
HEHISTORYOFSINGULARITYTHEOREMS in'Einstein's general theory ofrelativity
(GTR) is very far from an idealized textbook presentation where an analy-
sis of space-time singularities is followed by theorems about existence

of in to the Einstein field equations (EFE);1 indeed, crucial
advances in the of the concept of space-time singularity were driven
by a need to understand what various singularity theorems and demon-

The theorems of Roger Penrose and Stephen Hawking
on a new and mathematically precise definition of singularities, although

was not clear from the first publications of the results and it may not have
been clear to the authors themselves. These theorems did succeed in

convincingthe general relativity singularities, in one sense of that
term, are a generic feature of solutions to EPE. However, these theorems
subsequent generalizations not settle the debate about the correct definition of
singularities; in fact, it has become increasingly clear that there is no one 'correct'

1 Einstein's field equations (EFE), with cosmological constant term, read:

where RlJ,v is the Ricci tensor, R is the Riemann curvature scalar, A is the cosmological constant, and
Tf-tv is the stress-energy tensor. An equivalent form of the field equations is

where T is the trace of Tp,v. In what follows I have changed notation in the original papers to conform
to the (+ + + -) signature for the space-time metric. In keeping with the style of the times, I have
used the component notation for tensors instead of the abstract index notation now in vogue.
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236 John Earman

definition and that the term 'space-time singularity' points to a sizable family of
distinct though interrelated pathologies that can infect relativistic space-times.
Many general relativists view singularities as being intolerable, and those who·

do tend to see theorems proving the prevalence of singularities among solutions
to EFE as showing· that GTR contains the seeds of its own destruction. As a
result there have been attempts either to modify classical GTR so as to avoid
singularities or else to combine GTR with quantum mechanics in the hope that the
quantum version of gravity will smooth away the singularities. A discussion of
these foundations issues is beyond the scope of present paper.2

The aim here is modest one of.tracing the route to Penrose-Hawking
theorems. Even so the entirety of an of the relevant is so large that a
definitive treatment would have to be book length. The selection principle used
in the present survey is to concentrate on results which contributed directly to
the debate about whether or not singularities in GTR are only artifacts of the
idealizations of models of cosmology and gravitational collapse. Although the
present survby iSfat fi:()lrt of the treatment allows the main
themes tostand out from avery cluttered background.
The singularity theorems of interest are four sets: a group

ofresults by Richard Tohnan, Georges Lemaitre, and others from the 1930s; results
byAmalkumar RaychaudhuriandArthur Konlar from the 1950s; a transitional
suIt by Lawrence Shepley from the early 1960s; and finally the Penrose-Hawking
theorems from the inid to late 1960s. The theorems from the 1930s w'ere recogniz-
ably singularity theorems independently of the then extantcontroversies about how
to define singularities. Nor were any .of the key results from the 19308 or 1950s
motivated by adesire.tounderstandthestatus.ofsingularities in Schwarzschild
solution, the De Sittersolution, or other cosmological models .. It would be a mis-
take, however, to neglectthese matters_._ FQ! Raychaudhuri's first engagement with
singularitiesinGTRstelTnned from a desire to clarify the status of the r = 2M
Schwarzschild singularity; and, more·generally, the critical reaction to the main
results of Raychaudhuriand Komar reflected the unsettled state of opinion about
how best to analyze singularities. Thus in what overviews of attempts to
define and nature of singularities in general-relativistic space-times

be interwoven with discussions

Singularities began to demand attention soon after Einstein's general theory was
codified in its .final fOrm. The Schwarzschild (1916) exterior solution was not only
the first exact solution ofEFE, it was the basis of the three classical tests of the
theory. In "Die Grundlagen der Hilbert (191.7) not only confronted
tile singularity structure used the opportunity
to give /what amounts to the first general definition of singularities in GTR. In

2 See Barman!996 for a discussion of these issues.
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coordinates IntrO(luc:ea by Johannes Droste element is

-1
dr2+ r2(de2+ sin2 () d4J2) - (1)

Hilbert pronounced that this metric is singular (or "not at both r =0 and
r=2M:

For a #- 0, it turns out that r = 0 and (for positive a) also r = a are
points 'at which the line element is not regular. By that I mean that a line
element or a gravitational field gILV is regular at a point if it is possible to
introduce by a reversible one-one transformation a coordinate system, such
that in this coordinate system the corresponding functions are regular
at that point, Le., they are continuous and arbitrarily at the
point and in a neighborhood of the point, and the determinant g' is different
from 0.3 (Hilbert 1917: 70-71)

was, of course, correct that the apparent singularity at r = 2M (the
'Schwarzschild radius'), cannot be removed by a coordinate transformation that
is to be smooth and invertible. not only for r > 2M also at r =
2M. Later critics charged that there is no need to restrict attention to coordinate
transformations that are smooth at the Schwarzschild radius; on the contrary, it
was said, one expect thetransformation to" singular at this radius since the
Droste coordinates 'go bad' there, as ,evidenced by the fact that it takes an infinite
amount of t-coordinate time to reach r 2M from r > 2M even though only
a finite amount of proper elapses. by itself such a remark would hardly
have been found decisive; indeed, two decades later Einstein was to appeal to a
similar feature of isotropic coordinates as evidence that there is a real singularity
at Schwarzschild radius (see below).4

Einstein's concern with the 'exterior Schwarzschild solution focused not
oR. the problem of singularities but rather on the perceived anti-Machian character
of the solution. As John Stachelhas written, it was for Einstein a "scandal that a
solution to his field equations should exist which corresponds to the presence of a
single body in an otherwise 'empty universe'" (Stachel 1979: 440). The scandal
seemed to worsen the introduction of the cosmological constant term into the
field equations and De Sitter's (1917a, b) discovery of a solution with the
line element .

3 "Fur Ol :f: 0 erweisen sich r = 0 and bei positivem at auch r =' Ol als solche SteHen, an denen die
MaBbestimmung nicht regular ist. Dabei nenne ich eineMaBbestimmung oder ein Gravitationsfeld gJkV
an einer Stene regular, wenn es moglich ist, durch umkehrbar eindefitigeTransforination ein solches
Koordinatensystem einzufuhren, daB fur dieses die entspreschenden Funktionen an jener Stelle
regular, d.h. in ihr und in ihrer Umgebung stetig und beliebig oft differezierbar sindund eine von Null
verschiedene Determinante g' haben." In the second volume ofDie RelativitiitstheorieMax von Laue
concurred with Hilbert (von Laue 1921: 215).
4 An illuminating accountofearly·attempts to understand the mysteries of the Schwarzschild solution
is to be found in Eisenstaedt 1982.
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where R is a positive constant (not the Riemann curvature scalar). The metric
of this line element can be considered to be a solution to Einstein's vacuum field
equations with cosmological constant A == 3/R2• Here Einstein found the issues·
of Mach's principle and singularities for he wanted to the violation
of the former as ersatz on the grounds that mass concentrations were in

== (rrR)j2 of (2). This analysis of what it meant
for a space-time to be singular, which was supplied. For Einstein, a space-
time was to be counted as nonsingular if in the finite realm the covaraiant and
contravariant components of metric are continuous and differentiable and,
thus, the determinant g never A space-time point P is said to be in the
finite realm if it can be joined to an arbitrary Po a curve of finite
length. Einstein in using along space-like or

is put on the acceleration of time-like curves,
points'at infinity' counted as lying at a finite distance. Later writers would
use affine distance along a geodesic to judge what is at a finite distance. It seemed
to Einstein in 1918 that the discontinuity in (2) at r== (rrR) /2,which lies at a finite

removed by any choice ofcoordinates and, represented
a real singularity.5 In this he·was mistaken, as emerged from the work of Felix

KornelLanczos (1922, 1923), Arthur S. Eddington (1923).
1k7a.1I-a.1l"1I"1I1rUV to Einstein's the De Sitter represents a "'mass
horizon' or ring of peripheralmatter," that "A singular ds 2
does not necessarily indicate materialparticles, for we can introduce or remove
such singularities by transformations of coordinates" 1923:
165). he about how to

the world-structure
system" (ibid.).

CO()ratllnalte transformation
a coordinate artifact,
his result.6 The first

singularity was
ther == (rrR)/2

a definite advance in un-
derstanding had been had == 2M been clarified
but Lemaitre'sextension of the Schwarzschild solution also revealed the non-
stationary character must possess-neither the nor the
Lemaitre treatment singularity structure so-
lution. For, as win become clear, the global structure of
space-time, of these aU of the relevant n-rr"na.-r1tl/.:llC'

5 .It is not clearvyhether Einstein, like Hilbert, meant to require that an allowed coordinate transforma-
tion must be smooth and invertible not only up to but also at the (apparent)singularity. Some evidence
that he not comes from the fact that he explicitly recognized thatthe l/I = 0 singularity in (2) is
"nur scheinbar"because. it can be removed by transforming from spherical to Cartesian coordinates;
but the transformation is singular at the.north pole.

