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Preface

The twentieth century’s most interesting philosophers were enthralled by the revolution
in mathematical logic, and they accordingly clothed many of their arguments in a formal
garb. For example, Hilary Putnam claimed that the Lowenheim-Skglem theorem reduces
metaphysical realism to absurdity; Bas van Fraassen claimed that arguments against
empiricism presuppose the syntactic view of theories; and W. v. O. Quine claimed that
Carnap’s notion of an “external question” falls apart because every many-sorted theory
is equivalent to a single-sorted theory. These are only a few of the many arguments of
twentieth-century philosophy that hinge upon some or other metalogical theorem.

Lack of understanding of the logical theorems can be a huge obstacle to assessing
these philosophers’ arguments, and this book is my attempt to help remove that obstacle.
However, my ideal reader is not the casual tourist of twentieth-century philosophy who
wants the minimal amount of logic needed to get the big picture. My ideal reader is the
(aspiring) logician-philosopher who wants to strip these arguments down to their logical
nuts and bolts.

Although my motivation for writing this book wasn’t to get across some particular
philosophical point, a few such points emerged along the way. First, the distinction
between realism and antirealism really boils down to one’s attitude toward theoretical
equivalence. Realists are people with a conservative notion of equivalence, and antire-
alists are people with a liberal notion of equivalence. Second, and relatedly, to give a
philosophical account of a relation between theories (e.g., equivalence and reducibility)
is tantamount to recommending certain norms of inquiry. For example, if you say that
two theories T and T’ are equivalent, then you mean (among other things) that any
reason for accepting 7 is also a reason for accepting 7’. Hence, you won’t bother trying
to design an experiment that would test 7 against 7’. Similarly, if you think that T
and T’ are equivalent, then you’ll consider as confused anyone who argues about which
of the two is better. In short, to adopt a view on relations between theories is to adopt
certain rules about how to use those theories.

I should explain one glaring omission from this book: modal logic. I didn’t leave out
modal logic because I’'m a Quinean extensionalist. To the contrary, I’ve come to think
that the metatheory of first-order logic, and of scientific theories more generally, is chock
full of intensional concepts. For example, the models of a scientific theory represent the
nomologically possible worlds according to the theory. Furthermore, a scientific theory
comes equipped with a notion of “natural property” (in the sense of David Lewis), and
these natural properties determine a notion of similarity between possible worlds, which
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Preface

in turn licenses certain counterfactual inferences. So, while my goal is to theorize about
the extensional logic that forms the backbone of the sciences, I believe that doing so
calls for the use of intensional concepts.

A final note on how to read this book: Chapters 1-3 are introductory but are not
strictly prerequisite for the subsequent chapters. Chapters 1 and 3 treat the metatheory
of propositional logic, teaching some Boolean algebra and topology along the way. In
Chapter 3, we go through the proof of the Stone duality theorem, because it exemplifies
the duality between syntax and semantics that informs the remaining chapters. Chapter 2
covers the basics of both category and set theory in one go, and it’s the most technically
demanding (and least philosophical) chapter of the book. You don’t have to know cat-
egorical set theory in order to benefit from the other chapters, it would be enough to
know some set theory (e.g., Halmos’ Naive Set Theory) and to flip back occasionally to
look up category-theoretic concepts.

Acknowledgements: Thanks to Bas van Fraassen for the inspiration to pursue philos-
ophy of science both as a science and as an art.

The idea behind this book arose during a year I spent in Utrecht studying category
theory. I thank the Mellon New Directions Fellowship for financing that year. Thanks to
my Dutch hosts (Klaas Landsman, Ieke Moerdijk, and Jaap van Oosten) for their warm
hospitality.

When I returned home, I rediscovered that it’s difficult to do two (or fifty) things
at once. The project might have foundered, had it not been for the theorem-proving
wizardry of Thomas Barrett, Neil Dewar, Dimitris Tsementzis, and Evan Washing-
ton. I also found my philosophical views shaped and sharpened by conversations with
several students and colleagues, especially John Burgess, Ellie Cohen, Robbie Hirsch,
Laurenz Hudetz, Michaela McSweeney, Alex Meehan, Gideon Rosen, Elliot Salinger,
David Schroeren, and Jim Weatherall. I probably left somebody out, and I’m sorry
about that. For comments and corrections on earlier versions of the manuscript, I thank
Thomas Barrett, Gordon Belot, Neil Dewar, Harvey Lederman, Dimitris Tsementzis,
Jim Weatherall and Isaac Wilhelm.

Finally, thank you to Hilary and Sophie at CUP for their initial belief in the project
and for persevering with me to the end.



Introduction

A New Kind of Philosophy

Some people think that philosophy never makes progress. In fact, professional philoso-
phers might think that more frequently — and feel it more acutely — than anyone else.
At the beginning of the twentieth century, some philosophers were so deeply troubled
that they decided to cast all previous philosophy on the scrap heap and to rebuild from
scratch. “Why shouldn’t philosophy be like science?” they asked. “Why can’t it also
make genuine progress?”’

Now, you might guess that these philosophers would have located philosophy’s prob-
lems in its lack of empirical data and experiments. One advantage of the empirical
sciences is that bad ideas (such as “leeches cure disease”) can be falsified through
experiments. However, this wasn’t the diagnosis of the first philosophers of science; they
didn’t see empirical testability as the sine qua non of a progressive science. Their guid-
ing light was not the empirical sciences, but mathematics, and mathematical physics.

