, in a way that meshes with the established successes of the Schroedinger equation. This 
will include recovering the Born-rule probabilities for experimental outcomes. In short: our task 
is “theoretical physics as usual: find the right equations”. 

In the last forty years, a great deal has been learnt about such cousin equations, both 
mathematically and physically. But no single proposed equation has yet won the allegiance of 
physicists, on either theoretical grounds or by being confirmed by experiment. So the question 
whether the Schroedinger equation will indeed be overturned remains open.  For this, we must 
wait upon the future of physics.    

Finally, suppose we deny (2). That is: we say that quantum systems do have values for 
quantities for which their state is not an eigenstate. The motivation for saying this is of course to 
keep the post-measurement state given at the end of the last Section, but nevertheless to ascribe 
a definite position to the pointer.  

One version of this strategy is, again, “theoretical physics as usual”. It was invented by de 
Broglie (1892-1987). In the mid-1920s, he was another of the half-dozen creators of quantum 
theory; and his formulation of the theory explicitly attributes values to quantities additional to 
eigenvalues (of quantities for which the state is an eigenstate). To be precise, let us consider a 
system that orthodox quantum theory (the textbook) calls ‘N quantum particles’. De Broglie 
proposed that in addition to the wave-function Psi on configuration space, that always obeys the 
Schroedinger equation, there are also---our “old friends”: N point-particles.  

In themselves, these point-particles are as described by classical physics: at any instant, 
each has a definite position in space, and over time each moves in a continuous trajectory. The 
difference from classical physics lies in how they move. Namely: at each instant, their velocity is 
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determined by a combination of: (i) the wave-function, and (ii) the positions of the other point-
particles in the system (which contribute in an action-at-a-distance manner, somewhat similar to 
Newtonian gravity). The idea in (i), that the wave-function, though it lacks mass and energy, 
“guides” all the particles in the system, has given rise to the theory’s name: pilot-wave theory. 
(Think of how a pilot guides a ship, but not by the effects of his mass or energy.)  

We do not need the details of this theory. What matters for us is that the pilot-wave 
description of how the point-particles move gives the key idea for solving the measurement 
problem. (This merit became clearer in the work of David Bohm (1917-1992), who in 1952 re-
discovered the pilot-wave theory.)  In the last Section’s measurement scenario, the pilot-wave 
theory takes the pointer to really be a cloud of point-particles. Then it gives a detailed description 
of how, in each individual measurement, this cloud of particles is guided by the wave function 
(which always obeys the Schroedinger equation), so as to be either in front of the digit ‘1’ painted 
on the dial, or in front of the digit ‘2’. In short: the pilot-wave theory, by ascribing values of 
position additional to those ascribed by orthodox quantum theory, secures a definite outcome 
for each individual measurement---solving the measurement problem. 
 The second version of this strategy, i.e. the second way to claim that quantum systems do 
have values for quantities for which their state is not an eigenstate, while the Schroedinger 
equation is always correct, is the Everettian proposal---with its multiverse. It will be our topic for 
the rest of this Chapter. 
 
Chapter 4.6: Everett’s proposal: a bluff? 
Let me start by stating baldly the Everettian proposal. This will show how it counts as a version 
of this last strategy. (From now on, I will talk about ‘the Everettian’, rather than Everett himself, 
since the proposal has developed a good deal since Everett’s paper in 1957; besides, there is 
controversy about whether the version of the proposal that is nowadays dominant---on which I 
will concentrate---matches Everett’s own ideas.) 

The key ideas are as follows. The cosmos as a whole has a quantum state, which always 
evolves according to the Schroedinger equation: indeed, a very grand version of the equation 
that describes quantitatively how all the cosmos’ component parts interact, exerting forces on 
one another. Needless to say, no one has come close to writing down this version of the 
Schroedinger equation. But the Everettian proposes that it is, as usual, deterministic; so that the 
wave-function of the cosmos never collapses. (In Section 11, we will confront the obvious 
question: how can this determinism be reconciled with quantum theory’s use of probabilities?)   

This state is usually written as Psi: where use of the capital letter is, so to speak, 
honorific, since no one has the faintest idea how to write it down in detail.  

Psi is usually called ‘the universal state’, or ‘the universal wave-function’: hence the title 
of this Chapter. But in this book, I have adopted, since the Introduction: ‘multiverse’ as the 
name of all of reality in the most inclusive sense; and ‘world’ or ‘universe’ as the name for its 
“more familiar” parts, where as we discussed, each part is understood to mean ‘throughout all of 
time and space’. So using my jargon: the cosmos’ quantum state Psi is the multiverse’s quantum 
state. But since almost no one says ‘the multiversal state’ or ‘the multiversal wave-function’, I will 
in this Chapter talk of ‘the cosmos’ quantum state’.       

Our knowledge of quantum theory, and our empirical success in applying it to small 
systems, suggests that superpositions will promulgate, in the way we saw in the measurement 
problem at the end of the Section 4. So we have good reason to think that the cosmos’ quantum 
state is a vast superposition, i.e. a vast sum, of product states. Each of these is a long 
“conjunctive state” for countless component systems---not just an electron and a measurement 
apparatus or its pointer, but countless electrons, quarks, molecules, specks of dust etc.  

Again, there is jargon: when items, like numbers or vectors or these product states, get 
added together, they are called terms, or summands (for ‘item that gets summed’). So these 
product states are terms of the vast superposition.   
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The Everettian proposes a literal interpretation of this vast superposition. Just as this 
state contains vastly many product states, so also the cosmos (i.e. the multiverse) contains a 
plethora of Everettian ‘worlds’. (These are also called ‘branches’.) Each is represented by such a 
product state. Some (perhaps many) of these worlds are something like the macroscopic realm 
familiar to us: with all macroscopic objects (pointers, tables etc.) in definite positions.  

But the worlds differ among themselves about these positions; and it is relative to each 
such world that there are extra values, i.e. values additional to orthodox quantum theory’s 
attributing only eigenvalues. Think, for example, of Section 4.4’s toy-model of a momentum 
measurement. The two possible outcomes were distinguished by two different positions of the 
pointer: in front of ‘1’, or in front of ‘2’. Everett proposes that the two outcomes, the two 
positions, are in different worlds. 

This bald statement of the Everettian proposal prompts the obvious question: ‘If this is 
so, how come I have no evidence of the other worlds? In particular, how come I experience a 
single definite macrorealm?’.  

As I see matters, there are two main Everettian answers to this question: a traditional 
one, which dominated discussion till about 1990; and a modern one which has dominated 
discussion since the mid 1990s.  I think the first answer is unsatisfactory. It seems like a bluff, or 
a mere debating tactic; I will discuss it in this Section. But the second answer is satisfactory; 
although not wholly convincing. It is an appeal to an important phenomenon, decoherence, that 
I have so far not mentioned. I will take it up in the next Section. 

So first, here is what I called the traditional answer. It says: according to the Everettian 
proposal, appearances are indeed definite---just as much as they are on a proposal that the wave-
function collapses, as discussed in the last Section. For the objects involved in the problematic 
superposition split into many copies, corresponding to the various worlds. So in our toy model 
of measurement with two outcomes, the apparatus’ pointer splits into copies, some with the ‘1’ 
outcome, and some with the ‘2’ outcome. (Authors differ about exactly how many copies. Some 
say that for two outcomes, there are just two copies; some say that for each outcome, there are 
many copies, perhaps infinitely many. I will return to this in later Sections.) This splitting, it is 
claimed, secures definite appearances. For appearances are only “seen” from within a world. And 
within a world, the wave-function is, by definition, the corresponding term—which is an 
eigenstate of the quantity, such as pointer position, that in order to solve the measurement 
problem, we want to have a definite value.  