6 The transformation is t' = t - 2M In(r - 2M). (Actually Eddington's 'formula was a factor
of 2.) Note that the transformation is singular at r = 2M. David Finkelstein (1958) rediscovered
Eddington's transformation.
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of the maximal analytic extension of the exterior Schwarzschild solution.
Although Lemaitre's paper appeared in two journals that were not

widely read, it was knoV\(n to a few key actors, Hovvard P. Robertson, who
had produced his own transformation for removing the r = 2M singularity? In
1939 Robertson was at Princeton and in contact with Einstein. In view of the fact
that discussions with Robertson are explicitly acknowledged in Einstein's "On
a Stationary System with Spherical Symmetry Consisting of Many Gravitating
Masses" (1939), it is more than a little surprising to see how Einstein treats the
r = 2M singularity. Einstein chooses to write the Schwarzschild line element in
isotropic coordinates:

2

(3)

where r'2 = x2+ y2 + Z2, r' is related to the Droste radial coordinate.r by
r = JL + r' + f.-t2/ 4r', and JL is the mass. In this form of the blow
up behavior of gu in (1) is removed, but as noted by Einstein, g44 in (3) vanishes
at r' = /L/2. 8

[This] means that a clock kept at this place would go at a zero rate. Further
it is easy to show that both light rays and material particles take an infinitely
long time (measured in "coordinate time") in order to reach the point r' =
J.L /2 when originating from a point r' > J.L /2. In this sense the sphere
r' = f.1 /2 constitutes a place where the field is singular. (Einstein 1939:
922)

To modern eyes what this behavior is not the presence of a singularity
as with the 'mass horizon' in the De Sitter solution (2), r' = J..t/2 is an

horizon.9

The purpose of EiJl1stein's was to argue that the r' = J..t/2 (or r = 2M)
Sch,varzschild singularity does "not exist in physical reality." The argument given
is that for the special case of a spherically symmetric cluster of particles ,moving
in circular orbits under influence of their gravitational the radius
of the cluster cannot be smaller its It is surprising

7 Synge (1950:84) reports a transformation, attributed to a 1939 lecture ofRobertson's, for removing
the r = 2M singularity.

8 I have taken the liberty of changing Einstein's r to r'.

9 Although the nature of event horizons was not clarified until much later, Lanczos, (1923) was clear
that r = (11"R) /2 in the De Sitter solution corresponds to an event h9rizon and npt to a singularity.
J. Robert Oppenheimer and Snyder (1939) recognized that in the context 'of gravitational collapse the
Schwarzschild radius acts as an event horizon, although they did not use this terminology; see Section 2
below. An event.horizon for a system of observers is the boundary between the region of space-time
from which those observers can receive causal signals and the region from which they cannot receive
signals. In the maximal extension of the exterior Schwarzschild solution r = 2M has an absolute
status as an event horizon: it is the boundary between that portion of space-time that can be seen from
future null infinity and that portion that cannot be viewed. This is the basis of the modem definition
of 'black hole.'
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Einstein produced an elaborate fifteen page calculation to reach this conclusion, for
it was known that in the Schwarzschild exterior field there are no circular geodesics
for r < 3M. It is not just surprising but nearly inexplicable that Einstein thought
that a static analysis, which did not anow for collapse of matter,: ,could yield the
desired impossibility result. Einstein's model, which has the particles in orbit
rather than headed for a common origin, seems unconsciously chosen to yield the
wanted result. In very year that Einstein's paper appeared, Oppenheimer and
Snyder (1939) showed that the gravitational collapse of matter could lead to the
uncovering of the Schwarzschild radius (see Section 2).
In sum, at the end of the 1930s not only was there no agreement on how to define

singularities, there was not even a consensus about the status of singularities in
the key test case, the Schwarzschild solution. There were examples, such as the
De Sitter solution, which showed the need to distinguish between genuIne and
apparent singularities; but again, there was no consensus on how this distinction
was to be drawn. There 'JVas, however, at least tacit agreement on this much:
if some relevant physical' variable, such as energy density or a curvature scalar,
becomes unbounded, and this'behavior occurs at a finite distance (to use Einstein's
(1918) phrase); then a genuine singularity is implicated.1o

This Section reviews singularity theorems in the cosmological setting by Tolman
and Ward (1932), Lemaitre(1932), Tolman (1934a), and John Lighton
Synge (1934), and results by Oppenheimer and Volkoff (1939) and Oppenheimer
and Snyder (1939) for gravitational collapse.

(1930a, 1930b, 1930c) studied homogeneous, and isotropic
whose line " turned to that of what are now

caned the models (see Tolman
1930d). We now know the symmetries of the space-time metrics in question
force the stress-energy tensor to have the form of a perfect fluid: Til-V = (p +
p) UIl- UV+ P gil-v, where p is the density of matter, p is the pressure, and UIl- is
the normed four-velocity of the Tolman and Ward (1932) examined the case
where the cosmological constant is set to zero and where p > 0 and p 2: O. They
showed that, as a consequence of EFE, if the volume of space is
there is a finite upper bound beyond which the model cannot expand; this
bound is reached in a after which the model contracts to zero volume,
also ina finite time.
This is arguably the first significant singularity theorem for GTR. Once having

achieved this Tolman and lost no time in to negate it
in two ways. 'First, argued that what the analysis says,
is plausible on physical grounds to expect that the contraction to, zero volume

10 Although I cannot cite specific passages from the literature of the 1930s to substantiate this claim,
the fact that the theorems discussed in Section 2were accepted as singularity theorems is strong indirect
support for the claim.
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would "be followed by renewed expansion,
of somewhat similar expansions and contractions" & Ward 1932: 842).
This conclusion was supported by a citation to a previous paper ofTolman's which
contains the stronger assertion that "it is evident physically contraction to a
zero volume could only be fonowed by another expansion" (Tolman 1931: 1765).
The idea of an irremovable singularity-one which cannot be removed by any
suitable extension of the space-time-was evidently one which Tolman did not
want to contemplate. I 1 Second, Tolman and citing the authority of Einstein
(1931), "it is possible the idealization upon which our considerations
have been based should be regarded as failing in the neighborhood ofzero volume"
(p. 842). Specifically, they that the perfect fluid idealization might break
down· at very small volumes. Einstein, however, laid the finger of blame on
symmetry assumptions. Speaking ofthe initial singularity in the Friedmannmodel,
Einstein wrote: "Here one can try to get out of the by pointing out that
the inhomogeneity of stellar matter makes illusory our approximate treatment"
(Einstein 1931: 237).12 Other cosmologists, such as Robertson (1932) and De
Sitter (1933), joined the chorus that sang that the initial singularity in the
models is an artifact of unrealistic symmetry assumptions.

Tolman sang in soon produced some discordant
evidence. Tolman (1934a) investigated inhomogeneous dust filled models (Tab =
p UaUb) which symmetry. Now called Tolman-Bondi models,
they are more models since they were
introduced (1932). Tolman (1934a) cites Lemaitre, and Hermann
Bondi (1947) in turn cites Tolman. line element of this model can be written
in the form

ds2 = eAdr2+ e(J) (d()2 + sin2 8dlj>2) -. dt2,

'where A and w are functions of t and the radial coordinate. ApplyingEFE
cosmological constant yields a secohd order for p:

a2 1n p 1
= 4np - A +-3 2 (W')2+- -3 w'

(4)

where the and denote respectively differentiation with respect to rand t.
Consider regions where 4np - A> O. If p is increasing, it follows from
(4) that "reversal in the process of condensation would not occur short of arrival
at a state involving infinite density or a breakdown of our

1934a: 173). Tolman did not say, can be easily
proved to from (4), is that p becomes in a finite amount of time.
Again th,e tenaellCV to the on the idealizations of the model is

11 The trick is ·to specify what a 'suitable' extension is. If no continuity requirements are put on
an extension, then any singularity is removable. For reflections on what continuity conditions are
appropriate to GTR, see Earman 1995a: chap. 2.

12 "Hier kann man der Schwierigkeit durch den Hinweis darauf zu suchen, daB Inho-
mogeneitat der Verteilung der Sternmaterie unsere approximative illusorisch
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noteworthy. Results similar to Tolman's were obtained by Synge (1934) by means
13 .of another technique.

Ancther interesting singularity result was sketched by Lemaitre (1932) for a'
class of honlogeneous but possibly non-isotropic which .in the modern
classification scheme belong to the Bianchi Type I class. The line element can be
written as

(5)

Defining R3 == A == J- det(gij) ,.Lemaitre argued that, as a consequence of
without cosmological constant term, at a certain moment, R is negative,

it follows that R attains a value of zero and thus that the volume is annulled"
(Lemaitre 1932: 84).14
The connection between the vanishing of g and a space-time singularity is not

evident at first glance;15 but it is known from hindsight that a genuine singularity
is involved. For in the vacuum case EFE imply that either the metric (5)
is flat or else

gOlOl = (t - to)2CTa COl (no .summation,)

where the aOl and COl are constants, and the 0'0: must satisfy

0'1 +0'2 +0'3 = 1
2 2' 2

0'1 + 0'2 + 0'3 = 1

"'o.:1l"1lt:h1l"\l1C.h'llT 1975: sect. 9.5). It follows that either the metric (5) is flat
1"1111l"'IITlJlfll11"C-h singularity at t = to since Rl-tv JLV ---?> 00 as

t ---?> to+ where is . Riemann curvature tensor.
incomplete as a singularHy-tfieorem, Lemaitre's result embodied two

remarkably prescient features.••. First, he did not assume, as was common at the
time, that matter was in dust or a perfect only that the stress-
energy tensor satisfied areasonable energy condition. Second, his argument that g
goes to zero is an form of the Raychaudhuri effect. Raychaudhuri's seminal
1955 paper will be discussed below in Section 4. Itmakes no reference to Lemaitre.

