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is taken by “unrolling” M. M and M’ are observationally indistinguishable
since no observational past of any future-inextendible curve in either
extends beyond the excision barriers. But only M’ admits a global time
function.

Notes

1. See also Clark Glymour, “Topology, Cosmology and Convention,” Synthése 24 (1972):
195-218.

2. A comprehensive treatment of work on the global structure of (relativistic) space-times
is given in: §. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time
{(Cambridge: Cambridge University Press, 1973). See also Roger Penrose, Techniques of
Differential Topology in Relativity (Philadelphia: Society for Industrial and Applied Mathe-
matics, 1972). More accessible than either is Robert Geroch, “Space-Time Structure from a
Global Viewpoint,” in B. K. Sachs, ed., General Relativity and Cosmology (New York:
Academic Press, 1971).

3. A future end point need not be a point on the curve. The definition is this: If M is a
space-time, I a connected subset of R, and o: [ - M a future-directed causal curve, a point x
is the future end point of o if for every neighborhood O of x there isato el such that o(t) e O
for all t €1 where t > tq, i.e., o enters and remains in every neighborhood of x.

4. A space-time is strongly causal if, given any point x and any neighborhood O of x, there
is always a subneighborhood O’ C O of x such that no future-directed timelike curve which
leaves O' ever returns to it.

5. A countable cover of this form can be found in any space-time M, strongly causal or not.
Since M is without boundary, for every y in M there is an x in M such that y <<, i.e.,
y € I7(x). So the set {I"(x): * € M} is an open cover of M. But M has a countable basis for its
topology (Robert Geroch, “Spinor Structure of Space-Times in General Relativity 1,” Jour-
nal of Mathematical Physics 9 (1968): 1739-1744.) So by the Lindelof Theorem there is a
countable subset of {I7(x): x € M} which covers M.

6. Robert Geroch, “Limits of Spacetimes,” Communications in Mathematical Physics 13
(1969): 180-193.

7. See John Earman, “Laplacian Determinism in Classical Physics” (to appear) and
Robert Geroch’s paper in this volume.

8. Robert Geroch, “Domain of Dependence,” Journal of Mathematical Physics 11 (1970):
437-449. (A somewhat different but equivalent definition of glabal hyperbolicity is used.)

9. There is a problem of how to define observational indistinguishability in a nontempor-
ally orientable space-time (the definition given presupposed temporal orientation). But
under any plausible candidate, M and M" in the example would come out observationally
indistinguishable. One could associate with every inextendible timelike curve o all the
points that are connected with some point on the curve by another timelike curve. (In a
temporally oriented space-time this would be the union I*[o] UI"[a].) Even these sets inM
and M’ would find isometric counterparts in the other.

10. A space-time is stably causal if there are no closed causal curves and if there are no
closed causal curves with respect to any metric close to the original. {This can be made
precise by putting an appropriate topology on the set of all metrics on the space-time
manifold.) Note that in the space-time M of the following example the slightest flattening of
the light cones would allow timelike curves to scoot around the barriers. The equivalence iy
proven in S. W. Hawking, “The Existence of Cosmic Time Functions,” Proceedings of the
Royal Society A, 308 (1968): 433—435.
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Prediction in General Relatioity

1. Introduction

There are at least two contexts within which one might place a discus-
sion of the possibilities for making predictions in physics. In the first, one
is concerned only with the actual physical world: one imagines that he has
somehow learned what some physical system is like now, and one wishes
to determine what that system will be like in the future. In the second,
one is concerned only with the internal structure of some particular phys-
ical theory: one wishes to state and prove, within the mathematical for-
malism of the theory, theorems that can be interpreted physically in
terms of possibilities for making predictions.

Of the two, the second context certainly seems to be the simpler and
the more direct. Indeed, it is perhaps not even clear what the first context
means. One’s only guide in making a prediction in the physical world is
one’s past experiences in the relationship between the present and the
future. But it is precisely the collection of these experiences, sys-
tematized and formalized, which makes up what is called a physical
theory. That is to say, one seems to be led naturally from the first context to
the second. One would perhaps even be tempted to conclude that the two
contexts are essentially the same thing, were it not for the fact that it
seems never to be the case in practice that one’s past experiences lead in
any sense uniquely to a physical theory; one must, at some point, make a
choice from among several competing theories in order to discuss predic-
tion. Thus one might divide a discussion of prediction in physics into two
parts: (1) the choice of a physical theory and (2) the establishment and
interpretation of certain theorems within the mathematical formalism of
that theory.

