
Chapter 7

Dimensioned Algebra and Geometry

As a motivation for the mathematical definitions that will be introduced in this chapter, let us begin by briefly
discussing the use of physical quantities in classical thermodynamics. It can be determined empirically that there
are four parameters that uniquely characterise the state of a gas, its pressure P , volume V , amount of matter N
and temperature T , and that they can all be measured independently by comparison to some reference unit, for
example an atmosphere atm, a litre L, a mol and a Kelvin K, respectively. The gas under study will then have
a state specified by (P = p atm, V = v L, N = nmol, T = tK) with p, v, n, t R-valued variables. By assuming, for
instance, the ideal gas law to model the equilibrium behaviour of the gas, one can derive other physical quantities
such as the energy U = PV N−1, carrying units atm·L/mol, or the entropy E = PV N−1T−1, carrying units
atm·L/mol/K. In general, any measurable physical quantity defined for the state of the gas will be of the form
Q = q P aV bN cT d for some q ∈ R and a, b, c, d ∈ Z. The product of two physical quantities Q and Q′ is then
given by

Q ·Q′ = qq′ P a+a
′
V b+b

′
N c+c′T d+d

′
,

and two such quantities can be added together to form Q+Q′ only when a = a′, b = b′, c = c′ and d = d′.

The goal of this chapter is to develop a precise mathematical formalism that encapsulates the formal properties
of physical quantities as commonly used in practical science and engineering (see [BI96, Chapter 1] for a standard
modern reference in dimensional analysis and [Har12] for an attempt at extending the notions of dimensional
analysis to linear algebra and calculus). It was argued in our historical note of Section 3.3 that the algebraic
building blocks of the standard formulation of modern physical theories, i.e. fields, vector spaces, groups, etc.,
were originally conceived without any consideration of the natural structure of physical quantities and with an
emphasis on endowing abstract sets with total binary operations, i.e. algebraic operations defined for all pairs of
elements. As exemplified in the previous paragraph, the two distinguishing formal features of physical quantities
are:

• The presence of a set of dimensions or, more concretely, units of measurement, indexing the set of all
physical quantities which, furthermore, carries a partial operation given by addition of physical quantities
of homogeneous dimensions.

• The set of physical quantities also carries a total operation, given by multiplication, and the set of dimensions
carries an abelian group structure, in the example above simply Z

4, with a natural compatibility condition
between the two, seen explicitly in the formula for Q ·Q′ in the example above.

It is no surprise, then, that the structures of conventional algebra, based on single abstract sets endowed with total
operations, prove insufficient to capture the essential algebraic properties of physical quantities. The definitions
in the sections to follow are directly motivated by these two characteristic features of the formal manipulation of
physical quantities.
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7.1 Dimensioned Groups, Rings and Modules

Let us begin by introducing the general notion of dimensioned set as an abstract set A together with a surjective
map α : A→ D onto another abstract set D, called the dimension set of A. We will commonly use the notation
AD for a dimensioned set A with dimensions D. The surjective map induces a partition of A by preimages
Ad := α−1(d) ⊂ A that are called the subsets of homogeneous dimension. An element a ∈ Ad is said to have
dimension d ∈ D. A map between dimensioned sets Φ : AD → BE is called a morphism of dimensioned
sets if subsets of homogeneous dimension of A are mapped into subsets of homogeneous dimension of B, in other
words, there exists a map between the dimension sets φ : D → E such that the following diagram commutes

A B

D E

Φ

α β

φ

the map φ will be called the dimension map. Clearly, dimensioned sets with the notion of morphism introduced
above form a category, we call it the category of dimensioned sets and denote it by DimSet.

Groups are the first class of algebraic structures that we generalize to the dimensioned setting. A dimensioned
set AD is called a dimensioned group if there is a partial binary operation · on A that, upon restriction,
induces a group structure on each of the homogeneous subsets (Ad, ·|Ad

). We shall denote dimensioned groups by
(AD, ·D). A dimensioned morphism between dimensioned groups Φ : AD → BE is called a dimensioned group
morphism when the restrictions to the homogeneous subsets Φ|Ad

: Ad → Bφ(d) are group morphisms for all
d ∈ D. The notion of dimensioned group is a direct generalization of the ordinary notion of group as one recovers
the defining axioms of group when D is a set with a single element. It clearly follows from our definition that
dimensioned groups with dimensioned group morphisms form a subcategory of DimSet that we call the category
of dimensioned groups and denote it by DimGrp.

Let (AD, ·D) be a dimensioned group, then the subset 0D := {0d ∈ (Ad, ·d), d ∈ D} is called the zero of AD.
A subset S ⊂ AD is called a dimensioned subgroup when S ∩ Ad ⊂ (Ad, ·d) are subgroups for all d ∈ D. A
dimensioned subgroup S ⊂ AD is clearly a dimensioned group with dimension set given by α(S). We can define
the kernel of a dimensioned group morphism Φ : AD → BE in the obvious way

ker(Φ) := {ad ∈ AD| Φ(ad) = 0φ(d)},

then clearly ker(Φ)D ⊂ AD is a dimensioned subgroup. A dimensioned subgroup S ⊂ AD whose homogeneous
intersections S ∩Ad ⊂ (Ad, ·d) are normal subgroups also induces a natural notion of quotient:

AD/S :=
⋃

d∈α(S)
Ad/(S ∩Ad)

which has an obvious dimensioned group structure with dimension set α(S). There is also a natural notion of
product of two dimensioned groups AD, BE given by

α× β : A×B → D × E

with the partial multiplication defined in the obvious way

(ad, be) ·(d,e) (a′d, b′e) := (ad ·d a′d, be ·e b′e).

A dimensioned group is called abelian when all its homogeneous subsets are abelian groups. As an example of a
familiar class of objects that displays this kind of structure, we note that vector bundles can be seen as dimensioned
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groups where the fibre-wise vector addition gives the partial abelian group multiplication and the base manifold
is the set of dimensions. An abelian dimensioned group A with set of dimensions D will be denoted by (AD,+D).
These clearly form a subcategory of DimGrp that we call the category of dimensioned abelian groups and
denote it by DimAb. Abelian dimensioned groups display structures analogous to those of ordinary abelian groups
when we fix a dimension set D and we consider dimension-preserving morphisms, i.e. dimensioned group
morphisms Φ : AD → BD for which the induced map on the dimension sets is the identity idD : D → D.
Abelian dimensioned groups over a fixed dimension set D together with dimension-preserving morphisms form a
subcategory DimAbD ⊂ DimAb that, in addition to the notions of subgroup, kernel and quotient of the general
category DimGrp, admits a direct sum defined as AD ⊕BD := (A ×α β B)D with partial multiplication given in
the obvious way

(ad, bd) +d (a
′
d, b

′
d) := (ad +d a

′
d, bd +d b

′
d).

It is easy to prove that this direct sum operation on DimAbD acts as a product and coproduct for which the
notions of kernel and quotient identified in the general category DimGrp satisfy the axioms of abelian category.
We call DimAbD the category of D-dimensioned abelian groups.

Another similarity between abelian dimensioned groups and ordinary abelian groups is that the sets of morphisms
carry a natural dimensioned group structure. Indeed, if we consider a pair of dimensioned group morphisms
between abelian dimensioned groups Φ,Ψ : (AD,+D)→ (BE ,+E) with dimension maps φ, ψ : D → E, we could
attempt to define

(Φ + Ψ)(ad) := Φ(ad) +e Φ(ad)

but we will have to choose e ∈ E in a way that is consistent with the dimension maps. This is clearly achieved
by setting φ(d) = e = ψ(d), thus addition of dimensioned morphisms is only defined for pairs of dimensioned
morphism covering the same dimension map. If we denote by Map(D,E) the set of maps between the dimension
sets, we clearly see that the set of dimensioned group morphisms between AD and BE has a structure of a
dimensioned group with dimension set given by the set of maps between the dimension sets D and E. This will
be called the dimensioned group of morphisms and we will denote it by (Dim(AD, BE)Map(D,E),+Map(D,E))
or for a single dimensioned group Dim(AD)Map(D) := Dim(AD, AD)Map(D,D).

Taking inspiration from the definition of a conventional ring as an abelian group with a compatible multiplication
operation, we define dimensioned ring as a dimensioned abelian group RG whose dimension set G carries a
monoid structure (with multiplication denoted by juxtaposition) and with a total binary operation, called the
dimensioned multiplication · : RG ×RG → RG, satisfying the following axioms

1) a · (b · c) = (a · b) · c,
2) ∃! 1 ∈ RG| 1 · a = a = a · 1,
3) ρ(a · b) = ρ(a)ρ(b),

4) (a+ a′) · b = a · b+ a′ · b,
for all a, a′, b, c ∈ RG with ρ(a) = ρ(a′) and where ρ : R → G denotes the surjective dimension map. Note that
in order to demand this list of axioms of a multiplication operation · : RG × RG → RG in consistency with the
dimensioned structure, the presence of a monoid structure on G is necessary. A dimensioned ring will be denoted
by (RG,+G, ·) and we will employ the subindex notation ag ∈ RG to keep track of the dimensions of elements.
Using the explicit index notation, axiom 4) reads

(ag +g a
′
g) · bh = ag · bh +gh a′g · bh.

