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is taken by "unrolling" M. M and M' are obseivationally indistinguishable 
since no obseivational past of any future-inextendible cuive in either 
extends beyond the excision barriers. But only M ' admits a global time 

function. 

Notes 
l. See also Clark Clymour, ''Topology, Cosmology and Convention," Synthese 24 (1972), 

195--218. 
2. A compre hensive treatment of work on the g1obal structure of (relativist.ic) space·limes 

is given in ' S. W. Hawking and C. f . R. Ellis, The Large Scale Stn1cture of Space-Time 
(Cambridge' Cambridge Univer>ity Press, 1973). See also Roger Penrose, Techniques of 
Differential Topology in Relativity (Philadelphi3' Society for Industrial and Applied Mathe
matics. 1972). More accessible than either is Robert .Geroch, "Space-Time Structure from a 
Global Viewpoint," in B. K. Sachs, ed. , General Relativity and Cosmology (New York 
Academic Press, 1971). 

3. A future end point need not be a point on the curve. The definition is this: lf M is a 
space-time, / a connected subset of R, and u: I-. Ma future-directed causal curve, a point x 
is the future end point of u if for every neighborhood 0 of x there is a t0 EI such that u(t) E 0 
for all t EI where t > t 0, i.e., u enters and remains in every neighborhood of x. 

4. A space-time is strongly causal if, g iven any point x and any neighborhood 0 of r , there 
is always a subneighborhood O' C 0 of x such that no future-directed timelike curve which 
le:we5 O' ever returns to it . 

5. A countable cover of this form can be found in any space-time M, strongly causal or not. 
Since M is without boundary, for every yin M there is an x in M such that y << x, i.e . . 
!/ • r (x). So the set {/-(x)' x < M J is an open cover of M. But M has a countable basis for its 
topology (Robert Ceroch, "Spinor Structure of Space-Times in General Relativity l."' jour
nal of Mathematical Physics 9 (1968), 1739-1744.) So by the Lindelof Theorem there is a 
countable subset of {l"(x), x < M} which coverS M. 

6. Robert Geroch, "Limits of Spacetimes, .. Commu nications in Mathematical Physics 13 
(1969), 180-193. 

7. See John Earman, "Laplacian Determinism in Classical Physics" (to appear) and 
Robert Ceroch's paper in this volume. 

8. Robert Ceroch, '"Domain of Dependence," journal of Mathematical Physics LI (1970)' 
437-449. (A somewhat different but equivalent definition of global hyperbolicity is used.) 

9. There is a problem of how to define observational indistinguishability in a nontempor
ally o rientable space-time (the definition given presupposed temporal orientation). But 
under any plausible candidate. M and M ' in the example would come out observationally 
indistinguishable. One could associate with every inextendible timelike curve u all the 
points that are connected with some point on the curve by another timelike curve. (In a 
temporally oriented space-time this would be the union 1•[u] u1- [ul.) Even these sets in M 
and M ' would find isometric counterparts in the other. 

10. A space-t ime is stably causal if there are no closed causal curves autl if there are no 
closed causal curves with respect to any me tric close to the original. (This c;;m be rmult· 
precise by putting an appropriate topology on the set of all metrics on the spacc· tinw 
manifold. ) Note that in the space-time M of the following example the slightest ffatt cnins;t of' 
the light cones would allow timelike curves to scoot around the barriers. The e <rnivalcncc· is 
proven in S. W . Hawking, "The Existence of Cosmic Time Functions." Pnu;eedh1#,S oftlw 
Royal Society A, 308 (1968), 433-435. 
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~~~~ROBERTGEROCH~~~~ 

Predictiun in General Relativity 

1. Introduction 

There are at least two contexts within which one might place a discus
sion of the possibilities for making predictions in physics. In the first, one 
is concerned only with the actual physical world: one imagines that he has 
somehow learned what some physical system is like now, and one wishes 
to determine what that system will be like in the future. In the second, 
one is concerned only with the internal structure of some particular phys
k-al theory: one wishes to state and prove, within the mathematical for-
1nalism of the theory, theorems that can be interpreted physically in 
terms of possibilities for making predictions. 

