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ABSTRACT

Suppose that one thinks that certain symmetries of a theory reveal ‘surplus structure’.

What would a formalism without that surplus structure look like? The conventional

answer is that it would be a reduced theory: a theory that traffics only in structures

invariant under the relevant symmetry. In this article, I argue that there is a neglected

alternative: one can work with a sophisticated version of the theory, in which the sym-

metries act as isomorphisms.
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1 Introduction

It is often claimed that the symmetries of a theory reveal ‘surplus structure’:

structure that, in some sense, the theory could do without.1 For example, the

boost symmetry of Newtonian mechanics indicates the superfluousness of

absolute velocities; the gauge symmetry of electromagnetism reveals the su-

perfluousness of absolute potentials; and so on and so forth. Moreover, it is

widely held that if this is the case, then some modification of one’s theory is

appropriate, so as to make explicit what structure is not surplus (for example,

the replacement of Newtonian by Galilean spacetime, in response to the boost

symmetry of Newtonian mechanics).2 In this article, I compare and contrast

two ways of making such a modification. The first is to replace the theory by

1 See, for example, (Redhead [1975]), to which the phrase ‘surplus structure’ is due; or the essays

in (Brading and Castellani [2003]) and references therein.
2 See (Møller-Nielsen [2017]), and references therein.
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(what I shall call) a reduced theory: a theory that deals only in quantities that

are invariant under the relevant symmetry. The second is to replace the theory

by (what I shall call) a sophisticated theory: a theory in which models related

by a symmetry are isomorphic.

In the next section, I set up some necessary apparatus, by defining what

symmetries are of interest to us in this article: namely, symmetries of first-

order relational theories, and internal symmetries of local field theories. In

Section 3, I outline the use of reduction to expunge surplus structure from a

theory, and suggest that it is somewhat problematic as a general strategy—

even though it is standardly assumed to be the ne plus ultra of ways to enact

the lessons of symmetries. In Section 4, I outline an alternative way to enact

those lessons, which I call sophistication. In very rough terms (to be made

precise later), the idea is that whereas a reduced theory converts a class of

symmetry-related models into a single model, sophistication converts a class

of symmetry-related models into a class of isomorphic models. Finally, in

Section 5, I discuss the senses in which sophistication and reduction are or

are not alternatives, and how the original theory relates to its reduced and

sophisticated versions: the key result here is that in typical cases, the categories

of models for a sophisticated theory and a reduced theory are equivalent (and

that neither is equivalent to the category of models of the original theory).

Section 6 concludes.

2 Symmetry

Here, I outline the kinds of symmetries that will be the topic of this article.

I consider symmetries for two kinds of theories: for theories formulated in

terms of first-order relational model theory, and for theories formulated as

local field theories.

Here is what I mean by a theory formulated in terms of relational first-order

model theory.3 In this context, the basic notion is that of a signature: a set � of

monadic and polyadic predicates. Given a signature �, one can define the set

Form �ð Þ of well-formed �-formulae, using the standard compositional rules

of predicate logic. The set of �-sentences is the set of closed �-formulae

(formulae with no free variables). Notation for the logical vocabulary will

be standard, including free variables x; x1; x2; . . . (equipped with this

ordering).

The semantics for a language with signature � is given by �-pictures.4

A �-picture M consists of a set jMj (the domain of M), equipped with a

3 Notation and concepts mostly follows (Hodges [1997]).
4 This terminology is non-standard. The more standard term is a �-structure: I have changed the

terminology in order to avoid confusion between informal use of ‘structure’ and its use as a term

of art.
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function �M with domain �. For each n-ary predicate � 2 �; �M is a set of

n-tuples with members drawn from jMj, that is, �MMjMjn. A �-picture M

determines the truth or falsity of elements of Form �ð Þ, relative to a variable-

assignment v for M, via the standard recursive clauses. If M makes a formula

f true relative to v, we write M �v f; if f is a sentence, then the variable-

assignment no longer matters, and we write simply M �f.

A theory T in the signature � (for short, �-theory) is a set of �-sentences.5

A �-picture M is said to be a model of T if it satisfies each member of T; we

denote the class of all models of T by Mod Tð Þ. Finally, T entails a �-sentence

f just in case M �f for every M 2Mod Tð Þ; this will be denoted by T ‘f.6

For example, consider the theory TH of handedness. Letting �H ¼ fL;Rg; TH

is the theory consisting of the following sentences:

8x Lx _ Rxð Þ; ð1aÞ

8x: Lx6Rxð Þ: ð1bÞ

Think of this as a (very simple) theory about worlds in which there is nothing

but gloves: everything is either left-handed or right-handed, but nothing is

both.

For theories formulated in terms of relational first-order model theory, the

notion of symmetry were are interested in here is as follows: a symmetry is a

translational equivalence between a theory and itself.7,8 First, define a diction-

ary map from �1 to �2 to be any function D : �1!Form �2ð Þ such that for

any m-ary predicate-symbol �; D� is a formula with precisely the m variables

x1; . . . ; xm free. Intuitively, we can think of D as a foreign-language diction-

ary, assigning each definiendum (primitive symbol of �1) to a definiens (for-

mula of �2). A dictionary map gives us a means of converting any �1-formula

into a �2-formula, through a process of substitution: given a �1-formula f,

simply replace any atomic subformula �y1; . . . ; ym occurring in

f by D�ð Þ y1=x1; . . . ; ym=xmð Þ.9 Let us denote the result of applying such a

5 In accordance with standard practice in model theory, I don’t require theories to be deductively

closed.
6 The notion of entailment defined here is semantic rather than syntactic, and would therefore

more standardly be denoted � rather than ‘ ; the problem is that the former symbol is rather

too similar to the symbol for satisfaction (� compared to �). Given that we will only apply this

symbol in the context of first-order theories, the completeness theorem means we need not get

too worried about this misuse of notation.
7 Which is not to say that there are not other interesting notions of symmetry in model theory. In

particular, most uses of the term ‘symmetry’ in model theory use the term to refer to auto-

morphisms of models (that is, isomorphisms from a model to itself). That notion will not be our

focus here.
8 The notion of a translational equivalence is taken from (Barrett and Halvorson [unpublished]);

it should be noted that—as is shown there—translational equivalence is, modulo trivial relabel-

lings of predicates, equivalent to definitional equivalence.
9 Here, cðy=xÞ denotes the result of uniformly substituting y for x everywhere in cðxÞ.
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substitution to f asDf. For the sake of brevity, I will write D : �1!�2 to

indicate that D is a dictionary map from �1 to �2.

Now suppose that we have two theories T1 and T2, in signatures �1 and �2,

respectively. Then we say that a dictionary map D : �1!�2 is a translation of

T1 into T2 if, for every f such that T1 ‘f; T2 ‘Df: that is, if D converts all

consequences of T1 into consequences of T2. In such a case, we will write

D : T1!T2. Then, theories T1 and T2 are translationally equivalent if there

are translations D : T1!T2 andD
0 : T2!T1 such that, for any �1-formula

f x1; . . . ; xmð Þ and any �2-formula c x1; . . . ; xnð Þ,10

T1 ‘8x1; . . . ;8xm f x1; . . . ; xmð Þ $ D
0
Df x1; . . . ; xmð Þð Þ; ð2aÞ

T2 ‘8x1; . . . ; 8xn c x1; . . . ; xnð Þ $ DD
0c x1; . . . ; xnð Þð Þ: ð2bÞ

That is, T1 and T2 are translationally equivalent if there are translations between

them that are ‘almost inverse’: the compositions of the two translations need not

take every formula back to itself, but must take it to a formula that is equivalent

(modulo T1 or T2, as appropriate). We will refer to a pair, D;D0ð Þ, satisfying

Equation (2) as a translational equivalence between T1 and T2.11

A symmetry is then simply a translational equivalence for the special case

T1¼T2.12 Of course, for any theory, the trivial translational equivalence (Id,

Id) is a symmetry. But many theories have non-trivial such symmetries. For

example, in the theory TH, consider the dictionary map E such that

E Lð Þ ¼ Rx; ð3aÞ

E Rð Þ ¼ Lx: ð3bÞ

It is easy to see that E is a translational equivalence between TH and itself, with

E as its own inverse.

Here is what I mean by a theory formulated as a local field theory. The role

of a signature is played by a set � of q field-variables c1; . . . ;cq, and a set X

of n base-variables x1; . . . ; xn. The role of �-pictures is played by �-fields,

where a �-field is a map from R
n to R

q.13 We will use the field-variables as

10 It is crucial that D andD
0 be translations. For instance, suppose that �1 and �2 are a pair of

signatures such that D is a one-to-one arity-preserving bijection between them (or rather, is the

dictionary map corresponding to such a bijection), and that D
0 is the inverse (strictly, is the

dictionary map corresponding to the inverse). Then the conditions below will be satisfied with

respect to any pair of theories T1 and T2; but D andD
0 will not, in general, be translations.

11 cf. Glymour’s work on definitional equivalence as a necessary condition for theoretical equiva-

lence (for example, Glymour [1970]).
12 The general case is also of interest to philosophy of physics. In particular, one promising way of

understanding duality is in terms of intertranslatability; see (Huggett [2017]; Rickles [2017]). I

will not discuss here whether and to what extent the analysis of this article might apply also to

the case of dualities.
13 As such, I am mostly only considering local field theories where the base space is simply con-

nected (though see the discussion of ~T A in Section 3).
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coordinates for the copy of R
q, that is, the range of the �-fields, and the base-

variables as coordinates for the copy of R
n, that is, the domain of the �-fields.

The role of �-sentences is played by differential equations, constructed by the

application of standard differential operators (associated to the base variables

in X) to the field variables in �. A �-field is a solution of a differential equa-

tion just in case it satisfies the equation at every point of R
n. A �-theory T is

just a set of differential equations constructed from � in the manner described.

A �-field is a model of T if it is a solution to every member of T; we will denote

the class of all models of T by Mod Tð Þ.

For example, consider the theory, TP, of instantaneous electrostatics in

terms of potentials. The field variables of this theory are r andf (so q¼ 2),

and the base variables are x1; x2; and x3 (so n¼ 3). This theory has one equation:

r2f ¼ 4pr; ð4Þ

where r ¼ q=qx1; q=qx2; q=qx3
� �

.