It follows immediately from these axioms that the dimensioned zero 0G acts as an absorbent subset in the following
sense

0g · ah = 0gh,
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that the multiplicative identities are mapped to each other

ρ(1) = e ∈ G,

and that the homogeneous subset over the monoid identity forms an ordinary ring with the restricted operations
(Re,+e, ·|Re), we call it the dimensionless ring of RG. We see that a dimensioned ring can be simply
understood as a dimensioned abelian group with a monoid structure projecting to the dimension set and that
is distributive with respect to the dimensioned addition defined on homogeneous subsets. A dimensioned ring is
called commutative when the monoid structures are commutative. For the reminder of this thesis dimensioned
rings will be assumed to be commutative unless otherwise stated.

Let (RG,+G, ·) and (PH ,+H , ·) be two dimensioned rings, a dimensioned group morphism Φ : RG → PH is called
a morphism of dimensioned rings when

Φ(a · b) = Φ(a) · Φ(b), Φ(1RG
) = 1PH

for all a, b ∈ RG. The map between the dimension monoids φ : G→ H is, then, necessarily a monoid morphism.
Note that, from the general definition of dimensioned morphism, homogeneous subsets RG are mapped into
homogeneous subsets of PH :

Φ(Rg) ⊂ Pφ(g).

In particular, a dimensioned ring morphism induces a morphism of ordinary rings over the identity

Φ|Re : (Re,+e, ·|Re)→ (Pφ(e),+φ(e), ·|Pφ(e)
).

We thus identify dimensioned rings with these morphisms as the category of dimensioned rings and denote
it by DimRing. We note again that, as in the general case of dimensioned groups above, setting the dimension
monoids to the trivial monoid in all the above instances the usual basic definitions and results for ordinary rings
are recovered. It is clear then that we can regard the category of ordinary rings as a subcategory of dimensioned
rings Ring ⊂ DimRing.

An abelian dimensioned subgroup S ⊂ RG is called a dimensioned subring when S · S ⊂ S and 1 ∈ S. A
dimensioned subring I ⊂ RG is called a dimensioned ideal if for all elements ag ∈ RG and ih ∈ I we have

ag · ih ∈ I ∩Rgh.

This condition ensures that the general construction of quotient by an abelian dimensioned subgroup applied to
the case of an ideal gives the dimensioned quotient ring RG/I in a natural way. If we denote Ig := I ∩ Rg,
the dimensioned quotient ring multiplication is explicitly checked to be well-defined:

(ag +g Ig) · (bh +h Ih) = ag · bh +gh ag · Ih +gh bh · Ig +gh Ig · Ih = ag · bh +gh Igh.

A choice of units u in a dimensioned ring RG is a splitting of the dimension projection

R

G

ρ u ρ ◦ u = idG, such that ugh = ug · uh, ug 	= 0g

for all g, h ∈ G. In other words, a choice of units is a splitting of monoid morphisms u : G → R with non-zero
image. Choices of units can be regarded as the dimensioned generalization of the notion of non-zero element of
a ring with the caveat that they may not exist due to the non-vanishing condition being required for all of G. It
was noted above that vector bundles give examples of dimensioned rings, then, considering the Moebius band as
a dimensioned ring with dimension set the abelian group U(1) and the zero multiplication operation, we find an
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explicit example of a dimensioned ring that does not admit choices of unit.

As first examples of dimensioned rings we have already mentioned ordinary rings and vector bundles with the zero
multiplication. Another important example is given by pairs of ordinary rings and monoids: let R be a ring and
G a monoid, then the Cartesian product R × G carries a natural dimensioned ring structure, called the trivial
dimensioned ring R with dimensions in G, defined in the obvious way

pr2 : R×G→ G (a, g) +g (b, g) := (a+ b, g), (a, g) · (b, h) := (a · b, gh).

A dimensioned ring RG is called a dimensioned field when

∀a /∈ 0G ∃a−1| a · a−1 = 1 = a−1 · a,

note that for this requirement to be consistent with the dimension projection the monoid structure of G must be a
group structure, for this reason G will be called the dimension group of the dimensioned field. It is easy to see that
multiplicative inverses of a dimensioned field are mapped into inverses of the dimension group ρ(a−1) = ρ(a)−1.

A direct consequence of the defining condition of dimensioned field is that non-zero elements induce group
isomorphisms between homogeneous subsets. Indeed, for a non-zero element 0g 	= ag ∈ RG we have the following
maps

ag· : Rh → Rgh

bh �→ ag · bh,

which are group morphisms from axiom 4) of dimensioned rings and are invertible with inverse given by a−1g ·.
These maps allow to prove a general result that confers a role to choices of unit on dimensioned fields similar to
that of a trivialization of a fibre bundle.

Proposition 7.1.1 (Choices of Units in Dimensioned Fields). Let (RG,+G, ·) be a dimensioned field, then a
choice of units u : G→ R induces an isomorphism with the trivial dimensioned field Re with dimensions in G:

RG ∼= Re ×G.

Proof. We can explicitly construct the following map

Φu : Re ×G→ RG

(r, g) �→ ug · r,

which is a clearly bijective morphism of dimensioned abelian groups from the fact that it is constructed with the
group isomorphisms ug· for all the values of the choice of units u. It only remains to check that it is indeed a
dimensioned ring morphism, this follows directly by construction and the fact that u is a morphism of monoids:

Φu((r1, g) · (r2, h)) = Φu((r1 · r2, gh)) = ugh · r1 · r2 = ug · uh · r1 · r2 =
= (ug · r1) · (uh · r2) = Φu(ug · r1) · Φu(uh · r2).

This last proposition shows that the dimensioned fields for which choices of units exist are (non-canonically)
isomorphic to the trivial dimensioned fields F×G with F an ordinary field and G an abelian group.

Let us consider again a general a dimensioned ring (RG,+G, ·). Recall from our discussion above that the
dimensioned morphisms from RG into itself form an abelian dimensioned group (Dim(RG)Map(G),+Map(G)) where
Map(G) denotes the set of maps from G into itself. The presence of the dimensioned ring multiplication allows
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for the definition of the following module-like structure

· : RG ×Dim(RG)→ Dim(RG)

defined via
(ag · Φ)(bh) := ag · Φ(bh).

We note that ag · Φ is a well-defined dimensioned morphism from the fact G acts naturally on Map(G) by
composition with the left action of G on itself, indeed the if φ : G → G is the dimension map of Φ, then ag · Φ
has dimension map Lg ◦ φ : G → G. It follows directly from the axioms of the dimensioned ring multiplication
that that this operation satisfies the usual linearity properties of the conventional notion of RG-module with the
caveat that addition is only partially defined.

Recall now that products and direct sums of general abelian dimensioned groups can be taken so, considering the
abelian dimensioned group part of a dimensioned ring (RG,+G, ·), we can form the product RG × RG, which is
an abelian dimensioned group with dimension set G × G, or the direct sum RG ⊕G RG, which is a dimensioned
abelian group with dimension set G. In both cases we can form module-like maps by setting

ag · (bh, ck) := (ag · bh, ag · ck), ag · (bh ⊕ ch) := ag · bh ⊕ ag · ch.

These module-like actions preserve the dimensioned structure from the fact that, in the first case, G acts diagonally
on G×G and, in the second case, G acts on itself by left multiplication. Furthermore, from the defining axioms
of dimensioned ring, these maps satisfy the usual linearity properties of the conventional notion of RG-module
with the caveat that addition is only partially defined.

These examples motivate the definition of dimensioned modules: let (RG,+G, ·) be a dimensioned ring and
(AD,+D) a dimensioned abelian group, then AD is called a dimensioned RG-module if there is a map

· : RG ×AD → AD

that is compatible with the dimensioned structure via a monoid action G ×D → D (denoted by juxtaposition)
in the following sense

rg · ad = (r · a)gd
and that satisfies the following axioms

1) rg · (ad + bd) = rg · ad + rg · bd,

2) (rg + pg) · ad = rg · ad + pg · ad,

3) (rg · ph) · ad = rg · (ph · ad),

4) 1 · ad = ad

for all rg, ph ∈ RG and ad, bd ∈ AD. Note that these four axioms for a map · : RG × AD → AD can only
be demanded in consistency with the dimensioned structure in the presence of a monoid action G × D → D.
With this definition at hand, we recover the motivating examples for a dimension ring RG introduced above:
the dimensioned module of dimensioned morphisms Dim(RG) is clearly a dimensioned RG-module with
dimension set Map(G); the product RG × RG is a dimensioned RG-module with dimension set G × G; and the
direct sum RG ⊕G RG is a dimensioned RG-module with dimension set G.

Let (AD,+D) and (BE ,+E) be two dimensioned RG-modules, a morphism of abelian dimensioned groups Φ :
AD → BE is called RG-linear if

Φ(rg · ad) = rg · Φ(ad)
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for all rg ∈ RG and ad ∈ AD. Note that this condition forces the dimension map φ : D → E to satisfy

φ(gd) = gφ(d)

for all g ∈ G and d ∈ D, in other words, the dimension map φ must be G-equivariant with respect to the monoid
actions of the dimension sets D and E. Let us denote the set of G-equivariant dimension maps as

MapG(D,E) := {φ : D → E| φ ◦ g = g ◦ φ, ∀g ∈ G},

then it follows that the dimensioned group of morphisms Dim(AD, BE)Map(D,E) contains a dimensioned subgroup
of morphisms covering G-equivariant dimension maps for which the following dimensioned module map can be
defined

(rg · Φ)(ad) := rg · Φ(ad) = Φ(rg · ad).
This clearly makes Dim(AD, BE)MapG(D,E) into a dimensioned RG-module, we shall call this the dimensioned
module of RG-linear morphisms.

