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Epistemic Holes and Determinism

in Classical General Relativity
Juliusz Doboszewski

ABSTRACT

Determinism fails easily if spacetimes with points removed from the spacetime manifold
are taken to be physically reasonable representations of a way the world could be ac-
cording to classical general relativity. I discuss a recently proposed condition for deter-
mining which spacetimes have holes—epistemic hole freeness—and show that (a)
epistemic hole freeness gives the correct verdict in some (but not all) non-globally hyper-
bolic spacetimes with a closed subset removed, (b) certain spacetimes with genuinely
indeterministic features count as having an epistemic hole, which implies that the require-
ment of epistemic hole freeness enforces a form of determinism, and (c) there is a large
class of spacetimes that intuitively are radically indeterministic and unphysical due to
containing a hole (of a kind), but are free from epistemic holes. I show that a few natural
ways of remedying (c) are not satisfactory.

Holes and Determinism
Spacetimes, Holes, and Epistemic Holes

Some Non-globally Hyperbolic Spacetimes Have Epistemic Holes
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Spacetimes with Certain Indeterministic Features Have Epistemic
Holes

Some Truncated Spacetimes Are Epistemically Hole Free
6 An Additional Condition for Rescue?

()]

1 Holes and Determinism

Consider a relativistic spacetime (M, g.;).' By cutting and pasting some of its
subsets one can easily produce other philosophically interesting spacetimes.

' In what follows, I will assume that the reader is familiar with the basic notions, such as a

spacetime manifold M and a spacetime metric g,,, definitions of spacelike, timelike and null
curves, geodesics, inextendibility, completeness and incompleteness of a curve y, achronal slices
without edge, Cauchy surfaces, global hyperbolicity, the chronological future I, the
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2 Juliusz Doboszewski

For instance, from a given (M, g,;) one can produce another spacetime (M’,
g';) which agrees with (M, g,;) in some regions (say, such as the past of some
achronal subset), but disagrees overall—what Earman ([1995]) dubbed ‘a dirty
open secret’ concerning the failure of determinism. I will assume the definition
of determinism due to Butterfield ([1989])—that is, DM2 of that paper—ac-
cording to which:

[...] a theory with models (M, O;) is S-deterministic, where S is a kind of
region that occurs in manifolds of the kind occurring in the models, iff:
given any two models (M, O;) and (M’, O;) containing regions S, S of
kind S respectively, and any diffeomorphism « from S onto S”: if o*(0;)
= O} on a(S) = 5, then: there is an isomorphism g from M onto M’ that
sends S to ', that is, g*(0;) = O, throughout M and g(S) = §".

So to find a witness of indeterminism one needs merely to find two models that
are isomorphic in region S but are not isomorphic overall—just as standard
Laplacian intuitions demand.” In this sense one can easily and massively pro-
duce indeterministic counterparts of any relativistic spacetime whatsoever.
This is a philosophically unsatisfactory situation. To paraphrase Earman
and Norton ([1987]), determinism may fail, but (one hopes) if it fails, it
should fail because of reasons of physics, not because of a clever mathematical
trick.

Note that what is relevant to the issue of determinism is not what one does
to the spacetime, but what the resulting spacetime is like. As stressed by
Earman ([1995]), any relativistic spacetime can be obtained using cutting
and pasting. So one should not object to the procedure of cutting and pasting
as such. But perhaps in some cases the resulting spacetime is unphysical. The
desire to capture the sense of unphysicality present in such cases motivates the
search for hole freeness conditions, which would rule out spacetimes in which
a sort of artificial ‘hole’ has been made.® Various such conditions have been

chronological past I~ and the causal future J* of a point p and of a curve y, and what an isometry
is. I am following standard definitions and notational conventions, such as in (Malament [2012];
Manchak [2016a]). The only exception is that my brackets are angled, not rounded (in accord-
ance with what I take to be a standard notation for an ordered pair).

Note that the choice of kind of region S is somewhat tricky: although in both cases one may pick
an a slice (achronal closed subset without edge), and ‘dirty open secrets’ are best understood in
these terms—it’s just that in one model the slice is additionally a Cauchy surface, whereas its
isomorphic counterpart fails to have the Cauchy property—in particular contexts other choices
may be more natural. For example, in Section 4 one could take S to be the maximal globally
hyperbolic development, whereas in Section 5 it could be a slice that is a Cauchy surface.
Considerations of Earman ([2007]) strongly suggest that the choice of region S is not easy,
and many seemingly natural choices trivialize the issue; for further discussion, see
(Doboszewski [2019]). For present purposes, commitment to particular kind of regions is
tentative.