Alternatively, consider the theory TA of electromagnetism in terms of po-

tentials. The field variables of this theory are Am and Jm, and the base variables

are xm, with 0 � m � 3 (so q ¼ 8 and n ¼ 4). This theory has four equations:

qm qmAn � qnAmð Þ ¼ Jn; ð5Þ

with 0 � n � 3. In the above, the Einstein summation convention is used, and

raised indices are raised by application of the (inverse) Minkowski matrix gmn

(for example, Am :¼ gmnAn), where

gmn ¼

1 if m ¼ n ¼ 0

�1 if m ¼ n ¼ 1; 2; 3

0 otherwise

8>><
>>:

ð6Þ

For such a theory, the notion of symmetry we shall consider is this: a smooth

diffeomorphism � : R
n
�R

q
!R

q that maps solutions to solutions. (Thus, we

are only considering so-called internal symmetries.) To spell this out, it is

helpful to think of � in terms of its curried form, that is, as a map of type

R
n
! R

q
!R

q
ð Þ: that is, � assigns, to every point p 2 R

n, a map �p : R
q
!R

q.14

Any such map � naturally induces a transformation of any �-field into

another �-field: if the original field has the value ci pð Þ at point p 2 R
n (for

1 � i � q), then the new field has value �p ci pð Þ
� �

at p. We then say that � is a

symmetry of T if � induces a bijection on the space Mod Tð Þ of solutions

of T.15

14 If we regard the total space R
q
�R

n as a (trivial) fibre bundle, then these transformations are

precisely the vertical bundle automorphisms. (Automorphisms, that is, of the bundle structure

alone—not of any of the further structure of R
n
�R

q. See the next footnote.)
15 Note that we have put very few restrictions on what structure � is to preserve: it need not be

(pointwise) linear, nor respect the decomposition of R
q into clusters of field variables, and so on.
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For example, in the theory TP, let k be some real number, and let � be the

map such that

� x;f; rð Þ ¼ fþ k;rð Þ: ð7Þ

One can quickly verify that Equation (7) transforms solutions of Equation (4)

into other solutions. For another example, in the theory TA, let � : R
4
!R be

any smooth scalar function, and let � be the map such that

� xm;Am; Jm� �
¼ Am þ qm� xmð Þ; Jm� �

: ð8Þ

Note that unlike Equation (7), this � depends non-trivially upon the base-

variables. Again, one can verify (although a little less straightforwardly) that

this transforms all and only solutions of Equation (5) into other solutions.

At first, it might seem a little opaque how these two notions of symmetry

relate to one another. In fact, however, there is good reason to think that they

are expressions of the same basic idea. To see this, observe first that a diction-

ary map D : �!� could be thought of as a map from the ‘value-space’ of a

first-order theory to itself: if we regard predicates (both simple and complex)

as indicating ways for n-tuples to be, and think of field-values as indicating

ways for points of a base space to be, then we can see how a dictionary map

D and a vertical bundle automorphism � do the same kind of thing.16,17

Furthermore, just as � transforms �-fields into other �-fields, so D

transforms �-pictures into other �-pictures. In fact, any dictionary map

D : �1!�2 naturally induces a dual map D
� from �2-pictures to �1-pictures.

Given any �2-picture M; D�M is the �1-picture given by

jD
�Mj ¼ jMj; ð9aÞ

�D
�M ¼ D�ð Þ

M; ð9bÞ

where the extension in M of an arbitrary formulaf, denotedfM in Equation (9b),

The reason to be liberal is just that we are in the game of using symmetries to figure out what

structure in the theory is important (that is, as we shall see, invariant under symmetry). So as far

as possible, we should avoid antecedently privileging structures by making them the kinds of

things that symmetries must leave invariant by definition.
16 Though this interpretation of field-values is not mandatory. Indeed, in some cases it seems

rather inappropriate: the possible values of a mass density function at a given spacetime

point, for instance, seem most perspicuously described as properties of the matter that could

be located at that spacetime point, rather than properties of the point itself. I borrow this

observation from Weatherall ([unpublished]). One could either seek a different way of express-

ing the analogy, or just take the analogy to hold only for those fields that are best thought of as

expressing properties over spacetime points.
17 Though I’m glossing over an important disanalogy. The points of the base space, unlike the

members of the domain, form a structured set. It is for this reason that I confine my attention

here to internal rather than external symmetries: it is rather more opaque what the

model-theoretic analogue of an external symmetry might be.
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is defined as the set of those n-tuples from jMj that satisfy f in M (where the

order of the n-tuples is fixed by the ordering of the free variables in f).

Finally, we have the following important result from model theory18:

Proposition 1: Suppose that we have translations D : T1!T2 and

D
0 : T2!T1. Then D andD

0 implement a translational equivalence between

T1 and T2 if and only if D
� is a bijection Mod T2ð Þ!Mod T1ð Þ, with D

0
ð Þ

�

as its inverse.

See the appendix for proof.

Thus, in the special case where T1¼T2, the demand that a dictionary map D be a

translational equivalence is the same as demanding that it (or rather, its induced

map D
�) act as a bijection on Mod Tð Þ. This parallels the characterization of

symmetries in local field theories as those vertical bundle automorphisms that

take solutions to solutions. Hopefully, this is enough to suggest that we are

indeed dealing with a reasonably unified concept here. To some extent, the re-

mainder of this article should serve as a further defence of the claim that they are

analogous: as we shall see, the same issues show up in the one case as in the other.

With this set-up complete, let us turn to the main task. In this article, I will

suppose that, at least under certain circumstances and for certain theories, the

following claim is true:

For a theory containing symmetries, we should not interpret that theory in

such a way that the symmetry-related models (that is, models related by a

map induced by a symmetry) represent distinct ways for the world to be.19

What those circumstances might be (indeed, whether there are such circum-

stances) is contentious, as is the question of why symmetries, under those circum-

stances, warrant such interpretational circumspection.20 As I have set things up

here, there is good reason to think that this lesson should not be applied to all

symmetries in the sense defined above. For instance, the transformation

Am � Am þ Bm; ð10Þ

18 This result is standard (although the statement of it has been tweaked to mesh with the above

definition of translational equivalence); see, for example, (de Bouvère [1965], Theorem 2) or

(Hodges [1997], p. 54). The proof is provided for convenience (especially since the standard

proofs are attuned to the statement in terms of definitional rather than translational

equivalence).
19 Note that the ‘should’ here is with respect to norms of theory choice, not norms of historical

fidelity. The claim is not supposed to be that, when working on Newton’s thought, one should

not interpret the Principia as committed to absolute space. I thank a referee for pressing me on

this point.
20 The literature addressing these questions is very large; see, for example, (Saunders [2003a];

Brading and Castellani [2003]; Baker [2010]; Caulton [2015]; Dasgupta [2016]) and references

therein.
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Jm � Jm þ qn qnBm � qmBnð Þ; ð11Þ

is a symmetry of TA, but it is best interpreted as enacting a real physical change.21

(My own view is that the issue here is not the definition of symmetries, but rather

the fact that we are dealing with partial or incomplete toy theories. The trans-

formation in Equation (10), for example, will not be a symmetry once appropriate

continuity equations for the charged matter are included.) However, let us set this

issue aside, and focus instead on the question of what we should do next. That is,

suppose that we do indeed have a theory that contains symmetries, and that we

have become convinced—for whatever reason—that the above applies to (some

of) those symmetries. What should our next move be?

In the next section, I consider one popular account of what the next move

should be. This account says that we should seek a reduced theory: a theory

that deals only in quantities that are invariant under the relevant symmetry.

After explicating this account, I offer some reasons to think that this is not the

best way of implementing the above lesson. In Section 4, I consider an alter-

native way of implementing the lesson above: that of leaving the syntactic

sentences of the theory alone, but seeking instead a different semantics for

interpreting it (what I will call a sophisticated semantics). Section 5 discusses

how the results of applying these two strategies compare to one another.

This all presumes, of course, that there should be a next move at all. Why

not take some more quietist attitude, and remark merely that the symmetry-

related models are to be understood as representing the same way for the

world to be? I don’t have any particular beef with such an attitude; indeed,

as we shall see later, providing a sophisticated semantics may be thought of as

a way of taking this attitude in a mathematically careful way. But it would be a

mistake to presume, from the off, that such an attitude can be taken without

causing problems. After all, models related by a symmetry can appear very

different: the electromagnetic potential will take a very different form after the

application of a gauge transformation, for example! So it behoves us to under-

write this attitude, by appropriate mathematical analysis, and show that it is of

good conceptual standing.

3 Reduction

In many discussions about the proper way to implement the above interpret-

ational principle for symmetries, it is taken for granted that what we seek is a

theory that is the result of a reduction by the relevant symmetry. In very

general terms, the idea is that we (i) identify some collection of invariants of

the original theory; (ii) specify a theory in terms of those invariants; and

21 I thank an anonymous referee for this example.
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(iii) show that the new theory captures all the symmetry-invariant content of the

old theory. Before getting more specific, it will be best to introduce examples.

First, consider the case of the handedness theory TH. The invariant that

we use to specify our reduced theory is the congruence relation: that is, we

introduce a relation C that is defined by

8x8y Cxy$ Lx6Lyð Þ _ Rx6Ryð Þð Þð Þ: ð12Þ

Informally, congruence is just the relationship that holds between two objects if

and only if they have the same handedness. Let us use �C as a shorthand for the

formula in Equation (12). If we supplement TH by this definition, then we get its

definitional extension TþH :¼ TH [ fyCg, in signature �þH ¼ {L, R, C}. The first

observation is that agreement on the congruence relation suffices for agreement

on all invariant content, in the following sense: if M and N are two models of

TþH , such that jMj ¼ jNj and CM ¼ CN , then either M¼N, or else

M ¼ E
�N—where E is the ‘handedness swap’ dictionary map introduced earlier,

by Equation (3).