Of the two, the second context certainly seems to be the simpler and 
the more direct. Indeed, it is perhaps not even elem· what the first context 
111eans. One's only guide in making a prediction in the physical world is 
one's past experiences in the relationship between the present and the 
future. But it is precisely the collection of these expe1i ences, sys
tematized and formalized, which makes up what is called a physical 
theory. That is to say, one seems to be led naturally from the first context to 
1l1c second. One would perhaps even be tempted to conclude that the two 
«ontexts are essentially the same thing, were it not for the fact that it 
st·cms never to be the case in practice that one's past experiences lead in 
a11y sense uniquely to a physical theory; one must, at some point, make a 
.. hoke from among several competing theories in order to discuss predic-
1 ion. Thus one might divide a discussion of prediction in physics into two 
pa1·ts: (1) the choice of a physical theory and (2) the establishment and 
i111t·t1>retation of certain theorems within the mathematical formalism of 
1l1al theory. 

Consider, as an example , Newtonian mechanics. Suppose that we wish 
lo describe within this theory our solar system, which we idealize as 

NUTY.: S11p1>orl1•d 111 purl hy tlw Nutio1wl Sdt•nc·t• Fouucl:1tion, Conlrat'I No. C P-34721Xl , 
111111 l.y llw Sllllm Fot11ulutiu11. 
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follows: the sun and planets are represented by ten mass points, subject to 
Newtonian gravitational forces. Because of the structure of the differential 
equations of the theory, one can dete rmine , given the positions and ve
locities of these points at any one instant of time, their positions and 
velocities at all later times. Such predictions are of course made routine ly 
in the case of the solar system and are late r conli rmed, with remarkable 
agreement, observationally. Let us now attempt to express this activity in 
terms of some theorem in Newtonian mechanfos. We take, as the state
ment of our theory, the following: "The world is described by points in 
Euclidean space, each of which is assigned a mass, and which move with 
time according to a given law of force between them." One might conjec
ture, within this theory, a mathematical result of the following general 
form: "Given the positions and velocities of some collection of mass points 
at some particular time in some region of Euclidean space, there is one 
and only one solution of the equations of motion, in that region, for later 
times." But this particular conjecture, at least, is false, for one has the 
option of having additional mass points, initially outside the given region 
(and hence not included in the initial data), which subsequently move into 
the region and inf! uence the motion of our original mass points. In fact, 
our conjecture is not even true if we further demand that the fixed region 
be all of Euclidean space. One can, within Newtonian mechanics, con
sttuct a solution representing two rocket ships which bounce between 
them a mass poin t with ever increasing speed. The result is that the 
rocket ships accelerate in opposite directions; if the speeds are adjusted 
correctly, the ships can be made to escape to the "edge" of our Euclidean 
space in finite time, leaving nothing behind. The time-reverse of this 
situation, then, is also a solution of the equations, a solution which allows 
objects to "rnsh in from infini ty," influencing the later development of our 
system without ever having been included in the initial data. 

In fact, there seems to be no theorem in ordinary Newtonian mechanics 
that suggests possibilities for prediction. Our conjecture above would, 
presumably, be true if we required in the conjecture that the fixed region 
be all of Euclidean space and, furthermore, that no information come into 
the system from infi nity. But this result would not, at least to me. sugg .. st 
prediction, for it constrains both the initial state of the system and its 
future behavior. One might, instead, conside r an alternativt• tlwory, c.J.( .. 
that above, but with the additional proviso that tht• only aclmissihlc· solu
tions are those in which thl' total n111nhl' r of m:L~s points n •111ai11s tl1" s:nn" 

H2 

PREDICTION I N GENERAL RELATIVITY 

with time. (In fact , there are apparently some technical d ifficulties with 
such a theory. For example, one must restrict the class of allowed force 
laws to guarnntee existence of admissible solutions , and the passage to a 
more realistic version in which mass points are replaced by a continuous 
mass d istribution may be tricky.) We emphasize that the new theory is 
identical with the old as far as observational evidence in our World is 
concerned, for exotic systems such as that described above have not been 
obse1ved. Nonetheless one can easily imagine that the two theories will 
d iffer markeclly in terms of what theorems, sugges tive of the possibilit ies 
of prediction, they will admit. 