Raychaudhuri was Lemaitre's work, since there is a reference to
it in Raychaudhuri 1953. Thus, it is plausible that Lemaitre's construction was an
unconscious inspiration for Raychaudhuri's work.
Singularities reared their heads not cosmology but also stellar dynam-

ics. The most general static and .spherically symmetric metric has a line element
of the form

13 For mbre'details on Synge's technique, see Eisenstaedt 1993.

14 "Si aun certain moment R' [R] est negatif, il faut que R atteignela valeur zero et done que
Ie volume s'annule."

1960s.
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where A and v are functions of r alone. If matter is assumed to act as a perfect
fluid, EFEwithout the cosmological constant term imply three ordinary differential
equations:

(
V' 1

8np = e-J.. ,.. + 1

(6)

p'=

r - r12 ) +
+p)v'
2

(1934b). It was assumed that outside of the mat-
in this exterior region the line element takes on its

as had been shown by
ter, p = p = 0, and
Schwarzschild form

e-).(r) 2M
1--,

r
ev(r) = 1 _ 2M

Adjoining an equation of state p (p) to (6) gives four equations for four unknowns.
and Volkoff (1939) used an equation of state designed to model a

cold Fermi gas, which they took as a reasonable first approximation for a neutron
star. for masses (3/4)M0 , static solutions for the mass

There would then seem to be only two answers possible to the "final" be-
havior of very massive stars: either the equation of state we have used so far
fails to describe the behavior of highly condensed matter that the conclu-
sions reached above are qualitatively misleading, orthe star will continue to
contract indefinitely, never reaching equilibrium. Both alternatives deserve
serious consideration. (Oppenheimer & Volkoff 1939: 380-381)

A heuristic discussion of the possible deviations from the Fermi equation of state
left them confident that the first possibility was not plausible.
11le need to examine non-static solutions was recognized, and in a subsequent

paper Snyder (1939) provided such an analysis which bypassed
the question of of state studying the case of the free gravitational
collapse of a ball (p = 0). effect, the Lemaitre- solution for
a spherically. symmetric dust ball is being as the interior solution joined to
an exterior Schwarzschild solution.16 It was after a proper time as
measured by an observer comoving with the matter, no signals could be
from thestar to externalobservers: "the cone within which a signal can escape has
closed entirely" (Oppenheimer & Snyder 1939: 459). This is the first explicit
unequivocal GTR of the formation ofwhat was to! become known
as a black would contain an infinite density singularity
was not it was a clear consequence of their analysis.

16 Oppenheimer and Synder (1939: 457) cite Tolman 1934a. But as Eisenstaedt (1993) demonstrates,
it is really Lemaitre who deserves the. credit.
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The paper ended with an acknowledgment that "actual stars would collapse more
slowly than the example studied analytically because of the effect of the pressure of
matter, of radiation, and ofrotation" (p. 459). expected that the same kind'
of behavior would be found for "aU collapsing stars cannot .end in a stable
stationary state" A considerable effort would be needed before general
agreement on this confident pronouncement be secured. Oppenheimer and
Snyder did not draw any implications from the study of gravitational collapse for
the status of the r = 2M Schwarzschild singularity. It was left to Raychaudhuri
(1953) to make this connection (see Section 3).
At the close of the 1930s the cumulative evidence from various singularity the-

orems was sufficient to suggest that singularities play more than an incidental role
in Yet tperewere few, if any, research workers who seem to have been aware
of aU the evidence. In the case of Lemaitre's (1932) paper this is understand-
able since it appeared in two obscure journals. It is less easy to understand how
the Oppenheimer- and Oppenheimer-Snyder papers could be ignored since
they appeared in the Physical Review, but ignored they were (see Section 3). And
in any case the available evidence was compatible with the attitude that simplifying
assumptions of idealized forms of matter were responsible for the
singularity results.

3. il'uIther attemnlts

''-'0111tIh.c.1I'' 1t1l"\a nor textbooks from the much ofan ad-
unlC1er'StanC1:Lng ofsingularities. The only reference to singularities in Peter

ofRelativity (1942) is to the Schwarzschild
(1939) that the r = 2M
11lnAr'biP1l"t4;l\1I1I"\\tu about the status of

Either Robertson did not inform Einstein and Bergmann about his
he did, but Bergmann thought that it did not show that the could be

Robertson has shownthat, if the Schwarzschild field could be realized, a test
body which falls freely towards the center would take/ only a finite proper
time to cross the "Schwarzschild singularity,"even though the coordinate
time is infinite; and he has concluded that at least part of the singular
character of the surface r = 2Mmust be attributed to the coordinate system.
(Bergman111942: 203)

A readermight well have been puzzled by this remark. How singular
character of r = be to the 'choice of coordinates not? If,
as Robertson showed (see Section 2), there is a coordinate transfornlation which
removes ther is not the singularity thereby shown to be due
wholly to the choice of coordinate system?1?

ofthe features Schwarzschild solution were clarified in a remarkable
John Lighton Synge (1950). From the
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work. of Lemaitre and Robertson, Synge was aware the r 2M singularity
was only a coordinate artifact. He modestly described his own contribution as
follows: "I have removed the Schwarzschild [r = singularity in a different
way" (Synge 1950: 84). In fact, what Synge produced vvas the maximal analytic
,extension of the exterior Schwarzschild solution. This extension was rediscovered
a decade later by C. Fronsdal (1959) and (1960), the latter ofwhom
made an advance on Synge's analysis by presenting the metric of the maximal
extension in a single global coordinate system.
Synge felt the need for a general analysis of singularities and was apologetic

for not being able to supply one.
It was hoped that at this point there might be given a brief but thorough
discussion of singularities of space-time in general, and that the ideas there
developed might be applied in particular to the line' element [of Synge's
extension]. However, the further one looks into the question of singulari-
ties, the more difficult the situation appears.... Obviously, before we talk
of singularities at all we should define them, but there are difficulties here
which may not appear on the surface. . .. Thus we must content ourselves
for the present with definitions dependent on the coordinate system em-
ployed. (Synge 1950: 100)

Synge proceeded to define the notions of "component singularity" and "determi-
nant singularity" in a fashion that is dependent on the choice of coordinate system
and is, useless from modern of view.

of a satisfactory definition of singularity was also decried by Abra-
ham (1951), who wanted to test the validity of Mach's principle in GTR.
The version of Mach's Principle at issue stated that "the nature of space-time is
rlIollr01l"1l"lr"ll1l1l''lIorli by the matter present. The latter is described either by the singularities
in g/LV ••. or by the stress-energy tensor TlJ,v" (Taub 1951: 472). On this reading
of Mach's Principle, a space-time that is empty (T/Lv = 0) and is singularity-free
should be flat. To conform to this principle, Einstein's field equations (without
cosmological constant term) should have the property that any singularity-free
solution of R/Lv = 0 should be flat: RlJ,vu1/ = O. Taub tested this constraint for the
case of solutions of R/Lv = 0 admitting a three-parameter group of motions and
was able to establish a restricted version of the Principle:

'l'.hleorem (Taub). A spatially homogeneous space-time whose
three-parameter group of motions is group of Euclidean trans-
lations, for which RlJ,v = 0, and for which the RlJ,v are bounded for
aHpoints finite coordinates, is a flat space.

(This is a version of the Lemaitre result in Section 2 above for Bianchi
Type 1 models.) However, Taub also produced potential counterexamples to
Mach's Principle by showing if the are! not· required to
be bounded for points·with finite coordinates, then R/Lv = 0 does not imply
R/LVU 11 = 0.\\ But to decide whether or not the counterexamples are effective re-
quires a decision as to whether the unboundedness of the curvature components in
Taub's coordinate system corresponds to essential singularity. no generally

t""1I"1I'to1l""nn1l"ll for existed.
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Amalkumar Raychaudhuri's interest in singularities was awakened by reading
Bergmann's Introduction to the Theory of Relativity more specifically by
Bergmann's report of Einstein's (1939) attempt to show that the Sch\varzschild .
r = 2M is by matter. In 1953 he showed how to join
an exterior Schwarzschild field to a non-static solution of EEE representing' a
spherically symmetric cluster of particles moving radially towards the center of
symmetry. The interior solution chosenwas the Tolman form ofthe FLRWmodels.
Since this form requires that the density of matter is a function of t alone, the
analysis is less general than that ofOppenheimer and Snyder (1939), who allowed
the density to depend on r .18 But Raychaudhuri opined that "A spatially non-
uniform distribution of particles (retaining spherical symmetry) would, however,
lead to the same results so far as our investigation, is concerned" (Raychaudhuri
1953: 418, n. 7). concluded from his analysis that:

No singularity corresponding to the [r = 2M] Schwarzschild
appears at any phase in the exterior for any arbitrary finite concentration in
the cluster. The Schwatzschild singularity thus appears to be only a property
ofparticular coordinate systems, andthere seems to be no theoretical limit
to the degree of concentration [of matter]. (Raychaudhuri 1953: 418).