This kind of hole consists of literal holes, that is, one or more points removed from a given
spacetime manifold, making this form of indeterminism very different from the kind of holes
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Epistemic Holes and Determinism 3

proposed in the past; unfortunately, none seems to work.* In what follows,
I will analyse a recently suggested promising condition, epistemic hole free-
ness. Upon closer inspection epistemic hole freeness turns out to have highly
unsatisfactory features: in particular, it allows for a robust (and intuitively
highly artificial) form of indeterminism. It seems, then, that either a very large
set of relativistic spacetimes has to be by fiar declared to be physically unrea-
sonable, or classical general relativity is radically indeterministic.

2 Spacetimes, Holes, and Epistemic Holes

To introduce the condition of interest, I will briefly discuss some of the at-
tempts at distinguishing spacetimes with holes from hole free ones.

Observe that spacetimes with points removed tend to have incomplete geo-
desics. Perhaps geodesic completeness should be a hole freeness condition?
This would, however, be way too strong: singularity theorems establish that in
a wide range of physically reasonable situations (including gravitational col-
lapse) geodesic completeness is violated.

A spacetime with a hole can be made larger by an inclusion of a missing
point. This leads to the demand that spacetime should be inextendible. Recall
that the spacetime (M’, g/,) is an extension of (M, g ;) if there exists a function
A : M— M’ that is an embedding of M in A(M’) (and a diffeomorphism onto
its image), such that A*(g/,;,) | = ga and A(M) # M’, and that a spacetime
is inextendible if and only if it has no extension. This condition rules out some
spacetimes with holes, but not all: there are simple mathematical procedures
(such as slapping a conformal factor on a spacetime,’ or moving to the uni-
versal cover of a given spacetime) that ensure that in a large set of cases
inextendibility can be satisfied.® Moreover, Manchak ([2016b]) argued that
there are independent reasons to be suspicious about inextendibility.

One could turn for help to conditions inspired by the condition given by
Geroch ([1977]), according to which, intuitively, spacetime (M, g,;) has a hole

considered in the so-called hole argument and discussions concerning diffeomorphism invari-
ance. Conceptual issues raised by these kinds of holes should be carefully kept apart.
Manchak ([2016a]) provides a reader-friendly introduction to the current state of debate con-
cerning hole freeness conditions. Naturally, even if some condition worked, justifying that
nature obeys such a condition is another matter entirely (as stressed by Earman ([1995]) in
his discussion of what seems to be an invocation of some metaphysical principle of sufficient
reason as a justification for positing a particular hole freeness condition). But since none such
conditions seem to give the expected verdict, one needs not to worry about providing a justifi-
cation for them.

A simple example of this is the construction of a Malament-Hogarth spacetime by conformal
transformation of Minkowski spacetime with a point removed, as in (Welch [2008], pp. 661-2,
and Figure 1).

Beem ([1976]) has shown that any spacetime in which an inextendible causal geodesic is not fully
contained in a compact subset is conformally equivalent to a geodesically complete (and hence
inextendible) one.
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4 Juliusz Doboszewski

if for some achronal subset S, the domain of dependence D(S) can be enlarged
by finding an isometric embedding ¢ from (M, g,;) to some other spacetime
(M, g!,). But surprisingly, Krasnikov ([2009]) has shown that according to
this condition, even Minkowski spacetime has a hole. Minguzzi ([2012]) and
Manchak ([2013]) tried to improve on the ‘domains of dependence should be
as large as possible’ hole freeness conditions. But these conditions seem to be
highly contrived and much less natural than the simple and intuitive condition
of Geroch ([1977)).

So, it seems that all available hole freeness conditions have undesirable
features. Not good, especially if one is worried by questions concerning de-
terminism. Since one is trying to learn whether the theory is deterministic or
indeterministic (for some class of physical phenomena of interest), one would
like to have a way of excluding ‘fake’ indeterminism (where for any model
whatsoever plenty of alternative counterparts can be produced), without
assuming by fiat that the theory is deterministic. So a hole freeness condition
should be strong enough to rule out some obviously uninteresting instances of
indeterminism, while leaving the possibility of some (more interesting) form of
indeterminism open. But how to do that?

Recently, Manchak ([2016a]) has suggested the following schema:

A spacetime with an epistemic hole property (EH): A spacetime (M, g.;)
has an epistemic hole if there are two future-inextendible timelike curves
y and Y’ with the same past endpoint and which satisfy the following
condition (x), such that I~ [y] is a proper subset of 7 [y'].

The condition (x) can be filled in at least two different ways: (x), states that
both curves are geodesics, (x), states that both curves have finite total accel-
eration. Epistemic hole freeness (EHF), then, is a property obtained by ensur-
ing that EH does not hold. Depending on which version of the condition (x) is
used, spacetime that satisfies the negation of the above condition is free from
epistemic holes, in short: satisfies EHF(g) (in case of (x),), or EHF(f) (in case
of (*),). A spacetime satisfying EH has an epistemic hole in the sense that there
are two observers, starting from the same point, and one of them is in a
significantly worse epistemic position than the other. For the observer travel-
ling along " has access to all the observable content that the observer travel-
ling along y could see, plus some more.