The nineteenth century had been a time of enormous progress in mathematics, not
only in answering old questions and extending applications, but but also in clarifying
and strengthening the foundations of the discipline. For example, George Boole had
clarified the structure of logical relations between propositions, and Georg Cantor had
given a precise account of the concept of “infinity,” thereby setting the stage for the
development of the new mathematical theory of sets. The logician Gottlob Frege had
proposed a new kind of symbolic logic that gave a precise account of all the valid
argument forms in mathematics. And the great German mathematician David Hilbert,
building on a rich tradition of analytic geometry, proposed an overarching axiomatic
method in which all mathematical terminology is “de-interpreted” so that the correctness
of proofs is judged on the basis of purely formal criteria.

For a younger generation of thinkers, there was a stark contrast between the ever
more murky terminology of speculative philosophy and the rising standards of clarity
and rigor in mathematics. “What is the magic that these mathematicians have found?”
asked some philosophically inclined scientists at the beginning of the twentieth century.
“How is it that mathematicians have a firm grip on concepts such as ‘infinity’ and
‘continuous function,” while speculative philosophers continue talking in circles?” It
was time, according to this new generation, to rethink the methods of philosophy as an
academic discipline.
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The first person to propose that philosophy be recreated in the image of nineteenth-
century mathematics was Bertrand Russell. And Russell was not at all modest in what he
thought this new philosophical method could accomplish. Indeed, Russell cast himself
as a direct competitor with the great speculative philosophers, most notably with Hegel.
That is, Russell thought that, with the aid of the new symbolic logic, he could describe
the fundamental structure of reality more clearly and accurately than Hegel himself did.
Indeed, Russell’s “logical atomism” was intended as a replacement for Hegel’s monistic
idealism.

Russell’s grand metaphysical ambitions were cast upon the rocks by his student
Ludwig Wittgenstein. In essence, Wittgenstein’s Tractatus Logico Philosophicus was
intended to serve as a reductio ad absurdum of the idea that the language of math-
ematical logic is suited to mirror the structure of reality in itself. To the extent that
Russell himself accepted Wittgenstein’s rebuke, this first engagement of philosophy
and mathematical logic came to an unhappy end. In order for philosophy to become
wedded to mathematical logic, it took a distinct second movement, this time involving a
renunciation of the ambitions of traditional speculative metaphysics. This second move-
ment proposed not only a new method of philosophical inquiry but also a fundamental
reconstrual of its aims.

As mentioned before, the nineteenth century was a golden age for mathematics in the
broad sense, and that included mathematical physics. Throughout the century, Newto-
nian physics has been successfully extended to describe systems that had not originally
been thought to lie within its scope. For example, prior to the late nineteenth century,
changes in temperature had been described by the science of thermodynamics, which
describes heat as a sort of continuous substance that flows from one body to another.
But then it was shown that the predictions of thermodynamics could be reproduced
by assuming that these bodies are made of numerous tiny particles obeying the laws
of Newtonian mechanics. This reduction of thermodynamics to statistical mechanics
led to much philosophical debate over the existence of unobservable entities, e.g., tiny
particles (atoms) whose movement is supposed to explain macroscopic phenomena such
as heat. Leading scientists such as Boltzmann, Mach, Planck, and Poincaré sometimes
took opposing stances on these questions, and it led to more general reflection on the
nature and scope of scientific knowledge.

These scientists couldn’t have predicted what would happen to physics at the begin-
ning of the twentieth century. The years 1905-1915 saw no fewer than three major
upheavals in physics. These upheavals began with Einstein’s publication of his special
theory of relativity, and continued with Bohr’s quantum model of the hydrogen atom,
and then Einstein’s general theory of relativity. If anything became obvious through
these revolutions, it was that we didn’t understand the nature of science as well as we
thought we did. We had believed we understood how science worked, but people like
Einstein and Bohr were changing the rules of the game. It was high time to reflect on
the nature of the scientific enterprise as a whole.

The new theories in physics also raised further questions, specifically about the role of
mathematics in physical science. All three of the new theories — special and general rela-
tivity, along with quantum theory — used highly abstract mathematical notions, the likes
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of which physicists had not used before. Even special relativity, the most intuitive of
the three theories, uses four-dimensional geometry and a notion of “distance” that takes
both positive and negative values. Things only got worse when, in the 1920s, Heisenberg
proposed that the new quantum theory make use of non-commutative algebras that had
no intuitive connection whatsoever to things happening in the physical world.

The scientists of the early twentieth century were decidedly philosophical in outlook.
Indeed, reading the reflections of the young Einstein or Bohr, one realizes that the
distinction between ‘“scientist” and “philosopher” had not yet been drawn as sharply
as it is today. Nonetheless, despite their philosophical proclivities, Einstein, Bohr, and
the other scientific greats were not philosophical system builders, if only because they
were too busy publicizing their theories and then working for world peace. Thus, the job
of “making sense of how science works” was left to some people who we now consider
to be philosophers of science.

If we were to call anybody the first “philosopher of science” in the modern sense
of the term, then it should probably be Moritz Schlick (1882—-1936). Schlick earned
his PhD in physics at Berlin under the supervision of Max Planck and thereafter began
studying philosophy. During the 1910s, Schlick became one of the first philosophical
interpreters of Einstein’s new theories, and in doing so, he developed a distinctive view
in opposition to Marburg neo-Kantianism. In 1922, Schlick was appointed chair of
Naturphilosophie in Vienna, a post that had earlier been held by Boltzmann and then
by Mach.

When Schlick formulated his epistemological theories, he did so in a conscious
attempt to accommodate the newest discoveries in mathematics and physics. With
particular reference to mathematical knowledge, Schlick followed nineteenth-century
mathematicians — most notably Pasch and Hilbert — in saying that mathematical claims
are true by definition and that the words that occur in the axioms are thereby implicitly
defined. In short, those words have no meaning beyond that which accrues to them by
their role in the axioms.