The purpose of this paper is to introduce and discuss a few issues 
relating to the question of prediction in the general theory of relativity. • 
The remarks above are intended to justify the rather na1Tow framework in 
which we shall operate. Our theory is standard general relativity. We 
have a smooth, connected , fom-dimensional manifold M, whose points 
represent "eve nts" (occurrences in the physical world having extension in 
11cither space nor time). There is on this manifold a smooth metric~ of 
I ~irentz signature, which describes certain results of measuring spatial 
distances and elapsed times between pairs of nearby events. To simplify 
Ilic discussion, we shall suppose also that our space-time M , g is strongly 
1·ausal, i.e., that every point has a small neighborhood through which no 
limelike curve passes more than once. Obse1ve rs are described by 
li111clike curves in space-time, light rays by null geodesics, etc. Other 
physical phenomena are described by tensor fields on space-time, subject 
111 d ifferential equations (e.g., e lectromagnetic phenomena by the Max
w1·ll field, subject to Maxwell's equations). Om goal is to formulate defini
li1111s and theorems within this mathematical framework. 

2. Domain of Dependence 

11 is clear that the difficulties associated with Newtonian mechanics 
11 risc· from the fea ture of that theory that it does not restrict the speeds of 
part icles. There is, however, such a restriction in relativity, in which the 
l1111i ti11 J.( speed is that of light. One might guess, therefore, that it will 
111'1 nally he easier to discuss prediction in relativity than in Newtonian 
111c ·d1:1nics. This turns out to be the case, a fact which finds expression in 
''"' 11olio11 or thl· domain of depende nce. 

l ... t /If . i: ht• a spacl'-timl'. Let S be a three-dimensional, achronal (i.e., 
1111 lwn poinls of S may hl' joined by a ti1nt•likt· curve) surf:we in M. The 
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(future) domain of dependence 2 of S, v +(s), is the collection of all points p 
of M such that every future-directed timelike curve in M, having future 
endpoint p and no past endpoint, meets S. For example, if S is a three
dimensional, spacelike disk in Minkowski space (Figure 1), then D+(S) is 
the "cone-shaped region" shown. The point q is not in D+(S), for the 
future-directed timelike curve 'Y in the figure fails to meet S. 

y 

Figitre 1 

The physical meaning of this definition is the following. The su1face S 
represents "a region of space at some instant of tim e." Signals in general 
relativity travel along timelike cu1ves. For q in D+(S), every such curve to 
q must have met S, i.e., in physical terms, eve1y signal which could 
possibly influence the state of affairs at q must have been registered , in 
some sense, on S. For q not in D +(s), signals could reach and hence 
influence the physics at q without having been registered on S. In short , 
one expects that a sufficiently detailed knowledge of what is happening m1 

S (i.e. , at the "initial time") should determine completely what is happen
ing at each point of D +(S). This physical picture is in fact supported by a 
collection of theorems in general relativity. The detailed stal<·mcnt de
pends on the type of matter or fields considered; as an example. wt• tak1· 
electromagnetic fie lds. Electromagne tism is n •pn·s1•11lecl by an antisy111-
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metric, second-rank tensor field on space-time, subject to Maxwell's equa
tions (say, without sources). The theorem, in this case, reads as follows: 
Given the electromagnetic field on S, there is at most one extension of 
that field to D +(s), subject to Maxwell's equations. That is to say, the 
physical situation (in this example, the electromagnetic fie ld) is unjquely 
determined at any point q of D +(S), given the situation on S. 

We emphasize that the domain of dependence is essentially a relativis-
1 ic concept. For example, for S of"spatial size" one light-year, D+(S) will 
··extend into the future" for about one year in time, i.e., only until signals 
l"rom outside S have time to move into our region. That there is no 
analogous notion in Newtonian mechanics is the source of the examples in 
lhe previous section. 

It is tempting to conclude that this definition essentially exhausts what 
1·an be said within our theory: what can be determined from initial data 
(on S) is precisely what is in D+(S), and so all that remains is to work out 
tlic properties of this D+(S), its dependence on S, etc. That the situation is 
11ot so simple can be seen in the following example. Let M, g be Min
kowski space-time, and let S be a spacelike, three-dimensional plane in 
flt. Then D +(s ) is the entire region to the future of S, as shown in Figure 2. 
We next conside r a second space-time, M ', g', which is Minkowski space
' i 111c with a small, closed, spherical "hole" removed, and a similar surface S' 
i11 this space-time. Then D+(S') is as shown in the figure. The point is that 
tlwse two space-times, both legitimate within our theory, look identical in 
1111• immediate vicinities of their respective suifaces, although they are of 
rn11 rse quite different in the large. For example, the only solution of 
Maxwell's equations in M, g that vanishes on S is the solution that also 
1·a11ishes to the future of S, while there are solutions of Maxwell's equa
l1011s in M' , g' that vanish on S' and yet do not vanish to the future of S'. 
(S11ch a solution must, as already noted, vanish in D +(S'), but it need not 
1·:111ish in the region indicated in the figure because, physically, "elec
l 10111agne tic radiation can emerge from the hole.") Suppose, then, that 
rn11· has decided that our universe, at some time, looks like a neighbor-
1101111 of S in M, g and that th ere are no electromagnetic fi elds present . 
< :011ld one conclude that no electromagne tic fields will later be seen? 
< :l1 ·arly. from this example, one could not. Similar, but more elaborate, 
· ·~:1111pli•s ca11 IH• t•onstmctcd for other situations. In what sense, then, can 
111 11 · 111akl' any ph ysical pn•dictions within tlw general theory of relativity? 