EHF has been advertised as a condition that has quite a few advantages
over other forms of conditions that rule out holes in spacetime, such as inex-
tendibility or hole freeness conditions based on an idea that domains of de-
pendence are ‘as large as possible’. First, all these notions have a modal
character: they require one to consider mapping between the given spacetime
and various other spacetimes (which seems to already presuppose a distinction
between physically reasonable and physically unreasonable spacetimes).
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Epistemic Holes and Determinism 5

In contrast, EHF pertains to a single spacetime, and so it does not require
comparison of a given spacetime with some other spacetime. This makes epi-
stemic hole freeness an interesting candidate for a condition that distinguishes
between physically reasonable and physically unreasonable spacetimes
(assuming that the enterprise of providing such a distinction is worth pursu-
ing, and that a hole freeness condition is useful for this purpose).” It also gives
intuitively correct verdicts in a large class of examples. And it can be shown,
among other results, that any spacetime that is EHF(f) is not (future) nakedly
singular.® This is good news. So, perhaps epistemic hole freeness could serve as
a way of distinguishing ‘fake’ indeterminism from ‘physically reasonable’ in-
determinism? With this in mind, let me move to observations concerning the
strength of epistemic hole freeness in the next three sections.

3 Some Non-globally Hyperbolic Spacetimes Have Epistemic Holes

An additional advantage of epistemic hole freeness is that it gives the intui-
tively correct verdict for some non-globally hyperbolic spacetimes with a
closed subset removed.

The following example illustrates this point. Consider anti-de Sitter space-
time (M,g,) and anti-de Sitter spacetime with a point s removed
(M — {s},g,), where g/, is the restriction of g,, to M — {s}.2 Tt is easy to
show that with a point s removed from the bulk of (M, g,;), one can find
two timelike geodesics y and y’ with the same past endpoint p such that 7~ [y] is
a proper subset of I~ [y'].

Consider first the spacetime (M, g,;). An important feature of that space-
time is that all future-directed timelike geodesics from any point p are con-
tained in a sequence of diamond-shaped regions: all such geodesics refocus on
a point ¢, then expand again from ¢ to refocus on some ¢’, and so on. (See
Hawking and Ellis [1973], p. 132, Figures 20(i) and 20(ii), and p. 133; a subset
of a conformal patch of anti-de Sitter spacetime illustrating this behaviour is
schematically represented in Figure 1, which also summarizes the argument of
the next paragraph.)

7 The way I am using the expression ‘physically reasonable spacetime’ is intended as subsuming

related notions, such as physically salient, cogent, significant, and so on. Sometimes a distinction
is made between a metaphysical notion of being physically reasonable (under which, presum-
ably, conditions for being physically reasonable obtain lawlike status, since they determine what
is physically possible and what is not) and an epistemic notion of physical significance (for a
suggestion along these lines, see Fletcher [2016]). Note also that arguably such conditions are to
an extent context-dependent (as argued by Earman ([1995]) in the context of cosmic censorship).
But it seems that in most contexts, the relevant set of conditions for being a physically reason-
able spacetime will include some form of hole freeness.

To appreciate that result, recall that a spacetime is future nakedly singular if and only if there
exists an inextendible, future-directed timelike or null curve that is fully contained in the chrono-
logical past I of some point p.

In dimension d =2, M = R and gap = coshsz,,tV,,t — V.xVpx.
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Figure 1. Schematic representation of a single diamond-shaped subregion of a
conformal diagram of anti-de Sitter spacetime, illustrating why removal of a
point s results in epistemic holes. Dashed lines are null curves, r is the null infinity,
" is a coordinate singularity; solid black curves represent some timelike geodesics
that focus at p, expand from p to refocus at ¢, and so on.

Now, take some point s and consider the punctured spacetime,
(M — {s},g);). Since any point in this spacetime is contained in some
diamond-shaped region, without loss of generality it may be assumed that s
lies on a timelike geodesic that (in the spacetime (M, g,;)) goes through some
point p in the past of s and then ¢, which is the first point at which future-
directed timelike geodesics from p refocus. For y, take a timelike geodesic
linking (in (M, g,)) p and ¢ which passes through s, and consider its coun-
terpart (by map ¢, which is an identity map on M restricted to M — {s}) in
(M — {s}, g’,). Since s has been removed, one connected component of ¢(y)
with p as past endpoint is a future-directed, inextendible, incomplete geodesic.
For v/, take any future-directed complete timelike geodesic with past endpoint
at p (it has to pass through ¢, since all future-directed timelike geodesics from p
refocus at that point). y is incomplete, and 7~ [y] is fully contained in 7~ (g), so
it is contained in I~ [y']. So (M — {s}, g/;) has an epistemic hole in the EHF(g)
sense.

So even though anti-de Sitter spacetime satisfies EHF(g) and EHF(f) (as
shown in Manchak [2016a]), anti-de Sitter spacetime with a point removed
does not satisfy EHF(g).'® Both of these spacetimes are not globally hyper-
bolic, but one has a hole, while the other does not.