While Schlick was planting the roots of philosophy of science in Vienna, the young
Hans Reichenbach (1891-1953) had found a way to combine the study of philosophy,
physics, and mathematics by moving around between Berlin, Gottingen, and Munich —
where he studied philosophy with Cassirer, physics with Einstein, Planck, and Sommer-
feld; and mathematics with Hilbert and Noether. He struggled at first to find a suitable
academic post, but eventually Reichenbach was appointed at Berlin in 1926. It was in
Berlin that Reichenbach took on a student named Carl Hempel (1905-1997), who would
later bring this new philosophical approach to the elite universities in the United States.
Hempel’s students include several of the major players in twentieth-century philosophy
of science, such as Adolf Griinbaum, John Earman, and Larry Sklar. Reichenbach him-
self eventually relocated to UCLA, where he had two additional students of no little
renown: Wesley Salmon and Hilary Putnam.

However, back in the 1920s, shortly before he took the post at Berlin, Reichenbach
had another auspicious meeting at a philosophy conference in Erlangen. Here he met a
young man named Rudolf Carnap who, like Reichenbach, found himself poised at the
intersection of philosophy, physics, and mathematics. Reichenbach introduced Carnap
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to his friend Schlick, the latter of whom took an eager interest in Carnap’s ambition to
develop a “scientific philosophy.” A couple of short years later, Carnap was appointed
assistant professor of philosophy in Vienna — and so began the marriage between math-
ematical logic and philosophy of science.

Carnap

Having been a student of Frege’s in Jena, Rudolf Carnap (1891-1970) was an early
adopter of the new logical methods. He set to work immediately trying to employ these
methods in the service of a new style of philosophical inquiry. His first major work — Der
Logische Aufbau der Welt (1928) — attempted the ultra-ambitious project of construct-
ing all scientific concepts out of primitive (fundamental) concepts. What is especially
notable for our purposes was the notion of construction that Carnap employed, for it
was a nearby relative to the notion of logical construction that Russell had employed,
and which descends from the mathematician’s idea that one kind of mathematical object
(e.g., real numbers) can be constructed from another kind of mathematical object (e.g.,
natural numbers). What’s also interesting is that Carnap takes over the idea of explica-
tion, which arose in mathematical contexts — e.g., when one says that a function f is
“continuous” just in case for each € > 0, there is a 6 > 0 such that ...

When assessing philosophical developments such as these, which are so closely tied
to developments in the exact sciences, we should keep in mind that ideas that are now
clear to us might have been quite opaque to our philosophical forebears. For example,
these days we know quite clearly what it means to say that a theory 7 is complete. But to
someone like Carnap in the 1920s, the notion of completeness was vague and hazy, and
he struggled to integrate it into his philosophical thoughts. We should keep this point in
mind as we look toward the next stage of Carnap’s development, where he attempted a
purely “syntactic” analysis of the concepts of science.

In the late 1920s, the student Kurt Godel (1906-1978) joined in the discussions of
the Vienna circle, and Carnap later credited Godel’s influence for turning his interest to
questions about the language of science. Godel gave the first proof of the completeness
of the predicate calculus in his doctoral dissertation (1929), and two years later, he
obtained his famous incompleteness theorem, which shows that there is some truth of
arithmetic that cannot be derived from the first-order Peano axioms.

In proving incompleteness, Godel’s technique was “metamathematical” — i.e., he
employed a theory M about the first-order theory 7 of arithmetic. Moreover, this
metatheory M employed purely syntactic concepts — e.g., the length of a string of
symbols, or the number of left parentheses in a string, or being the last formula in a
valid proof that begins from the axioms of arithmetic. This sort of approach proved to
be fascinating for Carnap, in particular, because it transformed questions that seemed
hopelessly vague and “philosophical” into questions that were tractable — and indeed
tractable by means of the very methods that scientists themselves employed. In short,
Godel’s approach indicated the possibility of an exact science of the exact sciences.

And yet, Godel’s inquiry was restricted to one little corner of the exact sciences:
arithmetic. Carnap’s ambitions went far beyond elementary mathematics; he aspired to
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apply these new methods to the entire range of scientific theories, and especially the new
theories of physics. Nonetheless, Carnap quickly realized that he faced additional prob-
lems beyond those faced by the metamathematician, for scientific theories — unlike their
mathematical cousins — purport to say something contingently true —i.e., something that
could have been otherwise. Hence, the logical approach to philosophy of science isn’t
finished when one has analyzed a theory 7 qua mathematical object; one must also say
something about how T latches on to empirical reality.

Carnap’s first attempts in this direction were a bit clumsy, as he himself recognized.
In the 1920s and 1930s, philosophers of science were just learning the basics of formal
logic. It would take another forty years until “model theory” was a well-established
discipline, and the development of mathematical logic continues today (as we hope to
make clear in this book). However, when mathematical logic was still in its infancy,
philosophers often tried the “most obvious” solution to their problems — not realizing
that it couldn’t stand up to scrutiny. Consider, for example, Carnap’s attempt to specify
the empirical content of a theory T. Carnap proposes that the vocabulary ¥ in which
a theory 7T is formulated must include an empirical subvocabulary O C %, in which
case the empirical content of 7' can be identified with the set 7|p of consequences
of T restricted to the vocabulary O. Similarly, in attempting to cash out the notion
of “reduction” of one theory to another, Carnap initially said that the concepts of the
reduced theory needed to be explicitly defined in terms of the concepts of the reducing
theory — not realizing that he was thereby committing to a far more narrow notion of
reduction than was being used in the sciences.