Let (AD,+D) be a dimensioned RG-module, an abelian dimensioned subgroup S ⊂ AD is called a dimensioned
submodule if

rg · sd ∈ S ∩Agd
for all rg ∈ RG and sd ∈ S. All the notions introduced at the beginning of this section for general abelian
dimensioned groups, e.g. direct sums, products, quotients, etc., apply to dimensioned RG-modules in particular.
Furthermore, given a dimensioned submodule S ⊂ AD that is a dimensioned I-module for I ⊂ RG a dimensioned
ideal, there is a natural notion of dimensioned quotient module AD/S with dimensioned ring given by the
dimensioned quotient ring RG/I.

As in the case or ordinary modules, Dimensioned modules admit a tensor product construction: Let (AD,+D)
and (BE ,+E) be two dimensioned RG-modules, then we define their dimensioned tensor product as

AD ⊗RG
BE := RG • (AD ×BE)/ ∼

where RG • (AD × BE) denotes the free abelian dimensioned group of pairs (ad, be) with coefficients in RG and
∼ denotes taking a quotient with respect to the following relations within the free abelian dimensioned group

(ad + a′d, be) = (ad, be) + (a′d, be), (ad, be + b′e) = (ad, be) + (ad, b
′
e), (rg · ad, be) = (ad, rg · be).

Note that these are the same relations used to define the tensor product of ordinary modules with the added
caveat that addition is only partially defined. This construction clearly makes AD ⊗RG

BE into a dimensioned
RG-module with dimension set D × E and monoid G-action given by the diagonal action. The dimensioned
tensor product so defined makes the abelian category of dimensioned RG-modules into a monoidal category with
the tensor unit given by RG. Particularly, this definition makes the dimensioned tensor product distributive
with respect to the dimensioned direct sum since it easy to check directly from the definition that, for three
dimensioned RG-modules AD, BD and CE , there is a canonical RG-linear isomorphism

(AD ⊕D BD)⊗RG
CE ∼= AD ⊗RG

CE ⊕D×E BD ⊗RG
CE .

7.2 Dimensioned Algebras

Let us motivate our discussion on the dimensioned generalization of the notion of algebra for ordinary rings and
modules by considering the dimensioned morphisms of a dimensioned ring RG. In Section 7.1 above it was shown
that Dim(RG)Map(G) is a dimensioned RG-module, we note that the dimension set given by the maps from G
into itself Map(G) carries a natural monoid structure given by composition of maps. Denoting three dimensioned
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morphisms by Φφ,Θφ,Ψψ : RG → RG where φ, ψ : G → G are the dimension maps, it follows directly from the
defining properties of dimensioned rings that the composition of the dimensioned morphisms is consistent with
the monoid structure of the dimension set Map(G)

Φφ ◦Ψψ = (Φ ◦Ψ)φ◦ψ,

and that it interacts with the RG-module structure of Dim(RG) as a bilinear operation

(Φφ +φ Θφ) ◦Ψψ = Φφ ◦Ψψ +φ◦ψ Θφ ◦Ψψ rg · (Φφ ◦Ψψ) = (rg · Φφ) ◦Ψψ = Φφ ◦ (rg ·Ψψ)

for all rg ∈ RG. This shows that (Dim(RG), ◦) gives a prime example of a bilinear associative operation on a
dimensioned module and prompts us to give the following general definition.

Let (AD,+D) be a dimensioned RG-module, a map M : AD × AD → AD is called a dimensioned bilinear
multiplication if it satisfies

M(ad +d bd, ce) =M(ad, ce) +μ(d,e) M(bd, ce)

M(ad, be +e ce) =M(ad, be) +μ(d,e) M(ad, ce)

M(rg · ad, sh · be) = rg · sh ·M(ad, be)

for all ad, bd, be, ce ∈ AD, rg, sh ∈ RG and for a dimension map μ : D ×D → D which is G-equivariant in both
entries, i.e.

μ(gd, he) = ghμ(d, e)

for all g, h ∈ G and d, e ∈ D. When such a map M is present in a dimensioned RG-module AD, the pair (AD,M)
is called a dimensioned RG-algebra. The notion of dimensioned tensor product given a the end of Section 7.1
above allows to reformulate the definition of a dimensioned bilinear multiplication M : AD × AD → AD as a
dimensioned RG-linear morphism

M : AD ⊗RG
AD → AD.

Note that the dimension set of the tensor product AD ⊗RG
AD is D × D with the diagonal G-action induced

from the RG-module structure, then we see that the double G-equivariant condition of μ is reinterpreted now as
ordinary G-equivariance with respect to the natural monoid actions.

The natural notions of morphisms and subalgebras of ordinary algebras extend naturally to the dimensioned case.
Let (AD,M) and (BE , N) be two dimensioned RG-algebras, a RG-linear morphism Φ : AD → BE is called a
morphism of dimensioned algebras if

Φ(M(a, a′)) = N(Φ(a),Φ(a′)),

for all a, a′ ∈ AD. A submodule S ⊂ AD such that M(S, S) ⊂ S is called a dimensioned subalgebra.

The dimension map μ of a dimensioned bilinear multiplication in a dimensioned RG-algebra (AD,Mμ) is naturally
regarded as an binary operation on the set of dimensions D. In a general sense, dimension sets of dimensioned
algebras carry the most basic algebraic structures, commonly known as magmas. However, if one wishes to
demand specific algebraic properties, such as commutativity or associativity, the algebraic structure present in
the dimension magma becomes richer. Let (AD,Mμ) be a dimensioned RG-algebra, we say that it is symmetric
or antisymmetric if

M(ad, be) =M(be, ad), M(ad, be) = −M(be, ad)

for all ad, be ∈ AD, respectively. The dimension magmas of symmetric or antisymmetric dimensioned algebras
are necessarily commutative, i.e. μ(d, e) = μ(e, d) for all d, e ∈ D. The usual 3-element-product properties of
ordinary algebras can be demanded for dimensioned algebras in an analogous way, in particular (AD,Mμ) is called
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associative or Jacobi if
AssM (ad, be, cf ) = 0, JacM (ad, be, cf ) = 0

for all ad, be, cf ∈ AD, respectively. The dimension magmas of associative or Jacobi dimensioned algebras
are necessarily associative, i.e. μ(μ(d, e), f) = μ(d, μ(e, f)) for all d, e, f ∈ D, making them into semigroups.
Returning to the motivating example presented at the beginning of this section, we now see that the dimensioned
morphisms of a dimensioned ring RG give the prime example of dimensioned associative algebra (Dim(RG), ◦).

In parallel with the definitions of ordinary algebras, we define dimensioned commutative algebra as a
symmetric and associative dimensioned algebra and a dimensioned Lie algebra as an antisymmetric and
Jacobi dimensioned algebra. Note that dimensioned commutative and dimensioned Lie algebras necessarily carry
dimension sets that are commutative semigroups.

In keeping with the general philosophy to continue to scrutinize the natural algebraic structure present in the
dimensioned module of dimensioned morphisms of a dimensioned ring RG, let us attempt to find the appropriate
dimensioned generalization of the notion of derivations of a ring. Working by analogy, a dimensioned derivation
will be a dimensioned morphism Δ ∈ Dim(RG) covering a dimension map δ : G→ G satisfying a Leibniz identity
with respect to the dimensioned ring multiplication

Δ(rg · sh) = Δ(rg) · sh + rg ·Δ(sh),

for all rg, sh ∈ RG, however, for the right-hand-side to be well-defined, both terms must be of homogeneous
dimension, which means that the dimension map must satisfy

δ(gh) = δ(g)h = gδ(h)

for all g, h ∈ G. Since G is a monoid, this condition is equivalent to the dimension map being given by left (or
equivalently due to commutativity, right) multiplication with a monoid element, i.e. δ = Ld for some element
d ∈ G. Following from this observation, we see that there is a natural dimensioned submodule of the dimensioned
module of dimensioned morphisms Dim(RG)G ⊂ Dim(RG)Map(G) given by the dimensioned morphisms whose
dimension maps are specified by multiplication with a monoid element. Recall that dimensioned rings are assumed
to be commutative and, thus, the dimension monoid has commutative binary operation. This allows for the
identification of the first natural example of dimensioned Lie algebra: consider the commutator of the associative
dimensioned composition

[Δ,Δ′] := Δ ◦Δ′ −Δ′ ◦Δ,
it is easy to check that this bracket is indeed antisymmetric and Jacobi, thus making (Dim(RG)G, [, ]) into the
dimensioned Lie algebra of dimensioned morphisms of a dimensioned ring RG. Notice that this bracket
can only be defined on the dimensioned submodule Dim(RG)G ⊂ Dim(RG)Map(G) since the two terms of the
right-hand-side for general dimensioned morphisms will have dimensions given by the composition of maps from
G into itself which is a non-commutative binary operation in general. It is then clear that the Leibniz condition
proposed above can be demanded in consistency with the dimensioned structure of dimensioned morphisms
within the Lie algebra of dimensioned morphisms, so we see the dimensioned Lie algebra of derivations of a
dimensioned ring RG as the natural dimensioned Lie subalgebra of the dimensioned morphisms

Der(RG) ⊂ (Dim(RG)G, [, ]).