The trouble with this answer is not that the idea of splitting is plain wrong. It is that, 
stated so briefly, the answer is too programmatic: it raises more questions than it answers. If the 
splitting is a bona fide physical process, we need to hear details: for example, about how it can be 
consistent with laws like the conservation of mass or of energy. If it is somehow a conceptual 
splitting, without a physical description, then there is philosophical work to do, to explain what it 
involves. In particular, if the splitting is ‘conceptual’ in the sense of being a distinction made by a 
conscious mind, then presumably, there is no splitting in those regions of the cosmos without 
conscious minds. In that case, the proposal is similar to that considered in the last Section, that 
consciousness collapses the wave-function; and it is thereby similarly hard to make precise and to 
gather evidence for.  

In my opinion, until about 1990 most of the Everettian literature did not adequately 
answer such questions. Hence my accusation that it seems like a bluff. Of course, I am not alone 
in my misgivings: many authors pressed such questions. In particular, Bell was very doubtful. In 
his 1986 paper, he says that the Everettian proposal ‘is surely the most bizarre’ and ‘extravagant, 
and above all extravagantly vague, hypothesis. I could almost dismiss it as silly’ (1986, pp. 192, 
194). But as I announced above: since about 1990 (when Bell died), the Everettian literature has 
appealed to decoherence, which does address the questions.  
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That will be the topic of the next Section. But first, it is worth discussing---and 
criticising---an analogy that is sometimes suggested in defence of the suspiciously programmatic 
‘splitting’ answer above.    

The alleged analogy is that the ‘splitting’ answer is like what is surely the right reply to the 
objection (perhaps apocryphal) against the proposal by Galileo and other advocates of a 
heliocentric astronomy, i.e. the proposal that the Earth goes around the Sun. The idea of the 
objection (i.e. in defence of the traditional, Aristotelian geocentric astronomy, that the Sun goes 
around the Earth) is to appeal to appearances. Namely: it looks (especially at sunrise and sunset) 
as if the Sun goes around the Earth. So the objection is that the heliocentrists’ radical proposal 
seems to conflict with the appearances.  

The reply that Galileo and the heliocentrists are said to have made is that in fact, 
assuming that the Earth goes around the Sun leads to the very same appearances. That is: the 
appearance at sunrise is exactly the same whether you describe this as the sun rising above the 
horizon, or as the horizon sinking below the sun. (And similarly, of course, at sunset: the 
appearance is exactly the same whether you say the sun is sinking, or the horizon is rising.)  

Similarly, it is alleged, for the Everettian’s “splitting” answer. If we assume such a 
splitting, the appearances will be just as the objector says they are: that is, perfectly definite. 

But I submit that this analogy has a merely rhetorical force. Agreed: the broad logic o f 
the two disputes is the same. In both cases, the radical proposal (Galileo’s, or Everett’s) replies 
to the objection that it conflicts with appearances, by saying: ‘No, I do not: I accord perfectly 
well with appearances’.  But there is a big difference between the two cases.  

For Galileo and the other advocates of a heliocentric astronomy can readily spell out 
how they accord with appearances. It is a matter of optics, i.e. the paths of light rays. In 
particular, it is straightforward to argue that: (i) the appearance at sunrise is a matter of the angle 
between a ray of sunlight and one’s line of sight to the horizon increasing (and similarly, at 
sunset: decreasing); and (ii) this increase (respectively: decrease) depends only on a relative 
motion of sun and horizon. But the Everettian’s idea of splitting gives no such straightforward 
argument for recovering definite appearances: it leads only to the questions I pressed above.  

 
 
Chapter 4.7: Doing better with decoherence 
However, as I said: by appealing to a process called decoherence, the Everettians can make much 
better sense of their proposed splitting; and since about 1990, they have done so. So in this 
Section and the next two, I will spell out what decoherence is, and how it clarifies what splitting 
involves. It will also be clear that decoherence is important for all approaches to quantum theory, 
not just for Everett’s: any of Section 5’s interpretations need to accommodate it.    

There will be three stages, one in each Section. This Section gives the basic idea of 
decoherence.  In the next, decoherence helps make more precise the definition of an Everettian 
world (or ‘branch’). After that, decoherence will suggest that macroscopic objects such as cats or 
pointers are---not aggregates of stuff, but---enduring and stable patterns. (Then in the Chapter’s 
final Section, I will turn to the topic of probability.)    

‘Decoherence’ means, in this context, the diffusion of coherence. Here, ‘diffusion’ means 
spreading: namely, spreading from the system of interest to its environment with which it is 
interacting.  

‘Coherence’ is physics’ jargon for some characteristic differences between (i) the 
probability distributions prescribed by quantum states, especially superpositions, and (ii) those 
prescribed by classical states. We saw already in Section 2 that quantum superpositions prescribe 
probability distributions over a measurement’s positive outcomes; (while eigenstates are 
“opinionated”---they give probability 1 to just one outcome).  Classical states---meaning states 
prescribed by classical physics---also prescribe distributions, once we include probabilistic 
mixtures of states. Thus imagine being given, say, three states, and taking a quarter-quarter-half 
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mixture of them. This means, for example, taking a thousand systems: of which 250 are in the 
first state, 250 are in the second state, and 500 in the third. Then the predicted statistics for 
measuring any quantity on a randomly selected member of the set of a thousand systems would 
be the average, with weights ¼, ¼, ½, of what the three given states prescribe.   

The important point here is that superpositions cannot be understood as such classical 
mixtures. For although for a single quantity, a superposition and a classical mixture might 
prescribe exactly the same distribution: there will be other quantities (which are said to not 
commute with the first one), about which their distributions differ. The numerical differences, 
outcome by outcome, between these distributions (for this other quantity) are called interference 
terms. In short: interference terms are the signature of a state being a superposition. (The word 
‘interference’ comes from the physics of waves. When the peaks of two water waves meet and 
make yet higher peak, we say that the waves interfere constructively; when a peak of one wave 
meets a trough of the other, and they cancel out to give a level surface, we say that the waves 
interfere destructively.)       

 So imagine a quantum system interacting with its environment. Given our interest in the 
measurement problem, a paradigm case is the pointer of an apparatus (or a cat) interacting with 
the air around it, by air molecules bouncing off it. So quantum theory tells us, of course, that the 
quantum state of the composite system, pointer plus air, prescribes probabilities for the various 
possible outcomes of measuring any quantity on either component, the pointer or the air.  And 
in general, this composite quantum state will be a superposition of product states, so that the 
probabilities it prescribes will include interference terms---even for a quantity on a component 
system. That is: one expects, a priori, that the component system’s state will be superposed, i.e. 
its probabilities will have interference terms.   

Now we can state the punch-line about decoherence. Namely: according to many 
realistic models of how a macroscopic objects like a pointer interacts with its environment like 
air molecules, the interaction establishes very rapidly a composite quantum state that falsifies this 
a priori expectation, as regards the macroscopic object. That is: very soon after the interaction 
starts, the composite quantum state prescribes probabilities for the macroscopic object whose 
interference terms are negligible. In other words: the composite quantum state determines a state 
for the pointer that is almost a mixture: it differs from a mixture only by tiny interference terms. 

More is true.  The states within this mixture, that the pointer is “almost in”, are the states 
that we intuitively want, in order to solve the measurement problem. For they are, roughly 
speaking, states of definite position: for example, position of the centre-of-mass of the pointer. 
Thus in our toy-model of measurement: once we include the air molecules in our analysis, the 
post-measurement state of the pointer, as determined by the state of the whole composite 
system, is (apart from tiny interference terms) a mixture of the centre-of-mass being in front of 
the numeral ‘1’, and it being in front of the numeral ‘2’. 