In Carnap’s various works, however, we do find the beginnings of an approach that
is still relevant today. Carnap takes a “language” and a “theory” to be objects of his
inquiries, and he notes explicitly that there are choices to be made along the way. So, for
example, the classical mathematician chooses a certain language and then adopts certain
transformation rules. In contrast, the intuitionistic mathematician chooses a different
language and adopts different transformation rules. Thus, Carnap allows himself to
ascend semantically — to look at scientific theories from the outside, as it were. From this
vantage point, he is no longer asking the “internal questions” that the theorist herself is
asking. He is not asking, for example, whether there is a greatest prime number. Instead,
the philosopher of science is raising “external questions” — i.e., questions about the
theory T, and especially those questions that have precise syntactic formulations. For
example, Carnap proposes that the notion of a sentence’s being “analytic relative to 7"
is an external notion that we metatheorists use to describe the structure of 7.

The twentieth-century concern with analytic truth didn’t arise in the seminar rooms
of philosophy departments — or at least not in philosophy departments like the ones
of today. In fact, this concern began rather with nineteenth-century geometers, faced
with two parallel developments: (1) the discovery of non-Euclidean geometries, and
(2) the need to raise the level of rigor in mathematical arguments. Together, these two
developments led mathematical language to be disconnected from the physical world.
In other words, one key outcome of the development of modern mathematics was the
de-interpretation of mathematical terms such as “number” or “line.” These terms were
replaced by symbols that bore no intuitive connection to external reality.
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It was this de-interpretation of mathematical terms that gave rise to the idea that
analytic truth is truth by postulation, the very idea that was so troubling to Russell, and
then to Quine. But in the middle of the nineteenth century, the move that Russell called
“theft” enabled mathematicians to proceed with their investigations in absence of the
fear that they lacked insight into the meanings of words such as “line” or “continuous
function.” In their view, it didn’t matter what words you used, so long as you clearly
explained the rules that governed their use. Accordingly, for leading mathematicians
such as Hilbert, mathematical terms such as “line” mean nothing more nor less than
what axioms say of them, and it’s simply impossible to write down false mathematical
postulates. There is no external standard against which to measure the truth of these
postulates.

It’s against this backdrop that Carnap developed his notion of analytic truth in
a framework; and that Quine later developed his powerful critique of the analytic—
synthetic distinction. However, Carnap and Quine were men of their time, and their
thoughts operated at the level of abstraction that science had reached in the 1930s.
The notion of logical metatheory was still in its infancy, and it had hardly dawned on
logicians that “frameworks” or “theories” could themselves be treated as objects of
investigation.

Quine

If one was a philosophy student in the late twentieth century, then one learned that
Quine “demolished” logical positivism. In fact, the errors of positivism were used as
classroom lessons in how not to commit the most obvious philosophical blunders. How
silly to state a view that, if true, entails that one cannot justifiably believe it!

During his years as an undergraduate student at Oberlin, Willard van Orman Quine
(1908-2000) had become entranced with Russell’s mathematical logic. After getting his
PhD from Harvard in 1932, Quine made a beeline for Vienna just at the time that Carnap
was setting his “logic of science” program into motion. Quine quickly became Carnap’s
strongest critic. As the story is often told, Quine was single-handedly responsible for
the demise of Carnap’s program, and of logical positivism more generally.

Of course, Quine was massively influential in twentieth-century philosophy — not only
for the views he held, but also via the methods he used for arriving at those views. In
short, the Quinean methodology looks something like this:

1. One cites some theorem ¢ in logical metatheory.
2. One argues that ¢ has certain philosophical consequences, e.g., makes a certain
view untenable.

Several of Quine’s arguments follow this pattern, even if he doesn’t always explicitly
mention the relevant theorem from logical metatheory. One case where he is explicit
is in his 1940 paper with Nelson Goodman, where he “proves” that every synthetic
truth can be converted to an analytic truth. Whatever one may think of Quine’s
later arguments against analyticity, there is no doubt, historically speaking, that this
metatheoretical result played a role in Quine’s arriving at the conclusion that there is no
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analytic—synthetic distinction. And it would only be reasonable to think that our stance
on the analytic—synthetic distinction should be responsive to what this mathematical
result can be supposed to show.

As the story is typically told, Quine’s “Two Dogmas of Empiricism” dealt the death
blow to logical positivism. However, Carnap presented Quine with a moving target,
as his views continued to develop. In “Empiricism, Semantics, and Ontology” (1950),
Carnap further developed the notion of a framework, which bears striking resemblances
both to the notion of a scientific theory and, hence, to the notion of a theory 7 in first-
order logic. Here Carnap distinguishes two types of questions — the questions that are
internal to the framework and the questions that are external to the framework. The
internal questions are those that can be posed in the language of the framework and
for which the framework can (in theory) provide an answer. In contrast, the external
questions are those that we ask about a framework.

Carnap’s abstract idea can be illustrated by simple examples from first-order logic. If
we write down a vocabulary ¥ for a first-order language, and a theory 7 in this vocabu-
lary, then a typical internal question might be something like, “Does anything satisfy the
predicate P(x)?” In contrast, a typical external question might be, “How many predicate
symbols are there in X ?” Thus, the internal—external distinction corresponds roughly to
the older distinction between object language and metalanguage that frames Carnap’s
discussion in Logische Syntax der Sprache (1934).

The philosophical point of the internal-external distinction was supposed to be that
one’s answers to external questions are not held to the same standards as one’s answers
to internal questions. A framework includes rules, and an internal question should be
answered in accordance with these rules. So, to take one of Carnap’s favorite exam-
ples, “Are there numbers?” can naturally construed as an external question, since no
mathematician is actively investigating that question. This question is not up for grabs
in mathematical science — instead, it’s a presupposition of mathematical science. In
contrast, “Is there a greatest prime number?” is internal to mathematical practice; i.e., it
is a question to which mathematics aspires to give an answer.