Derivations covering the monoid identity, i.e. those with dimension map idG : G→ G, are called dimensionless
derivations and it is clear by definition that they form an ordinary Lie algebra with the commutator bracket
(Der(RG)0, [, ]). Restricting their action to elements of the dimensionless ring Re ⊂ RG we recover the ordinary
Lie algebra of ring derivations, in other words, there is a surjective map of Lie algebras

(Der(RG)0, [, ])→ (Der(Re), [, ]).
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The example of the dimensioned Lie algebra of derivations of a dimensioned ring illustrates the case of a
dimensioned algebra whose space of dimensions is a (commutative) monoid and whose dimension map is simply
given by the monoid multiplication. For the reminder of this chapter, the dimension sets of dimensioned modules
will be assumed to carry a commutative monoid structure (with multiplication denoted by juxtaposition of
elements) unless stated otherwise. Let AG be a dimensioned module, a dimensioned algebra multiplication
M : AG × AG → AG is said to be homogeneous of dimension m if the dimension map μ : G × G → G is
given by monoid multiplication with the element m ∈ G, i.e. μ(g, h) = mgh for all g, h ∈ G. Assuming a monoid
structure on the dimension set of a dimensioned module and considering dimensioned algebra multiplications
of homogeneous dimension is particularly useful in order to study several algebra multiplications coexisting on
the same set. Indeed, given two homogeneous dimensioned algebra multiplications (AG,M1) and (AG,M2) with
dimensions m1 ∈ G and m2 ∈ G, respectively, the fact that the monoid operation is assumed to be associative and
commutative, allows for consistently demanding properties of the interaction of the two dimensioned multiplications
involving expressions of the form M1(M2(a, b), c) without any further requirements.

Let AG be a dimensioned RH -module and let two dimensioned algebra multiplications ∗ : AG × AG → AG and
{, } : AG × AG → AG with homogeneous dimensions p ∈ G and b ∈ G, respectively, the triple (AG, ∗p, {, }b) is
called a dimensioned Poisson algebra if

1) (AG, ∗p) is a dimensioned commutative algebra,
2) (AG, {, }b) is a dimensioned Lie algebra,
3) the two multiplications interact via the Leibniz identity

{a, b ∗ c} = {a, b} ∗ c+ b ∗ {a, c},

for all a, b, c ∈ AG.
Note that the Leibniz condition can be consistently demanded of the two dimensioned algebra multiplications
since the dimension projections of each of the terms of the Leibniz identity for {ag, bh ∗ ck} are:

bgphk, pbghk, phbgk,

but they are indeed all equal from the fact that the monoid binary operation is associative and commutative.

A morphism of dimensioned modules between dimensioned Poisson algebras Φ : (AG, ∗p, {, }b)→ (BH , ∗r, {, }c) is
called amorphism of dimensioned Poisson algebras if Φ : (AG, ∗p)→ (BH , ∗r) is a morphism of dimensioned
commutative algebras and also Φ : (AG, {, }b) → (BH , {, }c) is a morphism of dimensioned Lie algebras. A
submodule I ⊂ AG that is a dimensioned ideal in (AG, ∗p) and that is a dimensioned Lie subalgebra in (AG, {, }b)
is called a dimensioned coisotrope.

Proposition 7.2.1 (Dimensioned Poisson Reduction). Let (AG, ∗p, {, }b) be a dimensioned Poisson algebra and
I ⊂ AG be a coisotrope, then there is a dimensioned Poisson algebra structure induced in the subquotient

(A′G := N(I)/I, ∗′p, {, }′b)

where N(I) denotes the dimensioned Lie idealizer of I regarded as a submodule of the dimensioned Lie algebra.

Proof. We assume without loss of generality that the dimension projection of I is the whole of G, the intersections
with the homogeneous subsets are denoted by Ig := I∩Ag. The dimensioned Lie idealizer is defined in the obvious
way

N(I) := {ng ∈ AG| {ng, ih} ∈ Ibgh ∀ih ∈ I}.
We clearly see that N(I) is the smallest dimensioned Lie subalgebra that contains I as a dimensioned Lie ideal.
The Leibniz identity implies that N(I), furthermore, is a dimensioned commutative subalgebra with respect to
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∗p in which I sits as a dimensioned commutative ideal, since it is a commutative ideal in the whole AG. It follows
that we can form the dimensioned quotient commutative algebra (N(I)/I, ∗′) in an entirely analogous way to
the construction of the dimensioned quotient ring presented in Section 7.1. The only difference with that case
is that commutative multiplication covers a dimension map that is given by the monoid multiplication with a
non-identity element p ∈ G, but this has no effect on the quotient construction. To obtain the desired quotient
dimensioned Lie bracket we set:

{ng + Ig,mh + Ih}′ := {ng,mh}+ Ibgh

which is easily checked to be well-defined and that inherits the antisymmetry and Jacobi properties directly from
dimensioned Lie bracket {, } and the fact that I ⊂ N(I) is a dimensioned Lie ideal.

7.3 The Potential Functor

In this section we will find a close link between dimensioned algebras and the category of lines Line introduced in
Section 2.1.1. The results presented in this section will be instrumental for section 7.6, where we argue that the
general notions of dimensioned algebra introduced in sections 7.1 and 7.2 provide the natural language to express
constructions of Jacobi manifolds algebraically. Furthermore, these results provide the direct connection of the
notion of dimensioned ring with the motivating example of physical quantities with units and the abstract notion
of measurand space introduced in Section 3.2.

Recall that in Section 2.1.1 it was shown that the categorical structure of 1-dimensional vector spaces allowed
for the construction of abelian groups of tensor powers. More concretely, the potential of a line L ∈ Line was
defined as the set of all tensor powers

L� :=
⋃

n∈Z
Ln

where Ln denotes the tensor powers of L for n > 0, the tensor powers of the dual line L∗ for n < 0 and the patron
line R for n = 0. This set has than an obvious dimensioned set structure with dimension set Z:

π : L� → Z.

Since homogeneous subsets are precisely the tensor powers Ln, they carry a natural R-vector space structure thus
clearly making the potential of L into an abelian dimensioned group (L�

Z
,+Z). The next proposition shows that

the ordinary R-tensor product of vector spaces endows L� with a dimensioned field structure.

Proposition 7.3.1 (Dimensioned Ring Structure of the Potential of a Line). Let L ∈ Line be a line and (L�
Z
,+Z)

its potential, then the R-tensor product of elements induces a dimensioned multiplication

� : L� × L� → L�

such that (L�
Z
,+Z,�) becomes a dimensioned field.

Proof. The construction of the dimensioned ring multiplication � is done simply via the ordinary tensor product
of ordinary vectors and taking advantage of the particular properties of 1-dimensional vector spaces. The two
main facts that follow from the 1-dimensional nature of lines are: firstly, that linear endomorphisms are simply
real numbers

End(L) ∼= L∗ ⊗ L ∼= R

which, at the level of elements, means that

End(L) � α⊗ a = α(a) · idL
as it can be easily shown by choosing a basis; and secondly, that the tensor product becomes canonically
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commutative, since, using the isomorphism above, we can directly check

a⊗ b(α, β) = α(a)β(b) = α(b)β(a) = b⊗ a(α, β),

thus showing
a⊗ b = b⊗ a ∈ L⊗ L = L2.

The binary operation � is then explicitly defined for elements a, b ∈ L = L1, α, β ∈ L∗ = L−1 and r, s ∈ R = L0

by

a� b := a⊗ b
α� β := β ⊗ α
r � s := r ⊗ s = rs

r � a := ra

r � α := rα

α� a := α(a) = a(α) =: a� α

Products of two positive power tensors a1⊗ · · ·⊗ aq, b1⊗ · · ·⊗ bp and negative powers α1⊗ · · ·⊗αq, β1⊗ · · ·⊗βp
are defined by

(a1 ⊗ · · · ⊗ aq)� (b1 ⊗ · · · ⊗ bp) := a1 ⊗ · · · ⊗ aq ⊗ b1 ⊗ · · · ⊗ bp
(α1 ⊗ · · · ⊗ αq)� (β1 ⊗ · · · ⊗ βp) := α1 ⊗ · · · ⊗ αn ⊗ β1 ⊗ · · · ⊗ βm

and extending by R-linearity. This clearly makes the dimensioned ring product satisfy, for q, p > 0,

� : Lq × Lp → Lq+p, � : L−q × L−p → L−q−p, � : L0 × L0 → L0.

For products combining positive power tensors a1⊗· · ·⊗aq and negative power tensors α1⊗· · ·⊗αp we critically
make use of the isomorphism L∗ ⊗ L ∼= R to define, without loss of generality for p > q > 0,

(a1 ⊗ · · · ⊗ aq)� (α1 ⊗ · · · ⊗ αp) := α1(a1) · · ·αq(aq)αp−q ⊗ · · · ⊗ αp.