19 Note that despite the fact that anti-de Sitter spacetime is not globally hyperbolic, achronal
subsets S do have non-empty domains of dependence; see (Galloway [1982], Figure 1). So it
seems that using a judicious choice of S one should be able to show that some hole freeness
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Epistemic Holes and Determinism 7

Unfortunately, epistemic hole freeness does not distinguish between any
non-globally hyperbolic extension of Misner spacetime and the same space-
time with a point removed from a non-globally hyperbolic region (or with a
point removed from the globally hyperbolic region, for that matter): all these
spacetimes have epistemic holes in the sense of EHF(g). Why? Recall the
argument by Manchak ([2016a]) that Misner spacetime has an epistemic
hole: in any of the extensions there is a timelike geodesic that terminates at
the Cauchy horizon and does not enter the non-globally hyperbolic region. So
the past of that curve will be fully contained in the past of some other geodesic
that gets extended through the horizon, which leads to an epistemic hole. Since
that argument depends only on the existence of an incomplete geodesic termi-
nating at the Cauchy horizon and another geodesic extending through the
horizon, the removal of a point that does not lie on any of these two curves
is irrelevant for the property of having an epistemic hole; so, no matter how
one removes the point, all of these spacetimes will have an epistemic hole. But
for some contexts, such as the question of the existence of time machines, it
would be useful to have a hole freeness condition that gives the intuitively
correct verdict in these cases (for more on which, see the discussion in Earman
et al. [2009], Section 3).

4 Spacetimes with Certain Indeterministic Features Have
Epistemic Holes

A slightly generalized version of epistemic hole freeness imposes an interesting
form of determinism.

Consider the following schema (which is just a time-reversed version of
EHF, that is, with past and future interchanged), which rules out asymmetry
of possible interventions between observers travelling along curves y and '

A spacetime with inequality of opportunities (I00)'!: Spacetime (M, g,;)
allows for inequality of opportunities if there are two past-inextendible
timelike curves y and vy’ with the same future endpoint and which satisfy
condition (%), such that 7™[y] is a proper subset of I[y'].

Again, conditions (x) will be filled in an analogous way as in case of EHF, and
equality of opportunities (EOO) is defined by the negation of the above prop-
erty of IOO. EOO means that for any two observers who meet at some point it
is not the case than the observer travelling along ¥’ could have intervened on
everything the other observer could have, plus some more. ‘Domains of

conditions based on the idea that domains of dependence are ‘as large as possible’ provide an
intuitively correct classification of holes in anti-de Sitter spacetime and anti-de Sitter spacetime
with a point removed.

"' I am grateful to Jeremy Butterfield for suggestion concerning the name.
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8 Juliusz Doboszewski

possible interventions’ are not asymmetric between observers, so to speak. The
motivation for introducing EOO is that epistemic hole freeness is a time-
asymmetric condition: one cares only about future-directed timelike curves.
But for the discussions of determinism in general it may be helpful to have a
time symmetric condition, for there could be situations in which determinism
to the future holds whereas determinism to the past is violated (and so on; see
the discussion of futuristic and historical determinism in Earman [1986],
Chapter 2.6). Note also that other standard hole freeness conditions are
time symmetric (or can easily be made so). In what follows, I will say that a
spacetime satisfies generalized epistemic hole freeness if and only if it satisfies
EHF and EOO."?

A form of general relativistic indeterminism is demonstrated by the exist-
ence of spacetimes that are maximal globally hyperbolic, but are extendible in
non-globally hyperbolic and non-isometric ways. This can be naturally inter-
preted as indeterminism, in the sense that there are situations when the initial
value problem has non-unique solutions. In terms of the definition invoked in
Section 1, the region S is any slice from the maximal globally hyperbolic
region (or even the whole region), and various extensions are the two
models that fail to be isomorphic. What I take to be the standard interpret-
ation of this situation is expressed concisely by Ringstrém ([2010], p. 19) as
follows: ‘they demonstrate that Einstein’s general theory of relativity is not
deterministic; given initial data, there is not necessarily a unique correspond-
ing universe’.!® There are other examples of this behaviour in classical general
relativity; see (Chrusciel and Isenberg [1993]) for the construction of isometric
and non-isometric extensions of Misner, Taub-NUT, and polarized Gowdy
spacetimes; and (Doboszewski [2017]) for a recent discussion of their philo-
sophical relevance.

Spacetimes such as maximally extended Misner spacetime or Taub-NUT
violate EHF(g). (See the discussion of Misner spacetime in (Manchak
[2016a]); since the relevant portion of Misner spacetime is isometric to

12 T assume that for generalized hole freeness the blank is filled in the same way in the conditions
for both epistemic hole freeness and equality of opportunities. But of course it does not have to
be so. It would be interesting to see what happens if one fills the blank in different ways (ob-
taining four different conditions): for example, if one requires that EHF holds for any curves
with finite total acceleration, but equality of opportunities holds only for geodesics. Are there
any spacetimes that would satisfy EHF(g) + EOO(g), but do not satisfy, say, EHF(g) + EOO(f)?
And so on. Nevertheless, I do not see interpretational significance of such ‘mixed’ conditions,
and will ignore them in what follows.