Surely most of us can grasp the intuition that Carnap is trying to develop here. The
external questions must be answered in order to set up the game of science; the internal
questions are answered in the process of playing the game of science. But Carnap wants
to push this idea beyond the intuitive level — he wants to make it a cornerstone of his
theory of knowledge. Thus, Carnap says that we may single out a certain special class
of predicates — the so-called Allwdorter — to label a domain of inquiry. For example,
the number theorist uses the word “number” to pick out her domain of inquiry — she
doesn’t investigate whether something falls under the predicate “x is a number.” In
contrast, a number theorist might investigate whether there are numbers x, y, z such that
x3 + y* = z3; and she simply doesn’t consider whether some other things, which are
not themselves numbers, satisfy this relation.

Quine (1951a, 1960) takes up the attack against Carnap’s internal-external distinc-
tion. While Quine’s attack has several distinct maneuvers, his invocation of hard log-
ical facts typically goes unquestioned. In particular, Quine appeals to the supposedly
hard logical fact that every theory in a language that has several distinct quantifiers
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(i.e., many-sorted logic) is equivalent to a theory in a language with a single unrestricted
quantifier.

It is evident that the question whether there are numbers will be a category question only with
respect to languages which appropriate a separate style of variables for the exclusive purpose of
referring to numbers. If our language refers to numbers through variables that also take classes
other than numbers as values, then the question whether there are numbers becomes a subclass
question ... Even the question whether there are classes, or whether there are physical objects
becomes a subclass question if our language uses a single style of variables to range over both
sorts of entities. Whether the statement that there are physical objects and the statement that
there are black swans should be put on the same side of the dichotomy, or on opposite sides,
comes to depend upon the rather trivial consideration of whether we use one style of variables
or two for physical objects and classes. (Quine, 1976, p. 208)

Thus, suggests Quine, there is a metatheoretical result — that a many-sorted theory
is equivalent to a single-sorted theory — that destroys Carnap’s attempt to distinguish
between Allworter and other predicates in our theories.

We won’t weigh in on this issue here, in our introduction. It would be premature to
do so, because the entire point of this book is to lay out the mathematical facts in a clear
fashion so that the reader can judge the philosophical claims for herself.

In “Two Dogmas of Empiricism,” Quine argues that it makes no sense to talk about
a statement’s admitting of confirming or infirming (i.e., disconfirming) instances, at
least when taken in isolation. Just a decade later, Hilary Putnam, in his paper “What
Theories Are Not” (Putnam, 1962) applied Quine’s idea to entire scientific theories. Put-
nam, student of the ur-positivist Reichenbach, now turns the positivists’ primary weapon
against them, to undercut the very distinctions that were so central to their program. In
this case, Putnam argues that the set 7’| o of “observation sentences” does not accurately
represent a theory 7’s empirical content. Indeed, he argued that a scientific theory can-
not properly be said to have empirical content and, hence, that the warrant for believing
it cannot flow from the bottom (the empirical part) to the top (the theoretical part). The
move here is paradigmatic Putnam: a little bit of mathematical logic deftly invoked to
draw a radical philosophical conclusion. This isn’t the last time that we will see Putnam
wield mathematical logic in the service of a far-reaching philosophical claim.

The Semantic Turn

In the early 1930s, the Vienna circle made contact with the group of logicians working
in Warsaw, and in particular with Alfred Tarski (1901-1983). As far as twentieth-
century analytic philosophy is concerned, Tarski’s greatest influence has been through
his bequest of logical semantics, along with his explications of the notions of structure
and truth in a structure. Indeed, in the second half of the twentieth century, analytic
philosophy has been deeply intertwined with logical semantics, and ideas from model
theory have played a central role in debates in metaphysics, epistemology, philosophy
of science, and philosophy of mathematics.
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The promise of a purely syntactic metatheory for mathematics fell into question
already in the 1930s when Kurt Godel proved the incompleteness of Peano arithmetic.
At the time, a new generation of logicians realized that not all interesting questions about
theories could be answered merely by looking at theories “in themselves”, and without
relation to other mathematical objects. Instead, they claimed, the interesting questions
about theories include questions about how they might relate to antecedently understood
mathematical objects, such as the universe of sets. Thus was born the discipline of
logical semantics. The arrival of this new approach to metatheory was heralded by
Alfred Tarski’s famous definitions of “truth in a structure” and “model of a theory.”
Thus, after Tarski, to understand a theory 7', we have more than the theory qua syntactic
object, we also have a veritable universe Mod(7") of models of T'.

Bas van Fraassen was one of the earliest adopters of logical semantics as a tool for
philosophy of science, and he effectively marshaled it in developing an alternative to
the dominant outlook of scientific realism. Van Fraassen ceded Putnam’s argument that
the empirical content of a theory cannot be isolated syntactically. And then, in good
philosophical fashion, he transformed Putnam’s modus ponens into a modus tollens:
the problem is not with empirical content, per se, but with the attempt to explicate is
syntactically. Indeed, van Fraassen claimed that one needs the tools of logical semantics
in order to make sense of the notion of empirical content; and equipped with this new
explication of empirical content, empiricism can be defended against scientific realism.
Thus, both the joust and the parry were carried on within an explicitly metalogical
framework.

Since the 1970s, philosophical discussions of science have been profoundly influ-
enced by this little debate about the place of syntax and semantics. Prior to the
criticisms — by Putnam, van Fraassen, et al. — of the “syntactic view of theories”
philosophical discussions of science frequently drew upon new results in mathematical
logic. As was pointed out by van Fraassen particularly, these discussions frequently
degenerated, as philosophers found themselves hung up on seemingly trivial questions,
e.g., whether the observable consequences of a recursively axiomatized theory are also
recursively axiomatizable. Part of the shift from syntactic to semantic methods was
supposed to be a shift toward a more faithful construal of science in practice. In other
words, philosophers were supposed to start asking the questions that arise in the practice
of science, rather than the questions that were suggested by an obsessive attachment to
mathematical logic.