Now consider the theory TC, in signature �C :¼ fCg, comprised by the

following axioms:

8xCxx; ð13aÞ

8x8y Cxy!Cyxð Þ; ð13bÞ

8x8y8z Cxy6Cyzð Þ!Cxzð Þ; ð13cÞ

8x8y8z :Cxy6:Cyzð Þ!Cxzð Þ: ð13dÞ

Informally, this theory states that C is an equivalence relation, with at most

two equivalence classes. Models of TC closely correspond to models of TþH
(and hence, to models of TH). On the one hand, for any model M of TþH , its

reduct Mj�C
is a model of TC. Indeed, suppose that M �TþH ; then M satisfies

Equations (1) and (12); but Equation (13) of TC are simply a consequence of

those sentences, and so M must make Equation (13) true as well; since these

refer only to C, it follows that Mj�C
�TC . On the other hand, for any model

N of TC , there is a �þH -expansion Nþof N (that is, a �þH -picture N+ such that

Nþj�C
¼ N) that is a model of TþH . Indeed, if N is a model of TC, then it is clear

from Equations (13a–13c) that CN is an equivalence relation over jNj, and

from Equation (13d) that it partitions the domain into at most two equiva-

lence classes. So just let LNþ be one of these equivalence classes, and let RNþ be

the other (if such there be). It is then obvious that N+ satisfies Equations (1)

and (12), that is, that Nþ �TþH .

Thus, there is a natural sense in which TC captures the ‘invariant part’ of TH.

On the one hand, any models of TH that agree with respect to all the structure
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invariant under E� will correspond to a single model of TC; and on the other,

every model of TC corresponds to some (indeed, more than one) model of TH.

Second, consider the case of electrostatics. This time, the chosen invariant is

the electric field E, defined by

E :¼ ru: ð14Þ

Again, the first thing we want is some kind of indication that the electric field

suffices to capture all the invariant content of the electrostatic theory. So, let

TþP be the definitional extension of TP by Equation (14), and suppose that M

and N are two models of TþP , such that EM ¼ EN . Then by elementary inte-

gration, their potentials agree to within a symmetry transformation—that is,

for some constant k,

uN ¼ uM þ k: ð15Þ

So now consider the following theory, TE. The field-variables of TE are r
and Ei (where 1 � i � 3); I will use vector notation, E, for the latter. The base-

variables are the same as TP. The equations of the theory are

r � E ¼ 0; ð16aÞ

r � E ¼ 4pr: ð16bÞ

Again in analogy to the handedness case, we have the following pair of ob-

servations about how the models of TE relate to those of TP. First, for any

model M of TþP , the electric field EM satisfies Equation (16). This is obvious

just from plugging the definition Equation (14) into Equation (16). Second, for

any model N of TE , there is a model Nþof TþP such that ENþ ¼ EN . This is also

standard: an irrotational vector field over a simply connected base space

admits some scalar field of which it is the gradient.

Finally, consider the case of electromagnetism. The invariant we use here is

the electromagnetic field:

Fmn :¼ qmAn � qnAm: ð17Þ

Let TþA be the result of supplementing TA with the definition in Equation (17).

Once again, we observe first that the electromagnetic field determines all

gauge-invariant quantities. That is, for any models Am;Fmn
� �

and

A0m;F
0
mn

� �
of TþA , if Fmn ¼ F 0mn then for some scalar function

�; A0m ¼ Am þ qm�. This is, again, a standard result.

Now consider the theory TF. The field-variables of TF are Jm and Fmn, where

0 � m; n � 3 (so q¼ 20), whilst the base variables are the same as those of TA.

The equations are

Fmn ¼ �Fnm; ð18aÞ
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q½mFnr� ¼ 0; ð18bÞ

qmFmn ¼ Jn; ð18cÞ

where, again, indices (all of which range from 0 to 3) are raised using the

Minkowski matrix (and the square bracket [. . .] indicates anti-symmetriza-

tion). Then, once more, we find a certain kind of alignment between the

models of TF and the models of TþA . That is, for any model M of TþA , the

field F M
mn is a solution of Equation (18); and for any model N of TF , there is

a model Nþof TþA such that FNþ

mn ¼ FN
mn.

These examples make fairly clear what is meant by a reduced theory; let us

now offer a general definition. Suppose that T is the target theory, admitting

some group G of symmetries (and let us denote the action of g 2 G on models by

M � g�M). Say that a collection Q of symmetry-invariant quantities/predicates

(in T, or in some definitional extension T+) is complete if agreement on Q

guarantees agreement to within G—that is, if it is the case that for any models

M and N of T þð Þ, if qM ¼ qN for every q 2 Q, then for some g 2 G; N ¼ g�M.

A reduction of T to Q is a theory T 0, of (complete) signature Q, such that

(i) for any model M of T 0, there exists some model N of T þð Þ such that

for every q 2 Q; qM ¼ qN ; and

(ii) for any model M of T þð Þ, the reduct of M to Q is a model of T 0:

I’ll refer to the pair of conditions (i) and (ii) as the Goldilocks conditions for

symmetry reduction: they state that the class of models of the reduced theory

must be neither too big nor too small.

Many discussions of symmetry assume, implicitly or explicitly, that chan-

ging one’s theory to incorporate the lessons of a symmetry—to get rid of the

‘surplus structure’ the symmetry reveals—means moving from the original

theory to a reduced theory. It is worth pointing out, however, that there are

problems with making reduction the gold standard for expunging surplus

structure. First, it is highly non-trivial to find such a reduced theory—or

even to demonstrate with confidence that such a theory could exist. All the

examples above were chosen as cases where we know how to specify the

reduced theory. But doing so required that we could both find a complete

set of invariant quantities Q, and then provide a theory in terms of Q whose

class of models meets the Goldilocks conditions. Note that these tasks are

somewhat in tension. Plausibly, the set of all invariant quantities will always

be complete.22 But the more invariant quantities one wants to use in Q, the

22 Note that proving this will not be entirely straightforward: one could imagine certain global

obstructions (for example, topological issues) that might yield a pair of models agreeing on all

invariants, yet lying on different symmetry orbits.
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harder it is going to be to construct a finitely or recursively axiomatizable

theory out of them (satisfying both the Goldilocks conditions).23

As an illustration of these perils, consider the theory ~T A. The equations of

this theory are precisely the same as those of TA: the only difference is that

models of this theory are now taken to be maps of the form U!R
20, where U

is permitted to be any open subset of R
4. So, in particular, models of this

theory include cases where the base space is topologically non-trivial. It is now

no longer the case that the set fFmng comprises a complete set of quantities:

there are gauge-invariant quantities that are not determined by fixing the value

of Fmn everywhere. To take the best-known example, define the holonomy of a

loop � to be

h gð Þ ¼ exp

I
g
Amdxm

� �
: ð19Þ

It is straightforward to verify that holonomies are gauge-invariant. Yet if U is

not simply connected, the value of Fmn everywhere in U underdetermines the

values of the holonomies: two models of ~T A (both with base space U) might

agree on the former, yet disagree on the latter.24 Of course, this does not mean

that there can be no reduced theory of ~T A. It certainly doesn’t mean that there

is no complete set of invariant quantities for ~T A: in fact, it can be shown that

the set of all holonomies comprises just such a complete set.25 However, it

remains very much an open question whether one can give some closed-form

set of equations for holonomies, such that the solutions of those equations

satisfy the Goldilocks conditions (relative to the definitional extension of TA

by Equation (19)).26

The second problem with insisting that one must provide a reduced theory is

that, even if such a theory can be found, that theory may seem to have ex-

planatory deficits relative to the original theory. For the reduced theory treats

the invariant quantities Q as primitives; this means that if some q 2 Q obeys

some non-trivial condition as a result of its definition (in the unreduced

theory), it must be asserted to obey that condition (in the reduced theory)

as a simple posit. Let us consider some examples of this phenomenon.

23 The rider ‘finitely or recursively axiomatizable’ is necessary to rule out theories consisting simply

of all the logical consequences of T expressible in terms of Q. (I thank Teruji Thomas for

drawing this to my attention.) Of course, in the context of first-order theories, Craig’s theorem

prevents this from being a serious restriction; but in richer formalisms (such as local field theory)

the rider has bite.
24 This fact is the essential kernel of the Aharonov–Bohm effect (Aharonov and Bohm [1959]); for

further details, see (Healey [2007]).
25 At least, this is true when—as here—we presuppose a fixed coordination on the base space. In

more general contexts, settling issues about the reducibility of gauge potentials to holonomies

turns upon subtleties concerning the base points of the holonomy maps; see (Rosenstock and

Weatherall [2016]). (My thanks to a referee for bringing this to my attention.)
26 See (Loll [1994]) for discussion.
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For the handedness theory, note that the reduced theory TC includes axioms

to the effect that C is an equivalence relation. No such axioms are needed in

the theory TþH , since—in that theory—the definition of C, in Equation (12),

entails that it is an equivalence relation. For example, the claim that C is

symmetric becomes, when translated using Equation (12), the tautology:

8x8y Lx6Lyð Þ _ Rx6Ryð Þð Þ! Ly6Lxð Þ _ Ry6Rxð Þð Þð Þ: ð20Þ

Thus, there is some sense in which the fact that C is an equivalence relation is

rendered ‘more necessary’ in TþH than in TC: it is, we might say, an analytic or

definitional necessity rather than a ‘mere’ law.27 How seriously one should

take this difference will be a matter of taste. But it is a prima facie reason for

thinking that the passage to the reduced theory has not been entirely without

cost—and so for wondering if there might be some way to remove the surplus

structure without paying these dues.

In the case of electrostatics, one can see that Equation (16b) in TE corres-

ponds to Equation (4) of TP. Equation (16a) is a new addition, however;

again, the reason it is not needed in TP is because, translated using

Equation (14), it becomes the mathematical truth that

r � ru ¼ 0: ð21Þ

As such, the unreduced theory can be considered to contain an answer to the

question ‘why does the curl of the electric field vanish?’—namely, that the

electric field is the gradient of a scalar field, and so (like all such gradients)

has vanishing curl. Again, the explanatory claim here is contestable, but the

intuition that definitions possess explanatory force is in accord with popular

views about explanation in philosophy of science. The intuition could be made

out in intensional terms (since mathematical truths such as Equation (21)

contain a greater degree of modal force than physical truths such as

Equation (16a)), or in hyperintensional terms (if one thinks that Equation

(21) shows that the curl of E vanishes ‘in virtue of’ E’s being a gradient);

but either way, at least some accounts of explanation will want to count its

absence in TF as a deficit.