Note that one could subscribe to an alternative interpretation, namely, that such spacetimes are
not instances of non-unique solutions to the initial value problem, because the extensions are
made through a Cauchy horizon, and hence are not in the domain of dependence of the initial
data. Yet another possible reading is that indeterminism is not signalled by the lack of unique-
ness, but by lack of causal dependency of the extended region on the globally hyperbolic region,
and so even an extension of the Misner spacetime (which in a certain sense is unique) leads to the
failure of determinism.

w
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Epistemic Holes and Determinism 9

upper half of Taub-NUT spacetime, the argument carries over.) Any of the
non-isometric extensions of polarized Gowdy spacetime, in which the time
orientation is chosen such that the extension is made to the past, satisfies EHF,
but not EOO, and similarly in the case of extendible Bianchi IX solutions
discussed by Ringstrém ([2009]). Indeed, all known examples of extensions
of extendible maximal globally hyperbolic spacetimes violate generalized epi-
stemic hole freeness.'* Why is that so? Recall that all known such cases have a
globally hyperbolic region with at least two classes of incomplete timelike and
null geodesics, each of which gets extended through the Cauchy horizon and
completed in one of the non-globally hyperbolic extensions.'® (For an explicit
discussion in case of Misner spacetime, see Levanony and Ori [2011].) Note
that the requirement that a spacetime manifold is Hausdorff forbids one to
perform the multiple extensions simultaneously (for discussion of these topics,
see Hawking and Ellis [1973], Section 5.8), which results in non-uniqueness.
To find a witness for an epistemic hole in an extension of such a spacetime it is
sufficient to take one of the geodesics that remains incomplete in the extended
(whether maximally or not) spacetime (that is, a geodesic that does not get
extended across the Cauchy horizon) as y, and one of the geodesics that gets
continued in the extension as y’. The idea of the EOO can be summarized as
follows: Extensions of spacetimes that demonstrate that the theory is future
indeterministic in this way (that is, spacetimes with a Cauchy horizon in the
future of the globally hyperbolic region) always have epistemic holes.
Similarly, extensions of spacetimes that demonstrate that the theory is past
indeterministic can be EHF, but will not satisfy EOO.

Which of the three conditions, EHF or EOO or generalized epistemic hole
freeness, is violated depends on the whether the spacetime has future, past, or
both future and past Cauchy horizons. (Generalized) epistemic hole freeness
should be contrasted with previous variants of hole freeness, according to
which extendible maximal globally hyperbolic spacetimes do not have holes,
since points in the extended regions cannot be in the domains of dependence of
any achronal subset S. (Since non-globally hyperbolic regions of these space-
times violate chronology, there is no achronal subset S in the additional
region, and achronal subsets of the maximal globally hyperbolic region al-
ready have, because of that maximality, domains of dependence that are ‘as
large as possible’.)

14 T stress this aspect since there is no theorem to the effect that any extendible maximal globally
hyperbolic spacetime needs to exhibit qualitatively similar behaviour.

!5 Recall that the Cauchy horizon is defined as the boundary of the domain of dependence of
Cauchy surface S. If a spacetime contains the maximal globally hyperbolic development of the
initial data and the Cauchy horizon is empty, then its uniqueness up to isometry (and hence a
form of determinism) is guaranteed by the theorem of Choquet-Bruhat and Geroch ([1969].
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Demanding that generalized epistemic hole freeness is satisfied removes a

number of indeterministic examples from the set of physically reasonable

spacetimes. There are two ways to react to this situation:

Q)

(@)

Argue that all is perfectly fine, for extendible maximal globally hyper-
bolic spacetimes display strange forms of curve incompleteness,
which justifies calling these spacetimes pathological and unphysical.
After all, any extension made to the future is future nakedly singular,
and maximal extensions violate chronology—and thus it is the
strength and an advantage of (generalized) epistemic hole freeness
that such examples are no longer allowed.'® Moreover, assuming that
a physically reasonable spacetime has to be stable—a classic version
of this view is expressed in (Hawking [1971]), but see (Fletcher [2016])
for a discussion of difficulties associated with such proposals—then
perhaps not much is lost, since the property of being an extendible
maximal globally hyperbolic spacetime seems to be unstable anyway
(for arguments to that effect, see Misner and Taub [1969]; Thorne
[1993]; Ringstrom [2010]).