The move away from logical syntax has had some healthy consequences in terms of
philosophers engaging more closely with actual scientific theories. It is probably not a
coincidence that since the fall of the syntactic view of theories, philosophers of science
have turned their attention to specific theories in physics, biology, chemistry, etc. As
was correctly pointed out by van Fraassen, Suppes, and others, scientists themselves
don’t demand first-order axiomatizations of these theories — and so it would do violence
to those theories to try to encode them in first-order logic. Thus, the demise of the
syntactic view allowed philosophers to freely draw upon the resources of set-theoretic
structures, such as topological spaces, Riemannian manifolds, Hilbert spaces,
C*-algebras, etc.
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Nonetheless, the results of the semantic turn have not been uniformly positive. For
one, philosophy of science has seen a decline in standards of rigor, with the unfortu-
nate consequence that debating parties more often than not talk past each other. For
example, two philosophers of science might take up a debate about whether isomorphic
models represent the same or different possibilities. However, these two philosophers
of science may not have a common notion of “model” or of “isomorphism.” In fact,
many philosophers of science couldn’t even tell you a precise formal explication of the
word “isomorphism” — even though they rely on the notion in many of their arguments.
Instead, their arguments rely on some vague sense that isomorphisms preserve structure,
and an even more vague sense of what structure is.

In this book, we’ll see many cases in point, where a technical term from science
(physics, math, or logic) has made its way into philosophical discussion but has then
lost touch with its technical moorings. The result is almost always that philosophers add
to the stock of confusion rather than reducing it. How unfortunate it is that philosophy of
science has fallen into this state, given the role we could play as prophets of clarity and
logical rigor. One notable instance where philosophers of science could help increase
clarity is the notion of theoretical equivalence. Scientists, and especially physicists,
frequently employ the notion of two theories being equivalent. Their judgments about
equivalence are not merely important for their personal attitudes toward their theories,
but also for determining their actions — e.g., will they search for a crucial experiment
to determine whether T or 7> is true? For example, students of classical mechanics are
frequently told that the Lagrangian and Hamiltonian frameworks are equivalent, and on
that basis, they are discouraged from trying to choose between them.

Now, it’s not that philosophers don’t talk about such issues. However, in my expe-
rience, philosophers tend to bring to bear terminology that is alien to science, and
which sheds no further light on the problems. For example, if an analytic philosopher is
asked, “when do two sentences ¢ and { mean the same thing?” then he is likely to say
something like, “if they pick out the same proposition.” Here the word “proposition”
is alien to the physicist; and what’s more, it doesn’t help to solve real-life problems of
synonymy. Similarly, if an analytic philosopher is asked, “when do two theories 77 and
T» say the same thing?” then he might say something like, “if they are true in the same
possible worlds.” This answer may conjure a picture in the philosopher’s head, but it
won’t conjure any such picture in a physicist’s head — and even if it did, it wouldn’t
help decide controversial cases. We want to know whether Lagrangian mechanics is
equivalent to Hamiltonian mechanics, and whether Heisenberg’s matrix mechanics is
equivalent to Schrodinger’s wave mechanics. The problem here is that space of possible
worlds (if it exists) cannot be surveyed easily, and the task of comparing the subset
of worlds in which Tj is true with the subset of worlds in which 75 is true is hardly
tractible. Thus, the analytic philosopher’s talk about “being true in the same possible
worlds” doesn’t amount to an explication of the concept of equivalence. An explication,
in the Carnapian sense, should supply clear guidelines for how to use a concept.

Now, don’t get me wrong. I am not calling for a Quinean ban on propositions, possible
worlds, or any of the other concepts that analytic philosophers have found so interesting.
I only want to point out that these concepts are descendants, or cousins, of similar
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concepts that are used in the exact sciences. Thus, it’s important that analytic philoso-
phers — to the extent that they want to understand and/or clarify science — learn to tie
their words back down into their scientific context. For example, philosophers’ possible
worlds are the descendant of the logician’s “models of a theory,” the mathematician’s
“solutions of a differential equation,” and the physicist’s “points in state space.” Thus,
it’s fine to talk about possible worlds, but it would be advisable to align our usage of the
concept with the way it’s used in the sciences.

As we saw before, Carnap had self-imposed the constraint that a philosophical expli-
cation of a concept must be syntactic. So, for example, to talk about “observation
sentences,” one must construct a corresponding predicate in the language of syntactic
metalogic — a language whose primitive concepts are things like “predicate symbol”
and “binary connective.” Carnap took a swing at defining such predicates, and Quine,
Putnam, and friends found his explications to be inadequate. There are many directions
that one could go from here — and one of these directions remains largely unexplored.
First, one can do as Quine and Putnam themselves did: stick with logical syntax and
change one’s philosophical views. Second, one can do as van Fraassen did: move to log-
ical semantics and stick with Carnap’s philosophical views. (To be fair, van Fraassen’s
philosophical views are very different than Carnap’s — I only mean to indicate that there
are certain central respects in which van Fraassen’s philosophical views are closer to
Carnap’s than to Quine’s.) The third option is to say perhaps logical syntax had not yet
reached a fully mature stage in 1950, and perhaps new developments will make it more
feasible to carry out syntactic explications of philosophical concepts. That third option
is one of the objectives of this book — i.e. to raise syntactic analysis to a higher level of
nuance and sophistication.