It is then clear that the multiplication � satisfies, for all m,n ∈ Z,

� : Lm × Ln → Lm+n

and so it is compatible with the dimensioned structure of L�
Z
. The multiplication � is clearly associative and

bilinear with respect to the addition on each homogeneous subset from the fact that the ordinary tensor product
is associative and R-bilinear. Then it follows that (L�

Z
,+Z,�) is a commutative dimensioned ring. It only remains

to show that non-zero elements of L� have multiplicative inverses. Note that a non-zero element corresponds to
some non-vanishing tensor 0 	= h ∈ Ln, but, since Ln is a 1-dimensional vector space for all n ∈ Z, we can find
a unique η ∈ (Ln)∗ = L−n such that η(h) = 1. It follows from the above formula for products of positive and
negative tensor powers that, in terms of the dimensioned ring multiplication, this becomes

h� η = 1,

thus showing that all non-zero elements have multiplicative inverses, making the dimensioned ring (L�
Z
,+Z,�)

into a dimensioned field.

We now prove that the construction of the potential dimensioned field of a line is, in fact, functorial.

Theorem 7.3.1 (The Potential Functor for Lines). The assignment of the potential construction to a line is a
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functor
� : Line→ DimRing.

Furthermore, a choice of unit in a line L ∈ Line induces a choice of units in the dimensioned field (L�
Z
,+Z,�)

which, since L0 = R, then gives an isomorphism with the trivial dimensioned field

L� ∼= R× Z.

Proof. To show functoriality we need to define the potential of a factor of lines B : L1 → L2

B� : L�1 → L�2 .

This can be done explicitly in the obvious way, for q > 0

B�|Lq := B⊗ q· · · ⊗B : Lq1 → Lq2

B�|L0 := idR : L
0
1 → L02

B�|L−q := (B−1)∗⊗ q· · · ⊗(B−1)∗ : L−q1 → L−q2

where we have crucially used the invertibility of the factor B. By construction, B� is compatible with the
Z-dimensioned structure and since B is a linear map with linear inverse, all the tensor powers act as R-linear
maps on the homogeneous sets, thus making B� : L�1 → L�2 into a morphism of abelian dimensioned groups.
Showing that B� is a dimensioned ring morphism follows easily by the explicit construction of the dimensioned
ring multiplication � given in proposition 7.3.1 above. This is checked directly for products that do not mix
positive and negative tensor powers and for mixed products it suffices to note that

B�(α)�B�(a) = (B−1)∗(α)�B(a) = α(B−1(B(a))) = α(a) = idR(α(a)) = B�(α� a).

It follows from the usual properties of tensor products in vector spaces that for another factor C : L2 → L3 we
have

(C ◦B)� = C� ◦B�, (idL)
� = idL� ,

thus making the potential assignment into a functor. Recall that a choice of unit in a line L ∈ Line is simply
a choice of non-vanishing element u ∈ L×. In proposition 7.3.1 we saw that L� is a dimensioned field, so
multiplicative inverses exist, let us denote them by u−1 ∈ (L∗)×. Using the notation for q > 0

uq := u� q· · · �u
u0 := 1

u−q := u−1� q· · · �u−1,

it is clear that the map

u : Z→ L�

n �→ un

satisfies
un+m = un � um.

By construction, all un ∈ Ln are non-zero, so u : Z→ L� is a choice of units in the dimensioned field (L�
Z
,+Z,�).

The isomorphism of dimensioned fields L� ∼= R × Z follows from proposition 7.1.1 and the observation that, by
definition, (L�)0 = L0 = R.

Given a collection of lines L1, . . . , Lk ∈ Line, the above constructions generalize to the following notion of
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potential:

(L1, . . . , Lk)
� :=

⋃

n1,...nk∈Z
Ln1
1 ⊗ · · · ⊗ Lnk

k ,

which has a natural abelian dimensioned group structure given by R-linear addition and has dimension group Z
k.

The dimensioned filed structure generalizes in the obvious way:

(a1 ⊗ · · · ⊗ ak)� (b1 ⊗ · · · ⊗ bk) := a1 � b1 ⊗ · · · ⊗ ak � bk
thus making ((L1, . . . , Lk)

�
Zk ,+Zk ,�) into a dimensioned field. Note that the potentials of each individual line

Li can be found as dimensioned subfields L
�
i ⊂ (L1, . . . , Lk)

� since they are simply the dimensional preimages
of the natural subgroups Z ⊂ Z

k. Furthermore, a choice of unit in each of the individual lines ui ∈ L×i naturally
induces a choice of units for the potential in a natural way

U : Zk → (L1, . . . , Lk)
�

(n1, . . . , nk) �→ un1
1 � · · · � unk

k .

L-vector spaces were introduced in Section 2.1.1 as the natural generalization of vector spaces when lines are
interpreted as “unit-free” fields of numbers. That interpretation, however, was only partial, since a proper
generalization of notion of vector space would have to include a module structure with respect to the generalization
of the field of numbers. In Section 7.1 it was argued that the notion of dimensioned field indeed captures this
generalization and dimensioned modules were introduced in a natural way. The technology developed in this
chapter so far allows us to give a proper generalization of vector space in this sense via the notion of dimensioned
vector space over a dimensioned field defined simply as a dimensioned module over a dimensioned field.
These, together with dimensioned morphisms, form a category, DimVect, and the general notions of dimensioned
modules introduced in Section 7.1 apply. In particular, if a dimensioned field FG is fixed, the subcategory of
dimensioned vector spaces over it, DimVectFG

, becomes an abelian monoidal category, in complete analogy with
the category of ordinary vector spaces over a fixed field.

Our original claim that L-vector bundles represented a valid line generalization of ordinary vector spaces is fully
justified by the fact that the datum of a L-vector space V L ∈ LVect gives a dimensioned vector space. This
is accomplished explicitly by the construction of the potential of V L ∈ LVect which is defined as an abelian
dimensioned group with dimensions in Z in a natural way:

V �L :=
⋃

n∈Z
Ln ⊗ V.

This abelian dimensioned group carries an obvious dimensioned L�-module structure that can be defined explicitly
by

a · (b⊗ v) := (a� b)⊗ v
for all a ∈ Ln, b ∈ Lm and v ∈ V , and then extending by linearity. The next proposition shows that. much like
in the case of the potential of lines, the potential construction of L-vector spaces is functorial.

Proposition 7.3.2 (The Potential Functor for L-Vector Spaces). The assignment of the potential construction
to a L-vector space is a monoidal functor

� : LVect→ DimVect

compatible with duality. Furthermore, fixing a line L ∈ Line, the potential assignment

� : LVectL → DimVectL�

becomes an abelian functor.
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Proof. To prove functoriality we give the explicit construction of the potential of a L-vector space morphism
ψB : V L1

1 → V L2
2 as follows:

ψ�B(a⊗ v) := B�(a)⊗ ψ(v)
for all a ∈ Ln and v ∈ V and extending by linearity. This clearly clearly makes ψ�B into an abelian dimensioned
group morphism with identity dimension map

V �L1
1 V �L2

2

Z Z

ψ�B

idZ

which, by construction, interacts with the dimensioned module morphism as follows

ψ�B(b · (a⊗ v)) = B�(b) · ψ�B(a⊗ v).

Note that this last expression is the natural generalization of the R-linearity of ordinary vector spaces where the
dimensioned ring isomorphism B� will be replaced by the particular case of the identity map. Functoriality of ψ�B

then simply follows by the functoriality of B� proved in theorem 7.3.1 and the usual composition of linear maps
between ordinary vector spaces. Recall that the L-tensor product is defined as V �L1

1 ⊗ V �L1
1 := (V1 ⊗ V2)L1⊗L2 .

We can take the potential of the two lines (L1L2)
� and define

(V1 ⊗ V2)�(L1⊗L2) :=
⋃

n1,n2∈Z
Ln1
1 ⊗ Ln2

2 ⊗ V

which is a dimensioned vector space over the dimensioned ring (L1L2)
�. Tensor products of L-vector bundle

morphisms are clearly sent to tensor products of dimensioned morphism via

� : ψB ⊗ ϕC �→ (ψ ⊗ ϕ)�(B⊗C),

and thus we see that the potential functor is indeed monoidal. Recall that the L-dual of a L-vector space
is defined as V ∗L := (V ∗ ⊗ L)L, then we observe that, after applying the usual canonical isomorphisms to
reorder tensor products, the potential of the L-dual will have homogeneous dimension sets shifted by +1. This
precisely corresponds to elements of (V �L)∗ being L�-linear maps of the form V �L → L�. Exploiting once
more the invertibility of line factors, we easily see that the potential of the dual of a L-vector bundle morphism
ψ∗B : V ∗L2

2 → V ∗L1
1 is an isomorphism of dimensioned vector spaces ψ�(∗B) : (V ∗2 )

�L2 → (V ∗1 )
�L1 , then we see

that the potential construction is compatible with L-duality. Lastly, when we fix a line L ∈ Line L-direct sums,
subobjects and kernels become well-defined, it is then clear from the R-linearity of all the maps involved, these
are preserved under the potential construction, thus showing that it is an abelian functor.

7.4 Measurand Spaces Revisited

Let us now return to the original question of the formal description of physical quantities and units of measurement
but now with the machinery of dimensioned algebra developed in sections 7.1, 7.2 and 7.3 at our disposal. We begin
by pointing out that, it should have become obvious by now, the notion of dimensioned field indeed captures the
general formal structure of physical quantities. Any concrete example of a scientific model involving quantitative
measurements, such us the example of classical thermodynamics presented in the opening of this chapter (7),
will involve some finite number k of basic units so the set of all theoretically possible physical quantities form a
dimensioned ring RZk with R0 = R.