Say this verdict is unacceptable, for extensions of maximal globally
hyperbolic spacetimes are physically reasonable examples of indeter-
minism: that a Cauchy horizon forms in the spacetime is a physically
important dynamical feature of certain initial data sets, and it seems
wrong to dismiss them as unphysical on the grounds of having a hole.
Moreover, it may already be suspicious that EHF spacetimes are not
nakedly singular. After all, there are physical situations in which
naked singularities arise dynamically (Joshi and Dwivedi [1993];
Christodoulou [1994]; Dwivedi and Joshi [1994]), which seem very
different from spacetimes with holes of the kind that motivates look-
ing for hole freeness conditions. It seems that differences between
dynamically arising naked singularities and artificial naked singula-
rities cannot be captured using EHF. And in case of a naked singu-
larity an asymmetry between observers (forbidden by EHF) seems
natural and acceptable: after all, one observer hits the singularity, the
other one does not. The asymmetry is physical, in that it is introduced
by the gravitational collapse resulting in the naked singularity.
Ruling out naked singularities, then, is at best a mixed blessing. It
may be a virtue if nature indeed ‘abhors naked singularities’. But

16 Note that there are still multiple forms of indeterminism present in spacetimes that satisfy EHF.
For instance, anti-de Sitter spacetimes have no epistemic holes, but seem to display a relativistic
version of space invaders-like indeterminism (see Earman and Norton [1993]). Moreover, if
determinism is conceptualized in such a way that spacetimes violating chronology or singular
spacetimes count as a form of indeterminism, ample amount of indeterminisic cases arises.
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Epistemic Holes and Determinism 11

until this has been convincingly demonstrated, demanding epistemic
hole freeness rules in favour of determinism—unfairly.

In the light of the next section, I think it is right to react in the second way. For
it will turn out that even though epistemic hole freeness does not allow for
indeterminism that can be associated with non-unique extensions of maximal
globally hyperbolic spacetimes, it does allow a Doomsday kind of indetermin-
ism, that is, a situation in which whether spacetime abruptly ends at any given
moment of time is not determined by the initial conditions and dynamical
laws. In my opinion, this seems much more artificial and unreasonable than
the indeterminism induced by extensions of maximal globally hyperbolic
spacetimes.

5 Some Truncated Spacetimes Are Epistemically Hole Free

In the light of the various nice features of EHF, one may be tempted to claim
that some version of EHF is a necessary condition for a spacetime to be
physically reasonable. Could EHF also be a sufficient condition?

This is also related to the issue of determinism, in the following sense. A
natural interpretation of the ‘dirty open secret’ of Earman ([1995]) is the fol-
lowing: unless a hole freeness condition (considered there in the sense of *D(S)
is as large as possible’ approaches) is assumed, determinism fails very easily.
But, as I argued in the first section of this article, there are good reasons to
dismiss these approaches to hole freeness as unsatisfactory. This leads to a
natural question: what is the fate of determinism (and the ‘dirty open secret’)
under the assumption of EHF?

It turns out that there are some intuitively physically unreasonable space-
times, obtained by excision of certain subsets of M, which do satisfy both
EHF(g) and EHF(f). Let (M, g,) be two-dimensional Minkowski space-
time,'” and consider three different truncations:

(1) (M, g}, where M'" is M with a null slice without edge S and its
future 77(S) removed; the metric is g}, = gyt (null-truncated
Minkowski spacetime; see Figure 2),

(2) (M?,g2), where M'? is M with a zigzagging achronal (but not acau-
sal) slice without edge S and its future 77(S) removed. That is, the
achronal slice S has some spacelike and some null components, and
the metric is, again, g2 =g, (zig-zag-truncated Minkowski
spacetime; see Figure 3),

17 This choice is made just for the sake of simplicity; the examples will work just as fine for higher
dimensions and other choices of the metric.
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’

Figure 2. If S has a null component, the truncated spacetime violates EHF(g): the
case of a null-truncated Minkowski spacetime (M'!, g}).

(3) (M?3,g3), where M is M from which a spacelike slice without edge
S and its future /7 (S) have been removed; the metric is g’jb = Zupm
(future-truncated Minkowski spacetime; see Figures 4 and 5).

Intuitively, these spacetimes are clearly physically unreasonable: there is no
physical reason for spacetime to come to an end abruptly in this way, which I

will call Doomsday indeterminism.

18

18,19

A digression: Barnes and Cameron ([2009]), when arguing against the branching time approach
to the open future, subscribe to the view that situations in which time ceases to exist are genuine
metaphysical possibilities that cannot be represented by a branching model. Such ceasing of time
seems to be represented by a removal of the upper part of the branching model (that is, the
future of some point x). It seems that what they are after is a non-relativistic analogue of the
truncations I am discussing here. However, even if such situations should be counted as meta-
physical possibilities, it is not clear that such a ceasing of time should be counted as a physical
possibility in classical general relativity (even though other forms of ceasing of time, such as a
big crunch, are clearly physically possible). The difference between the truncated version of the
ceasing of time and other forms (such as a big crunch) is that in the latter case there is a physical
description of spacetime structure leading to the ceasing (a physical mechanism, if you like). The
lack of such description in the case of truncated spacetimes is the reason why, intuitively, they
should not represent genuine physical possibilities. In short: T accept that Doomsday indeter-
minism is a possibility that should be seriously entertained, but if (and only if) it is accompanied
by a physical mechanism.