And yet more is true. One does not just get such promising-looking mixtures in 
situations of explicit measurement, involving everyday-sized objects like pointers. Nowadays, 
there are detailed models of much smaller objects, immersed in their environment, that give 
mixtures of states that are definite in the quantities we want definite. For example: a tiny dust-
particle, a tenth of a millimetre in diameter, in outer space will be in a mixture of states of 
definite position, thanks just to its interacting merely with the dim light of the stars. (I said 
‘roughly speaking, states of definite position’, because in many models, the states in the mixture 
obtained are so-called coherent states. These are states whose probability distributions are 
sharply peaked for both position and momentum, so that a system in such a state seems almost 
definite in both position and momentum. I say ‘sharply peaked’ because the distributions have 
enough spread so as to obey quantum theory’s Uncertainty Principle, which vetoes having 
absolutely precise values for both position and momentum.) 

To sum up so far: decoherence is the fast and ubiquitous process whereby, for 
appropriate physical quantities on a system immersed in its environment, the interference terms 
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that are characteristic of a quantum state (a ‘superposition’) as against classical states (a 
‘mixture’), become tiny. In effect, the coherence has diffused from the system to its 
environment.  

We will see in the next two Sections how with decoherence the Everettian can give a 
much better account of the splitting of worlds. I end this Section by stressing two important 
features of decoherence, that apply not just to Everettians, but to all approaches to the 
measurement problem. The first is positive; the second is a limitation. 

The positive feature is flexibility. For to solve the measurement problem, we need the 
classical physical description of the world to be vindicated by quantum theory—but only 
approximately. We need only some subset of quantities, not all quantities, to have definite values. 
And maybe that subset should only be specified contextually, even vaguely. And maybe the 
values should only be definite within some margins of error, even vague ones. Decoherence 
secures this sort of flexibility. For which quantity on the system is “preferred” (i.e. rapidly 
becomes definite, in that the state is a mixture of its eigenstates) is determined by the physical  
process of interaction---whose definition in the model can be legitimately varied in several ways. 
Here are three examples of such ways. One can vary the definitions of: the system-environment 
boundary; the time at which the interaction is taken to end; and what counts as the state being 
‘sharply peaked’ for a quantity.  

The limitation is that decoherence does not just by itself solve the measurement 
problem. More precisely: it does not imply that in any individual case, the system actually is in 
one of the states in the mixture. It implies only that the quantum probabilities for any quantity 
are as if the system were in one such state.  

Furthermore, quantum theory implies that the system is in fact not in one of those states. 
This last is a subtle point, which many textbook discussions miss. Some authors signal it by 
calling the mixture that the system is in an improper mixture; while calling mixtures for which 
the system in any individual case is indeed in one of the states getting mixed: a proper mixture, 
or an ignorance-interpretable mixture. But whatever one’s jargon, the point is that the system 
being in one of the states getting mixed would contradict the original hypothesis that the total 
system-plus-environment is in a superposition, not a mixture. And though the point is subtle, it 
is uncontroversial. In fact, it is already clear in Schroedinger’s 1935 paper, in which he 
introduced the cat. For in Sections 10 to 13 of that paper, he discusses entanglement (indeed, he 
introduces this word), and expounds the point.  

This limitation of decoherence can be made vivid in terms of Schroedinger’s cat. 
Namely: at the end of the measurement and after the decoherence process, the quantum state 
still describes two cats, one alive and one dead. It is just that the two cats are correlated with very 
different microscopic states of the surrounding air molecules. For example: an air molecule will 
bounce off a wagging upright tail, and a stationary downward one, in different directions. 

ADD HERE IF POSSIBLE, honouring Roger Penrose for this vivid and witty way 
of making the point, using overhead transparencies: six Pictures, as follows:--- 
1: cat alive, smiling and standing, with vertical legs and vertical tail;   
2: cat dead, frowning and lying down, with horizontal legs and horizontal tail; 
3: superposition of 1. with 2. i.e. cat alive combined with cat dead: as in the usual pictures of the 
measurement problem  
… then someone advocates including the environment in one’s analysis, leading to… 
4: cat alive, smiling and standing etc: and with many air molecules bouncing off it with such-and-
such trajectories; 
5: cat dead, frowning and lying down etc: and with many air molecules bouncing off it with 
different ‘so-and-so’ trajectories; 
… but including the environment in one’s analysis does not solve the basic problem that there seem to be two cats, 
one alive and one dead: as shown by… 
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6: superposition of 4. with 5. i.e. cat alive, smiling, and air molecules with such-and-such 
trajectories, combined with cat dead, frowning, and air molecules with so-and-so trajectories. 
 

 
Chapter 4.8: A sketch definition of ‘world’ 
In this Section and the next, we will see how decoherence clarifies the Everettian’s idea of 
worlds and thus of how they “split”. In this Section,   
 At the beginning of Section 6, I introduced the Everettian proposal as saying that the 
cosmos as a whole has a quantum state Psi which is a vast superposition, i.e. a vast sum, of 
product states describing countless component systems---not just an electron and a 
measurement apparatus or its pointer, but countless electrons, quarks, molecules, specks of dust 
etc. So the Everettian now needs to be more precise about how to extract from this state a set of 
worlds: each of them (or maybe just: some of them) like our familiar macroscopic realm, with all 
tables etc. in definite positions.  

In this endeavour, decoherence is a promising resource, not least because as we 
discussed near the end of the last Section: it is flexible. The idea will be that to get something like 
our familiar macroscopic realm, the Everettian will adopt a definition of ‘macroscopic object’, or 
for short ‘macrosystem’, and will then take the cosmos as the vast composite system of all the 
macrosystems, and the rest of cosmos. Accordingly, the quantum state-space of the cosmos is 
broken down, in the mathematics of the theory, into the state-spaces of its components: all those 
of the macrosystems, and the state-space of the rest of cosmos. (In the mathematics, the state-
spaces combine rather like numbers being multiplied, rather than added. So the component 
state-spaces are called factor-spaces, and the state-space of the cosmos is a product space.) I shall 
assume there is some finite number N of macrosystems, and so exactly N+1 factor-spaces in all.  

   So far, so mathematical. But now decoherence prompts two distinctively physical 
suggestions.  

First: the Everettian can legitimately define ‘macrosystem’ along the lines: ‘any system 
whose interaction with its environment rapidly makes its state almost a mixture in quantities such 
as position (and momentum), i.e. the quantities whose values, as attributed by classical physics, 
gave such a successful description’. For we learnt in the last Section that nowadays physicists’ 
models of decoherence are so many and varied that a definition along these lines will encompass, 
not just everyday objects like a table or a pointer of an apparatus, but also a tiny dust-particle 
floating in outer space---and countless objects in between, such as a lock of hair or a dew-drop. 
So in effect, every object that anyone has described, or could successfully describe, with classical 
physics will be among the Everettian’s vast set of N macrosystems. 

Second: I have so far considered only a single macrosystem interacting with its 
environment: as the saying goes, being decohered by (i.e. its state becoming a mixture, due to) its 
environment. But such decoherence interactions are happening continuously, to each of the N 
macrosystems. For there is a vast “common environment” of them all: of the table, the pointer, 
the lock of hair, the dew-drop, the tiny dust-particle in outer space. Where the air molecules---as 
a sink into which the interference terms can diffuse---give out, the dim light of the stars can take 
over. 

Now, with a bit more stage-setting, I can state an Everettian definition of ‘world’. There 
are two preliminary steps, and then the definition itself. (After stating it, I will comment on how 
it remains only a sketch definition.) 

(1): We adopt a definition of ‘macrosystem’ along the lines above. Suppose that 
throughout the cosmos, there are N macrosystems, as thus defined. Then we factorize (break 
into its factors) the cosmos’ state-space into N+1 factor spaces: one factor for each of the N 
macrosystems (dust-particles etc.) that gets decohered by its environment, and one factor for 
their “common environment”---the vastly complicated and dispersed “rest of the universe”. 
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(2):  Then we express the cosmos’ quantum state, Psi, as a superposition whose 
components (i.e. summands) are (N+1)-fold product states, i.e. products of N+1 states, one in 
each factor-space.  We choose these product states by: (i) for each of the first N factors, taking 
an eigenstate, on the corresponding macrosystem, for the quantity that gets “preferred” (i.e. 
selected) by the decoherence process; and (ii) for the last factor, i.e. the (N+1)-th factor 
associated to the rest of universe, taking what is called the relative-state of the rest of universe. 