This example also demonstrates, incidentally, that this phenomenon is part

of what makes finding a reduced theory so hard. In trying to find the reduced

27 That said, one could argue that TþH also contains explanatory deficits relative to TC. For in-

stance, simply by virtue of being a reduced theory, TC need not deal in any primitive claims

about the behaviour of L and R. (My thanks to an anonymous referee for pressing this point.)

But even if we grant this, the point in the text still stands. For the issue here is not whether TC

or TþH have a better explanatory status in absolute terms; rather, it is merely that the passage to

TC involves some explanatory loss (whether or not that is compensated for by other gains). This

is sufficient to motivate us to seek a way of expunging surplus structure without incurring that

loss.

Sophistication about Symmetries 497

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article/70/2/485/4111183 by U

niversity of C
am

bridge user on 05 January 2021



version of TP, one might be encouraged by the observation that f only ever

appears in Equation (4) in the form rf—which is a complete invariant. Even

then, though, one still has work to do. It’s not enough to merely substitute E

forrf in Equation (4); one also has to add in further equations to recapture

theorems such as Equation (21).

For electromagnetism, it is Equations (18a) and (18b) that have no

counterpart in the unreduced theory TA; for in that theory, they reduce

to the mathematical trivialities that

qmAn � qnAm ¼ � qnAm � qmAn
� �

; ð22aÞ

q½mqnAr� ¼ 0: ð22bÞ

The list goes on. Any attempt to reduce ~T A to holonomies must stipulate that

the holonomies obey various identities; relationalist theories of space must

posit constraints amongst the spatial relations (for example, the triangle

inequality) that merely follow from the definitions of those relations on sub-

stantivalist views; and so on and so forth (Arntzenius [2012], Chapter 6;

Maudlin [2007], Chapter 3).

4 Sophistication

Is there an alternative, then? Is there some other way of taking on board the

above interpretational principle, without seeking out a reduced theory? I sug-

gest that there is. In a slogan, the idea is that we need not insist on finding a

theory whose models are invariant under the application of the symmetry

transformation, but can rest content with a theory whose models are iso-

morphic under that transformation. That is, if M and N are symmetry-related

models of the unreduced theory, then they give rise to the same model of the

reduced theory discussed in the previous section; the proposal is that we in-

stead look for a theory such that M and N give rise to distinct but isomorphic

models. Often, however, finding such a theory may mean leaving the syntax of

the theory alone, but instead modifying the semantics. To see what I mean by

this, let’s consider some examples.

First, consider the handedness theory. I introduce the concept of a de-

handed picture. A de-handed picture m comprises:

. A set jmj

. A two-element set �m

. A function em : �m!P jmjð Þ

Intuitively, the set �m (of ‘chiralities for m’) takes over the role of the set {L, R};

the function e (the ‘extension function’) assigns each chirality to a subset of the
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domain.28 The point of doing so comes in the introduction of a new definition of

‘homomorphism’ for such pictures: we take a homomorphism h : m!n to com-

prise a map h1 : jmj!jnj and a bijection h2 : �m!�n, such that for either q 2 �m,

h1 em qð Þ½ � ¼ en h2 qð Þð Þ: ð23Þ

In other words, it is no longer the case that isomorphisms must preserve exten-

sions: indeed, since each model m carries its own personal set of chiralities �m,

there is no longer a well-defined notion of trans-model identity for extensions,

and hence no longer a criterion for what it would be to preserve extensions. To

compose a pair of such homomorphisms, simply compose the components.

We now stipulate how de-handed pictures are to determine truth-values for

sentences of the first-order language over �H. Since there is no model-

transcendent set of chiralities, it will no longer be the case that a picture de-

termines an unambiguous truth-value for every sentence of the handedness

language. For a sentence like 9xLx, for example, there is no privileged way to

determine which of the two chirality-extensions in a de-handed picture ought

to count as the extension of L. But this is as it should be, if we are really

interested in doing away with the structure that is variant under the symmetry.

Sentences that are not invariant under the symmetry are defective, if we do not

take symmetry-variant structure seriously. Instead, truth in a de-handed pic-

ture m is (generally) relativized to a bijection V : fL;Rg!�m. In a certain

sense, it is as though the predicate-letters L and R are being treated as

second-order variables (although they can only range over �m); we will there-

fore refer to the map V as a second-order variable-assignment. Relative to

such an assignment V, and to a first-order variable-assignment v, the truth-

values of atomic sentences in a model, m, are determined as follows:

m�V ;v Lx if and only if v xð Þ 2 e V Lð Þð Þ;

m�V ;v Rx if and only if v xð Þ 2 e V Rð Þð Þ:
ð24Þ

The clauses for non-atomic sentences are unchanged. (These semantics could

fruitfully be compared to either second-order semantics or supervaluationist

semantics.) We then obtain the result below.

Proposition 2: Suppose that f is logically equivalent to Ef, let m be a de-

handed picture, and let v be a first-order variable-assignment for m. Then

for any second-order variable-assignments V and V 0 for m,

28 A more elegant semantics for this theory would be one in which each element of the domain is simply

assigned one chirality or the other: that is, in which we use a function gm : jmj!�m in place of em.

But that would build satisfaction of the axioms of TH into the semantics themselves—whereas all I

want to do here is construct a semantics that is sophisticated with respect to the symmetries of TH.
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m�V ;v f if and only if m�V 0;v f: ð25Þ

See appendix for proof.

As a consequence, the truth-value of any parity-invariant formula is

unambiguously determined by a de-handed picture (together with a first-

order variable-assignment). Note that all the members of TH are (of course)

logically equivalent to their ‘swapped’ versions. Hence, we can define the

de-handed models of TH as those de-handed pictures that make TH true. We

then obtain the following.

Proposition 3: Suppose that f is equivalent modulo TH toEf, let m be a de-

handed model of TH, and let v be a first-order variable-assignment for m.29

Then for any second-order variable-assignments V and V 0 for m,

m�V ;v f if and only if m�V 0;v f: ð26Þ

See appendix for proof.

We can therefore take our new theory to be given by the same set of sen-

tences TH, but where the semantics for those sentences is that just outlined

(that is, is done in terms of de-handed pictures, rather than handed pictures).

Next, consider the electrostatic theory. Again, we retain the same set of equa-

tions, but change what objects are used to semantically interpret those equations.

Rather than takingf to range over R, we instead take it to range over �, where �

is a one-dimensional, oriented, metric affine space (such a space could be defined

as a set equipped with a free, transitive of R as an additive group). � has sufficient

structure to enable qf=qxi (for i¼ 1, 2, 3) to be defined, for instance,

qf
qx1

:¼ lim
e!0

f x1 þ e; x2; x3
� �

� f x1; x2; x3
� �

e
; ð27Þ

and similarly for x2 and x3. Sorf, and hencer2f, can be defined as well. We can

therefore continue to use Equation (4), interpreted as equations governing models

of this kind rather than the original kind. The transformation in Equation (7) also

still makes sense, but is now an automorphism of �. As a result, if two �-valued

fields are related by the application of such a transformation, they are isomorphic

to one another.30 Moreover, note that it’s not just that the symmetry

29 Where, again, E is the ‘handedness swap’ map in Equation (3).
30 Given two functions f : U!V and f 0 : U 0 !V 0, the appropriate definition of morphism is as

follows: a pair of morphisms a : U!U 0 andb : V!V 0 such that b � f ¼ f 0 � a. An isomorph-

ism is then an invertible morphism.
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transformations of the form of Equation (7) are automorphisms of �: every

automorphism of � is a transformation of the form of Equation (7).

Finally, consider the electromagnetic theory. This time, models of the

theory are to be connections on a principal U(1)-bundle over R
4.31 Once

more, we retain Equation (5), but now interpreted in a way that makes use

only of the more minimalist structure available in the models: Am is now in-

terpreted as the vector potential of the target connection relative to some

arbitrarily chosen flat connection on the principal bundle. It is a standard

exercise in gauge theory to show that any two such flat connections will be

related by a gauge transformation (a vertical automorphism of the bundle).32

Hence it doesn’t matter which flat connection we choose as a reference point: if

Equation (5) holds with respect to any one such connection, they hold with

respect to all of them. And since gauge transformations are vertical auto-

morphisms of the bundle, the action of Equation (8) on the target connection

will yield a model isomorphic to the original. Finally, the extension to the

theory ~T A is straightforward: we simply take models to be connections on

principal U(1)-bundle over UMR
4. Unlike the case of ~T F , these models do

indeed contain all the same gauge-invariant quantities as the unsophisticated

models. In particular, a connection on a principal U(1)-bundles over a topo-

logically non-trivial U fixes the values of all the holonomies over U.

Hopefully, these examples make clear enough what is intended; let us now

seek a general characterization. Note that the proposal on the table—that we

can do justice to a symmetry using isomorphism rather than invariance—is a

generalization of the ‘sophisticated substantivalist’ method for dealing with

spacetime symmetries.33 With that in mind, let us refer to theories equipped

with semantics of this sort as sophisticated (rather than reduced) theories. The

striking thing about our sophisticated theories above was that we altered the

semantical constructs with respect to which the theory’s syntactic conditions

were interpreted, rather than those syntactic conditions themselves (‘interpret’

here meaning merely assign truth-values to sentences, rather than anything

more philosophically substantive). Given a theory T, subject to some group G

of symmetries, let us use the term ‘picture’ for any object that (like a �-picture

or a �-field) can be used to systematically determine the truth-values of sen-

tences in the language of T; to provide a semantics is just to specify both what

31 See (Baez and Muniain [1994]; Healey [2007]; Weatherall [2016a]) for an introduction to the fibre

bundle formalism.
32 See, for example, (Baez and Muniain [1994], Section II.2).
33 See (Pooley [2006], [2013]). Note, however, that sophisticated substantivalism is often recom-

mended as an attitude to take towards spacetime theories whose diffeomorphism-related models

are already isomorphic (as is the case, for example, with respect to modern formulations of

general relativity), rather than (as is the case here) urging the introduction of ‘new’ isomorph-

isms. But insofar as I’m taking sophistication here to involve the claim that these isomorphic

models represent the same possible world, the analogy is good enough for our purposes. I thank

an anonymous referee for this observation.
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kinds of things count as pictures, and exactly how it is that pictures assign

truth-values to sentences of the language. In all the cases above, we moved

from the original semantics (comprised of pictures upon which the symmetries

of the theory do not act as isomorphisms) to a sophisticated semantics

(comprised of pictures upon which the symmetries of the theory do act as

isomorphisms). This new semantics assigns determinate truth-values to sym-

metry-invariant sentences; since the axioms of the theory are (by definition) so

invariant, we may characterize some of the sophisticated pictures as models of

the new theory. Finally, in all cases, the sophisticated pictures could be sys-

tematically obtained from the original ones, through the ‘forgetting’ of struc-

ture. So in all cases, we had an obvious (that is, ‘natural’ or ‘canonical’) map

from the unsophisticated pictures to the sophisticated ones.