II is d 1·ar thal th1 · J1H'('han is111 of tl1<· l'Xample above is the fact that, 
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o•(S) 

o+ (S') 

Figure 2 

although S dete rn1ines what happens in D +(S), what this D +(S) will be , 
and in particular how "large" it is , requires knowledge not only of S, but 
also of the space-time M , g in which Sis embedded . E ven the imposition 
of Einstein's equation (which we ignored in the exan1ple above) pe rmits 
only the determination of the geometiy in D +(S), and hence does not 
prohibit the constmction of similar examples by "cutting holes in space
tim e. " Apparently, the situation is that, although the notion of the domain 
of dep endence expresses well what there is of th e relationship "present 
determines future" in general relativity, it is none theless difficult to find 
therein a totally satisfactmy formulation, from the physical viewpoint, of 
this relationship. 

Thus general relativity, which seemed at first as though it would admit 
a natural and powe1ful state ment at prediction, appare nt ly do<'s nol. II 
seems to me that th e only cure is to all<·mpl to do fo r g1•111•ra l n ·lalivity 
what we discussed <'arli<'r li1 r Nc ·wlo11i:111 1111 ·c-ha11i<·s- d11111g1• tlu· llwory. 
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We here describe , as an example of the possibilities available along these 
lines, one su r.h. 

Call a space-time M, g holejree if it has the following property: given 
any achronal, three -dimensional surface S in M, and any me tric
preserving embedding 'Ir of D +(S) into some other space-time M' , g ', 
then 'It (D +(s)) = D +('Jr (S)) . That is to say, we require that the domain of 
dep endence , in M ' , of the surface 'It (S) in M ' be the same as the image 
by 'Ir of the domain of dep endence of S in M. Minkowski space-time, for 
example, is hole-free (as, indeed, are the standard exact solutions in 
general relativity). On the o ther hand, Minkowski space-time , with a hole 
;'.s in F igure 2, is not hole-free. (Let 'Ir be a metric-prese1ving mapping 
lrom D +(S') in that example to Minkowski space-time.) This definition, 
th en, provides an inhinsic characte rization of space-times that have been 
rnnshucted by cutting holes (although an imperfect one: Minkowski 
space-time to the pas t of a null plane is hole-free by this definition). Note 
that one could not accomplish the same objective by simply insisting that 
space-times not be constmcted by cutting holes in given space-times, for 
1l1is characte rization involves not only the space-time itself but also its 
111ode of presentation. Similarly, "maximally extended" is no substitution 
li1r " hole-free ," for there are space-times that satisfy the former an d not 
I he latter . 

One might now modify general relativity as follows: th e new theo1y is to 
111 · gene ral relativity, but with the addi tional condition that only hole-free 
' (lace-times are permitted. As far as obse1vational consequences in our 
world are concerned, the two theo1ies are identical, since non-hole-free 
~pace-tim es never aii se in any p ractical applications. The new th eory, 
however, admits a simp le and natural theore m which suggests prediction : 
i1· S and S' are achronal, three-dimensional surfaces in hole-free space-
1i111es M, g and M' , g ' , respectively, and if there is a mapping from S to S ' 
wliicli prese1v es all fie lds, then the re is such a mapping from D+(S) to 
I>' (S ') . This res ult is in fact practically a res tatement of the definition . 

It lllight he of interest to understand bette r the strength and role of this 
d1·fi 11ition, as we ll as the scope of other possibilities. 