 (We do not need to pause on the notion of relative-state, although it was a centre-piece 
of Everett’s original paper (in 1957). Suffice it to say that, stated for a two-component system 
(rather than a N+1-component system), the relative-state is roughly: what the component system 
“looks like”, assuming the other component system is in a given state.  More precisely: it is the 
state prescribed after a projection-postulate measurement resulting in the given state on the 
other component.) 

Finally, a world is defined as: the physical reality described by a summand, in this way of 
writing Psi.   

In other words, again using some of the jargon we have introduced: (i) for all N 
macrosystems, we take a component of its “post-decoherence” improper mixture (i.e. an 
eigenstate of the quantity selected by decoherence; and then (ii) for the rest of universe, we take 
the relative state. We then take the product of (i) and (ii): which is an (N+1)-fold product state. 
Then the world is to have as values for quantities just what that product state orthodoxly 
ascribes, i.e. the corresponding eigenvalues. 

It is clear that in a world, as I have just defined it, each macrosystem has, by 
construction, a definite value for the quantity on that macrosystem that was selected by the 
decoherence process. Thus the promise of decoherence for the Everettian lies in the fact that in 
many models of many sorts of macrosystem, the definite-valued quantity is calculated to be 
position or momentum, or something “close” to these---in short, the sort of quantity that, to 
solve the measurement problem, we want to have definite values. 

 So this definition makes ‘world’ precise in a way that meshes with the basic ideas of 
Everett’s proposal. It helps the Everettian to answer Section 6’s accusation of bluffing. But I 
stress that this definition of ‘world’ is very much a sketch definition. There are at least two broad 
ways in which one would like to see it improved. In listing these ways, I am not being 
controversial. For the physics of decoherence remains an active area of research, both 
theoretically and experimentally. Besides, it will be clear that not only the Everettian, but anyone 
interested in the interpretation of quantum theory, will want to see progress about these two 
ways.   

First: this definition assumed a notion of macrosystem, which I initially said would be 
defined in terms of: ‘getting a mixture in quantities … whose values, as attributed by classical 
physics, gave such a successful description’. Such an assumption seems suspiciously close to 
postulating what one wants, rather than arguing for it. I think this suspicion lessens once one 
sees the detail in the definition of ‘world’: the factorization of the cosmos’ state-space, and the 
decoherence of each component system. But I agree that much more detail is needed. Not just 
more than I have given here; but more than the research literature has so far achieved. As I said: 
this is an active area of research.  

In broad terms: one would like to see models of decoherence that are more rigorous and 
of wider scope (i.e. cover more systems) and that make definite the “right” quantities. In this 
endeavour, one can of course appeal to the flexibility of decoherence which I praised at the end 
of the last Section. Thus I said that one can vary the definitions of: the system-environment 
boundary; the time at which the interaction is taken to end; and what counts as the state being 
‘sharply peaked’ for a quantity. So in seeking a better definition of ‘macrosystem’, in terms of 
which to make the factorization, one can hope to exploit this variety or “wiggle-room”. 

So to sum up this first issue: the Everettian hopes that the physics of decoherence will 
enable us to avoid taking ‘macrosystem’ as a primitive concept; but there is much work yet to do.  



 20 

Second: there is an issue about the fact that our sketch definition of world appeals to a 
factorization of the cosmos’ state-space, prior to and independent of what the state of the 
cosmos Psi actually is. This issue is independent of the first. For even if that was completely 
dealt with by a satisfactory rigorous definition of ‘macrosystem’ etc., it will surely still be true that 
what macrosystems there are, and how many there are, will be very much a matter of 
happenstance, a matter of contingency. Indeed, there are two points here.  

The first is a matter of everyday belief, and regardless of quantum theory, Everettian or 
otherwise. It goes back to Chapter 3.3, about our being up to our necks in modality. Namely: 
there surely could have been different macroscopic objects than there in fact are; not just 
different tables, or locks of hair, or stars, but also more mundanely, different dust-particles. 
Secondly, even if one agrees with the Everettian in boldly postulating a quantum state of the 
cosmos Psi: still it is presumably a contingent fact what that state is. After all, Psi is an element 
of a vast state-space, with countless other elements; and nothing in the Everettian proposal, as so 
far stated, forbids the cosmos being instead in one of those other states.  

Putting these points together, the obvious suggestion is that we should allow the 
factorization of the cosmos’ state-space to depend on the state. By doing that, the second point--
-the happenstance about what the cosmos’ state in fact is---could accommodate the first point, 
that we need to accept happenstance about what, and how many, macrosystems there are. At 
least, so it seems: we will return to this in Chapter 6. But nothing we say there will undermine the 
present conclusion: that we should let the Everettian’s factorization of the cosmos’ state-space to 
depend on the state---which our sketch definition does not do.   
 
 
Chapter 4.9: On what there is: objects as patterns 
‘On what there is’ is the title of a much-cited article about deciding what truly exists on the basis 
of logic. In this Section and the next, I will pursue this theme, as regards the Everettian 
multiverse. This Section will be positive, i.e. pro the Everettians. The next Section will raise 
doubts; (and it will lead in to the final Section).  

This Section’s main idea is in the title: ‘objects as patterns’. Nowadays, Everettians can, 
and do, build on the previous Sections’ account of decoherence, so as to justify their metaphor 
of the world splitting into many alternatives corresponding to, for example, the various 
outcomes of a measurement process. In this justification, their main new idea is that a 
macroscopic object is not a lump of stuff, or an aggregate of tiny lumps, or even a cloud of 
point-particles. (Recall Section 1 above, and Chapter 2’s discussion of the seventeenth-century 
mechanical philosophers.) It is really a pattern in the quantum state: in the quantum state of the 
cosmos. 

As we will see, this idea promises to overcome the limitation I explained at the end of 
Section 7 above: that decoherence does not by itself solve the measurement problem, since it 
does not imply that in any individual case, the system actually is in one of the states in the   
mixture obtained after the decoherence process. I made this limitation vivid in terms of 
Schroedinger’s cat. Thus I complained that this mixture still describes two cats, one alive and 
one dead: it is just that the two cats are correlated with very different microscopic states of the 
surrounding air molecules. Now, the idea that macroscopic objects are patterns will vindicate the 
proposal that at the end of a Schroedinger-cat experiment, there are indeed two cats. For there 
are two patterns in the quantum state of the whole system (say: the cat, the apparatus, and air). 
Therefore, there are two cats. In other words, the Everettian claims: the final quantum state 
being a mixture describing two cats, one alive and one dead, is a matter of the state encoding two 
patterns---and that description is entirely right. 

This claim is certainly dizzying. But it is, I think, completely coherent. (My misgivings in 
this Section’s second stage, below, will not refute it, but at most make it less plausible.) It 
becomes clearer if we assume that the quantity selected by decoherence (i.e. having negligible 
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interference terms in the final mixture) is a familiar one that, to solve the measurement problem,  
we intuitively want have a definite value. Let it be our old friend: position. That assumption is 
reasonable. For as hinted in Section 7: the final mixture typically contains coherent states, in 
which both position and momentum are very close to definite in value.  

Of course, there is no single position quantity for the cat. For the cat has very many 
parts, both macroscopic like legs and tail, and tiny like individual cells and molecules. (Similarly 
of course for the pointer of a measurement apparatus: when we discussed its being in front of 
the numeral ‘1’ on the dial, or in front of ‘2’, we were exploiting the assumed rigidity of the 
pointer so as to get by with a description using a single position quantity, viz. the position of the 
centre of mass.) So we need to recall from Section 2 above (and Chapter 3.3’s discussion of 
state-spaces in classical physics) that even the classical configurations of a composite system, 
with say N point-particles as its components, form a vast state-space. With each point-particle 
placed somewhere in three-dimensional physical space, the configuration space is the set of 
(3N)-tuples of real numbers. For one needs three real numbers for the spatial position of each 
point-particle: so in all, one needs 3N real numbers. The state of the corresponding quantum 
system is then a wave-function (a complex-valued function) on this classical configuration space. 
(As we saw in Section 2, this system is called ‘N quantum particles’. But as I lamented there: the 
word ‘particle’ is misleading. For it strongly suggests the system is localized: whereas in fact it 
only has tendencies (measured by probabilities) to be found somewhere, if measured by a 
position apparatus.)  