The Raychaudhuri's cluster, which can go on contracting,
indefinitely, and Einstein's (1939) cluster, cannot, was by the fact
that a beyond r = 2M; since Einstein's supposed to

• •• .- •• ' • 'I. '. " ..... must lie outside r= above,

that amass
this realization

CO()rdJLna1te tlr'dJl'll"l\I:.'t"n'Il"'InI"'il'r:bt'1lI"'\'II"I\ that removed
coordinates.19 'An irony of

a merely fictitious
a real

time,"the whole
to a zero volume" (1953: 421)?O

To a completely knowledgeable observer in the 1950s would have
been able to give an of the status of the r = 0 and r = 2M Schwarzschild
singularities. obscurity of the journals papers of

18 The Oppenheimer-Snyder paper is not. referenced in Bergmann's book, and consequently Ray-
chaudhuri was unaware ofWin 1953 (private communication from A. Raychaudhuri).

19 For details, see Eisellstaedt 1993.

20 Raychalldhuri, 'like most oftrlscontemporarles, was reluctant to accept the possibility of a sin-
gularity in nature. But rather than blaming the singularity in his model on the idealizations of the
analysis, was prepared to fault GTR.."What happe,ns after that [the-infinite density singularity], our
equations cannot say.. It appears, indeed, that while we can trace the historyof the birth of a particle, we
cannot tell what happens when the particle is actually born. This perhaps can be attributed to the fact,
as remarked by Einstein" that the general theory of relativity would break down under such stringent
conditions" (Raychaudhuri1953: 421). The reference here to Einstein is to The Meaning ofRelativity
(1950), where Einstein contemplated a break down of the field equations of GTR in order to avoid the
big bang singularity of theFbRW
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Lemaitre (1932) and Synge (1950) appeared, few such observers existed. No
progress had been made during the 1940s and early 1950s towards a general
definition of Synge and Taub found this situation embarrassing, but
the need for a definition was not urgent as long as it was felt that singularities in
GTR arise only as artifacts ofunrealistic assumptions. That impression was to be
challenged by the theorems proved in the mid 1950s.

4.
Further evidence was produced in 1955 that, in the cosmological context at least,
singularities in general relativistic space-times are not artifacts of symmetry as-
sumptions. evidence came not from one of the havens of general relativity in
America orEurope, but from Calcutta. In 1953 Raychaudhuri produced an analysis
of cosmological singularities that was to have a profound effect on later develop-
ments, but because it ran into difficulties with referees, the paper did not appear
until 1955.21 "Relativistic Cosmology I" contained a brief and rnodest abstract:

The paper presents some general relations obtaining in relativistic cosmol-
ogy. It appears from these that asimple change over to anisotropy without
the introduction of spin does not solve any of the outstanding difficulties of
isotropic cosmological models. (Raychaudhuri 1955: 1123)

The "outstanding difficulties" were twofold. First, the age of the universe esti-
mated from the isotropic models and the observation of nebular distances was too
short-it was not even consistent'with the estimated age of the earth. Second, the
models led to "original singularity" or "creation in the finite past," which many

repugnant. The purpose of Raychaudhuri's paper was to show that these
difficulties would not automatically disappear if the assumptions of homogeneity
and isotropy were dropped.
Raychaudhuri's analysis assumed that cosmic matter,may be treated. as dust.

Einstein's field equations imply that the world lines of the dust particles are
geodesics. a coordinate systemwhich is adapted to the dust (x ot = constant, ot =
1, 2, 3, for dust particles) which coordinate time measures proper time
along the geodesics, the line element is of the form

(ot, fJ = 1,2,3), (7)

where Bgot4/Bt = O. Ifthegot4 = 0, the coordinate systentis caned 'synchronous'.
In the present case where the coordinate system is adapted to the flow lines of the

2t The results were first presented in April 1953 in a letter to Physical Review. This letter was rejected
for publication because the referee could not. understand how the results were derived. A full paper
was submitted to the Astrophysical Journal. This too was now on the grounds that it was
too speculative. A modified version was sent to Physical Review.--After hearing nothing for several
months, Raychaudhurisent queries to the editor but received no reply. After waiting for a year with no
response, he sent the manuscript to Zeitschrift fur Physik. He received a prompt rejection. Finally in
February 1955 the acceptance from Physical Review came. The Editor, R. A. Goudsmidt, wrote: "We
endeavor to choose as referees those colleagues who accept this task conscientiously. We regret in this
case, there was an extensive delay." Raychaudhuri 1955 was entitled "Relativistic Cosmology I.'.' The
contemplated second part never appeared. I am most grateful to Prof. Raychaudhuri for sharing these
details vvith
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dust, (7) will have synchronous form. if and only if the matter is nonrotating.
Raychaudhuri did not assume nonrotation at this in his analysis, but he noted
that without loss of generality the ga4 can be made to vanish along one' of the flow
lines of the dust matter, in which case the of the
stress-energy tensor is = p, where p is the density of the Einstein's field
equations (with cosmological constant then

=.A - 4:rtpo

Combining this with a direct calculation of the tensor in the coordinate
system of (7) yields

of much of its· appeal"
It needs to be is geometrical and

that EFE enter Consider a congruence of time-like geodesics,
and let V/.t be the (V/.tV/.t = -1) tangent vector field this congruence.

relevant geometrical are as follows: the expansion (} ==
V/.tV/.t, where V/.t is the derivative operator associated with the space-time metric
gil-v; the shear O'/.tv == V(/.tVv) - (1/3) f) h/.tv, where h/.tv == g/.tv + V/.t Vv is the space
metric of the to V/.t; and the rotation w/.tv == V[/.tVv].
is now geometrical
states that

where G6 = -g, w is
the potentials
matter is isotropic:

the case ofnon-r9tating (w = 0), two consequences can be drawn from
the previous equation,or so KaYCJl1atullllurl claimed. = 0, G cannot

mlnUll1U1TI so that "one a at a finite time in the
1955: 1125). Second, the scale

isotropic The
isotropy does not by either
However, it was also noted that the

A to escape on its value
isotropy, for A can

avoidance ofthe original·singularity.
"robs the theory

3
= ---------,

to
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congruence is hypersurface orthogonal,22 it follows that ifRl-tv VI-tVV 2:: 0, then

Integrating this yields the result that if the initial expansion eo is negative (Le., the
geodesic congruence is initially converging), then e ---7> -60 within a proper time
::s 3/180 1. Thus far Einstein's field have played no role. They now come
on stage because they imply that Rl-tv VI-tVv = 8n(Tl-tv VI-tVV+ (1/2)T) +A. If
A = 0, then to assure that Rf.tv vl-tVV 2:: °all that is needed in addition is that
TJ-Lv VJ-LVV + (1/2) T 2:: 0, which is an instance of the strong energy condition
(which requires this last inequality holds ·for every unit Vf.t). In

case of a with TJ.Lv = p VJ-L Vv, strong energy condition is
automatically if p is. non-negative, which was assumed all
along. connection with Raychaudhuri's theorem is made by noting that in a
synchronous coordinate system adapted to dust flow,

so that e ---7>. -00 corresponds to g ---7> 0.
But in sense does 8 ---7> -00 or, g ---7> 0, implicate a

space-time singularity? take -00 to imply the crossing
of geodesics are orthogonal to some initial· space-like hypersurface. Such
a crossing, however, need not indicate a genuine space-time singularity since, for
ex,LmtUeg it can even inMinkowski space-time with the appropriate choice
of initial hypersurface.23 In the case where matter consists dust, the world

of the are (as noted above) geodesics so that crossing
ofthese geodesics does imply an density singularity. is also seen
from conservation law VJ-LTJ.LV = 0, which in a synchronous coordinate system
adapted to the matter lines gives p A·= constant, so that g ---7> °implies
that p 00. However, the idealization isunreaHstic, and if, for example,
pressure effects are included, matter win not follow geodesics. Furthermore, one
can wonder whether even a small amount of rotation for matter lead to an
avoidance of infinite densities. in the setting the of a
Raychaudhuri g ---7> 0 singularity for a space-time singularity is left unsettled.
Actually, there is a more subtle the above argument was not

appreciated until nine years Shepley (1964) was able to the gap.
One way of exposing the gap is to note that e -00 does not necessarily mean
that the geodesics cross (a specific example win be given below). The argument

for dust matter, pA = constant and, therefore; that p ---7> 00 as g ---7> °
22 This equivalence follows from Frobenius' theorem. If the geodesic congruence is initially non-
rotating, it win remain so.