In light of the results of Section 7.3, we have not only successfully recovered the algebraic structure of physical
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quantities, but also given a complete mathematical legitimization to the empirically-motivated definition of
measurand spaces proposed in Section 3.2. Indeed, a physical theory will consist of a collection of basic measurable
properties, what we called base measurands, that are mathematically identified with a collection of lines
L1, . . . , Lk ∈ Line. The potential functor � : Line → DimRing now gives a mathematically precise meaning to
what was defined as the measurand space M of the physical theory:

M = ((L1, . . . , Lk)
�
Zk ,+Zk ,�)

which, following from theorem 7.3.1, has the structure of a dimensioned field. We are now in the position to give
a precise mathematical definition of physical quantity Q simply as an element in the potentil:

Q ∈M = (L1, . . . , Lk)
�
Zk .

The term choice of units for a monoid splitting of the dimension projection of a dimensioned ring u : G → RG
was introduced in Section 7.1 in anticipation of the metrological interpretation that we now give. Units of
measurement in applied science an engineering serve as the reference scale for all the measurements of a physical
quantity of the same kind. Mathematically, this is conventionally represented by assigning the numerical value 1
to the measurement of the physical quantity applied to the unit of measurement itself, hence the name unit of
measurement. Since a choice of units assigns an non-zero element to each set of homogeneous dimension, which
in the case of a measurand space are simply lines, they form a basis for that set and their component expression
is conventionally also given by the numerical value 1. We have thus connected the abstract notion of choice
of units in a potential of some collection of lines with a set of units of measurement that will be used in a
physical theory that takes those lines as base measurands.

In dimensional analysis, it is common to recombine basic measurands of a physical theory and express them
in terms of products of other measurands, such as in the example of Section 3.2 where area was expressed
as the product of lengths. In our formalism, where a physical theory is identified with a measurand space
M = (L1, . . . , Lk)

�
Zk , this is simply encapsulated by the notion of dimensioned isomorphism of the measurand

space Ψ : M → M which, in general, will have non-trivial dimension map ψ : Zk → Z
k, corresponding to

the recombinations of basic measurands. More concretely, changes in choices of units for the same measurand
space are, in virtue of theorem 7.3.1, completely characterized by dimensioned ring isomorphisms of the trivial
dimensioned ring

R× Z
k → R× Z

k.

7.5 Unit-Free Manifolds Revisited

In Section 2.6.3 we argued that line bundles could be understood as a “unit-free” analogue of ordinary manifolds
if one conceptually replaces the role played by the ring of smooth functions with the module of sections of a line
bundle. The many results that were proved in that section showing the parallels with the ordinary theory of
manifolds attest to the adequacy of this interpretation. However, using the module of sections of a line bundle
as the algebraic analogue of the ring of smooth functions meant that the ring multiplication did not have a
direct analogue. In this section we will show that this analogue appears as a dimensioned ring structure when we
generalize the potential construction of Section 7.3 to line bundles.

Let λ : L → M be a line bundle, in Section 2.6.1 we saw that there is a monoidal structure in the restricted
category of line bundles over the same base M . We can use the tensor product in this category in a completely
analogous way to the tensor product in the category of lines Line and thus form positive and negative powers of
the line bundle Ln, n ∈ Z. The potential of the line bundle L is then defined in a natural way

Γ(L)� :=
⋃

n∈Z
Γ(Ln).
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This set carries an obvious dimensioned structure with dimension set Z and the usual module structure on
sections for each power (Γ(Ln),+n) clearly makes Γ(L)

� into an abelian dimensioned group. Furthermore, the
construction of the dimensioned ring product � detailed in the proof of proposition 7.3.1 can be reproduced in
this case verbatim, thus making the potential of a line bundle into a dimensioned ring (Γ(L)�

Z
,+Z,�). We note

that this dimensioned ring encapsulates the usual algebraic structures found in sections of line bundles: indeed,
the dimensionless ring of Γ(L)� is the ordinary ring of functions of the base manifold Γ(L0) = Γ(RM ) ∼= C∞(M)
and, for f ∈ Γ(L0) = C∞(M), s ∈ Γ(L1) = Γ(L) and σ ∈ Γ(L−1) = Γ(L∗), the dimensioned products

f � s = f · s, σ � s = σ(s)

amount to the C∞(M)-module map and the duality pairing, respectively. We now show that, as was the case for
lines, the potential construction of line bundles is functorial.

Proposition 7.5.1 (The Potential Functor for Line Bundles). The assignment of the potential construction to a
line bundle is a contravariant functor

� : LineMan → DimRing.

Proof. Let us first define the potential of a factor between line bundles B : L1 → L2 covering a smooth map
b :M1 →M2. We aim to define a dimensioned ring morphism of the form

B� : (Γ(L2)
�
Z
,+Z,�)→ (Γ(L1)

�
Z
,+Z,�),

our definition will be, furthermore, of a dimensionless morphism, in the sense that it will cover the identity on
the dimension group idZ : Z→ Z, so that it will suffice to provide a collection of maps between the sections of all
the tensor powers B�n : Γ(Ln2 )→ Γ(Ln1 ). The datum provided by the line bundle factor B allows to define three
maps

b∗ : C∞(M2)→ C∞(M1)

B∗ : Γ(L2)→ Γ(L1)

B∗ : Γ(L∗2)→ Γ(L∗1)

where the first is simply the pull-back of the smooth map between base manifolds, the second is the pull-back of
sections induced by a factor of line bundles defined point wise by

B∗(s2)(x) := B−1x (s2(b(x)))

for all s2 ∈ Γ(L2), and the third is the usual pull-back of dual forms on general vector bundles, defined point-wise
for a general bundle map by

B∗σ2(s1)(x) := σ2(b(x))(Bx(s1(x)))

for all σ2 ∈ Γ(L∗2), s1 ∈ Γ(L1). The maps B
�
n are then defined simply as the tensor powers of these pull-backs.

Contravariance then follows directly from contravariance of the pull-backs. It is then clear by construction that
B� so defined acts as a dimensioned ring morphism for products of positive or negative tensor powers, then it
only remains to show that it also acts as such for mixed products of tensor powers. This is readily checked by
considering the following observation for sections s2 ∈ Γ(L2) and σ2 ∈ Γ(L∗2):

B�σ2 �B�s2(x) = B∗σ2 �B∗s2(x) =
= σ2(b(x))(BxB

−1
x (s2(b(x)))) = σ2(b(x))(s2(b(x))) = b∗(σ2(s2))(x) = B�(σ2 � s2)(x).

This last proposition provides the key result for the legitimization of the interpretation of line bundles as unit-free
manifolds since we notice the similarity of the potential functor above with the ordinary contravariant functor
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given by the assignment of the ring of smooth functions to a manifold

C∞ : Man→ Ring.

The potential functor � is, in fact, a direct generalization of C∞ as ordinary rings can be regarded as dimensioned
rings with dimension set the trivial monoid.

Due to possible topological constraints, the notion of unit of a line, i.e. a non-vanishing element, can be recovered
only locally for line bundles. Let λ : L → M be a line bundle and U ⊂ M an open subset, the potential
construction is clearly natural with respect to restrictions since the same prescription used for global sections can
be used to define Γ(L|U )�. Defining the positive and negative powers of u as it was done for the line case, it is
clear that a local unit induces a choice of units for the local potential

u : Z→ Γ(L|U )�.

It then follows from the second part of theorem 7.3.1 that a local unit u induces an isomorphism of the local
potential with the trivial dimensioned ring of local functions with dimension set Z:

Γ(L|U )� ∼= C∞(U)× Z.

To further establish the idea that that potentials of line bundles generalize rings of functions of manifolds, we will
discuss the generalization of two aspects of ordinary manifolds for which the ring of functions proves a convenient
algebraic tool: derivations and vanishing ideals of submanifolds.

Recall from Section 7.1 that the derivations of a dimensioned ring Der(RG) form a dimensioned module with
dimension setG that contains the derivations of the dimensionless ring Der(Re) as a Lie subalgebra of dimensionless
derivations. In the case of the potential of a line bundle Γ(L)�, this implies that derivations of smooth functions,
or, equivalently, vector fields, are recovered as a Lie subalgebra of the dimensionless derivations

Der(C∞(M)) ∼= Γ(TM) ⊂ Der(Γ(L)�).

In Section 2.6.3 we argued that the line bundle generalization of the tangent bundle was the der bundle whose
sections are the line bundle derivations. The next proposition shows that the derivations of the potentil of a line
bundle naturally include the line bundle derivations.

Proposition 7.5.2 (Dimensionless Potential Derivations). Let λ : L → M be a line bundle and Γ(L)� its
potential, then there is an isomorphism of Lie algebras

Der(L) ∼= Der(Γ(L)�)0.