Thus, let us say that sophistication of a theory T (with symmetries G) is exactly

this process: the provision of a new semantics, comprised of pictures that are

. related to those of the old semantics by some ‘forgetful’ map F;

. adequate to assign truth-values to the G-invariant sentences of T’s lan-

guage; and

. such that for any unsophisticated pictures M and M0; M0 ¼ g�M for

some g 2 G if and only if F Mð Þ ffi F M0ð Þ.

However, this remains somewhat vague. Is there a way to precisify what is meant?

Here is one way to do so. Rather than trying to define the objects of the new

semantics ‘internally’, as mathematical structures of such-and-such a kind (para-

digmatically, as sets equipped with certain relations or operations), we instead

define them ‘externally’: as mathematical structures of a given kind, but with

certain operations stipulated to be homomorphisms (even if they’re not ‘really’

homomorphisms of the given kind). For example, one way to define vector spaces

is to define them as sets equipped with operations of addition and scalar multi-

plication, obeying appropriate axioms. This is the internal method. The alterna-

tive is to define them as spaces of the form R
k, with the further feature that linear

transformations are declared to be homomorphisms—and in particular, that in-

vertible linear transformations are isomorphisms. This is the external method. It

would also be apposite to refer to the internal method as a ‘synthetic’ approach,

and the external method as an ‘analytic’ approach, following the terminology of

synthetic and analytic geometry. Alternatively, one could see the external method

as following in the tradition of Klein’s Erlangen programme for geometry, and

the internal method as falling more under the Riemannian tradition.34

Hence, the proposal is that the pictures on the new semantics are simply

what we obtain by taking the old objects, and declaring, by fiat, that the

34 See (Wallace [forthcoming]) for a detailed defence of using the external method for defining

spacetime geometry, and for an expansion on the connection to Klein and Riemann.
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symmetry transformations are now going to ‘count’ as isomorphisms.35 If we

consider our examples above, we can see that—in fact—the method for intro-

ducing the new semantics was often very much in this vein. In the case of the

handedness theory, an alternative way of introducing de-handed models

would be to say that de-handed models are constructed from the same

formal materials as handed models (that is, from sets equipped with extensions

for L and R), but with a new definition for homomorphism, namely, that a

homomorphism h from m to n consists of a map h1 : jmj!jnj and a bijection

h2 : �H!�H , such that

h1 Lm½ � ¼ h2 Lð Þð Þ
n; ð28aÞ

h1 Rm½ � ¼ h2 Rð Þð Þ
n: ð28bÞ

In the case of electrostatics, I remarked in passing that the space � could be

most elegantly defined as a set equipped with a free transitive additive action

of R; the external method of defining it would simply mean taking that set to

be R itself, and the additive action to be exactly that expressed by Equation

(7). The advantage of defining the new semantics externally is that it offers a

relatively easy means of characterizing the objects of the semantics, and of the

means by which they accord truth-values to sentences of the formal language:

simply (as we saw for the handedness case) use the old semantics, then con-

struct a supervaluationist semantics over the members of each equivalence

class of isomorphic new objects. So defined, it will certainly meet the condi-

tions required to be a sophistication.

The main disadvantage of this method is that it might seem far too easy. In

general, the external method of defining some kind of mathematical structure

might be thought to offer less insight into the nature of that structure: it is one

thing to know that a vector space consists of precisely those features of R
k

that are invariant under linear transformations, but another to see that those

features are exactly the operations of addition and scalar multiplication, as

codified by the axioms for a vector space. More ecumenically, one might think

merely that both kinds of construction are important for fully understanding

the structure—in which case, one would desire an internal construction as

well. And it is often very opaque what kind of internal construction will cor-

respond to an external construction. Electromagnetism makes this fairly clear.

It is not at all obvious (I contend) that the features of maps R
4
!R

4 preserved

under gauge transformations in Equation (8) are precisely the features of

vector potentials between connections on a U(1) principal bundle.

35 In category-theoretic terms, this amounts to introducing arrows into the category of models

corresponding exactly to the symmetry transformations—which is precisely what Weatherall

([2016a]) proposes to do for (gauge) symmetry transformations. I expand upon the relation to

Weatherall’s proposal in Section 5.
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Nevertheless, we could reason as follows: Assuming that one accepts the ex-

ternal method of definition as mathematically legitimate, then its application

gives us a way of defining a sophisticated semantics for the theory, by brute

force.36 It then means that we do have a precise target for a sophisticated

semantics that is internally defined: we are looking for some internal construc-

tion that delivers an equivalent class of structures.37

So, now that we have a decent grip on what sophistication means, we should

consider its virtues (or vices). Let’s begin by considering the two criticisms we

levelled at reduced theories: that they are too hard to find, and that they carry

an explanatory cost relative to their unreduced versions. Regarding the

former, we have just seen that finding a sophisticated semantics will always

be easy if we use the external method. And although we don’t have any kind of

general guarantee that we will thereby be able to find some kind of internal

characterization of those structures, we do—as a matter of fact—generally

seem to have success in finding them. This isn’t terribly mysterious when one

appreciates the role that symmetry considerations play in the construction of

theories. If we are demanding that the equations of the theory manifest certain

symmetries, then the easiest way to ensure that they do is to construct them as

equations governing objects upon which the sought-for symmetries act as

isomorphisms. As a result, modern theories are typically born sophisticated.

(The paradigm case is the construction of Yang–Mills theories as theories

governing connections on a principal G-bundle, which then ensures a sophis-

ticated semantics with respect to G acting as a local gauge group.)

As to the latter, we see that the invariants remain definable, even using the

sophisticated semantics: the fact that a sophisticated semantics determines

unambiguous truth-values for invariant sentences of the language guarantees

that the definitions will remain well posed. As a result, the explanation of why

the invariants manifest such-and-such features is also preserved. In the hand-

edness theory, for example, it remains the case that congruence is a matter of

possessing the same handedness property—and, hence, that congruence is an

equivalence relation. The electric field is still definable as the gradient of the

potential, even if the latter is taking values in � rather than R; so its irrota-

tionality is still explicable as a consequence of its being a gradient. In the case

of electromagnetism, one can still understand the definition in Equation (17)

of Fmn as the antisymmetric part of the four-gradient of the vector potential

(of the target connection relative to an arbitrarily chosen flat reference con-

nection); although it is more insightful to appreciate that this is precisely the

definition of the curvature of the connection. Either way, however, the fact

36 Which, to be clear, is in accord with standard mathematical practice.
37 ‘Equivalent’ here meaning that they are isomorphic (not just equivalent) as categories.
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that Fmn is antisymmetric (Equation (18a)) and governed by the homogeneous

Maxwell equation (Equation (18b)) receives a satisfying explanation.

However, sophistication also raises its own questions. The major issue is

simply whether it really does succeed in implementing the idea that we should

get rid of ‘surplus’ (that is, symmetry-variant) structure. After all (someone

might say), surely the ontology postulated by the sophisticated version is

mostly the same as that of the original theory: a pair of properties in the

handedness case, an electrical potential in the electrostatic case, and a

vector potential (up to arbitrary choice of reference connection) in the elec-

tromagnetic case? So how on earth could it be the case that the sophisticated

theory is more parsimonious than the original, in the manner required by the

symmetry-interpretation link?

There are two components to the answer: one mathematical, and one more

metaphysical. The mathematical observation is that the standard way to ex-

plicate the idea of mathematical structure is via isomorphism: what it is for a

pair of mathematical objects to have the same structure is for them to be

isomorphic to one another (cf. Barrett [2015]; Swanson and Halvorson

[unpublished]; Weatherall [2016b]). Thus, insofar as we want to defend sophis-

tication’s credentials as genuinely ‘expurgating structure’, we can invoke stand-

ard mathematical usage in support. This doesn’t mean that there is no

alternative construal of ‘structure’ that would not be so kind to the sophisticate;

but the burden is on the opponent of sophistication to explain what that would

be, and to justify their departure from its accepted mathematical meaning.

The metaphysical answer is to get clear on what ontological commitment

has been relinquished in the passage from an unsophisticated to a sophisti-

cated semantics. Sophisticated substantivalism, the view that originally

inspired us, reconciles the existence of spacetime points with a denial of

world-multiplicity by appeal to anti-haecceitism.38 Anti-haecceitists about

spacetime points deny that spacetime points are ‘modally robust’: they deny

that there are worlds that instantiate the same distribution of qualitative

properties and relations over spacetime points, yet differ only over which

spacetime points play which qualitative roles.39 This suggests a correlative

metaphysical manoeuvre here. We should be anti-quidditists, and deny that

physical properties are modally robust. We should not believe that there are

worlds that instantiate the same structure in their laws, and differ only over

38 See (Pooley [2013]). Note that anti-haecceitism seems to be the doctrine relevant to applying

these kinds of thoughts to external symmetries, and anti-quidditism the doctrine required to

make this move for internal symmetries. I hope to expand upon this observation in future work.
39 This formulation is a little unhappy, since it doesn’t distinguish the anti-haecceitist from the

essentialist. If there is a difference between them, it comes out in what they say about what one

gets by ‘permuting’ the spacetime points whilst leaving the pattern of qualitative roles the same:

roughly, the essentialist thinks that this delivers an impossibility, while the anti-haecceitist

thinks that this delivers back the possibility with which we began.
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which properties play which nomological roles (see, for example, Hawthorne

[2001]; Lewis [2009]). As a result, when one has symmetries—that is, when

multiple properties in the theory play the same nomological role—their per-

mutation does not yield a new possibility.