Note also that even though these spacetimes present us with a somewhat radical form of inde-
terminism, it is not obviously of the ‘multiple continuations’ variety required by some formal
statements of indeterminism: the disagreement between these models lies in the fact that some of
them continue a given region with an empty set, whereas some others continue with another
spacetime region (and whether this counts as disagreement of worlds or models depends on
additional considerations). This could be seen merely as a glitch in a definition, and the one
adopted here (due to Butterfield [1989]) does not suffer from that glitch: in case of the original
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Epistemic Holes and Determinism 13

Figure 3. If S has a null component, the truncated spacetime violates EHF(g): the
case of a zig-zag-truncated Minkowski spacetime (M2, g?2).

And indeed, all these spacetimes have a hole in the ‘D(S) is as large as
possible’ approach and are extendible (but could easily be made inextendible
with the help of a suitable conformal transformation); and intuitively they
have a gigantic hole looming to the future. What is the verdict of EHF?

Spacetimes (M, g'alb) and (M2, g'(lzb) have an epistemic hole (both in the
EHF(g) and EHF(f) sense). The argument is summarized graphically on
Figures 2 and 3 (note that on all Figures S and I7(S) are removed from
spacetime; thin dashed lines are null curves). Consider two curves, y that
goes to some ¢ on the null component of S, and y that goes to some
resS, reJt(p). Then I7[y] is a proper subset of I7[y], and by applying
this line of reasoning to the truncated spacetime, one immediately obtains
epistemic holes.?® So in the null and zig-zag-truncated Minkowski spacetimes
one can always find an epistemic hole.

In the future-truncated Minkowski spacetime, however, one cannot do so—
(M3, g3) does not have an epistemic hole (either in the EHF(g) or EHF(f)
sense). This is displayed on Figures 4 and 5. There are two possible situations:
in each case the truncated spacetime has no epistemic holes. Consider two
curves, y and v/, that would intersect S had the truncation not been performed.
They would either intersect S at the same ¢ € S, in which case y and y’ have the
same chronological past (as in Figure 4—note that this case occurs only if one

spacetime and a truncated spacetime there is no isomorphism between them—there is only an
embedding of the truncated one into the original one—so this example counts as indeterministic.

20" And an anti-de Sitter spacetime truncated by removal of (J~(p) \ I~ (»)) UIT(J~(p) \ I~ (»)))
for some p does have an epistemic hole.
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Figure 4. Future-truncated Minkowski spacetime (M/3,g;fb), case one:
I"iy|=1I"[y]

considers EHF(f)), or at two distinct points (some ¢ and r). If they would both
intersect S at some ¢, then /-[y] = I [Y'] in the truncated spacetime. And if
they would intersect S at two distinct points, then the symmetric difference
I"[YIAI[y]# @,>' and is not contained in I~[y] or in I-[y] (Figure 5).
Thus, whether a truncated Minkowski spacetime counts as having an epi-
stemic hole or not is a matter of how the truncation has been performed.
Together with the preceding section this implies that although EHF rules
out some instances of indeterminism that are associated with, so to speak,
some physical goings-on (dynamically forming naked singularities, extensions
through Cauchy horizons) on the grounds of having a hole, it allows for
(intuitively) much more unreasonable and radical Doomsday-type indeter-
minism. This seems to be unfortunate: the hole freeness condition does sig-
nificant physical work here, and of the sort that hole freeness should not do.
What else do these examples show? There are examples of spacetimes that
are inextendible and hole free (according to ‘D(S) is as large as possible’ con-
ditions), but intuitively do have some kind of a hole (see Manchak [2016a]);
inextendibility and hole freeness (again, in the sense of ‘D(S) being as large as
possible’) are thus insufficient to rule out all artificial examples. I have con-
structed examples of spacetimes (which are extendible and have a hole accord-
ing to ‘D(S) is as large as possible’ conditions) that intuitively are physically

2l Recall that a symmetric difference of two sets consists of elements that are in either of the sets,
but not in their intersection.
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Figure 5. Future-truncated Minkowski spacetime (M, gfb), case two:
I"[yY]A T [Y] # &, and is not contained in /™ [y] or in I~ [Y'].

unreasonable, but do not have an epistemic hole.?* So, if EHF is to be used as
the sole condition for being a physically unreasonable spacetime (in the fairly
minimal sense of not being artificially obtained by cutting and pasting), then
some truncated spacetimes would be classified as physically reasonable.
Hence, epistemic hole freeness on its own is insufficient to rule out all artifi-
cially obtained spacetimes.