Proof. We can give the isomorphism by explicitly specifying two maps. The first sends a dimensionless derivation
to its restriction on the homogeneous subsets of dimension 0 and 1

Der(Γ(L)�)0 � P �→ (P |L0 , P |L1) =: (X,D)

Clearly, from the fact that P is a �-derivation these satisfy

X(fg) := X(f � g) = X(f)� g + f �X(g) = X(f)g + fX(g)

D(f · s) := D(f � s) = X(f)� s+ f �D(s) = X(f) · s+ f ·D(s),

thus showing that D is a line bundle derivation with symbol X. Conversely, given a line bundle derivation
D ∈ Der(L) with symbol X, we need to define a dimensionless derivation Der(Γ(L)�)0. This is accomplished by
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extending D as a �-derivation for non-negative tensor powers of L the following basic identities

P (f � g) := X[fg] = X[f ]g + fX[g]

P (f � s) := D(f · s) = X[f ] · s+ f ·D(s)
P (s� r) := P (s)� r + s� P (s).

To account for negative tensor powers we use proposition 2.6.5, which gives an isomorphism Der(L) ∼= Der(L∗)
thus defining a derivation Δ ∈ Der(L∗) from D. This derivation Δ is extended as a �-derivation for non-positive
tensor powers in a similar wat to D. To complete the extension of D to P as a �-derivation, it only remains
to consider products mixing positive and negative tensor powers. This case is accounted for by the following
consistency formula that follows from the definition of the dimensioned product in the potentil and the explicit
isomorphism Der(L) ∼= Der(L∗) in the proof of proposition 2.6.5:

P (σ � s) = P (σ(s)) = X(σ(s)) = D∗(σ)(s) + σ(D(s)) = D∗(σ)� s+ σ �D(s) = P (σ)� s+ σ � P (s).

These two maps, which are clearly Lie algebra morphisms since the bracket is simply the commutator, are readily
checked to be inverses of each other.

We remark that dimensionless derivations do not determine all the derivations of a dimensioned ring. General
derivations of the potentil of a line bundle are given by collections of differential operators between all the different
tensor powers fitting consistently with the Z-dimensioned structure.

Consider now a submanifold i : S ↪→ M of a line bundle λ : L→ M . We saw in Section 2.6.1 that a line bundle
is induced on S by pull-back with an inclusion factor covering the embedding ι : LS → L. There, the set of
vanishing sections on S, defined formally as the kernel of ι, was shown to be a submodule of the sections of
the ambient line bundle ΓS ⊂ Γ(L) that can be seen as (locally) generated by the ideal of vanishing functions
IS ⊂ C∞(M). The following proposition shows that these two algebraic manifestation of a submanifold in a line
bundle fit nicely into the potentil picture.

Proposition 7.5.3 (Vanishing Dimensioned Ideal of a Submanifold). Let λ : L → M be a line bundle and
i : S ↪→ M a submanifold carrying the restricted line bundle LS. Let us denote the line bundle potentials by
Γ(L)� and Γ(LS)

�, then the submanifold defines a dimensioned ideal IS ⊂ Γ(L)� that allows to characterize
(depending on the embedding i, perhaps only locally) the restricted potential as a quotient of dimensioned rings

Γ(LS)
� ∼= Γ(L)�/IS .

Proof. The vanishing dimensioned ideal is simply defined as the set of sections of all the tensor powers that vanish
when restricted to S, that is

IS := {a ∈ Γ(Ln)| a(x) = 0 ∈ Lnx ∀x ∈ S}.
Note that this definition is indeed equivalent to the kernel of the potential of the inclusion factor IS = ker(ι�),
the dimensioned ideal condition Γ(L)� � IS ⊂ IS then follows:

ι�(rn � am) = (ι∗)nrn � (ι∗)mam = (ι∗)nrn � 0 = 0

for all rn ∈ Γ(Ln), am ∈ IS , where the functoriality of the potential construction proved in proposition 7.5.1
has been used. It is clear that, by construction, the ordinary ideal of vanishing functions is the dimensionless
component of IS and that

ΓS = IS ∩ Γ(L1).
Using a local argument we can see that, similarly to the submodule of vanishing sections, the subsets of
homogeneous dimension of IS can all be generated by elements in the dimensionless component. Just as in the
case of the vanishing submodule of sections, it is clear that the quotient Γ(L)�/IS represents the identification
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of sections of the tensor powers of LS with extensions in L that differ by a vanishing section of the corresponding
tensor power, which then gives the desired the result.

7.6 Jacobi Manifolds Revisited

In Section 2.7 Jacobi manifolds were presented as the natural generalization of Poisson structures on unit-free
manifolds. In light of the results of Section 7.5 above connecting unit-free manifolds to dimensioned algebra,
it is natural to ask whether Jacobi structures on line bundles are somehow reflected on the dimensioned rings
associated to them under the potential functor. In this section we will see that this is indeed the case as we
are now in the position to prove the main theorems of this chapter connecting Jacobi manifolds to dimensioned
Poisson algebras in a natural way.

We begin by identifying a dimensioned Poisson algebra structure on the potential of a Jacobi manifold.

Theorem 7.6.1 (Dimensioned Poisson Algebra associated with a Jacobi Manifold). Let λ : L → M be a line
bundle and (Γ(L), {, }) a Jacobi structure, then there exists a unique dimensioned Poisson algebra of dimension −1
on the potential dimensioned ring (Γ(L)�

Z
,+Z,�0, {, }−1) such that the brackets combining elements of dimensions

+1, 0, and −1 are determined by the Jacobi bracket {, }, its symbol X and its squiggle Λ.

Proof. We give an explicit construction of the dimensioned Poisson algebra on the potential (Γ(L)�
Z
,+Z,�0),

that we regard here as a dimensioned commutative algebra over the real numbers with dimension set Z and
dimensionless commutative multiplication �0. Since the Jacobi bracket maps pairs of sections into sections
{, } : Γ(L)× Γ(L)→ Γ(L), we aim to extend it to all the tensor powers of the potential as a dimensioned algebra
bracket of dimension −1 ∈ Z:

{, }−1 : Γ(Ln)× Γ(Lm)→ Γ(Ln+m−1).

It is clear that we obtain a partial Lie bracket for all positive tensor powers simply by extending the Jacobi
bracket as �-derivations in each argument, i.e. setting {a, b}−1 := {a, b} and generating all the brackets between
higher powers from the basic identity:

{a, b� c}−1 := {a, b} � c+ b� {a, c}

for all a, b, c ∈ Γ(L1) = Γ(L). Note that this is analogous to using the isomorphism Der(L) ∼= Der(Γ(L)�)0 of
proposition 7.5.2 to regard the Hamiltonian derivation of the Jacobi bracket Da as a dimensionless derivation of
the potential. The symbol-squiggle identity of the Jacobi bracket written in terms of the potential dimensioned
multiplication reads

{f � a, g � b}−1 = f � g � {a, b}+ f �Xa[g]� b− g �Xb[f ]� a+ Λ(df ⊗ a, dg ⊗ b)

for f, g ∈ Γ(L0) ∼= C∞(M), a, b ∈ Γ(L1) = Γ(L), then we can extract the definition of the dimensioned Poisson
bracket for non-negative tensor powers by reading off the above formula interpreted as a Leibniz rule of the �
multiplication:

{a, f}−1 := Xa[f ] = −{f, a}−1
{f, g}−1(a) := Λ�(df ⊗ a)[g] = −{g, f}−1(a)

Note that the second bracket has been defined on a generic argument since

{, }−1 : Γ(L0)× Γ(L0)→ Γ(L−1) = Γ(L∗).

To define the bracket on negative tensor powers we first use the isomorphism R : Der(L) → Der(L∗) proved in
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proposition 2.6.5 to define the Hamiltonian derivation on dual sections Δa := R(Da) ∈ Der(L∗) and set

{a, α}−1 := Δa(α) = −{α, a}−1.

Note that this definition is consistent with the previous definitions of brackets of non-negative tensor powers as
we readily check that it acts as a �-derivation in both arguments:

{a, α� b}−1 = {a, α(b)}−1 = Xa[α(b)] = Δa(α)(b) + α(Da(b)) = {a, α}−1 � b+ α� {a, b}−1.

With the brackets defined so far for non-negative tensor powers and the mixed bracket above, we can expand the
expression {f � a, α� b} by �-derivations (full details of the computation shown in appendix B) to find the only
non-yet defined bracket:

{f, α, }−1(a, b) := Λ�(df ⊗ a)[α(b)] +Xb[f ]α(a).

Similarly, expanding the bracket {α� a, β � b} (again, full details in appendix B) we find:

{α, β}−1(a, b, c) := Λ�(dα(a)⊗ b)[β(c)] +Xc[α(a)]β(b)− α(b)Xa[β(c)] + α(b)β({a, c}).

With these partial brackets we can now define the brackets of combinations of positive and negative tensor powers
via extension as �-derivations. Clearly, following from the observation made at the end of the proof of proposition
7.5.1, the Jacobi identity of bracket for the negative tensor powers so defined will be directly dependent on the
Jacobi identity for the bracket at dimensions +1 and 0. In appendix B the Jacobi identities for brackets of all
the combinations of the tensor powers +1 and 0 are shown to follow directly from the basic identities satisfied by
the symbol X and squiggle Λ of the original Jacobi structure.

The next theorem shows that, much like how the functor C∞ : Man → Ring characterizes Poisson manifolds as
a subcategory of Poisson algebras, the potential functor allows to regard the category of Jacobi manifolds as a
subcategory of dimensioned Poisson algebras.