So we need to ask: how many parts should we take a cat to have? In other words: what is 
a good guess for the number N, such that a successful quantum description of a cat can use a 
wave function on the set (3N)-tuples of real numbers? (Again, the factor 3 just encodes the fact 
that physical space is three-dimensional.) Let us for simplicity think of an atom as a single 
particle; (in the Pickwickian quantum sense that we take it to define a location in physical space, 
in our effort to estimate the number N). But chemistry teaches us that atoms are minuscule. For 
example, in twelve grams of carbon, the number of carbon atoms is 6 followed by twenty-three 
noughts. This is written: 6 x 1023. (This is called ‘Avogadro’s number’.) So for a cat weighing say 
a thousand grams (1 kilogram: roughly 12 x 100), the number of atoms---most of which will 
weigh less than carbon---will be enormous. It will be about 6 x 1023 x 100. Which is roughly: 
1000 x 1023. So we can take as a guess for N: 1026. So even with our simplifying assumption to 
think of an atom as a single particle, the classical configuration space is stupendously large. It 
consists (3 x 1026)-tuples of real numbers. So it has dimension 3 x 1026: a vast number—in which 
the ‘3’ is hardly worth keeping track of. So the quantum state is a wave-function whose 
arguments (inputs) are elements of this space. Each argument is a (3 x 1026)-tuple, i.e. an exact 
classical configuration for all the (approximately) 1026 atoms. 

I can now say how the Everettian argues that in the myriad complexity of such a wave 
function, there is a pattern that deserves to be called ‘a living cat’, and another pattern that 
deserves to be called ‘a dead cat’. (I say ‘argues’, since it will be clear that there remains a lot of 
intellectual work to do.)  

The idea is to focus on the fact that in a classical description, there is a set of 
configurations that would all count as a living cat. Indeed, there are vastly many configurations 
of 1026 classical point-particles that would count as constituting a living cat. We can put it in well-
nigh cartoon form: think of being alive as having vertical legs, and a vertical tail, and a smile on 
the mouth. Similarly, we can think of being dead as having horizontal legs, and a horizontal tail, 
and a frown on the mouth.  So there is a similarly vast set of configurations that would all count 
as a dead cat.  Then the Everettian’s point is these two sets, though both vast, do not overlap at 
all. No configuration of a classical cat with the point-particles composing its legs and tail aligned 
vertically is also a configuration in which the legs and tail are aligned horizontally.  

And so---now returning to quantum theory---the quantum state at the end of 
Schroedinger’s experiment is, as regards the cat, a wave function with two peaks. That is: there 
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are two regions of the configuration space, i.e. the set of arguments of the wave-function, where 
the function’s value, i.e. the output or amplitude, is non-negligible. (For countless other 
configurations, the amplitude is indeed negligible. Bear in mind that, a priori, these 1026 point-
particles could be configured to be any classical object of the same total mass: e.g. a puddle, or a 
saucepan with risotto, or a small dachsund, or any of myriad nameless and often monstrous 
combinations that only a horror movie might devise, such as a half-cat-half-dachshund.) 

Summing the amplitudes for all the configurations in each of these regions, we get a 
(square root of) a probability that is substantial. In the traditional version of the experiment, 
where there is about a 50% probability of an atomic decay causing the release of the poison, the 
probability for each of the two regions is about 50%: 50% for being alive, and 50% for being 
dead.  

But whether the probabilities are 50-50, or nearly so, doesn’t matter here. What matters 
is that there are two such patterns in the quantum state: two regions of the configuration space 
where the amplitude is vastly greater (as a ratio) than it is for points outside both regions. So if 
we accept that a cat is such a pattern, then there really are two cats. 

Note that the essential idea here is independent of quantum theory’s details; (as 
Everettians note). For the idea is closely analogous to one which we all unhesitatingly endorse 
for several other physical theories. Namely, theories in which states can be added together to 
give a sum-state, in which the component states do not influence each other, or only do so 
negligibly. (This is called being are dynamically isolated from each other.) Examples include the 
theory of water-waves, or electromagnetism.  

For example: the water in Portsmouth harbour can get into a state which we describe as, 
e.g. a wave passing through the harbour’s centre heading due West; or into a state which we 
describe as a wave passing through the centre heading due North; or into a state which is the 
sum of these. But do we face a ‘Portsmouth water paradox’? Do we agonize about how the 
Portsmouth harbour water-system can in one place (viz. the harbour’s centre) be simultaneously 
both Westward and Northward? Of course not! Rather, we say that waves are patterns in the 
water-system. (Agreed, such patterns can be called ‘objects’; in the jargon of philosophy, they are 
often called higher-level objects.) And so we say that there are two waves, with the contrary 
properties, one Northward and one Westward. Similarly for the electromagnetic field in a certain 
region, and e.g. pulses of laser light travelling in different directions across it, as happens in a 
light-show at a rock concert. There is no ‘laser light-show paradox’.  

Analogously, says the Everettian, we should endorse this idea when it is applied to the 
end of Schroedinger’s experiment. In short: the quantum state is a sum of two waves, and so we 
should accept that there are two cats. (And besides, the quantum state-space contains myriad 
other states, the vast majority of which do not represent macroscopic objects (patterns!) which 
we could recognize---as cats or puddles or saucepans or dachsunds or combinations of these.) 

So to sum up: the Everettian claims to overcome the limitation at the end of Section 7 
above. For with macroscopic objects as patterns in the quantum state, not lumps of stuff, we see 
that solving the measurement problem does not require that in any individual case, the system is 
actually in just one of the states in the mixture obtained after the decoherence process. The 
system is in none of them: but each pattern is one of these states---and that is what a 
macroscopic object such as a cat really is.  

I said above that this is how the Everettian ‘argues’ for this claim, since there would 
remain a lot of intellectual work to do. I meant of course that the Everettian owes us details 
about which classical configurations are to count as ‘being alive’: or, setting aside cats and 
Schroedinger’s experiment and biology, which classical configurations are to count as the system 
which we are concerned with, having any of a host of properties that we ascribe to macroscopic 
objects. ‘Being alive’ is of course a property ascribed in both everyday life and scientific work. 
But we can concede that it would be enough for the Everettian to give a “translation-manual” 
from the regions of their vast configuration space to just scientific properties, even just 
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properties used in physics. For example, which regions (and so which quantum states, with a 
peak, a non-negligible amplitude, over those regions) count as: having a density of 20 grams per 
cubic centimetre, or being made of lead, or being a fluid, or being a good electrical conductor? 
Only if the Everettian can give us such a translation-manual will it be plausible that the familiar 
macroscopic realm---and more precisely, the vast empirical success of classical physics---can be 
understood as emergent from the quantum state of the cosmos.  

Obviously, this is a vast challenge. But I do not say it is impossible; and I stress that in 
fulfilling it, decoherence will play a crucial role. We can illustrate this by going back to the cat, i.e. 
to biology. Recall from, for example, biology lessons that biochemistry successfully describes the 
metabolism of cats (and of course all other organisms) in a completely classical way. Its models 
of chemical reactions in the cell assume that the proteins, DNA-sequences etc. are localized: 
these molecules are modelled as minuscule cousins of the ball-and-stick models on the 
biochemist’s table-top; (balls for the atoms, sticks for the bonds between them).  