6 An Additional Condition for Rescue?

A natural reaction to these examples of truncated spacetimes would be to
write down an additional condition € and declare that a physically reasonable
spacetime satisfies EHF, EOO, and €. There are some intuitive candidates for
€, but I will argue that none of them is satisfactory.

First, future-truncated Minkowski spacetime is extendible: perhaps epi-
stemic hole freeness should be combined with inextendibility? € would then
simply be inextendibility. Note that in this case one would lose what is adver-
tised as an important conceptual advantage of epistemic hole freeness: to
apply inextendibility one has to consider some spacetime (N, h,;) and its

22 One way of interpreting the situation is the following: Many other hole freeness conditions are
deemed unacceptable on the grounds of classifying Minkowski spacetime as having a hole, and
thus having Minkowski spacetime as a counterexample. Epistemic hole freeness does not have
Minkowski spacetime as a counterexample. But certain proper subsets of Minkowski spacetime
do, intuitively, have holes; they do not, however, have epistemic holes. So epistemic hole freeness
should be deemed unacceptable on the grounds of classifying a proper subset of Minkowski
spacetime as hole free.
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extension (N', /), making use of the conceptually problematic class of all
physically reasonable spacetimes. And since avoidance of implicit commit-
ment to such a distinction is (according to Manchak [2016a]—see also
Manchak [2016b] for criticism of the inextendibility condition) among the
good features of EHF, inextendibility with its modal character seems to be
an unattractive candidate for €.

Second, note that all future-directed timelike curves in spacetimes (M7, g/,)
for i € {1, 2, 3} are incomplete. One may then be tempted to take € to be
existence of at least one complete (in the standard sense that generalized
affine parameter of the curve has unbounded range) inextendible, timelike
geodesic. To see that this demand is too strong, consider (a) a big crunch
scenario (in which the spacetime contracts and ends with a curvature singu-
larity), or (b) the maximal globally hyperbolic region of Misner spacetime
(oriented in such a way that the Cauchy horizon is to the future). In such
spacetimes all causal geodesics are future incomplete, and thus are ruled out as
physically unreasonable on the grounds of violating €. Even worse, a space-
time with a big crunch singularity and a point removed would be unreason-
able, as would also be the original spacetime, both on the grounds of violating
C.

Third, € could be ‘blowup-or-completeness’: the demand that any inextend-
ible past or future-directed timelike geodesics y is either complete, or some
curvature component is unbounded along y. This certainly gets rid of trun-
cated examples, in which there is no blowup along future incomplete geodesics
(indeed, all curvature invariants vanish in the examples I have explicitly dis-
cussed); and it may allow for a big crunch-type scenario (since by definition
one expects a curvature blowup in the big crunch). This condition by itself has
no modal taint, but implies inextendibility, in the following sense: if curvature
blows up along any future-directed timelike geodesic in spacetime (M, g.),
then (M, g.;) is (C*-)inextendible. The converse is not the case: a spacetime
may have no curvature blowup, but be future incomplete and inextendible.
(The spacetime obtained by identifying past null lightcone of a point on S on
Figure 4 and the annulus spacetime of Geroch and Horowitz ([1979], p. 258)
are examples of that.)?® It would be interesting to determine the exact strength
of these sort of conditions as a hole freeness condition. Conditions in plural,
for this quickly leads to a family of conditions: why not all causal geodesics, or
all curves with finite acceleration? The trouble, however, is in (a) variety of
examples of spacetimes that are (say) timelike complete but null incomplete
(see discussion of related issues in Curiel [1998], Section 2), in which intuitions
concerning holes become rather vague, and (b) apart from the question of

23 I am grateful to an anonymous referee for reminding me of this fact.
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whether this condition does the job, there is a separate and thorny issue of
providing a compelling justification for it.

Whatever the outcome, note that even though epistemic hole freeness is
satisfied in the globally hyperbolic region of Misner spacetime, ‘blowup-or-
completeness’ is not, and so even the globally hyperbolic region of Misner
spacetime would not be physically reasonable under such a € (thus restricting
further the set of physically reasonable spacetimes allowed by EHF). So for
some initial data sets, their maximal globally hyperbolic developments are not
physically reasonable according to ‘blowup-or-completeness’; and so are
Cauchy horizons associated with these data. In my opinion this means
going back to square one: a strong form of determinism is being assumed
ab initio.

This leads to the situation in which (generalized) EHF needs to be supple-
mented by some additional condition € that (a) does not rely on modal
clauses, (b) is satisfied in big crunch spacetimes, and (c) is violated in
future-truncated Minkowski spacetimes. Unfortunately, I do not see a pro-
mising candidate for such a condition. Despite progress being made with the
introduction of epistemic hole freeness, there is no satisfactory hole freeness
condition available. Analogously to a sceptical analysis of the significance of
energy conditions by Barcelo and Visser ([2002]), it seems that we are entering
a twilight for hole freeness conditions.
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