Theorem 7.6.2 (The Potential Functor for Jacobi Manifolds). The assignment of the potential of a line bundle
restricted to the category of Jacobi manifolds with Jacobi maps gives a contravariant functor

� : JacMan → DimPoissAlg.

Proof. In proposition 7.6.2 it was shown that a line bundle factor B : L→ L′ covering a smooth map b :M →M ′.
is mapped to a dimensioned ring morphism B� : Γ(L′)� → Γ(L)� under the potential contravariant functor,
then it will suffice to show that when B is a Jacobi map, i.e.

B∗{a, b}′ = {B∗a′, B∗b′}

for all a, b ∈ Γ(L′), then the potential map is a dimensioned Lie algebra morphism, i.e.

B�{s, r}′−1 = {B�s,B�r}−1
for all s, r ∈ Γ(L′)�. Note that B� was defined in proposition 7.5.1 as the tensor powers of the pull-backs of
sections of L′ , its dual and the smooth functions, then it is clear from the fact that the dimensioned Lie brackets
{, }−1, {, }′−1 are defined by extension as �-derivations that the dimensioned Lie algebra morphism condition for
brackets of positive and negative tensor powers is dependent on the same condition for all the bracket combinations
of elements in dimensions +1, 0 and −1. These conditions are checked directly using the definitions. For the
bracket of a pair of elements of dimension +1, the condition of dimensioned Lie algebra morphism for B� is
precisely the condition that B is a Jacobi map. By considering a bracket of the form {a, f · b}′ we can see that the
fact that B is a Jacobi map and the basic properties of the pull-backs of line bundle factors imply the morphism
condition for the bracket of elements of dimension +1 and 0:

B�{a, f}′−1 = b∗X ′a[f ] = XB∗a[b
∗f ] = {B∗a, b∗f}−1 = {B�a,B�f}−1.
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From similar considerations for a bracket of the form {f · a, g · b}, it follows that

B�{f, g}′−1(c, d) = B∗Λ′(df ⊗ c, dg ⊗ d) = Λ(db∗f ⊗ c, db∗g ⊗ d) = {b∗f, b∗g}−1(c, d) = {B�f,B�g}−1(c, d)

for all c, d ∈ Γ(L). To account for brackets containing elements of dimension −1 we first consider the defining
formula of the isomorphism Der(L) ∼= Der(L∗) under pull-back

B∗(Δ′a(α)(c)) = b∗X ′a[α(c)]− b∗α({a, c}′)
= XB∗a[b

∗α(c)]−B∗α(B∗{a, c})
= XB∗a[B

∗α(B∗c)]−B∗α({B∗a,B∗c})
= ΔB∗a(B

∗α)(B∗c).

Which clearly implies, in particular, the dimensioned Lie morphism condition for the bracket of mixed tensor
powers

B�{a, α}′−1 = B∗Δ′a(α) = ΔB∗a(B
∗α) = {B∗a,B∗α}−1 = {B�a,B�α}−1.

In the proof of theorem 7.6.1 it was shown that the brackets {f, α}−1 and {α, β}−1 were determined by extending
the previously defined brackets between elements of dimensions +1, 0 and−1 as�-derivations, thus the dimensioned
Lie algebra morphism condition for these follows from the fact that B� is defined as the tensor powers of B∗.

In our discussion of the problem of reduction for Jacobi manifolds in Section 2.7, vanishing submodules of
coisotropic submanifolds were recognized to be analogous to the coisotropes of algebraic Poisson reduction,
however, the lack of a commutative multiplication structure on the module of sections of a line bundle made
it impossible to make the analogy more precise. Our identification of the dimensioned Poisson algebra on the
potential of a Jacobi manifold does this precisely as the next proposition shows that coisotropic submanifolds
induce dimensioned coisotropes.

Proposition 7.6.1 (Coisotropic Submanifolds induce Dimensioned Coisotropes). Let λ : L→M be a line bundle
and (Γ(L), {, }) a Jacobi structure, then the vanishing dimensioned ideal of a coistropic submanifold i : S ↪→ M
is a dimensioned coisotrope of the dimensioned Poisson algebra on the potential

IS ⊂ (Γ(L)�
Z
,+Z,�0, {, }−1).

Proof. Proposition 7.5.3 shows that IS ⊂ Γ(L)� is a dimensioned �-ideal for any submanifold S, then it will
suffice to show that IS is a dimensioned Lie subalgebra. The vanishing ideal is generated by the �-products
of elements of dimension +1, 0 and −1, then, by the Leibniz identity of the dimensioned Poisson bracket, it
suffices to check the dimensioned Lie subalgebra conditions for elements of those dimensions. For this we will use
characterizations 2, 3 and 4 of coisotropic submanifolds of a Jacobi manifold given in proposition 2.7.3. Clearly
the condition on the brackets of positive powers {a, b}−1 for a, b ∈ Γ(L) is the fact that the vanishing submodule of
sections of S forms a Lie subalgebra of the Jacobi structure, characterization 3. For the bracket {a, f}−1 = Xa[f ]
it is the fact that Hamiltonian vector fields of vanishing sections are tangent to the submanifold, i.e. XΓS

[IS ] ⊂ IS ,
characterization 4. For the bracket {f, g}−1 it is the condition Λ�(dIS ⊗ L) ⊂ TS, characterization 2. From the
observation that

a ∈ IS ∩ Γ(L1)⇒ α� a = α(a) ∈ IS
for any α ∈ Γ(L∗), we check the dimensioned Lie subalgebra condition for the brackets {f, α}−1 and {α, β}−1 by
writing the explicit defining formulas presented in the proof of theorem 7.6.1 and using characterizations 2 and 4
from proposition 2.7.3 combined.

Lastly, when a coisotropic submanifold furthermore fits in a reduction scheme of Jacobi manifolds, the associated
dimensioned Poisson algebras fit in a dimensioned algebra reduction scheme, again in direct analogy with the
ordinary Poisson case.

164



Theorem 7.6.3 (Coisotropic Reduction induces Dimensioned Poisson Reduction). Let λ : L→M be a line bundle
with a Jacobi structure (Γ(L), {, }) and let i : S ↪→M be a coisotropic submanifold satisfying the assumptions of
proposition 2.7.6 so that there is a a reduced Jacobi structure (Γ(L′), {, }′) fitting in the reduction diagram:

LS L

S M

L′

M ′

ι

π
i

p

then there is an isomorphism of dimensioned Poisson algebras between the potential of the reduced Jacobi structure
and the algebraic dimensioned Poisson reduction by the vanishing dimensioned coisotrope:

Γ(L′)� ∼= N(IS)/IS .

Proof. Recall from Section 2.7 that the Jacobi reducibility condition was given explicitly in terms of the brackets
as

π∗{a1, a2}′ = ι∗{A1, A2}
for all ai ∈ Γ(L′) and Ai ∈ Γ(L) extensions satisfying π∗ai = ι∗Ai. The definition of the potential of a line
bundle factor of proposition 7.5.1 and the explicit definition of the dimensioned bracket {, }−1 clearly show that
the reducibility condition translates into the potential setting verbatim as one finds that the dimensioned Poisson
brackets on the potentials of L and L′ are related by the following condition

π�{a1, a2}′−1 = ι�{A1, A2}−1
for all ai ∈ Γ(L′)� and Ai ∈ Γ(L)� extensions satisfying π�ai = ι�Ai. We aim to relate the dimensioned Lie
idealizer of the vanishing dimensioned ideal N(IS) to the submersion factor π : LS → L′ in a natural way. This
will follow by the compatibility condition assumed in proposition 2.7.6 for the coistropic submanifold:

δ(ker(Dπ)) = Λ�((TS)0L)

which, exploiting the jet sequence of the Jacobi structure, can be rewritten as

ker(Tp) = (Λ̃� ◦ i)(T0S ⊗ LS).

This equation gives the point-wise condition that the p-fibration on S is a foliation integrating the tangent
distribution of Hamiltonian vector fields of the vanishing sections. It follows from the observation made at the
end of the proof of proposition 7.6.1 that the Lie idealizer N(IS) is generated by the brackets of elements of
dimension +1 and 0, then it suffices to identify the elements satisfying the dimensioned Lie idealizer defining
condition of these dimensions. These will be f ∈ Γ(L0) ∼= C∞(M) and s ∈ Γ(L1) = Γ(L) such that

{f, g}−1 ∈ IS , {s, g}−1 ∈ IS , {s, a}−1 ∈ IS
for all g ∈ IS ∩ Γ(L0) and a ∈ IS ∩ Γ(L1). From the explicit formulas given for the dimensioned bracket {, }−1
given in the proof of theorem 7.6.1 we clearly see that the compatibility condition of the coisotropic submanifold
with the submersion factor gives a point-wise identification of elements in the idealizer and the infinitesimal
description of the p-fibration with the restricted line bundles on S. Since, by assumption, the submersion factor
fits in a reduction scheme of (smooth) Jacobi manifolds this infinitesimal identification carries over globally to
allow the identification of N(IS) with the line bundle π-fibration. Quotienting by IS , as seen in proposition 7.5.3,
amounts to restricting to the submanifold S, thus we find the equivalent description of the reduced bracket {, }′−1
as the canonical dimensioned Poisson bracket on the quotient N(IS)/IS .
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