Note that this should not be understood as the claim that symmetric proper-

ties ought to be identified with one another. The view is not that properties are

individuated by nomological profile, so that there can be no two properties

with the same profile.40 Rather, the view is that when there are two properties

with the same profile, there is no fact of the matter about which property-

instantiation in a given possible world is an instantiation of which property.

The handedness case illustrates this idea nicely: in each world, there are two

classes of congruence counterparts, each of which is the extension of a hand-

edness property; but there is no preferred way of matching up a congruence

class in one world with one in another world, that is, of identifying such pairs

of congruence classes as the extensions of ‘the same’ handedness property as

one another.41 That said, relative to an (arbitrarily chosen) identification of

the congruence class in one world with a congruence class in another, there is a

privileged way of identifying the remaining congruence classes: they had better

be identified with each other, since the distinction between the classes in each

model has to be preserved.

For local field theories, we think of the available values of a particular field

as the determinates of a determinable property (so this is a property of space-

time points); it is to these properties that we apply the anti-quidditist lesson.

So, in the case of electrostatics, we are anti-quidditist about the different

potential-values: we deny that there is a privileged way of identifying the

potentials-properties in one world with those in another. As with handedness,

this doesn’t mean collapsing all these properties into one (that is, taking all

points of � to represent the same property). It also doesn’t mean denying that

there might be privileged relative identifications (relative, that is, to some

initial arbitrary identification). For although there is a �-automorphism relat-

ing any two chosen points of �, there is not always a symmetry relating any

two chosen pairs of points in � (the pairs hf;f0i and hc;c0i can only be

mapped to one another by Equation (7) if f0 � f ¼ c0 � c). In the electro-

magnetism case, we can reckon that the available determinates for a spacetime

point are represented by the points in the fibre over (the R
4 point representing)

that spacetime point. Note that if we do so, we not only deny that there are

40 Compare the discussion in (Hawthorne [2001], Part 3). One could say that the two properties are

‘weakly discernible’ in (some appropriate generalization of) the sense of (Saunders [2003b]).
41 Note that the distinction doing the work here is whether it is possible to engage in transworld

identification of properties, not whether this transworld identification is mediated by a quiddity

or taken as primitive. This suggests that the ‘quidditism without quiddities’ of (Locke [2012]) is

not importantly different from quidditism with quiddities.
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privileged ways to identify such properties across worlds—we also deny that

there is a privileged way to identify such properties across spacetime points!42

5 Equivalence

We’ve now seen three forms that a theory can take (or more carefully, that a

formally interpreted theory can take): an unreduced and unsophisticated form

(let’s call it the vulgar form), in which there are symmetries relating non-

isomorphic models; a reduced form, in which there are no symmetries; and

a sophisticated form, in which symmetries relate isomorphic models. I now

want to look more closely at the relationships between these three forms. In

particular, let us look at the question of whether, and to what extent, these

theories can be regarded as equivalent.

The only formal criterion of equivalence that we have so far met with in this

article is that of translational equivalence. This criterion can only be applied to

theories formulated in the framework of first-order model theory.43 The only

two examples that we have of theories in this framework are the (vulgar)

handedness theory, TH, and its reduced counterpart, the congruence theory

TC. For these theories, we can make the following judgement: they are not

translationally equivalent, at least not under the dictionary map

F Cð Þ ¼ Lx6Lyð Þ _ Rx6Ryð Þð Þ: ð29Þ

For, as is easily seen, F
� is not a bijection. This is as far as translational

equivalence (strictly understood) can take us. None of the electrostatic or

electromagnetic theories were formulated in the framework of first-order

model theory, nor was the sophisticated handedness theory (since its seman-

tics are different). We therefore seek a more general framework, into which

both the first-order and field-theoretic cases might be enfolded.

Weatherall ([2016a]) has recently observed that category theory offers just

such a framework. In order to apply category-theoretic resources, we must

specify how to characterize the category of models for each theory; this amounts

to specifying what counts as a morphism between models. There is a reasonably

42 cf. (Maudlin [2007], Chapter 3). This will be a somewhat strange metaphysics: a possible world

does not consist in a distribution of properties over spacetime points (which would correspond

to a section of the bundle), but rather—very roughly—in a distribution of local counterpart

relations between infinitesimally nearby points (corresponding to a connection on the bundle).

However, this is an artefact of the fact that a connection on a principal bundle represents a ‘pure’

gauge field: a gauge field represented independently of any matter whose dynamics is condi-

tioned by the field. So it should be unsurprising that a solution of this pure theory turns out to

represent a pretty strange kind of world.
43 Although Glymour ([1970]), in the course of defending translational equivalence as necessary

for theoretical equivalence, does make some remarks on how it might be extended to local field

theories. (To be pedantic, Glymour’s concern is with definitional equivalence rather than trans-

lational equivalence; but as can be seen in (Barrett and Halvorson [2016]), the two notions

coincide for theories with disjoint vocabulary.)
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obvious candidate for the morphisms between models of our first-order theories:

the relevant notion of homomorphism, whether vulgar or sophisticated. So first,

consider the relationship between Mod THð Þ and Mod TCð Þ, considered as cate-

gories in this way. We know that the dictionary map F induces a map F
� on

models. Given any h : M!M0 in Mod THð Þ, let F�h just be h itself (considered

as a function on the base set; this prescription works because jF�Mj ¼ jMj). So

defined, F
� is easily shown to be a functor from Mod THð Þ to Mod TCð Þ.

However, it is not an equivalence of categories.44 More specifically, it is not

full: that is, there are objects M;M0 of Mod THð Þ such that the induced map

h 2 Hom M;M0ð Þ�F
�h 2 Hom F

�M;F�M0ð Þ is not surjective.

Proposition 4: F
� : Mod THð Þ!Mod TCð Þ is not full.

See the appendix for proof.

Second, consider the relationship between Mod TCð Þ and mod THð Þ—that is,

between the category of models of TC and the category of sophisticated models

of TH. Again, we can regard the dictionary map F as inducing a functor from

mod THð Þ!Mod TCð Þ; just to maintain notational hygiene, call this functor Fy.

Explicitly, for any m 2 mod THð Þ, let Fym be the �C-picture such that

. jFymj ¼ jmj

. For any a; b 2 jFymj; ha; bi 2 CF
ym if and only if a and b are members

of the same element of em �m½ �

For any h : m!n, let Fyh be the map H : jFymj!jFynj such that H¼ h1. It

is straightforward to verify that F
ym 2Mod TCð Þ, and that F

yh is a �C-

homomorphism—that is, that Fy really is a functor. This time, however, we have

Proposition 5: F
y is an equivalence of categories: it is full, faithful, and

essentially surjective.

See the appendix for proof.

Finally, what about the relationship between Mod THð Þ and mod THð Þ?

For any vulgar model M, let =�M be the sophisticated model such that

j=�Mj ¼ jMj;

�=
�M ¼ fL;Rg;

e=
�M Lð Þ ¼ LM;

e=
�M Rð Þ ¼ RM;

ð30Þ

44 Just to be clear, this is a distinct result from the fact that TH and TC are not definitionally

equivalent.
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and for any H : M!N, let =�H be such that =�Hð Þ1 ¼ H (considered as

maps on sets), and =�Hð Þ2 ¼ IdfL;Rg. We then find:

Proposition 6: =� : Mod THð Þ!mod THð Þ is not full.

See the appendix for proof.

So, we have the following results. First, mod THð Þ and Mod TCð Þ are

equivalent as categories; second, although we don’t have a demonstration

that Mod THð Þ is inequivalent to either mod THð Þ or Mod TCð Þ (since we have

not ruled out there is some appropriate functor between them), we have

at least shown that the obvious functors will not do the job. Let us now

consider local field theories. The relevant notion of morphism between functions

f : U!V and f 0 : U 0 !V 0 (where U and U 0, and V and V 0, are spaces in the

same category) is that of a pair of morphisms a : U!U 0and b : V!V 0;

morphisms, that is, in the ambient categories of the relevant spaces. Thus, for

the case of a local field theory equipped with a vulgar semantics (that is, inter-

preted with respect to functions of type R
n
!R

q), we find the following: the only

morphisms are pairs of the kind a ¼ IdR
n and b ¼ IdR

q !45 That is, we find that

the category of models of such a theory is always a discrete category.46

Let’s see how this plays out in the case of our electrostatic theories. First,

consider the relationship between the categories Mod TPð Þ and Mod TEð Þ. Let

G
� be the functor Mod TPð Þ!Mod TEð Þ whose action on models is given by

(taking the dual of) the definition of Equation (14); its action on morphisms is

simply G
� IdMð Þ ¼ IdG

�M , as required by functoriality (which suffices to de-

termine G
�, given that we are working with discrete categories). Second, con-

sider the relationship between mod TPð Þ and Mod TEð Þ. Let Gy be the functor

mod TPð Þ!Mod TEð Þ that acts on models via the dual of Equation (14), and

whose action on non-identity morphisms is as follows: given such a morphism

k : M!M0, it must be the case that k is a global potential shift, Equation (7),

so that GyM ¼ G
yM0; we take G

yk :¼ Id
G
yM . Finally, let K : R!� be any

bijection such that K�1 is a bijective embedding of � into R. We can then

define K
� : Mod TPð Þ!mod TPð Þ as the functor such that fK

�M
¼ K � fM

(and whose action on the only morphisms in Mod TPð Þ—the identity morph-

isms—is to take them to the corresponding identity morphisms in

mod TPð Þ).

45 The fact that there are so few morphisms between unsophisticated models is, of course, a

product of our decision to work with coordinatized spaces. Since such spaces are very highly

structured, there are very few structure-preserving maps. However, I don’t believe that the

results below hinge on this decision. (Indeed, the remarkable thing is that even in a relatively

austere categorical environment, we are still able to establish useful results.)
46 A category is discrete (at least, as I am using the term here) if and only if its only morphisms are

identity morphisms.
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We then obtain the following results, in analogy with Propositions 4, 5, and 6:

Proposition 7: G
� : Mod TPð Þ!Mod TEð Þ is not full.47

Proposition 8: G
y : mod TPð Þ!Mod TEð Þ is full, faithful, and surjective—

that is, it is an equivalence of categories.48

Proposition 9: K
� : Mod TPð Þ!mod TPð Þ is not full.