23 This is a point emphasized by the Russian reaction to the results of Raychaudhuri and Komar; see
Section 5.
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assumes the validity of the synchronous coordinate system adapted to the dust
flow; but this coordinate system may break down. Of course, a new synchronous
coordinate system can be resurrected in its stead if the world lines ,of the dust
remain orthogonal to a family of space-like hypersurfaces; but system
may break down even more quickly than the first. A third system can be erected
in place of the second, but it may break down even more quickly than the second,
etc. Geometrically whatmay go wrong is the hypersurfaces orthogonal to the
geodesic flow may change from space-like to nuU·(again a specific example will
be considered below).
Arthur Komar (1956), apparently unaware of Raychaudhuri's paper, published

similar but seemingly more general results. Komar not assume that matter is
nonrotatingn9r that matter is in the form ofdust. did employ a synchronous
coordinate system. Geometrically such a system is derived by adapting coordi-
nates to a congruence·of time-like geodesics orthogonal to some initial space-like
hypersurface; initiaHytherotation is zero and, one can show, will remain zero.
This congruencemayormay not represent the flow ofmatter. Using a synchronous
coordinate system, -Komar defined a symmetric tensor field (now called the extrin-
sic curvature) Xot{3=, Bgot{3/Bt and showed that if A = 0 and T44 + (1/2) T 0,

diverge at a finite time unless it is zero. (The relation to Ray-
chaudhuri's resultis seen from the fact that in a synchronous coordinate system,

= '0 InA /at.) What Komar take the significance of this formal
to be? The title of the paper, "Necessity of Singularities Solutions of
Field Equationsof General Relativity," was.explained in the introductory section.

question naturally arises whether such singularpoints [as the initial
the Friedmann modellare a consequence of the particular

Friedmann's 1l1odel,or whether perhaps for more
general distributions ofmatter expect instants ofcreation or

of the universe..• The purpose· of this paper is to show that
singularities in the solution of the field equations of general relativity are
t.o be expected under very general hypotheses. ..• (Komar 1956: 544)

Inthe penultimate section of the paper this confident was taken
back with the acknowledgmentthat the. connection between the divergellce of
and "instants· of creation or annihilation" is

We should note that one cannot easily determine whether the singularity is
in the coordinate system or whether the space itself is singular. Taub24 has
pointed out that there is as yet no wen-defined way of determining what
constitutes an essential singularity within the general theory of relativity.
(Komar 1956: 546)

'And yet conclusion is
restated?S The condition together other assumpti0J.?-s of the
a!!alysis, imply that space-time is flat. if space-time is not

24 The reference here is to Taub 1951; see Section 3 above.
25 .It seems plausible to conjecture that the reference to Taubwas added in the revised version of the
paper prepared in reaction to the referee's report.
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wemust be prepared either: (A) to allow for singularities (as in the Schwarz-
schild or Friedmann solutions); (B) to permit the possibility of a cosmolog-
ical term or a negative pressure term .. " ; or (C) to consider spaces which
do not have the· simplifying property of containing a set of geodesically
parallel space-like hypersurfaces for all times. (Komar 1956: 546)

Komar was correct in dropping the worry about the singularity is only
in the coordinate system. is framed in coordinate terms,
the is purely geometrical. If non-flat solutions to Einstein's field equations
are considered, A is set to 0, and TJLv VJLVV + (1/2) T 0 for alLtime-like VI-L,
then the space-time cannot be covered by a 'geodesicaHy parallel' family of space-

hypersurfaces. For if there were such a family, that would mean that there
is an everywhere congruence of non-rotating time-like geodesics. One
could Raychaudhuri-Komar effect to four-velocity field
VI-t of the geodesic congruence to conclude that the geodesics cross at some finite

yielding a contradiction, at least if it is assumed that the geodesics of the
congruence can prolonged To·repeat, this result does not·assume
that is in form of dust northat matter is non-rotating-the VJLneed not
be the four-velocity ofmatter.26But for veryreasofl the generalit)' ofKomar's
result is achieved at expense of severing the connection with singularities in

sense of an matter density since now (} = VJLVI-t .. --00 need not
singularity.

To significance of Komar's result, suppose that in order to
escape the· contradiction Komar, derived, ·one drops either the assumption that
space-time is covered by a one-parameter family of geodesicallyparallel space-
like hypersurfaces or geodesics of normal congruence can be extended
indefinitely far (as measured in affine distance). What does this portend for singu-
larities in the sense play? Taub-NUT space-time27 is a vacuum solutionto
Einstein's field equati9ns with A= O. It triviallysatisfiesthe
dition, and itis non-flat. Itis covered by a one-parameterfamily of
on which the metric is homogeneous. The family members covering the initial or
Taub portion of space-time are space-like. But the member at the boundary
of the and NUT regions is And yet there is no singularity the sense
with which Komar, and their interlocutors were concerned-there
is no infinite ,density ofmatter Taub-NUT universe being a vacuum solution),
nor is there any curvature blow Furthermore, this example shows why taking
e -00 to mean that geodesics cross is only a loose way of speaking. For
the time-like geodesics orthogonal to initial space-like surface of homogeneity
in the Taub portion.of the space-time, edoes become infinitely negative as the
Taub-NUT boundary is approached; but these geodesics do not cross but rather
asymptote to a nun hypersurface. As a result cann9t be extended to

26. In a note responding to Komar's ·paper, Raychaudhuri (1957) claimed that Komar's result was
"explicitly given by the present author [i.e., Raychaudhuri 1955]". This is true if Raychaudhuri's
construction is interpreted in the modem way as applying to any time-like geodesic congruence and
not just to the world lines of dust matter.

27 See Misner 1963 and Misner & Taub 1968 for a description of this space-time.
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indefinitely large values of affine parameter. In this sense Taub-NUT space-time
is singular. But the adoption of this conception of singularities required a new
way of thinking about singularities, a way that was and still is controversial (see
Sections 6 and 9).
These points were certainly not clear to the researchers at the time. Nevertheless,

the Raychaudhuri and results were from another direction.

The specter of singularities rampant among general relativistic cosmological mod-
els had been raised by the results ofRaychaudhuri and Komar. The Russian school
of Lev Landau, Yevgeniy Lifshitz, and coworkers sought to slay it. Before soft
pedaling the implications of the Raychaudhuri-Komar results, the Russian school
laid ·a priority claim.. Lifshitz and Khalatnikov (1960b) claimed ·that Landau had
"long ago" proved thatin a synchronous coordinate system the determinant g ofthe
metric vanishes a finite time.28 They went on to note that the vanishing ofg
need not indicate a singularity in the space-time itself but only a breakdown in the
coordinate system due to the crossing of the geodesics to some initial
space-like hypersurface. For the Russian school, a "true physical singularity in the
metric"· is "one which belongs to the space-time itself and is not connected with
the character of the reference system." By they meant that "Such a singularity
is characterized by scalar quantities, such as density of matter and the invariants
of the curvature tensor, becoming infinite" & Khalatnikov 1963: 190-:-
191)?9 To. settle the question of singularities are a general feature of
solutions to equations, the Russian school proposed to
the program. first, write form of the most general solution of
the field equations in the Second, count the number
of arbitraryfunctions of coordinates in such a solution. count the number of
arbitrary functions needed to fix an ofmatter and the state of the
free gravitational field. Fourth and compare the two counts and conclude
that singularities are not a feature of general relativistic space-times just
in case the latter count is larger, that the subset of singular solutions is of
'measure zero' in full set of solutions. the Russian reckoning, the number
of arbitrary functions of coordinates in a singular solution is always one less than
for a general solution. thus in stating:

28 They refer to Komar 1956 but not to Raychaudhuri 1955, perhaps because the proof given by the
Russian school is closer in style to Komar's. Lifshitz & Khalatnikov 1963 does refer to "an analogous
result of Raychaudhufi."

29 The Russians were not alone in this characterization of true or physical singularities. Thus, John
Graves and Dieter Brill spoke of the need to distinguish between "true geometric singularities at which
invariants of the Riemann curvature tensor become singular, and 'pseudo-singularities,' which are due
to an unfortunate choice of coordinate system" (1960: 1507). As noted above, more careful writers
might have added that the blow up behavior must occur 'at a finite distance,' the point being that if the
blow up only happens as spatial or temporal infinity is approached, no singularity in the space-time
itself is indicated. However, Penrose's of naked singularities covers behavior which happens,
so· to speak,· only at infinity; see Section 9
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AU the foregoing leads to the fundamental conclusion that the presence of
a time singularity is not an essential property of the cosmological model
of the general theory of relativity, and the general case of an arbitrary
distribution ofmatter and gravitational field does not lead to the appearance
of a singularity. (Lifshitz, Sudakov, & Khalatnikov 1961: 1301)

This claimwas repeated in a communication to Physical ReviewLetters(Khalat-
nikov, Lifshitz, & Sudakov 1961), in a review article by Lifshitz and Khalatnikov
(1963), and in the revised second edition ofClassical Theory ofFields by Landau
and (1962).
The Russians recanted, not until after the singularity theorems

of Penrose (1965), (1965, 1966a-d) and Robert Geroch (1966). A silent
recantation took place the 1967 Russian edition ofClassical Theory ofFields

omitted § 110 ("The absence of singularities in cosmological
solution"). A more explicit recantation come in 1970 in the form of a communi-
cation to Review Letters. Khalatnikov and Lifshitz admitted the
limitations and pitfalls of method:

Since there exists no systematic.method for examining the singularities
of the solutions of Einstein's equations, our search for increasingly more
general solutions of this kind proceeded essentially by trial and error. A
negative result from such a procedure could of course never be completely
conclusive by itself . .. (Khalatnikov & Lifshitz 1970: 78)

As will become clear later in our story, Russian recantation has a curious
because the Russian school was concerned with one sense of singularity

while the theorems of Penrose et al. were concerned with a different sense.