Consider, as an example, Newtonian mechanics. Suppose that we wish
to describe within this theory our solar system, which we idealize as

nove: Supported in part by the National Science Foundation, Contract No. GP-34721X1,
andd by the Sloun Foundation.
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follows: the sun and planets are represented by ten mass points, subject to
Newtonian gravitational forces. Because of the structure of the differential
equations of the theory, one can determine, given the positions and ve-
locities of these points at any one instant of time, their positions and
velocities at all later times. Such predictions are of course made routinely
in the case of the solar system and are later confirmed, with remarkable
agreement, observationally. Let us now attempt to express this activity in
terms of some theorem in Newtonian mechanics. We take, as the state-
ment of our theory, the following: “The world is described by points in
Euclidean space, each of which is assigned a mass, and which move with
time according to a given law of force between them.” One might conjec-
ture, within this theory, a mathematical result of the following general
form: “Given the positions and velocities of some collection of mass points
at some particular time in some region of Euclidean space, there is one
and only one solution of the equations of motion, in that region, for later
times.” But this particular conjecture, at least, is false, for one has the
option of having additional mass points, initially outside the given region
(and hence not included in the initial data), which subsequently move into
the region and influence the motion of our original mass points. In fact,
our conjecture is not even true if we further demand that the fixed region
be all of Euclidean space. One can, within Newtonian mechanies, con-
struct a solution representing two rocket ships which bounce between
them a mass point with ever increasing speed. The result is that the
rocket ships accelerate in opposite directions; if the speeds are adjusted
correctly, the ships can be made to escape to the “edge” of our Euclidean
space in finite time, leaving nothing behind. The time-reverse of this
situation, then, is also a solution of the equations, a solution which allows
objects to “rush in from infinity,” influencing the later development of our
system without ever having been included in the initial data.

In fact, there seems to be no theorem in ordinary Newtonian mechanics
that suggests possibilities for prediction. Our conjecture above would,
presumably, be true if we required in the conjecture that the fixed region
be all of Euclidean space and, furthermore, that no information come into
the system from infinity. But this result would not, at least to me, suggest
prediction, for it constrains both the initial state of the system and its
future behavior. One might, instead, consider an alternative theory, e.g.,
that above, but with the additional proviso that the only admissible solu-
tions are those in which the total number of muss points remains the same
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with time. (In fact, there are apparently some technical difficulties with
such a theory. For example, one must restrict the class of allowed force
laws to guarantee existence of admissible solutions, and the passage to a
more realistic version in which mass points are replaced by a continuous
mass distribution may be tricky.) We emphasize that the new theory is
identical with the old as far as observational evidence in our World is
concerned, for exotic systems such as that described above have not been
observed. Nonetheless one can easily imagine that the two theories will
differ markedly in terms of what theorems, suggestive of the possibilities
of prediction, they will admit.

The purpose of this paper is to introduce and discuss a few issues
relating to the question of prediction in the general theory of relativity.
The remarks above are intended to justify the rather narrow framework in
which we shall operate. Our theory is standard general relativity. We
have a smooth, connected, four-dimensional manifold M, whose points
represent “events” (occurrences in the physical world having extension in
neither space nor time). There is on this manifold a smooth metric g, of
Lorentz signature, which describes certain results of measuring spatial
distances and elapsed times between pairs of nearby events. To simplify
the discussion, we shall suppose also that our space-time M, g is strongly
causal, i.e., that every point has a small neighborhood through which no
timelike curve passes more than once. Observers are described by
timelike curves in space-time, light rays by null geodesics, ete. Other
physical phenomena are described by tensor fields on space-time, subject
to differential equations (e.g., electromagnetic phenomena by the Max-
well field, subject to Maxwell's equations). Our goal is to formulate defini-
tions and theorems within this mathematical framework.

2. Domain of Dependence

It is clear that the difficulties associated with Newtonian mechanics
arise from the feature of that theory that it does not restrict the speeds of
particles. There is, however, such a restriction in relativity, in which the
limiting speed is that of light. One might guess, therefore, that it will
nctually be easier to discuss prediction in relativity than in Newtonian
mechanies. This turns out to be the case, a fact which finds expression in
the notion of the domain of dependence.