3. P rediction 

111 ! '11· pn·vio11s s1·ctio11, we we re concerned with the relationship be-
11vi-1·11 wlial is l1 ap1 H· 11i ng in on1· rl'gion of space-tim e (the present) and 
wl1 11 I is l1app1•11i 11g in so 11 11• olhN n ·gion (the li1lure) . The word "predict," 
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however, suggests not only the existence of such relationsh;ps but also the 
existence of some agent who gathe rs the initial data and actually makes a 
claim about the futUl'e. In the present section, we describe within the 
theory such agents. 

Consider first th e following example. Let S be a small , three
dimensional, spacelike disk in Minkowski space-time (Figure 3). Then, as 
we have remarked, initial data on S de te rmine the physical fi elds in 
D+(S), in pa1ticular at point p. Let us now introduce an obse1ver, repre
sented by timelike curve y, who is to actually make this prediction regard
ing p. In order to make his prediction, our obse1ver must first collect the 
data from S, a task he carries out as follows. At pointr, our obse1ver sends 
out a swarm of othe r obse1vers, who fan out, experience, and record 

y 

l'ig111·1· :] 
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every part of S. They then return to the 01iginal obse1ver with this infor
mation, meeting him at point q. Thus by point q our obse1ver has assem
bled all the relevant information and is prepared to make his prediction 
regarding point p. But note that p lies to the past and not to the future of 
'I · In physical terms, by the time our obse1ver gets around to making his 
prediction regarcl;ng p, p has already happened; he makes a retrodiction 
rather than a prediction. 

It is clear that the problem in the example above aiises because the 
11ther observers cannot exceed the speed of light in returning to the 
original observer, whence they a1Tive too late for a genuine prediction. It 
i' also clear why in Newtonian mechanics, with no limit on the speeds of 
' i).(nals, no distinction need be made between "determination" and "pre
,Jidion. " 

Other choices of S and q in Minkowski space-time lead to the same 
11·s11lt : retrodiction. Indeed, it is perhaps not immediately clear whethe r 
11r 11ot one can constiuct any examples in which genuine prediction is 
possible in the theo1y. It turns out that there are such examples. Let M , g 
lw the space-time obtained by removing from Minkowski space-time two 
""all , spacelike, three-dimensional disks, as shown in Figure 4, and iden-
11fd11g" the lower edge of dfak A with the upper edge of disk B. Thus, fo r 
1·"1111ple, a timelike cu1ve entering A from below will re-emerge from the 
1 .. p of 8 . Let the su1face S , the point p , and the timelike cuive y, repre
"1•111 in).( our obse1ver, be those shown. Then , since eve1y future-directed 
1111wlikc CU1ve to JJ meets S , p is in o•(s). Our obse1ver, however, can 
"""' ).(ather his initial data by point q, where p is not in the past of q. At 
11,.. st ill later point o, our obse1ver can finally learn of point p and so can 
!111 ·11 <'iwck his prediction obse1vationally. In this space-time, then , pre
oll..i io11s are possible. 

It is interesting to note that it is an essential feature of the example 
111"""' that the observer verifi es his prediction only indirectly-by reach-
11 1).( a poi nt I) to the future ofp- rather than dire·ctly by passing through p. 
l'l 11 it clirn :t V<"lification is also possible is shown by the following example. 
l.1·1 tlw spac:c-time M , J!. be the Einstein universe, so the spa_tial sections 
1111· tlm'l·-sphrrcs and time is the real line (Figure 5). Our obse1ver has, at 
11 • .... ll1 ·1·1«d th" data from S, while o +(s) is the entire future ofS. Thus all 
th1 · 1·xp«ri1·11<·<'s of't l1<· ohsc1ver beyond</ could have been predicted at q. 

It ;, 1·011v!'11ie11t to isolate th<' ess!'ntial features of these examples by 
1111 •11 11 ' 111' 11 dt"li11itio11 . l...t M. g h" a spaet'-ti11w . For x a11y point of M , 
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v 

q 

Identify 
y 

Figure 4 

denote by 1- (x), the past of x, the set of points that can be reached from x 

by past-directed timelike curves. Now fix any point q of M , and denote by 
P(q) the set of all points x such that every past-directed timelike curve 
from x , without past encl point, enters 1- (q), but s uch tha t 1- (x) is not a 

subset of 1-(q). We shall ca ll this set P(q) the domain of p rediction of 'I · 
For example, for q any point of Minkowski space-time, every point .r 
either has the property that 1- (x) C 1- (q) or has the prope rty that somt· 
past-directed timelike curve from x fails to mee t 1- (11). lfrnt'<' tht· d11111ai11 

of prediction of each point 11 in Minkowski spat-i· is t•111pty. 