6.

The difficulties in interpreting the results of and Komar pointed to
the need for a better understanding of the elusive concept of space-time singularity.
A plea for more clarity on these matters was made Charles Misner 1963.
Misner's analysis was to have a crucial influence on the development of singularity
theorems, though the influence lay as much in what was ignored in Misner's
analysis as what was from it.

The first step is to find some clearly stated problems, and the clue to clarity
is to refuse even to speak of a singularity but instead to phrase everything in
terms of the properties of differentiable metric fields on manifolds. If one
is given a manifold. and on it a metric which does not at aU points satisfy
the necessary differentiability requirements, one simply throws· away an
the points of singularity. The starting point for any further discussion is
then the largest submanifold on which the metric is differentiable. . .. The
first problem then is to select a criteria which will identify in an intuitively
acceptable way a "non-singular space." ... The problem ... is to recognize
the holes left in the space where singular (or even regular) points have been
omitted. (Misner 1963: 924)

For a Riemannian space (M, k/Lv) with a positive definite metric, the recognition
of"holes" can be achieved the metric topology. qE
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is defined as the greatest lower bound on the kj.tv of paths joining p and
q, it is easily seen that (M, d(,)) obeys the axioms for a metric space. The dele-
tion of points leaving behind holes can then be detected by the incompleteness of
the distance function d(, ). in the sense that not every Cauchy of
converges.30 For a relativistic space-time (M, gj.tv) this criterion of incomplete-
ness is unworkable since g/LV does not define a distance function. However, in the
Riemann case, Cauchy completeness is equivalent to geodesic completeness, the
latter meaning that any geodesic can be extended to an arbitrarily great value of
an affine parameter. This suggests using geodesic completeness as the defining
characteristic of a non-singular space-time. partially endorsed this sugges-
tion by taking geodesic completeness asa sufficient condition for non-singularity
of aspace-time. His grounds were that a geodesicaHy complete space-time is
maximal, i.e., cannot be isometrically imbedded as a proper subset of a larger
space-time. this only shows that the·space-time in question ,cannot have been
obtained from a larger space-time by deleting regular points and leaves open the
possibility that singular points were deleted. In fact, some later analyses counted
soine geodesically complete space-times as singular.31 On the other hand,Misner
rejected geodesic completeness as a necessary condition for non-singularity of a
space-:-time. No compactmanifold (withoutboundary) can be imbedded as aproper
subset of another (Hausdorff) ,m'anifold of the same dimension. Thus, for
a compact space,or a compact relativistic space-time, there are no holes
that arise from deleting regular or singular points. For the case an is wen
since if M is compact, (M, k/Lv) is geodesically complete. Misner showed
that all is not relativistic space-time case an example of
a space-timeg/Lv) isgeodesically incomplete despite the fact that M is
compact.32More generally, if the incomplete geodesics are contained in a compact
set, then the space-time is not countedas...sJngular according to Misner's point of
view; in particular, space-time is seen as (see Misner &
Taub 1968). Misner also acknowledged the generally accepted sufficient condition
for a singular space-time; a curvature scalar be)comes unbounded along
an incomplete geodesic. he also warned that "It is not to be presumed that an
spaces which should be 'essentially singular' are identified by this ,criteria"
(Misner 1963: 926).
The of Misner's discussion was encouraging and discour-

aging. The encouraging was thereis a clear project: for (M, g/Lv) with
g/Lv defined differentiable (to whatever degree you like) at all of define
what·it means for gj.tv) to be The discouraging was that

3,0, Pi, i· = 1, 2, 3, ... is a Cauchy sequence just in case, for any E > 0, there is an N such that for
any m, n > N, Pn)< E.

31 In tl1e b -boundary approach of Bernd Schmidt, a space-time is counted as singular if it contains
inextendible curves of finite generalized affine length (see Hawking & Ellis 1973: 283":"284). This can
happen even ifthe space-time is geodesically complete.

32 Examples of this sort had been discussed by Lawrence Marcus (1962), from whom Misner said
that he had "borrowed heavily" (Misner 1963: 924, n. 4). Another example was produced by Robert
Hermann (1964).
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although there are a number of ideas waiting to be used, there was no obvious way
to combine these ideas into a precise, relatively simple, and intuitively appealing
definition.
Gyorgy Szekeres (1960), like Synge (1950) and Taub (1951) before him, also

decried the lack of an adequate definition of a singularity of a Lorentzian manifold.
implicitly embraced part of the sentiments Misner was to express three years

later; namely, the starting point for analysis is a differentiable manifold M and a
Lorentz metric gJLV defined and Coo at every point of M. But Szekeres not only
wanted to say what it is for (M, gJLv) to be singular (or non-singular); for singular
space-times he also wanted to be able to speak of singularities, and took the first
steps towards a local characterization of these objects. Using an equivalence rela-
tion on geodesics, he defined a boundary point of the space-time as an equivalence
class of incomplete geodesics. Such a boundary point was called a singularity just
in case it remains a boundary point in every extension of the space-time. Singu-
larities were classified as 'ordinary' (or'non-ordin.ary') according as some
derivative·(respectively, no derivative) of themetric in a normal coordinate system
along a geodesic fails to approach a limit as the singularity is approached. Szek-
eres' paper seem to have passed virtually unnoticed by those engaged in debate of
the early to mid-1960s over the existence of singularities in GTR?3
lIn sum, in the mid-1960s, as in the 1950s and the. beginning of the 1960s, there

existed no adequate and generally accepted analysis either of the notion ofa space-
time singularity or a singular space-time. One might think that this lacuna would
make prove general theorems. about the existence of singularities in
solutions to Einstein's field equations-for how can a mathematical theorem be
established for a mathematically ill defined object? Such a question presupposes
a naive view of how science actually works. the event, uncertainties about

definition of singularities allowed room for maneuvering. After the dust had
settled, one couldwork backwards from the theorems to a definition ofsingularities.
This is not necessarily a self-aggrandizing procedure, at least not if the theorems
are beautiful enough and powerful enough. They were.

7.

While the Russians were trying to·exorcise the specter of singularities raised· by
the Raychaudhuri-Komar results, Lawrence Shepley, a student of John Wheeler
and Misner, was working to make the specter more threatening. Like
Raychaudhuri, Shepley (1964) focused on dust models but ofa sort that allowed
the dust to be rotating. The models were assumed to be spatially homogeneous in
the sense thatthe space-times admit the three-dimensional Lie group SO(3, as

34a symmetry. .

33 Geroch 1968a is the only relevant reference from the period that I have found to cite Szekeres 1960.
34 50(3, R) is the group of unit determinant, 3 x 3 orthogonal, real matrices. The k = +1 (spatially
closed) FLRWmodels belong to this class. But the class is much broader in that it includes anisotropic
models.
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Any such space-time is covered by a one-parameter of surfaces
(which are topologically S3) of homogeneity. It was further assumed that initially
the H (t) are space-like. If they remained forever space-like then a contradiction'
would result by the construction since the H{t) are geodesi-
cally parallel. It would seem that way out is to conclude that for some
value of t, H(t) turns from being space-like to as in the Taub-NUT example.
But Shepley established that such a changein character of the H(t) is not possible
for SO(3, dust models. Thus, for a special class of models, Shepley showed
that one of the gaps in the Raychaudhuri-Komar analysis could be filled.
At first glance, however, Shepley's result is With the gap filled, why

doesn't a genuine contradiction result, showing that such models are impossible?
Shepley the escape hatch to be the existence: of singularities. He stated his
result as

'l'b1eOl'em (Shepley). All dust cosmological models of gen-
eral have the symmetry SO(3, and which at
least one invariant three-dimensional hypersurface have
a point .singularity.

But what sense of singularity is and exactly how does the existence of
such a singularity resolve the .contradiction?

answer lies in fact that the contradiction results from assuming
the geodesics normal to the space-like of homogeneity can be
prolonged to an large The escape hatch lies
in the conclusion that the space-time is in the sense
time-like' geodesics. we have the first geodesic incompleteness

nlnaSl,gnt is needed to this reading of
Shepley's of as a "which can

11"Ol'lll"'ht:brll by a geodesic offinite total from other of the space-time
'manlt()l<l, where the metric is degenerate or otherwise irregular (for example, a
point where a curvature scalar is (1964: definition suggests,
but does not, say, that geodesic incompleteness is the characteristic
feature of a to prepare Misner's lQ63 paper,
Shepley was aware of both the attractions and the of such a suggestion.35

And possibly as a definition is a superposition of the old ideas of
curvature blow up and geodesic incompleteness.
As by Shepley the connection of result to a sin-

gularity in the infinite density sense is far evident. The conservation law
VJL(p VJLVV) =0 P V4 ,J=g =: constant in a synchronous coordinate sys-
tem. In the case of non-rotating matter, the synchronous coordinate
system can be chosen to be comoving with the matter and V 4 = -1, so if the
synclrronous coordinate system remains g ,,0 implies that p diverges.
But in Shepley's more case of dust, it could conceivably
that V 4 becomes infinite p stays finite.