Let M, g be aspace-time. Let § be a three-dimensional, achronal (i.e.,
o two points of § may be joined by a timelike eurve) surface in M. The
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(future) domain of dependence® of S, D*(S), is the collection of all points p
of M such that every future-directed timelike curve in M, having future
endpoint p and no past endpoint, meets S. For example, if § is a three-
dimensional, spacelike disk in Minkowski space (Figure 1), then D*(S) is
the “cone-shaped region” shown. The point ¢ is not in D*(S), for the
future-directed timelike curve vy in the figure fails to meet S.

q

Figure 1

The physical meaning of this definition is the following. The surface §
represents “a region of space at some instant of time.” Signals in general
relativity travel along timelike curves. For g in D*(S), every such curve to
g must have met S, i.e., in physical terms, every signal which could
possibly influence the state of affairs at q must have been registered, in
some sense, on S. For g not in D*(S), signals could reach and hence
influence the physics at ¢ without having been registered on S. In short,
one expects that a sufficiently detailed knowledge of what is happening on
S (i.e., at the “initial time”) should determine completely what is happen-
ing at each point of D*(S). This physical picture is in fact supported by a
collection of theorems in general relativity. The detailed statement de-
pends on the type of matter or fields considered; as an example, we take
electromagnetic fields. Electromagnetism is represented by an antisym-
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metric, second-rank tensor field on space-time, subject to Maxwell’s equa-
tions (say, without sources). The theorem, in this case, reads as follows:
Given the electromagnetic field on §, there is at most one extension of
that field to D*(S), subject to Maxwell's equations. That is to say, the
physical situation (in this example, the electromagnetic field) is uniquely
determined at any point g of D*(S), given the situation on S.

We emphasize that the domain of dependence is essentially a relativis-
tic concept. For example, for S of “spatial size” one light-year, D*(S) will
“extend into the future” for about one year in time, i.e., only until signals
from outside § have time to move into our region. That there is no
analogous notion in Newtonian mechanics is the source of the examples in
the previous section.

It is tempting to conclude that this definition essentially exhausts what
can be said within our theory: what can be determined from initial data
(on §) is precisely what is in D*(S), and so all that remains is to work out
ihe properties of this D*(S), its dependence on S, etc. That the situation is
not so simple can be seen in the following example. Let M, g be Min-
kowski space-time, and let S be a spacelike, three-dimensional plane in
M. Then D*(S) is the entire region to the future of S, as shown in Figure 2.
We next consider a second space-time, M’, g’, which is Minkowski space-
lime with a small, closed, spherical “hole” removed, and a similar surface §’
in this space-time. Then D*(S') is as shown in the figure. The point is that
these two space-times, both legitimate within our theory, look identical in
the immediate vicinities of their respective surfaces, although they are of
course quite different in the large. For example, the only solution of
Maxwell’s equations in M, g that vanishes on § is the solution that also
vimishes to the future of §, while there are solutions of Maxwell’s equa-
lions in M’, g’ that vanish on §” and yet do not vanish to the future of §’.
(Such a solution must, as already noted, vanish in D*(S’), but it need not
vinish in the region indicated in the figure because, physically, “elec-
tromagnetic radiation can emerge from the hole.”) Suppose, then, that
one has decided that our universe, at some time, looks like a neighbor-
hood of § in M, g and that there are no electromagnetic fields present.
Could one conclude that no electromagnetic fields will later be seen?
Clearly, from this example, one could not. Similar, but more elaborate,
examples can be constructed for other situations. In what sense, then, can
one make any physical predictions within the general theory of relativity?

It is clear that the mechanism of the example above is the fact that,
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Figure 2

although S determines what happens in D*(S), what this D*(S) will be,
and in particular how “large” it is, requires knowledge not only of S, but
also of the space-time M, g in which S is embedded. Even the imposition
of Einstein’s equation (which we ignored in the example above) permits
only the determination of the geometry in D*(S), and hence does not
prohibit the construction of similar examples by “cutting holes in space-
time.” Apparently, the situation is that, although the notion of the domain
of dependence expresses well what there is of the relationship “present
determines future” in general relativity, it is nonetheless difficult to find

therein a totally satisfactory formulation, from the physical viewpoint, of

this relationship.

Thus general relativity, which seemed at first as though it would admit
a natural and powerful statement at prediction, apparently does not. It
seems to me that the only cure is to altempt to do for general relativity
what we discussed earlier for Newtonian mechanies—change the theory,
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We here describe, as an example of the possibilities available along these
lines, one such.