All proofs are given in the appendix. We can do more or less the same thing

for electromagnetism, establishing the same trinity of results.49 Again,

these do not indicate that there are no categorical equivalences between

Mod TPð Þ and either Mod TEð Þ or mod TPð Þ. Indeed, it seems plausible that

there will be some functors between these categories that enact such an

equivalence. For instance, any functor between Mod TPð Þ and Mod TEð Þ

that is bijective on objects will be an equivalence. However, I suspect that

any functor that is describable in appropriately systematic terms (that is,

that meshes appropriately with respect to the non-categorical characteriza-

tion of the models) will not be an equivalence. (Proving this formally would

have to await a precisification of ‘appropriately systematic’ or ‘meshes ap-

propriately’.) And we do unambiguously have the result that the categories

of sophisticated models come out equivalent to the relevant category of

reduced models.

All of this suggests some general (if vague) conjectures. Suppose that a

theory T admits some group G of symmetries (and that T is unsophisticated

with respect to G). Let T 0 be a reduction of T to some complete set of

G-invariants. Let Mod Tð Þ and Mod T 0ð Þ be the categories of models for

T and T 0, respectively, and let mod Tð Þ be a category of sophisticated models

for T. Finally, let’s say that a ‘reasonable’ functor is one that meshes appro-

priately with the architecture of the models (whatever exactly that gets made

out to mean).50 Then the following conjectures seem plausible:

. There is a reasonable functor F : mod Tð Þ!Mod T 0ð Þ that is full, faithful,

and essentially surjective.

. There are no reasonable functors from Mod Tð Þ to either Mod T 0ð Þor

mod Tð Þ that are full, faithful, and essentially surjective (or perhaps the

stronger claim: there are no such functors that are full).

47 cf. (Weatherall [2016b], Proposition 1).
48 cf. (Weatherall [2016b], Proposition 2).
49 For an explicit discussion of the case of electromagnetism, see (Weatherall [2016a], [2016b]).
50 At least in our examples, reasonableness seems to be a matter of being definable in terms of the

syntactic content (for example, being generated by a translation between two theories). Hence,

my emphasis on reasonableness accords with recent work on the sometimes-neglected virtues of

the syntactic view of theories (Halvorson [2012], [2013]; Lutz [2014a], [2014b]).
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Making these conjectures precise would require (i) a more thorough treatment

of how to characterize reduction and sophistication in category-theoretic

terms, and (ii) a clarification of the notion of ‘reasonableness’. I defer doing

so to future work; instead, let us consider the philosophical implications of

these technical observations.

Begin with the inequivalence between the reduced and unreduced theories

(under vulgar semantics). Prima facie, this may seem in tension with

Weatherall’s ([2016a], Section 5) claim that categorical equivalence (of cate-

gories of models) is ‘a criterion of equivalence that does capture the sense in

which [electromagnetism in terms of fields] and [electromagnetism in terms of

potentials] are synonymous’. However, there is no serious disagreement here.

The equivalence that Weatherall describes is between electromagnetism for-

mulated in terms of fields—what we have been calling TF—and electromag-

netism formulated in terms of potentials, when gauge transformations are

counted as morphisms in its category of models. In other words, the equiva-

lence described by Weatherall is precisely the equivalence between the reduced

theory, on the one hand, and the unreduced theory under the sophisticated

semantics, on the other.

However, this does highlight a reason why one has to be careful in the use of

categorical equivalence as a criterion for theory equivalence. Categorical

equivalence does not straightforwardly pronounce on the equivalence of the-

ories (conceived of syntactically, as sets of sentences), but rather on the

equivalence of theories relative to a certain way of characterizing the

models of a theory as a category. In other words, categorical equivalence is

a criterion that applies to theories together with a choice of semantics: change

the semantics (from a vulgar to a sophisticated semantics, for example) and

one will, in general, change the category of models. To be clear, all of this is

present in Weatherall’s discussion, albeit in a slightly different form. Whereas

I have emphasized the need to specify (not just a theory, but also) the semantic

structures one intends to use in formally interpreting the theory, Weatherall

([2016a], Section 5) speaks of constructing the category of models of a theory

in such a way that we appropriately privilege ‘maps that preserve the “physical

structure” of a model, in the sense that two models related by such a map are

physically equivalent’.56 I take these to be two ways of getting at the same idea.

If one intends to renounce commitment to a certain amount of structure in

one’s models as ‘unphysical’, then one had better also think that the role such

structure plays in determining the semantic content of the theory is inessential

and/or the product of arbitrary convention.

With these clarifications to hand, it does seem right to say that the reduced

and unreduced theories are not equivalent. Electromagnetism with fields and

electromagnetism with potentials can only feasibly be regarded as equivalent if

gauge symmetries are regarded as relating physically equivalent models; but to
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judge that they do so is precisely to affirm a commitment to sophisticated

rather than vulgar semantics as embodying the true commitments of the

theory.

However, what of the relationship between the reduced and sophisticated

categories of models? In what sense are sophistication and reduction equiva-

lent? In particular, one might be worried by the fact that I (apparently) intro-

duced sophistication about theories as an alternative to reduction—and,

I suggested, a superior one! So if there is indeed something to choose between

them, surely they can’t be equivalent after all?

Here is what seems to me like the right thing to say: The two theories are

equivalent in terms of their intensional ontology, in terms of the kinds of

structures that they postulate as present in any world aptly described by

them; but they differ in their explanatory structure. Electrostatics in terms

of sophisticated potentials, and electrostatics in terms of fields, both agree that

there is a physically significant irrotational vector field; and both agree that

this field (as with any such field) is representable as the gradient of a scalar

field—provided that that scalar field is defined only up to potential shifts, or

(equivalently) that it take values in � rather than R. However, they disagree

over what kind of explanation can be given of why this vector field is irrota-

tional. For the theory in terms of fields, its irrotationality is simply a brute

fact—a fact that usefully permits the field’s representation as a certain kind of

gradient, but not arising from anything else. For the theory in terms of sophis-

ticated potentials, the field is the derivative object, and so admits of an ex-

planation in terms of what is fundamental (that is, the potential): it is

irrotational because it is a gradient, and gradients always have vanishing curl.

As a result, whether the two theories are ‘really’ equivalent will turn on what

one wants to say about the role of explanation in theory equivalence. On some

accounts, two theories cannot be equivalent if they offer different explanations

of the phenomena (see, for example, Putnam [1983]; Schroeren [unpublished]).

This will be particularly true if one is inclined to view explanations of this sort

as arising from some kind of ontological structure out there in the world, such

as if one is committed to some notion of grounding—conceived of as a genuine

part of the world’s architecture, and responsible for answering in-virtue-of

questions (for example, ‘in virtue of what is the electric field irrotational?’).51

If, however, one is sceptical of grounding (and cognate notions), then there is

space for some more quietist or deflationary attitude towards the relevant

explanations. On this kind of view, there need not always be some fact of

the matter about what kind of explanatory architecture is correct. It is cer-

tainly illuminating to see that some feature in a theory can be explained by

another, if the theory is set up a particular way; but (in general) there is no

51 See, for example, the essays in (Correia and Schnieder [2012]).
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compulsion towards setting the theory up one way rather than another, or

towards accepting one pattern of explanation among its parts as uniquely

privileged.52

On either account, though, the case can be made for valuing sophistication

over reduction. On some more realist account of explanation (for example, the

grounding account), the explanatory virtues of sophistication make it more

likely to be the correct account of the (objective) grounding structure of the

world. On a more deflationary picture, those virtues make it a more helpful or

convenient way of characterizing the structure of the world; even if a reduced

theory is picking out the same structure, it will generally do so in a less tract-

able way. And of course, both accounts will appreciate the fact that sophis-

tication is typically easier to come by than reduction.

6 Conclusion

To wrap up, I will make two remarks about what I have sought to do in this

article—and a comment on something I’ve not done, but that would be worth

doing. The main aim has simply been to convince you that fixating on reduction

as the only acceptable means of dealing with symmetries is a mistake.53 If, as

I’ve argued, sophistication rather than reduction is a legitimate way to seek to

expurgate symmetry-variant structure, then a number of interesting conse-

quences follow. One is that carrying out that expurgation becomes (in general)

somewhat more straightforward: if all we are required to do is provide a sophis-

ticated understanding of the theory (especially if we do so using the external

method), then our lives are made substantially easier than if we need to find a

reduced theory. Moreover, with more expurgatory options on the table, we can

open up new approaches to classic problems concerning symmetry. The debate

on the Aharonov–Bohm effect, for example, is often characterized as requiring

us to choose between a trilemma of unpalatable ontologies: a locally acting and

separable (but not gauge-invariant) ontology of potentials; a locally acting and

gauge-invariant (but non-separable) ontology of holonomies; or a separable

and gauge-invariant (but non-locally acting) ontology of fields.54 But the argu-

ment here suggests another option: adopting the ‘sophisticated’ ontology of

connections of a principal bundle (or, more carefully, of whatever the meta-

physical correlate of such a connection is).55 I don’t claim that doing so will

52 I read Weatherall’s ‘puzzleball’ account of the foundations of physical theories (Weatherall

[2012]) as expressing this kind of picture; it is also closely related to Cartwright’s ‘dappled-world’

conception of inter-theoretic relationships (Cartwright [1999]).
53 In this regard, cf. (Pooley [2013]; Weatherall [2016b], [forthcoming]).
54 In the sense of having no ‘action at a distance’.
55 cf. Footnote 42.
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magically resolve these problems; but it at least enlivens the conceptual

geography.56

Second, on a more methodological note, I claim that the above illustrates

the value of an eclectic approach to formalisms. Rather than alighting on

some framework—first-order logic, differential geometry, category theory,

or whatever—as the be-all and end-all, we should be pluralistic about what

tools are best applied to the formal study of scientific theories. For example,

if we want a tight grip on how the derivable consequences of some axioms

relate to the models of those axioms, then we should make use of model

theory; but, we should bear in mind that virtually no realistic theory will be

expressible in those terms. If we want to abstract away and apply a uniform

condition for equivalence, then we should characterize our theories as

categories; but we should bear in mind that not all of the essential informa-

tion about a theory is likely to reside in that category we have rendered it as.