35 Misner 1963: 924, n. 4 thanks Shepley for preparing the review of the literature on singularities.
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The major turning point in study of singularities was Penrose's
(1965) article "Gravitational Collapse Space-Time Singularities." The impor-
tance of this article is belied by its brevity-it occupied less than three pages of
'Physical Review Letters. Although Penrose's argumentation was somewhat ob-
scure (as be discussed shortly), it quickly became clear' to the experts that
singularities of gravitational collapse could no longer be dismissed as artifacts of
the symmetries or special conditions on matter assumed in qppenheimer-
Volkoff-Snyder analysis (see Section 2)0 article also set off a of activity

within a few short years, generally accepted opinion that, if
Einstein's field equations are correct, singularities are to be ef'pected in generic
circumstances in both gravitational collapse and cosmology.
Because of the of Penrose's theorem, worth going through the

assumptions in It was assumed, the space-time (M, g/Lv) is
orlen1:ab,Le so half-cones can be continuously divided into

is not a restrictive assumption since if it fails for g/Lv)
a covering space-time. second, and very strong,

aSSUIILPtllon is that g/Lv) possesses a Cauchy surface (a space-like hypersurface
is intersected exactly once by every curve that

is non-compact. Spatially> closed universes are thus excluded from the purview
of the theorem. the Cauchy property precludes any of acausal structure
for the space-time; it is, for example, .even stronger than the property of stable
causality which says null cones can be widened out without
closed causal loops it is assumed R/Lv K/L K V 2:: 0 for any
null vector K /L. If equations hold, or cosmological

as long as matter obeys condition
TJLv.K/LK V 2:: 0 for any vector 'K v , by continuity is a consequence/of
the weak energy condition: TJLv V/LVV 2:: 0 foraH time-like V/L. (Penrose's paper
stipulated that (R/Lv - (1/2) R gil-v+A gJLv) V/L yv 2:: 0 for all time-like yJL, which
is stronger the theorem be a trapped surface T,
i.e., a space-like two-surface such outgoing and ingoing geodesics that
intersect are converging0 In Oppenheimer-Volkoff-Snyder
model of collapse, such a surface the contracts
within its two-sphere r = constant, t = constant for
r < 2M being an exampleo this is crucial point-the concept of a

surface does not presuppose symmetry of the Oppenheimer-
Volkoff-Snyder analysiso Finally, according to Penrose, it needs to be assumed

space-time is geodesically complete. "The existence 'of a
singularity never be an assumption such as completeness
of the under consideration" (Penrose 1965: 5B):

36 For a precise definition, see Hawking & Ellis 1973: 198. The existence of a Cauchy surface is a
necessary condition for the global version of determinism, according to which initial data on a time
slice uniquely fix the entire future (and past).
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When Penrose summarized his results as showing that "deviations from spheri-
cal symmetry cannotprevent space-time singularitiesfrom arising" (Penrose 1965:
58) the reader in 1965 would naturally have taken this to mean that given the above .
assumptions, it follows gravitational collapse eventuates in a physical singu-
larity in .the sense understood in the debate over the prevalence of physical vs.
coordinate singularities-Le., infinite density or an infinite curvature scalar. The
caption of Penrose's figure 1, showing what is presumably a density or curvature
singularity in spherical gravitational collapse, also encouraged this interpreta-
tion: "The diagram essentially serves for the discussion of the asymmetrical case"
(Penrose 1965:<58, fig. 1). In fact, however, nothing about a density or curvature
singularity is part of or is .proved by the theorem.. Null geodesic completeness is
an assumption of the proof only· in the reductio sense. In the now accepted recon-
struction of the theorem (see Hawking & Ellis 1973: 263-264 and Wald 1984:
239-240) the reductio assumption is used to that the boundary of [+(T), the
chronological future of the trapped surface, 7 is compact. Then the compactness
of [+(T) isshownto'contradict the existence of anon-compact Cauchy surface.
Thus, given the other assumptions, the space-time is null geodesically incomplete.
We have a singularitytheorem if and only if null geodesic incompleteness is taken
as a sufficient condition of a singular space-time.
Sixmonths after Penrose's seminal paper appeared in print, Hawking and George

Ellis (1965) submitted a note to Physics Letters containing a new singularity theo-
rem thatgeneralized Shepley's (1964) result for homogeneous cosmologies. She-
pley dust matter; Hawking and Ellis treated the more general case of
a perfect fluid. Shepley assumed spatial homogeneity in the form of partition
of space-time bya one-patameter family of hypersurfaces of homogeneity; Hawk-
ing anq Ellis assumed· only thatthere is at least one space-like hypersurface on
which a three-parameter group transitively. Following Penrose's
lead, Hawking and Ellis also assumed that the models in question were null and
time-like geodesically .complete: "Any models in which this were not the case
would hotseem to be reasonable models of the universe" (Hawking & Ellis 1965:
246).., They then proceeded· to demonstrate the· existehce of a "physical singu-
larity" in the form of an matter density. Of course, if the mattyr density
becomes unbounded "at a " the space-time structure breaks down
and geodesic completeness results. Unlike Penrose's (J965) however, the
Hawking and Ellis theorem is not a pure reductio proofof geodesic incompleteness
since itsupplies the reason for the incompleteness.
The unclarity· over was being demonstrated in the singularity theorems

persisted for at least another few months. On 16 August 1965 Physical Review
L.etters received a communication from entitled "Occurrence of Singu-
larities in Open Universes." in open (k = 0 or k = -1) FLRW
models are trapped surfaces. He argued that universes are similar on a
large scale to FLRW universes but are not homogeneous or isotropic locally would

and a set SCM, ]+(S) is defined·as the set of all p E Msuch that
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still possess a trapped surface. Penrose's (1965) could then be to
deduce the existence of a singularity. This theorem was characterized by Hawk-
ing as follows: "Penrose has shown that a physical singularity must occur
or space-time is incomplete if there is a closed surface" (Hawking 1965:
689). .
The 22August 1966 issue ofPhysicalReviewLetters published communications

from Hawking (1966a) and Geroch (1966) containing new singularity theorems.
Both authors were now specific that geodesic incompleteness is to be taken
as a defining characteristic of a singular space-time-time-like inc;ompleteness
for Hawking, time-like or incompleteness for Geroch. giving their
definitions of a singular space-time authors referred to Misner 1963, which
is somewhat ironic since one of the purposes ofMisner's paper was to argue that
geodesic incompleteness is not a sufficient condition' for labeling a space-time
as singular (see Section 6). while taking geodesic incompleteness as the
UVJI..ll.1I.Jl.Jl.lL·.ll.V1I.1I. of a space-time served to clarify the otherwise murky logic of
previous singularity theorems-Shepley 1964, Penrose 1965, Hawking & Ellis

1965, 1965-and tomake the new theorems mathematically precise,
it also claim that what was being demonstrated was the existence of
"physical singularities" in sense which was then in play in the literature and
which had been the core of the debate about the prevalence of singularities in
solutions to Einstein's field equations. Nevertheless, the shift of focus to geodesic
incompleteness was entirely justified as a piece of opportunism. The techniques
of Penrose, and Geroch. could be used to prove rigorous and powerful
results about geodesic incompleteness. PaceMisner, even if geodesic incomplete-
ness does not always signal singularities in theoriginaHy intended sense, it surely
is a pathology worth noting; and one could suppose that in typical circumstances
this pathology would be a symptom of density or curvature singularities. But
these were matters that could be sorted out later.. Opportunism demanded that the
theorems be proved; their exact physical significance would become apparent in
the fullness of time.
The Penrose-Hawking singularity results were extended and codified in a series

of three articles by Hawking, published in the Proceedings of the Royal Society
(Hawking 1966b, 1966c, 1967); in Hawking's (1966d) Adams Prize Essay "Sin-
gularities the Geometry of Space-Time"; in Penrose's (1966) Adams Prize
Essay "An Analysis of the Structure of Space-Time,,;38 in a joint article by Hawk-
ing and Penrose (1970); in Penrose's (1972) monograph Techniques ofDifferential
Topology tnGeneral Relativity; and in Hawking and Ellis' (1973) The Large Scale
Structure ofSpace-time. The Raychaudhuri-Komar effect plays an important role
in some of the theorems, but now' this effe,ct is explicitly recognized to function as
part of a reductio demonstration of geodesic incompleteness rather than as of
a demonstration of a 'physical' singularity.