That this classical description of what is after all a quantum reality can succeed so well 
reflects the efficiency and ubiquity of decoherence. For the protein and DNA molecules are, on 
the atomic scale, very large: they often contain well over 10,000 atoms (and so are often called 
‘macromolecules’). And they are constantly bombarded by tiny molecules such as water 
molecules that decohere them---that is, localize them. The upshot is that at the length-scale of 
macromolecules and at longer lengths, a classical description of protein molecules, DNA-
sequences etc. as having well-nigh definite positions can succeed: a success well illustrated by the 
models filling biochemistry textbooks. (With these remarks about biology managing well while 
treating quantities like the position of a macromolecule with classically, without regard to 
quantum theory, I do not mean to deny that some important biological processes “cue in” to 
quantum aspects. Examples of this, including crucial processes like photosynthesis, are nowadays 
a focus of research in the new field called ‘quantum biology’.) 
 

 
Chapter 4.10: A reversal of ideas 
So much by way of expounding the Everettians’ claim that indeed there are two cats, just 
because there are two patterns: or more generally, that indeed the world splits---there is a 
multiplicity of objects---at the end of a decoherence process, since the state is then a mixture 
with two or more components corresponding to macroscopic realms with different values for 
the quantities selected by decoherence. As I said: I think this claim is, though dizzying, coherent.  

Should we therefore conclude that the Everettian is home free? That is: does their 
solution to the measurement problem (specifically: their appeal to decoherence to justify talk of 
splitting) have no internal difficulties? I say ‘internal’ because we may prefer a rival solution---
perhaps one of those reviewed in Section 4 above---for other reasons; (including perhaps 
reasons that boil down to our intellectual temperament, as discussed in Chapter 1.4).  

I say: No. I submit that there are two main difficulties remaining. Both are distinctively 
philosophical, or interpretative, rather than physical. One difficulty is about the topic of 
probability: I will address it in the next Section. Here, I address a difficulty about the quantity 
selected by decoherence. I do not claim that it is a knock-down objection: it is a conceptual 
tension or embarrassment facing the Everettian, rather than an outright problem. But it is worth 
articulating for two reasons. So far as I know, it is not addressed in the Everettian literature. And 
there is an interesting analogy between it and a criticism of Bohr’s complementarity 
interpretation (cf. Section 5 above) that Schroedinger made in the great 1935 paper that 
formulated the cat paradox (and that also, as I mentioned, analysed entanglement). 

 To explain this difficulty, I need first to stress the striking conceptual unity of classical 
physics’ successes from the time of Newton till about 1900 (reviewed in Chapters 2.3, 2.6, 3.3 
and Section 1 above). In classical physics, each of a very small set of quantities fulfils two roles 
that are, a priori, disparate.  Namely: (i) being postulated as basic for the description of matter’s 
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tiniest components (whether point-particles or small extended pieces of matter); and (ii) being 
used to describe composite systems with vastly many such components. The paradigm examples 
are position and momentum within mechanics. In classical physics, a single quantity’s fulfilling 
these disparate roles (i) and (ii) was unified by various procedures: especially summing or 
averaging of the values for the tiny components in (i), to get the values for composite systems in 
(ii). The simplest case is elementary and familiar: the centre-of-mass of a composite object is a 
weighted average of the positions of its components, with weights equal the components’ 
masses.   

Agreed: with the development of other branches of physics, especially the rise of field 
theory (Section 1 above), quantities other than position and momentum, such as electric charge 
and electric field, had to also be accepted. Nevertheless, classical physics manages with a very 
small set of quantities. (Depending on how finely you distinguish quantities, there are between 
about a dozen and about fifty of them.) And most of the quantities fulfilling role (i) also fulfil 
role (ii): again with various procedures, especially summing and averaging, unifying the roles. 

Against this background, we can now see the conceptual tension or embarrassment 
facing the Everettian.  The Everettian makes two claims that are in tension with each other. 
Namely, they say: 
(a): Although classical physics took quantities such as position and momentum to be exact, and 
to always have exact values: such quantities are in fact only definable approximately, through the 
process of decoherence. (Jargon: philosophers might call them ‘emergent’; physicists also say 
‘effective’). But also:--- 
(b): These classical notions are needed to define the quantum state-space. For as we saw: the 
quantum state is a wave-function defined on classical configuration space. Agreed, I have 
hitherto simplified. For quantum states can be represented as complex-valued functions (also 
called ‘wave-functions’) with other sets of arguments than components’ positions. The main 
such alternative representation uses momentum. That is: the set of arguments for a N-particle 
system are the 3N-tuples of all the possible values of the components’ classical momentum in 
each spatial direction. But here again, it is the classical notion, viz. of momentum, that needs to 
be invoked; and so the same conceptual tension arises. 
  So the difficulty, or tension, is that notions which according to the Everettian is really 
approximate (emergent, effective) must be appealed to, in order to interpret the theory at the 
smallest and most basic level. 

A final comment. In Section 5’s quick review of the main strategies for solving the 
measurement problem, I mentioned Bohr’s complementarity interpretation. I can now explain 
how this difficulty for the Everettian is analogous to a striking criticism of Bohr that 
Schroedinger made in his “cat” paper of 1935.   

Schroedinger’s criticism is based on a historical fact about classical physics being in 
tension with Bohr’s (as one might say: “the Complementarian’s”) claim that classical concepts 
are indispensable within quantum physics. Thus with labelling to show the analogy with my (a) 
and (b) above, the fact and the claim are, respectively:   
(a’): Despite the conceptual unity of classical physics’ successes (described above), classical 
physicists did not claim that the classical quantities were indispensable for physics; nor did they 
claim that indispensability would be shown by future physics. Indeed, many expected these 
quantities to be superseded by future physics. But Bohr claims that:-- 
(b’): Classical quantities are indispensable for physics, although of course quantum physics has 
shown they do not always have exact values. For Bohr, the principal reason for this “lesson” 
from quantum theory is that position and momentum cannot be measured simultaneously with 
arbitrary accuracy. (In the mathematics of quantum theory, this is represented by position and 
momentum not commuting with each other.) And by ‘indispensable’, Bohr means, roughly 
speaking: indispensable for reporting experimental results in an objective language. (But here, we 
do not need the details of Bohr’s doctrine, or of why he held it: which are controversial.) 
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So the difficulty, or tension, is that notions which classical physicists expected to be 
superseded by future physics, and which according to the Complementarian are indeed really 
limited (by a lesson from quantum theory), must be appealed to, in order to interpret quantum 
theory---indeed, in order to report experimental results objectively.  

Let me end by quoting Schroedinger’s own words against Bohr; (at the end of Section 2 
of his 1935 paper). He begins with (a’).  He praises classical physicists' intellectual modesty about 
their theory (which he calls ‘model’ and ‘picture’): in particular, about whether its quantities 
(which he calls ‘determining parts’) can be measured on a microscopic object in nature (which he 
calls ‘natural object’). He writes: 
 
‘Scarcely a single physicist of the classical era would have dared to believe, in thinking about a 
model, that its determining parts are measurable on the natural object. Only much remoter 
consequences of the picture were actually open to experimental test. And all experience pointed 
toward one conclusion: long before the advancing experimental arts had bridged the broad 
chasm, the model would have substantially changed through gradual adaptation to new facts.’ 
 
Then he goes on to criticize what he calls the ‘reigning doctrine’ (i.e. Bohr’s complementarity) 
for declaring that only familiar classical quantities (position, momentum) are measurable. He 
writes: 
 
‘Now while the new theory [i.e. quantum theory: JB] calls the classical model incapable of 
specifying all details of the mutual interrelationship of the determining parts (for which its 
creators intended it), it nevertheless considers the model suitable for guiding us as to just which 
measurements can in principle be made on the relevant natural object. ... This would have 
seemed to those who thought up the picture a scandalous extension of their thought-pattern and 
an unscrupulous proscription against future development. Would it not be pre-established 
harmony of a peculiar sort if the classical-epoch researchers, those who, as we hear today, had no 
idea of what measuring truly is, had unwittingly gone on to give us as legacy a guidance scheme 
revealing just what is fundamentally measurable for instance about a hydrogen atom!?’ 