By shifting between methods and means as circumstances demand, we can

discern similarities and analogues between different formalisms, and

use these to cross-fertilize our investigations into one area with insights

from another.

Finally, something I’ve not touched on here is the issue of quantization. In

the context of gauge theory, one standard reason to reduce a theory is in

preparation for quantizing it. How this process should be undertaken,

and how it is to be understood, are longstanding topics of discussion in

philosophy of physics.57 So a natural question is how sophistication and

quantization relate to one another. Can a sophisticated theory be quantized

in the same way a reduced theory can? And if so, is the same quantum

theory obtained as a result? Although these are important and interesting

questions, there is no space to address them here; I leave them for future

work.

Appendix

Proposition 1: Suppose that we have translations D : T1!T2 and

D
0 : T2!T1. Then D andD

0 implement a translational equivalence between

T1 and T2 if and only if D
� is a bijection Mod T2ð Þ!Mod T1ð Þ, with D

0
ð Þ

�

as its inverse.

56 In the Aharonov–Bohm case, for instance, there will be significant subtleties about the sense in

which connections are separable: note that specifying a connection on a region U, and a con-

nection on an overlapping region V, generally underdetermines the connection on U [ V

(absent information about how things stand in U [ V ).
57 See, for example, (Henneaux and Teitelboim [1992]; Thébault [2012]; Pitts [2014]).
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Proof

First, it is easy to establish by induction that for any �2-picture M, any �1-

formula f, and any variable-assignment v over jMj,

M �v Df() D
�M �vf: ð31Þ

Now, assume first that D andD
0 implement a translational equivalence be-

tween T1 and T2. I show that for any M 2Mod T2ð Þ; D
0

ð Þ
�
D
�M ¼M, that is,

that D
0

ð Þ
�
D
� acts on Mod T2ð Þ as the identity. The proof that D� D0ð Þ

�
acts on

Mod T1ð Þ as the identity goes similarly.

So consider any such M. We have immediately that j D0ð Þ
�
D
�Mj ¼

jD
�Mj ¼ jMj. So now consider any relation-symbol p 2 �2. By the above

lemma,

D
0

ð Þ
�
D
�M �v px if and only if D

�M �vD
0px

if and only if M �v DD
0px:

But since M �T2 andD;D0 implement a translational equivalence,

M � 8x px$ DD
0pxð Þ;

and so M �v DD
0px if and only if M �v px, for any assignment v. Thus,

p D
0

ð Þ
�
D
�M ¼ pM . Thus, D

0
ð Þ

�
D
�M ¼M.

Now, assume that D�and D
0

ð Þ
�

are mutually inverse. I show that for any

�2-formulae  ,

T2 ‘8x c xð Þ $ DD
0c xð Þð Þ: ð32Þ

So suppose that Equation (32) did not hold. Then there would be

some model M of T2 such that M � 8x c xð Þ $ DD
0c xð Þð Þ—that is, such

that for some variable-assignment v for M, either M �v c and M �= vDD
0c,

or vice versa. But by the above lemma, M �v c if and only if M �vDD
0c.

So by reductio, Equation (32) holds. By similar reasoning, we can show

that the parallel claim for T1 holds; hence, D andD
0 are a translational

equivalence. w

Proposition 2: Suppose that f is logically equivalent to Ef, let m be a de-

handed picture, and let v be a first-order variable-assignment for m. Then

for any second-order variable-assignments V and V 0 for m,

m �V ; vf if and only if m �V 0; vf: ð25Þ

Proof

Clearly, there only are two second-order variable-assignments for m (since �m

has only two members); so unless V ¼ V 0 (in which case the proposition is
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trivial), then we have that V Lð Þ ¼ V 0 Rð Þ and V Rð Þ ¼ V 0 Lð Þ. Let

M and M0 be �H -pictures defined as follows:

jMj ¼ jM0j ¼ jmj; ð33aÞ

LM ¼ em V Lð Þð Þ; ð33bÞ

RM ¼ em V Rð Þð Þ; ð33cÞ

LM0

¼ em V 0 Lð Þð Þ ¼ em V Rð Þð Þ ¼ RM; ð33dÞ

RM0

¼ em V 0 Rð Þð Þ ¼ em V Lð Þð Þ ¼ LM : ð33eÞ

In other words, M0 ¼ E
�M. But clearly, m� V ;vf if and only if M �vf, and

m� V 0;vf if and only if M0
�vf. Hence (suppressing reference to v), m� Vf

if and only if M �f if and only if M �Ef if and only if E
�M �f if and

only if M0
�f if and only if m� V 0f. w

Proposition 3: Suppose that f is equivalent modulo TH to Ef, let m be a

de-handed model of TH, and let v be a first-order variable-assignment for

m.58 Then for any second-order variable-assignments V and V 0 for m,

m �V ; vf if and only if m �V 0; vf: ð26Þ

Proof

As above, but restricting to models of TH.

Proposition 4: F
� : Mod THð Þ!Mod TCð Þ is not full.

Proof

Let M be as follows:

jMj ¼ f0; 1; 2g;

LM ¼ f0g;

RM ¼ f1; 2g:

Since F
�M ¼ F

�
E
�Mð Þ, we know that IdF

�M 2 Hom F
�M;F� E�Mð Þð Þ. If

there was some h : M!E
�M such that F�h ¼ IdF

�M , then h would need to

act as the identity on the underlying set jMj. But there is no homomorphism

from M toE
�M that does this. So there is no such h; thus, the induced map is

not surjective. w

58 Where, again, E is the ‘handedness swap’ map in Equation (3).
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Proposition 5: F
y is an equivalence of categories: it is full, faithful, and

essentially surjective.

Proof

First, I introduce a helpful abbreviation. For any m 2 mod THð Þ, and any a 2 j

mj; a is in the extension of one element of �m or the other (but not both). So let

am denote the element of �m of whose extension a is a member (that is, let am

denote the chirality of a).

Now, consider any m; n 2 mod THð Þ, and let H be any homomorphism from

F
ym toF

yn. Now define h1 : jmj!jnj by the condition that h1 ¼ H (as a map

on sets). Then, letting a be some arbitrary element of jmj, define h2 : �m!�n

as the (unique) bijection such that h2 amð Þ ¼ h1 að Þð Þ
n; it is easily seen that this

does indeed uniquely determine h2, and that it does so independently of the

choice of a. So, for each q 2 �m and any b 2 jmj, if b 2 em qð Þ, then bm ¼ q, so

h2 qð Þ ¼ h1 bð Þð Þ
n, so h1 bð Þ 2 h2 qð Þ. Thus, h :¼ h1; h2ð Þ is a homomorphism

m!n, and H ¼ F
yh. So F

y induces a surjective map on morphisms between

any m and n, that is, Fy is full.

Now consider any m; n 2 mod THð Þ, and let h; h0 : m!n such that

F
yh ¼ F

yh0. Clearly, h1 ¼ h1
0. Furthermore, since h and h0 are homomorph-

isms, it follows that for any a 2 jmj; h2 amð Þ ¼ h1 að Þð Þ
n
¼ h01 að Þ
� �n

¼ h02 amð Þ;

hence, h02 ¼ h2. So h ¼ h0. So F
y induces an injective map on morphisms be-

tween any m and n, that is, Fy is faithful.

Finally, let M by any member of Mod TCð Þ. Define a de-handed picture m by

setting jmj ¼ jMj, letting the members of �m be the two congruence classes in

M, and setting em to the identity. Clearly, Fym ¼M. So F
y is surjective, and

therefore essentially surjective. w

Proposition 6: =� : Mod THð Þ!mod THð Þ is not full.

Proof

It is clear by inspection that =� ¼ F
y

� ��1
� F
�; hence, since F

� is not full and

F
y

� ��1
is an equivalence, =� is not full either. w

Proposition 7: G
� : Mod TPð Þ!Mod TEð Þ is not full.59

Proof

Let C� be the functor on Mod TPð Þ induced by the symmetry transformation in

Equation (7). Let M be any model of TP. Given the set-up, we know that

C
�M 6¼M, and hence that Hom M;C�Mð Þ ¼1. Yet we also know that

G
�
C
�Mð Þ ¼ G

�M, and hence that Hom G
�
C
�Mð Þ;G�Mð Þ 6¼1 (since it

59 cf. (Weatherall [2016b], Proposition 1).
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contains IdG
�M). So, the map on arrows induced by G

� is not surjective for the

pair of objects M;C�M—that is, G� is not full. w

Proposition 8: G
y : mod TPð Þ!Mod TEð Þ is full, faithful, and surjective—

that is, it is an equivalence of categories.60

Proof

Consider any m; n 2 mod TPð Þ, and let H by any morphism from G
ym toG

yn.

It must be the case that H ¼ Id
G
ym (since Mod TEð Þ is discrete). So there are

two possibilities: either m¼ n, or m and n are related by some global potential

shift k. If the former, then G
yIdm ¼ Id

G
ym; if the latter, then G

yk ¼ Id
G
ym.

Either way, therefore, Gy induces a surjective map on arrows between m and n;

so G
y is full.

Now consider any m; n 2 mod TPð Þ, and any morphisms h; h0 : m!n. If

m¼ n, then Hom m; nð Þ ¼ fIdmg; if m 6¼ n, then Hom m; nð Þ ¼ fkgwhere k is

the (unique) global potential shift relating them; either way, h ¼ h0. So (trivi-

ally) if G
yh ¼ G

yh0, then h ¼ h0. So G
y induces an injective map on arrows

between m and n; so G
y is faithful.

Finally, let M 2Mod TEð Þ. As already discussed, for any such model there is

some m 2 mod TPð Þ such that Gym ¼M. So G
y is surjective, and hence essen-

tially surjective. w

Proposition 9: K
� : Mod TPð Þ!mod TPð Þ is not full.

Proof

It is clear by inspection that K� ¼ G
y

� ��1
� G
�. Since G� is not full, and G

y
� ��1

is an equivalence, K� is not full. w
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