Model Theoretic Madness

By the 1970s, scientific realism was firmly entrenched as the dominant view in phi-
losophy of science. Most the main players in the field — Boyd, Churchland, Kitcher,
Lewis, Salmon, Sellars, etc. — had taken up the realist cause. Then, with a radical about-
face, Putnam again took up the tools of mathematical logic, this time to argue for the
incoherence of realism. In his famous “model-theoretic argument,” Putnam argued that
logical semantics — in particular, the Lowenheim-Skglem theorem — implies that any
consistent theory is true. In effect, then, Putnam proposed a return to a more liberal
account of theoretical equivalence, indeed, something even more liberal than the logical
positivists’ notion of empirical equivalence. Indeed, in the most plausible interpretation
of Putnam’s conclusion, it entails that any two consistent theories are equivalent to
each other.

Whatever you might think of Putnam’s radical claim, there is no doubt that it stimu-
lated some interesting responses. In particular, Putnam’s claim prompted the arch-realist
David Lewis to clarify the role that natural properties play in his metaphysical system.
According to Lewis, the defect in Putnam’s argument is the assumption that a predicate
P can be assigned to any subset of objects in the actual world. This assumption is
mistaken, says Lewis, because not every random collection of things corresponds to
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some natural class, and we should only consider interpretations in which predicates that
occur in T are assigned to natural classes of objects in the actual world. Even if T is
consistent, there may be no such interpretation relative to which T is actually true.

There are mixed views on whether Lewis’ response to Putnam is effective. However,
for our purposes, the important point is that the upshot of Lewis’ response would be
to move in the direction of a more conservative account of theoretical equivalence. And
now the question is whether the notion of theoretical equivalence that Lewis is proposing
goes too far in the other direction. On one interpretation of Lewis, his claim is that two
theories T and T’ are equivalent only if they share the same “primitive notions.” If we
apply that claim literally to first-order theories, then we might think that theories 7" and
T’ are equivalent only if they are written with the same symbols. However, this condition
wouldn’t even allow notationally variant theories to be equivalent.

While Lewis was articulating the realist stance, Putnam was digging up more argu-
ments for a liberal and inclusive criterion of theoretical equivalence. Here he drew on his
extensive mathematical knowledge to find examples of theories that mathematicians call
equivalent, but which metaphysical realists would call inequivalent. One of Putnam’s
favorite examples here was axiomatic Euclidean geometry, which some mathematicians
formulate with points as primitives, and other mathematicians formulate with lines as
primitives — but they never argue that one formulation is more correct than the other.
Thus, Putnam challenges the scientific credentials of realism by giving examples of
theories that scientists declare to be equivalent, but which metaphysical realists would
declare to be inequivalent.

At the time when Putnam put forward these examples, analytic philosophy was unfor-
tunately growing more distant from its logical and mathematical origins. What this
meant, in practice, is that while Putnam’s examples were extensively discussed, the
discussion never reached a high level of logical precision. For example, nobody clearly
explained how the word “equivalence” was being used.

These exciting, and yet imprecise, discussions continued with reference to a second
example that Putnam had given. In this second example, Putnam asks how many things
are on the following line:

k* ok

There are two schools of metaphysicians who give different answers to this question.
According to the mereological nihilists, there are exactly two things on the line, and
both are asterisks. According to the mereological universalists, there are three things on
the line: two individual asterisks, and one composite of two asterisks. Putnam, however,
declares that the debate between these two schools of metaphysicians is a “purely verbal
dispute”, and neither party is more correct than the other.

Again, what’s important for us here it that Putnam’s claim amounts to a proposal
to liberalize the standards of theoretical equivalence. By engaging in this dispute,
metaphysicians have implicitly adopted a rather conservative standard of equivalence —
where it matters whether you think that a pair of asterisks is something more beyond the
individuals that constitute it. Putnam urges us to adopt a more liberal criterion of
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theoretical equivalence, according to which it simply doesn’t matter whether we say
that the pair “really exists”, or whether we don’t.

From Reduction to Supervenience

The logical positivists — Schlick, Carnap, Neurath, etc. — aspired to uphold the highest
standards of scientific rationality. Most of them believed that commitment to scientific
rationality demands a commitment to physicalism, i.e. the thesis that physical science is
the final arbiter on claims of ontology. In short, they said that we ought to believe that
something exists only if physics licenses that belief.

Of course, we don’t much mind rejecting claims about angels, demons, witches, and
fairies. But what are we supposed to do with the sorts of statements that people make
in the ordinary course of life — about each other, and about themselves? For example, if
I say, “Sgren is in pain,” then I seem to be committed to the existence of some object
denoted by “Sgren”, that has some property “being in pain.” How can physical science
license such a claim, when it doesn’t speak of an object Sgren or the property of being
in pain?

The general thesis of physicalism, and the particular thesis that a person is his body,
were not 20th century novelties. However, it was a 20th century novelty to attempt to
explicate these theses using the tools of symbolic logic. To successfully explicate this
concept would transform it from a vague ideological stance to a sharp scientific hypoth-
esis. (There is no suggestion here that the hypothesis would be empirically verifiable —
merely that it would be clear enough to be vulnerable to counterargument.)

For example, suppose that r(x) denotes the property of being in pain. Then it would
be natural for the physicalist to propose either (1) that statements using r(x) are actually
erroneous, or (2) that there is some predicate ¢(x) in the language of fundamental
physics such that Vx(r(x) <> ¢(x)). In other words, if statements using r(x) are legiti-
mate, then r(x) must actually pick out some underlying physical property ¢(x).