     
 
Chapter 4.11: Probabilistic angst: what is objective probability? 
As this Chapter’s Preamble announced: I have so far emphasized synchronic issues, i.e. issues 
about the quantum state at a single time. I have neglected issues about time and change, except 
to say that I postpone till this Section the question of how the deterministic Schroedinger 
equation can be reconciled with quantum theory’s use of probabilities. So I now focus on how 
the Everettian answers this question. This will raise the philosophical question: what exactly is 
objective probability (also known as: chance)? 

The first point to make is that the question really breaks down into two problems that 
Everettian faces. The Everettian literature calls them ‘the qualitative problem of probability’, and 
‘the quantitative problem of probability’. Discussing the first will lead in to the second, which I 
address in the next Section.  

The qualitative problem is that probability surely makes no sense, if all possible 
outcomes of a putatively probabilistic process in fact occur. But this is what the Everettian 
claims, at least for quantum measurements and the other processes, such as radioactive decay 
(remember the poison for Schroedinger’s cat), in which the quantum state evolves to include a 
term, i.e. a summand in the sum, for each outcome. (Here, ‘outcome’ was made more precise by 
Section 8’s sketch definition of ‘world’.)  

The Everettian’s answer to this question is to invoke subjective uncertainty. Their idea is 
an analogy with how probability is taken as subjective uncertainty, for deterministic processes of 
the kind familiar within classical physics, e.g. Newtonian mechanics. So let us begin with these.    
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For such a process, a unique future sequence of states is determined by the present state. 
(More precisely: by the present state, together with the process’ deterministic law: which in 
mechanics would be a specification of the future forces exerted on the system.) But a person, for 
example an experimenter, may not know this future sequence of states in advance, either because 
she does not know the present state in full detail or because it is too hard to calculate from it the 
future sequence. Given our present interest in how to understand probabilities, let us set aside 
the latter cause of uncertainty, since it is a matter of calculational intractability rather than 
ignorance of which among several alternatives occurs. It is ignorance of this kind which gives 
scope for the idea of probability. So in the context of classical physics, probability is reconciled 
with determinism by subjective uncertainty: by the idea of a person not knowing which 
alternative really occurs, but having various degrees of belief, i.e. subjective probabilities (cf. 
Chapter 3 Section 3), about the matter. In the context of deterministic physics: these will be 
subjective probabilities about what exactly is the present state. 

But here, the phrases ‘degrees of belief’ and ‘subjective probabilities’ should be 
understood in a logically weak sense. They do not imply that the probabilities, i.e. the numbers 
½, 1/3 etc. assigned by the person, are a matter of idiosyncratic taste or temperament: that is, are 
undetermined by all the objective evidence.  For there is a branch of classical physics, called 
‘statistical mechanics’, that studies composite systems with vastly many components: a large and 
important branch, though I have not yet had occasion to mention it. (It was developed from the 
late nineteenth century onwards: among its main figures were Maxwell (1831-1879) who we met 
in Section 1, Gibbs (1839-1903) and Boltzmann (1844-1906).) Thus statistical mechanics studies 
systems like a sample of gas taken as composed of classical molecules, tiny “lumps in the void”. 
It surmounts the utter unknowability of the exact microscopic state---the exact positions and 
momenta of all the classical molecules---by postulating a probability distribution over the  
possible states, and then calculating average or expected values of quantities like energy etc. The 
many resulting predictions meet with great empirical success.  

Now the point is: a very good case can be made for calling this distribution ‘objective’, 
even though it is not determined by the exact microscopic state. This case invokes technical 
notions which go by names like ‘mixing’ and ‘ergodicity’; but we need not go into details. For us 
it is enough that some rather natural assumptions about these notions select the empirically 
successful probability distribution from the countless horde of mathematically possible 
distributions: a selection that has nothing to do with idiosyncratic taste or temperament. 

Besides, a similar strategy for reconciling probabilities to determinism, and justifying 
them as objective, occurs in the pilot-wave theory that we mentioned at the end of Section 5. 
Recall that like the Everettian, the pilot-wave theorist says that the Schroedinger equation is 
always ‘right’ (as Bell vividly put it: 1987, p. 201); but unlike the Everettian, the pilot-wave 
theorist says a quantum system has values for quantities other than its state’s eigenvalues. In 
particular, there are point-particles with exact positions. With this as background, the pilot-wave 
theorist goes on to say that: the apparent indeterminism of quantum theory arises from the utter 
unknowability of these positions; and the (again: empirically successful) Born-rule probability 
distribution over those positions can be derived from rather natural assumptions about mixing 
and ergodicity applied to the quantum state.   

To sum up: both classical statistical mechanics and the pilot-wave theory reconcile the 
use of probabilities with determinism by the microscopic state, by: (i) invoking the utter 
unknowability of aspects of that state (in short: particles’ positions), and (ii) arguing that the 
empirically successful probability distribution over these aspects is not a matter of taste or 
temperament, but of natural physical assumptions. 

Now let us see how the Everettian proposes an analogy with all this. So they claim that 
also in the Everettian framework, probability can be taken as subjective uncertainty: but now, 
uncertainty about a deterministic process of the unfamiliar Everettian kind. For such a process, a 
unique future sequence of states for the composite system---in principle, the entire cosmos---is 



 27 

determined by the present quantum state (together with the Schroedinger equation encoding all 
the forces that are acting). Yet, says the Everettian, there can still be subjective uncertainty. But 
the situation differs from the classical one in that this uncertainty arises, even if we assume the 
person, e.g. the experimenter, does know the present state in all its detail, and also how to 
calculate from it the entire future sequence of states.  

Here, I should clarify that Everettians have an account connecting their state of the 
cosmos Psi (which of course no one knows) with the various quantum states we ascribe, with 
great empirical success, in real-life experiments. So although of course no one can write down 
Psi, the Everettian framework can recover the real-life ascriptions of quantum states to 
electrons, atoms and even dust-particles. (We can skip the details of this account: suffice it to say 
that it uses the ideas in Sections 7 and 8.) Thanks to this account, the Everettian can recover the 
idea, which is realized every day in real-life experiments, of the experimenter ascribing a quantum 
state to a microscopic system such as an atom that is about to be measured, and thereby 
deducing from that state the Born-rule probabilities, i.e. those numbers. 

But do those numbers deserve to be called ‘probabilities’? After all, according to the 
Everettian, each of the various measurement outcomes truly occurs. To this the Everettian 
answers: ‘Yes: the experimenter is uncertain since, thanks to the impending ‘splitting’ during the 
process of measurement, she will experience, not all the outcomes, but just one---and so she can 
ask ‘Which outcome will I see?’. And that is enough for the numbers to be called ‘probabilities’.’   

I think this answer is tenable. But it is incomplete in that it raises philosophical issues: 
indeed, at least three. First: the answer leads to the issue of the identity over time of persons and-
or consciousnesses. For it clearly depends on taking the question ‘Which outcome will I see?’ as 
analogous to the question in the classical or pilot-wave context, ‘Which alternative (among the 
many microscopic states compatible with my knowledge) actually occurs?’. So the analogy 
involves accepting that the ‘I’ which sees just one outcome, could---in some good sense of 
‘could’---see another outcome.  