Call a space-time M, g hole-free if it has the following property: given
any achronal, three-dimensional surface § in M, and any metric-
preserving embedding W of D*(S) into some other space-time M', g,
then W (D*(S)) = D*(W¥ (S)). That is to say, we require that the domain of
dependence, in M', of the surface ¥ (S) in M’ be the same as the image
by ¥ of the domain of dependence of S in M. Minkowski space-time, for
example, is hole-free (as, indeed, are the standard exact solutions in
general relativity). On the other hand, Minkowski space-time, with a hole
as in Figure 2, is not hole-free. (Let ¥ be a metric-preserving mapping
from D*(S’) in that example to Minkowski space-time.) This definition,
then, provides an intrinsic characterization of space-times that have been
constructed by cutting holes (although an imperfect one: Minkowski
space-time to the past of a null plane is hole-free by this defi nition). Note
that one could not accomplish the same objective by simply insisting that
space-times not be constructed by cutting holes in given space-times, for
this characterization involves not only the space-time itself but also its
mode of presentation. Similarly, “maximally extended” is no substitution
lor “hole-free,” for there are space-times that satisfy the former and not
the latter.

One might now modify general relativity as follows: the new theory is to
he general relativity, but with the additional condition that only hole-free
space-times are permitted. As far as observational consequences in our
world are concerned, the two theories are identical, since non-hole-free
space-times never arise in any practical applications. The new theory,
however, admits a simple and natural theorem which suggests prediction:
iI'S and §" are achronal, three-dimensional surfaces in hole-free space-
times M, g and M', g', respectively, and if there is a mapping from § to §'
which preserves all fields, then there is such a mapping from D*(S) to
2'(S"). This result is in fact practically a restatement of the definition.

It might be of interest to understand better the strength and role of this
definition, as well as the scope of other possibilities.

3. Prediction
In the previous section, we were concerned with the relationship be-
tween what s happening in one region of space-time (the present) and

what is happening in some other region (the future). The word “predict,”
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however, suggests not only the existence of such relationships but also the
existence of some agent who gathers the initial data and actually makes a
claim about the future. In the present section, we describe within the
theory such agents.

Consider first the following example. Let S be a small, three-
dimensional, spacelike disk in Minkowski space-time (Figure 3). Then, as
we have remarked, initial data on § determine the physical fields in
D*(S), in particular at point p. Let us now introduce an observer, repre-
sented by timelike curve vy, who is to actually make this prediction regard-
ing p. In order to make his prediction, our observer must first collect the
data from S, a task he carries out as follows. At pointr, our observer sends
out a swarm of other observers, who fan out, experience, and record

Figure 3
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cvery part of §. They then return to the original observer with this infor-
mation, meeting him at point g. Thus by point g our observer has assem-
bled all the relevant information and is prepared to make his prediction
regarding point p. But note that p lies to the past and not to the future of
(. In physical terms, by the time our observer gets around to making his
prediction regarding p, p has already happened; he makes a retrodiction
rather than a prediction.

It is clear that the problem in the example above arises because the
other observers cannot exceed the speed of light in returning to the
original observer, whence they amrive too late for a genuine prediction. It
is also clear why in Newtonian mechanics, with no limit on the speeds of
signals, no distinction need be made between “determination” and “pre-
diction.”

Other choices of § and ¢ in Minkowski space-time lead to the same
result: retrodiction. Indeed, it is perhaps not immediately clear whether
or not one can construct any examples in which genuine prediction is
possible in the theory. It turns out that there are such examples. Let M, g
I the space-time obtained by removing from Minkowski space-time two
small, spacelike, three-dimensional disks, as shown in Figure 4, and iden-
lilving? the lower edge of disk A with the upper edge of disk B. Thus, for
evample, a timelike curve entering A from below will re-emerge from the
top of B. Let the surface S, the point p, and the timelike curve vy, repre-
wenling our observer, be those shown. Then, since every future-directed
timelike curve to p meets S, p is in D*(§). Our observer, however, can
now gather his initial data by point g, where p is not in the past of q. At
the still later point v, our observer can finally learn of point p and so can
then check his prediction observationally. In this space-time, then, pre-
dietions are possible.

It is interesting to note that it is an essential feature of the example
uhove that the observer verifies his prediction only indirectly—by reach-
ing i point v to the future of p—rather than directly by passing through p.
It direct verification is also possible is shown by the following example.
Lt the space-time M, g be the Einstein universe, so the spatial sections
e three-spheres and time is the real line (Figure 5). Our observer has, at
i, collected the data from S, while D*(S) is the entire future of §. Thus all
the experiences of the observer beyond g could have been predicted at g.