38 Portionsof this essay were published in Penrose (1968).
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The Penrose-Hawking theorems focused attention on geodesic incompleteness as.
themark ofa singular space-time. there was a good reason for this choice: it
provides precise criterion to luclgnlents
in a number ofparadigm cases. The choice was also amatter. of expediency:
the proof techniques developed by Penrose and Hawking lent themselves to this
definition. But, powerful and elegant as they are, the Penrose-Hawking theorems
did not settle the debate about the correct definition of space-time singularity. A
strong indication of the situation shortly after several of the key theorems had
appeared in print was the publication of Geroch's (1968b) "What Is a Singularity
in General Relativity?" The body of the paper is in the form ofa Galilean dialogue.
Although such a format is unusual for Annals ofPhysics, it was nicely tailored
to revealing the uncertainties and ambiguities which existed at the time. What
Geroch's article and subsequent analysis revealed was a situation of daunting

I . 39comp eXlty.
Begin, as recommended, with a relativistic space-time g/Lv),

where is a differentiable manifold and g/LV is a Lorentz metric which
is defined and differentiable· on all of M. There are then two tasks. The first
is to a criterion that win detect when (M, g/Lv) is singular (despite the fact

g/LV is everywhere and smooth in that sense, nonsingular).
If one wants. tospeak not only of a singular space-time but also of singularities,
then the second task is to provide a means that would justify about these
things as localizable .objects. This would involve constructing a set of idealized
points-to the singularities-and (at least) a topology for the manifold

+ points. extant yield counterintuitive
results, e.g. the may not be Hausdorff separated from the interior
points of and there is reason to believe that such results will be common to all
procedures which conform to some seemingly natural (see Geroch,
Liang,.& Wald 1982). It remains to be seen whether or not 'object talk' about
singularities can be an expression that is at once mathematically precise,
intuitively appealing, and useful in classifying singular space-times.
Returning to the task of demarcating singular space-times, or more

families of ideas for The first starts from the intuitive idea
that motivated most of the pre-Penrose-Hawking singularity theorems; namely, a
singular space-tinle is one in which a relevant physical blows up. But
the technical elaborations of this idea have gone far beyond considered
by the pioneers of singularity theorems. For instance, a space-time'may be con-
sidered to be singular even curvature scalar polynomials remain bounded if
some of the curvature tensor, as measured in an orthonormal
frame paralleHy propagated along a geodesic, becomes unbounded at affine
distance.

39 Technical elaborations of the concepts mentioned in this Section can be found in a number of
sources: Hawking & Ellis 1973; Ellis & Schmidt 1977; Wald 1984; Scott & Szekeres 1994. For an
overview of the literature, see Earman 1995a: chap. 2.
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A second family of ideas identifies a singular space-time as one which exhibits
some form of incompleteness. Geodesic incompleteness-the criterion used in
the Penrose-Hawking theorems-belongs to this family, but there are many other
members. Geroch (1968b) produced an example of a space-time which is time-

space-like, and geodesically complete but contains inextendible
time-like curves of bounded acceleration and finite proper length. Such· a curve
might, for example, correspond to the world of a rocket ship whose motor
uses a finite amount of fuel. The pilot of such a might, not unnaturally,
complain that he inhabits a singular space-time. An even more demanding notion
of completeness can be formulated using the concept of generalized affine length
which is available for aU differentiable curves, not just geodesics or curves of
bounded acceleration.
There is obviously a connection in one direction between these first two

families of ideas: the unboundedness of, say, a curvature scalar at a finite distance,
as measured by along a geodesic, entails geodesic incompleteness.

implication in the other direction can fail. An interesting example of the
failure is to be found in the between Ludwik Silberstein and Einstein,40

the were unaware of the fact..' Silberstein (1936)
claimed to have stationary and axi-symmetric solution to the source-
free EFE, with two singularities on the otherwise singularity-free. axis of
symmetry. If correct, claim have been an embarrassment for Einstein's
program of deriving the geodesic postulate from the field equations by treating a
test as a singularity of field, for due to the stationary character of the
solution the two "mass centers" do not move towards one another, in contradiction
to "man's most ancient primitive experience" (Silberstein 1936: 270). Einstein's
response was that Silberstein's solution (which was in fact the Curzon (1924a,
1924b) bipolar solution) is singular along the axis joining the "mass centers"
(Einstein & Rosen 1936). He was c'orrect in that the metric cannot be 'smoothly

to cover the axis, and consequently, the solution is geodesically complete.
However, all the components of the Riemann curvature tensor remain wen-behaved
as the axis is approached.41

This gap between the first two families also serves to undercut the sincerity of
the Russian school's recantation of the claim that singularities are absent from a
general solution to, In reaction to the theorems of Penrose et al.,
Khalatnikov wrote:

The situation has changed since the discovery of Penrose (and later by
Hawking and Geroch), ofnew theorems which reveal a connectionbetween
the existence of .a singularity (of unknown type) and some very general
properties of the equations,.which bear no relation to the choice ofreference
system. (Khalatnikov & Lifshitz 1970: 78)

40 See Havas 1993 for a detailed account of this controversy.

41 Neither Einstein nor Silberstein nor Nathan Rosen realized that the singularities of the Curzon-
Silberstein solution are not of the simple pole type but have a complicated topological structure. The
bizarre global structure of the Curzon monopole solution was untangled only recently by Susan Scott
and Peter Szekeres (1986).
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The paper ended with a charming flourish: "The new developments finally clarify
the problem ofsingularities in general solutions and remove all previous contradic-
tions" (Khalatn-ikov & Lifshitz 1970: 78). Marx could have told otherwise..
The dialectic of singularities was only getting in full swing. and
Lifshitz were explicit that they were concerned with singularities in the sense of
"infinite density of matter or empty space) infinite curvature invariants" (Kha-
latnikov & Lifshitz 1970: 76). The theorems of Penrose et a1. did not deal with
singularities in this sense but rather in the sense of geodesic incompleteness. In
the year before the recantation in Physical Review Letters, BeHnskiy and"Khalat-
nikov once again advanced considerations that argued "in favor of the absence of a
physical singularity in the general cosmological solution of Einstein's equations"
(Belinskiy &,Khalatnikov 1969: 911). They mentioned Penrose's theorem that
"there exists (under very natural assumptions) a singularity." they added, this
singularity is one "Whose character, however, no one has succeeded in establishing
and which, apparently, is so weak that it does not appear in the invariants of the
curvature tensor" (Belinskiy& Khalatnikov 1969: 911). Under special conditions
geodesic incompleteness can be shown to entail the blow up of a component of the
Riemann curvature in a paralleHy propagated frame (see Clarke 1975). But
the general conditions under which one can rnove from singularities in the sense
of incompleteness to curvature singularities remains obscure.
A third family of ideas is rooted in Misner's (1963) notion that a nOl:lSH:lgullar

space-time is one any holes or missing points. Because of the lack of the
appropriate technical elaboration of this notion,42 it is not possible at the present
time to make any general statements about the relations to the first two taIlnUlles,
except to say that they surely turn out to be complex. (1963) examples
of of incomplete geodesics contained in compact sets show that a space-time
can be in the incompleteness_s.ense even there are no missing
points.
A fourth family ofideas is centered on Penrose's notion of a naked singularity,

which in turn can be defined as a violation of 'cosmic Cosmic cen-
sorship comes in many varieties, the strongest of which requires that a space-time
contain a Cauchy surface. On this version of cosmic censorship anti-De Sitter
space-time is counted as even it is geodesically com-
plete and displays no curvature blow up.43 Contrary to Einstein's (1918) idea of
a singularity, what happens at as well as what happens at a distance
determines whether a naked is. present. In the other the big
bang" singularity of FLRW models "is not counted as nakedly even
though it is visible and involves curvature blowup and geodesic incom-

The hypothesis that naked singularities do not develop from regular
initial data in generic solutions ofEFE was put forward over a of a century
ago by Penrose (1969). Despite all ofthe effort devoted to it, the cosmic censorship

42 The work of Scott and Szekeres (1994) can be seen as lending itself to this task.
43 "See & Ellis 1973: 131-134 for a of this space-time.
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hypothesis remains controversial.44

The failure of strong cosmic censorshipis a failure of causality: unless a space-
time possesses a Cauchy surface, Laplacian determinism in its global form cannot
hold. There are many other forms of causal pathologies which can be exhibited
by solutions to EFE, up to and including the existence of closed time-like curves.
These causal pathologies may, or may not, be associated with .curvature blow up
or geodesic incompleteness. Attempts have been made to prove that, consistent
with EFE and energy conditions, closed· time loops cannot be produced by a finite
device. Such theorems (e.g., Hawking 1992), while formally correct, 'We less than
convincing as proof of the impossibly of operating a 'time machine' (see Earman
1995b) in GTR.
In the of the developments sketched above, it seems pointless to try to

produce a simple formula that will count as the correct definition of a singular
space-time. When we try to explore our naive conception of singularities in the
setting of space-times, we encounter a wide array of phenomena. We
are still far from an' understanding of the interrelations of these phenomena and
the roles they play in GTR. In sense, the Penrose-Hawking the<;>rems are a
starting rather than the for the study of singularities in GTR.The
conclusion of Geroch's Ph.D. dissertation is as appropriate today as it was thirty
years ago:

What a strange little object is the singularity with its strange properties and
nonexistent definition. Yet the singularity promises to remain one of the
most intriguing and disturbing aspects of gravitation theory for a long time
to come..Here is a problem with which we must some day come to grips-
at least if we are ever to understand this phenomenon called gravitation.
(Geroch 1967: 145)
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