The second issue is related to the first. In recent decades, quite independently of these 
quantum conundrums, philosophers of mind and metaphysicians have identified the need for a 
notion of possibility that generalizes Chapter 3’s idea of a possible world. It is sometimes called a 
‘centred world’. It is needed to understand the content of sentences that contain (and mental 
states that are naturally verbalized using) worlds like ‘I’, ‘you’, ‘now’, ‘then’, ‘here’, ‘there’, ‘this’ 
and ‘that’---i.e. words whose referent depends on the context of utterance (cf. Chapter 3, Section 
5). (Such words are called ‘indexicals’ or ‘token-reflexives’; and the need for the notion of 
possibility shown by such sentences is called ‘the essential indexical’.) We need not go into this 
issue in detail: both here and in Chapter 3, we have had enough to do. I just note that the 
uncertainty that the Everettian’s answer invokes---viz.  uncertainty despite full calculational 
ability, and full knowledge of the composite system state, and of the forces encoded in the 
Schroedinger equation---invites comparison with the kind of indexical uncertainty that 
philosophers nowadays address using centred worlds.   

The third issue is: why should this uncertainty be quantified by the Born-rule 
probabilities derived from the quantum state? Why are they the right, or somehow appropriate, 
degrees of belief for the experimenter to have about ‘which outcome I will see’?  So this is what 
the Everettian literature calls ‘the quantitative problem of probability’.  

 
 

Chapter 4.12: Subjective probability to the rescue? 
Indeed, this problem can be made sharper by imagining that a quantum system is subjected to a 
sequence of measurements. This prompts a tempting line of thought that the Everettian should 
regard the Born-rule probabilities as wrong: as follows.   

According to the Everettian, the quantum state evolves over the course of a sequence of 
measurements, so as to encode all possible sequences of outcomes. Formally, the final state has a 
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term (i.e. a summand in the sum) representing each sequence of outcomes. For example, 
consider a toy-model in which there are ten measurements, each with two outcomes (say, H and 
T, for ‘heads’ and ‘tails’). Then there are 210 = 1024 sequences of outcomes; and so the 
Everettian must say there are 1024 terms in the quantum state.  

Since according to the Everettian, each such sequence actually occurs, it seems at first 
that the Everettian probability of a sequence should be given by the naïve counting measure. 
That is, the Everettian should say: each sequence has probability 1/1024. And so more generally, 
it seems that the probability of an event corresponding to a set of sequences, such as three of the 
ten measurements having outcome H, is the sum of the elementary probabilities of its 
component sequences. But this amounts to assuming that the two outcomes H and T are 
equiprobable; (and that the measurements form independent trials in the sense of probability 
theory). And this spells disaster for the Everettian. For the counting measure probabilities bear 
no relation to the quantum Born-rule probabilities, and so the procedure of counting Everettian 
worlds by their outcomes seems to conflict with quantum theory’s treatment of probability. 

So much by way of sharpening the quantitative problem. Nowadays, Everettians have a 
twofold answer to this. The first part is to point out that decoherence, thanks to its flexibility, 
refutes the toy-model with its naïve counting measure. (Recall the end of Section 7, and Section 
8.)  That is: on any precise definition of ‘world’ for the systems concerned, there will be many 
trillions of worlds, wholly independently of the number of kinds of outcome registered by the 
measurement apparatus (in my example: just two, H and T). And more important: because one 
can vary the exact definitions of decoherence’s crucial notions (like ‘system-environment 
boundary’), there is no definite number, not even in the trillions, of worlds which we need to—
or could!---appeal to in order to give an account of probability. In short: the naïve counting 
measure is a mirage: it is woefully ill-defined, and the Everettian can just reject it.  

The second part is a remarkable recent development, that is wholly unlike anything in the 
previous discussion (either by me in this Chapter or in the Everettian literature I have so far 
drawn on). In terms of the previous Section’s discussion, it is an analogue of the arguments 
within classical statistical mechanics and pilot-wave theory that I mentioned. Recall that they 
justify those theories’ probability distributions, not by their empirical success, but by their 
following from natural assumptions. Analogously, Everettians have recently developed theorems 
that justify the Born rule, not by its empirical success, but by its uniquely following from certain 
general assumptions. But there are also two striking differences between the two cases.  

(1): The arguments within statistical mechanics and pilot-wave theory make assumptions 
about how the system changes over time, albeit general ones. In the jargon: the assumptions 
about mixing and ergodicity are assumptions about dynamics. But the assumptions of the recent 
Everettian arguments do not refer to how the system changes: they are synchronic, or kinematic. 
We do not need details: but in short, they turn on the linear structure of the quantum state-
space.  

(2): The second difference is even more striking. The arguments within statistical 
mechanics and pilot-wave theory, and their assumptions, make no mention of subjective 
probability, or of what principles, e.g. of rationality, should govern a person’s subjective 
probabilities. That is as we saw in the previous Section. Although I introduced the reconciliation 
of probability with classical determinism by invoking subjective probabilities about what is the 
exact state, it is details of physics, such as assumptions about how a system changes over time, 
that are the dominant considerations determining which probability is correct (and in particular, 
empirically successful). But the Everettians’ assumptions are about what principles of rationality 
should govern a person’s subjective probabilities. 

This is very remarkable since such principles are formulated and compared in a 
discipline, decision theory (briefly discussed in Chapter 3 Section 3), that belongs to psychology 
and economics, and has apparently nothing to do with physics. So the Everettians’ idea is 
remarkably inventive: to appeal to such principles of rationality as applied to a person’s degrees 
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of belief in outcomes of a quantum measurement, and thereby prove that their degrees of belief 
are given by the Born rule. So let me end this Chapter with some details about this. 

In decision theory, there is a tradition of proving what are called ‘representation 
theorems’. They are so-called because they show that under certain conditions a rational person’s 
behaviour reveals that their degrees of belief can be represented as numerical probabilities. That 
is: their degrees of belief must conform to the usual rules about probabilities, viz. that the 
probabilities of all the envisaged alternatives must add up to 1, and that the probability of either 
Alternative A or Alternative B, where A and B are incompatible (cannot both be true) is the sum 
of the individual probabilities. Thus there are theorems to the following effect. Imagine a person 
whose preferences for gambles (encoding certain degrees of belief and certain desires) conform 
to a certain set of axioms that seem rationally compelling. The axioms say, for example, that a 
person who prefers A to B and B to C must also prefer A to C, and that a person would not 
enter a bet (or a collection of bets) that is guaranteed, whatever the outcomes, to yield a loss. 
Then the person must have degrees of belief that conform to the rules of probability. In other 
words, their degrees of belief are represented by a probability distribution.  

We do not need further details, technical or even philosophical, about such theorems. 
But let us note that these theorems do not dictate a unique probability distribution over the 
various alternatives. This is of course as one would expect. Imagine two people are offered bets 
on horses in a race, and so reveal their degrees of belief in the alternative propositions about 
which horse wins. Even if the two people are rational in the sense of the listed axioms, we surely 
do not expect them to accept bets at exactly the same odds. In short: we do not rationality to 
dictate specific degrees of belief in arbitrary propositions. (We touched on this in Chapter 2 
Section 5’s discussion of Hume and inductive logic.)   

But the recent Everettian theorems secure precisely this uniqueness, about the specific 
scenario of a person making gambles on the outcomes of quantum measurements. Besides: the 
probability distribution that is uniquely dictated by the axioms about the person---which, as in 
the tradition of decision theory, seem to encode their being rational---is indeed quantum theory’s 
Born-rule probability distribution over the various outcomes.   

A bit more precisely: the theorems show that a person who: (i) is an Everettian and is 
about to observe a sequence of quantum measurements, and also (ii) knows the initial state of 
the quantum system to be measured, and (iii) is forced to gamble on which outcomes she will see 
(using the Everettian sense of ‘splitting’, to interpret the phrase ‘she will see’), and (iv) whose 
gambles are subject to certain rationality axioms---must apportion her degrees of belief (as 
shown by her betting behaviour) in accordance with the Born-rule.  

To sum up: this Section began with an objection to the Everettian, saying they could not 
answer the quantitative problem of probability, since they seemed to endorse the naïve counting 
measure, and so be doomed to disagreeing with the empirically successful Born-rule 
probabilities. But thanks to these theorems, the Everettian can say their framework not only 
accommodates, but even implies, the Born rule probabilities. Remarkable indeed.  
 