It is convenient to isolate the essential features of these examples by
meins of a definition. Let M, g be a space-time. For x any point of M,
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Identify

CE A
S

Figure 4

denote by I(x), the past of x, the set of points that can be reached from x
by past-directed timelike curves. Now fix any point g of M, and denote by
P(q) the set of all points x such that every past-directed timelike curve
from x, without past end point, enters I(q), but such that I"(x) is not a
subset of I7(g). We shall call this set P(g) the domain of prediction of ¢.
For example, for ¢ any point of Minkowski space-time, every point x
either has the property that I(x) C I{g) or has the property that some
past-directed timelike curve from x fails to meet I (¢). Hence the domain
of prediction of each point ¢ in Minkowski space is empty.

The physical meaning of this definition is as [ollows. The point ¢ repre-
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Figure 5

sents the point (of our predicting observer) at which all the information
lias been collected. Then the set I7(g) represents that region of space-time
fvom which information could reach g. The first condition for membership
ol v in P(q) requires, physically, that every signal that could affect x must
lave come from I7(g), i.e., that every such signal could have been
recorded and carried to g. The second condition requires essentially that
vnot he in I7(g), i.e., that we have a prediction at x rather than a retrodic-
tion. This interpretation is supported by the following, easily proved,
result: point x is in P(g) if and only if I7(x) ¢ I7(g), and, in addition, there
i~ three-dimensional, achronal surface § in I7(g) with x in D*(S). It
lollows immediately, for example, that, in the examples of Figures 4 and
iopis apoint of Plg). Thus we interpret the domain of prediction of g as
the region of space-time that can be predicted from ¢.”
Assuming that the definition above aceurately reflects the physical no-
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tion of “making predictions in general relativity,” what remains is to study
its consequences. We give one example. We saw in the example of Figure
4 that P(q) is nonempty but contains no points to the future of ¢ (“predic-
tions could not be verified directly”). In the example of Figure 5, on the
other hand, P(g) includes points to the future of ¢, and, in that example,
we have a “closed universe.” In fact these observations are a special case of
a more general result, namely: Given a space-time M, g, and a point g of
M such that P(g) contains a point to the future of g, then M, g is a closed
universe, in the sense that it admits a compact spacelike surface. (This
result is essentially a corollary of a theorem ? of Earman’s that a Cauchy
surface to the past of a point must be compact.) In physical terms, “pre-
dictions which can be verified directly arise only in closed universes.”
Why should this strange result follow from just the basie principles of
general relativity? Are there any other similar theorems about the domain
of prediction?

4. Conclusion

We can conveniently summarize by comparing general relativity and
Newtonian mechanics. For our purposes, there are apparently two essen-
tial differences between the two theories: (1) signal speeds are unlimited
in Newtonian mechanics but limited in general relativity; and (2) the
space-time framework is fixed once and for all in Newtonian mechanics
(Euclidean space plus time) but not in general relativity. The notion
“future from present” seems to arise far more simply and naturally in
general relativity than in Newtonian mechanics because of the limitation
on signal speeds in the former. On the other hand, the freedom in the
space-time model in general relativity leads to new difficulties not present
in Newtonian mechanics. Finally, the question of the collection of initial
data, while irrelevant in Newtonian mechanics, leads, because of lim-
itations on signal speeds, to additional complications in general relativity.

The notion of observational indistinguishability ® leads to a classification
of properties of space-times according to their interaction with this no-
tion. In a similar way, one could classify properties as deterministic and
nondeterministic, and as predictive and nonpredictive.

Notes

1. For a careful and thorough diseussion of this issne, see ], Earman, “Laplacian Deter
minism in Classical Physics,” preprint.
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2. See, for example, R. Geroch, “Domain of Dependence,” Journal of Mathematical
Physics 11 (1970): 437, S. W. Hawking, G. Ellis, The Large-Scale Structure of Space-time
{Cambridge: Cambridge University Press, 1974).

3. For a discussion of this construction, see, for example, R. Geroch, “Space-Time Struc-
ture from a Global Viewpoint,” in R. Sachs, ed., Relativity and Cosmology (New York:
Academic Press, 1971), p. 7.

4. J. Earman, private communication,

5. C. Glymour, this volume; D. Malament, this volume.
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