The physical 11w:11 ri111( of this ddi 11iti11n is :rs li1ll11ws. Tll<' poin t 11 "''Ill'<'-
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y 

-------... ......... , 
s 

----~-

---- --------

Figure 5 

' ""ls the point (of our predicting observer) at which all the infom13tion 
loas been collected. Then the set 1-(q) represents that region of space-time 

1111111 which information could reach q. The fi rst condition for membership 
ul r in P(q) requires, physically, that every signal that could affect x must 
lo. ovt• come from 1- (q), i.e., that every such signal cou ld have been 

''"'"rdcd and carTied to q. The second condition requires essentially that 
1 not he in 1- (q) , i. e., that we have a prediction at x rather than a retrodic

r1011 . This interpretation is supported by the following, easily proved, 
, ,.,,,ft : poin t x is in P(q) if and only if r - (x) cf. 1- (q), and, in addition, there 

" :i tl1r .. c-climensional, achrnnal surface S in 1-(q) with x in D +(S). It 
lullows irnrncdiatc ly. for example, that , in the examples of Figurns 4 and 

~ •. I' is a point of /'(11). Th11s Wt' intervre t th e domain of prediction of q as 

1111· r1 ·,.:ic111 of sp:K'<'-ti nw that m n he pn·dktt•d from I/· " 
1\ "11 111in,.: that th<' ddinitinn ahnvc• :rt·t·11r:rtt•ly n·flt•ds the physical no-
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tion of "making predictions in general rela tivity," wbat remains is to study 
its consequences. We give one example. We saw in the example of Figure 
4 that P(q) is nonempty but contains no points to the future of q ("predic
tions could not be verified directly"). In the example of Figure 5, on the 
other hand, P(q) includes points to the future of q, and, in that example, 
we have a "closed universe." In fact these observations are a special case of 
a more general result, namely: Given a space:time M, g , and a point q of 
M such that P(q) contains a point to the future of q , then M , g is a closed 
universe, in the sense that it admits a compact spacelike surface. (This 
result is essentially a corollary of a theorem• of Earman's that a Cauchy 
surface to the past of a point must be compact.) In physical te rms, "pre
dictions which can be verified directly aiise only in closed universes." 
Why should this strange result follow from just the basic piinciples of 
general relativity? Are there any other similar theorems about the domain 
of prediction? 

4. Conclusion 

We can conveniently summaiize by comparing general relativity and 
Newtonian mechanics. For our purposes, there are apparently two essen
tial differences between the two theolies: (1) signal speeds are unlimited 
in Newtonian mechanics but limited in general relativity; and (2) the 
space-time framework is fixed once and for all in Newtonian mechanics 
(Euclidean space plus time) but not in general relativi ty. The notion 
"future from present" seems to arise far more simply and natu rally in 
general relativity than in Newtonian mechanics because of the limitation 
on signal speeds in the former. On the other hand, the freedom in the 
space-time model in general relativity leads to new difficulties not present 
in Newtonian mechanics. Finally, the question of the collection of initial 
data, while itTelevant in Newtonian mechanics, leads, because of lim
itations on signal speeds, to additional complications in general relativity. 

The notion of observational indistinguishability• leads to a classification 
of properties of space-times according to their interaction with this no
tion. In a similar way, one could classify properties as deterministic and 

nondeterministic, and as predictive and nonpredictive. 

Notes 
1. For a careful and thorough tliscu.'is ion of thi,'\ iss1u•, .'~ c ·1• J. 1•:;1r11 111 u, " I ,a1, lud1111 J)1•t1·1 

minism in Classic·al Physics,·· pn·pri11t . 
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2. See, for example, R. Geroch, "Domain of Dependence," journal of Mathematical 
Physics 11 (1970): 437: S. W. Hawking, G. Ellis, The Large-Sea/$ Structure of Space-time 
(Cambridge: Cambridge University Press, 1974). 

3. For a discussion of this construction, see, for example, R. Geroch, "Space-Time Struc
ture from a Global Viewpoint," in R. Sachs, ed., Relativity and Cosmology (New York: 
Academic Press, 1971), p. 71. 

4. J. Eannan, private communication. 
5. C. Glymour, this volume; 0 . Malament, th is volume. 
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