The physicalist will want to clarify what he means by saying that Vx(r(x) < ¢(x)),
for even a Cartesian dualist could grant that this sentence is contingently true. That is,
a Cartesian dualist might say that there is a physical description ¢(x) which happens,
as a matter of contingent fact, to pick out exactly those things that are in pain. The
reductionist, in contrast, wants to say more. He wants to say that there is a more thick
connection between pain experiences and happenings in the physical world. At the very
least, a reductionist would say that

T = r(x) < ¢x),

where T is our most fundamental theory of the physical world. That is, to the extent that
ordinary language ascriptions are correct, they can be translated into true statements of
fundamental physics.

This sort of linguistic reductionism seems to have been the favored view among early-
twentieth-century analytic philosophers — or, at least among the more scientifically
inclined of them. Certainly, reductionism had vocal proponents, such as U.T. Place
and Herbert Feigl. Nonetheless, by the third quarter of the twentieth century, this view



14

Introduction

had fallen out of fashion. In fact, some of the leading lights in analytic philosophy —
such as Putnam and Fodor — had arguments which were taken to demonstrate the utter
implausibility of the reductionist point of view. Nonetheless, what had not fallen out of
favor among analytic philosophers was the naturalist stance that had found its precise
explication in the reductionist thesis. Thus, analytic philosophers found themselves on
the hunt for a new, more plausible way to express their naturalistic sentiments.

There was another movement afoot in analytic philosophy — a movement away from
the formal mode, back toward the material mode, i.e., from a syntactic point of view,
to a semantic point of view. What this movement entailed in practice was a shift from
syntactic explications of concepts to semantic explications of concepts. Thus, it is only
natural that having discarded the syntactic explication of mind—body reduction, analytic
philosophers would cast about for a semantic explication of the idea. Only, in this case,
the very word “reduction” had so many negative associations that a new word was
needed. To this end, analytic philosophers co-opted the word “supervenience.” Thus
Donald Davidson:

Mental characteristics are in some sense dependent, or supervenient, on physical characteristics.
Such supervenience might be taken to mean that there cannot be two events alike in all physical
respects but differing in some mental respect, or that an object cannot alter in some mental
respect without altering in some physical respect. (Davidson, 1970)

Davidson’s prose definition of supervenience is so clear that it is begging for formaliza-
tion. Indeed, as we’ll later see, when the notion of supervenience is formalized, then it
is none other than the model theorist’s notion of implicit definability.

It must have seemed to the 1970s philosophers that significant progress had been
made in moving from the thin syntactic concept of reduction to the thick semantic
concept of supervenience. Indeed, by the 1980s, the concept of supervenience had begun
to play a major role in several parts of analytic philosophy. However, with the benefit
of hindsight, we ought to be suspicious if we are told that an implausible philosophical
position can be converted into a plausible one merely by shifting from a syntactic to
a semantic explication of the relevant notions. In this case, there is a worry that the
concept of supervenience is nothing but a reformulation, in semantic terms, of the notion
of reducibility. As we will discuss in Section 6.7, if supervenience is cashed out as
the notion of implicit definability, then Beth’s theorem shows that supervenience is
equivalent to reducibility.

Why did philosophers decide that mind-brain reductionism was implausible? We
won’t stop here to review the arguments, as interesting as they are, since that has been
done in many other places (see Bickle, 2013). We are interested rather in claims (see,
e.g., Bickle (1998)) that the arguments against reduction are only effective against syn-
tactic accounts thereof — and that semantics permits a superior account of reduction that
is immune to these objections.

Throughout this book, we argue for a fundamental duality between logical syntax
and semantics. To the extent that this duality holds, it is mistaken to think that semantic
accounts of concepts are more intrinsic, or that they allow us to transcend the human
reliance on representations, or that they provide a bridge to the “world” side of the
mind-world divide.
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To the contrary, logical semantics is ... wait for it ... just more mathematics. As
such, while semantics can be used to represent things in the world, including people
and their practice of making claims about the world, its means of representation are no
different than those of any other part of mathematics. Hence, every problem and puzzle
and confusion that arises in logical syntax — most notably, the problem of language
dependence — will rear its ugly head again in logical semantics. Thus, for example, if
scientific antirealism falls apart when examined under a syntactic microscope, then it
will also fall apart when examined under a semantic microscope. Similarly, if mind-
body reductionism isn’t plausible when explicated syntactically, then it’s not going to
help to explicate it semantically.

What I am saying here should not be taken as a blanket criticism of attempts to
explicate concepts semantically. In fact, I’ll be the first to grant that model theory is
not only a beautiful mathematical theory, but is also particularly useful for philosoph-
ical thinking. However, we should be suspicious of any claims that a philosophical
thesis (e.g. physicalism, antirealism, etc.) is untenable when explicated syntactically,
but becomes tenable when explicated semantically. We should also be suspicious of
any claims that semantic methods are any less prone to creating pseudoproblems than
syntactic methods.

Realism and Equivalence

As we have seen, many of these debates in twentieth-century philosophy ultimately
turn on the question of how one theory is related to another. For example, the debate
about the mind-body relation can be framed as a question about how our folk theory
of mind is related to the theories of the brain sciences, and ultimately to the theories
of physics.

If we step up a level of abstraction, then even the most general divisions in 20th
century philosophy have to do with views on the relations of theories. Among the logical
positivists, the predominant view was a sort of antirealism, certainly about metaphysical
claims, but also about the theoretical claims of science. Not surprisingly, the preferred
view of theoretical equivalence among the logical positivists was empirical equivalence:
two theories are equivalent just in case they make the same predictions. That notion
of equivalence is quite liberal in that it equates theories that intuitively seem to be
inequivalent.

If we leap forward to the end of the twentieth century, then the outlook had changed
radically. Here we find analytic metaphysicians engaged in debates about mereolog-
ical nihilism versus universalism, or about presentism versus eternalism. We also find
philosophers of physics engaged in debates about Bohmian mechanics versus Everettian
interpretations of quantum mechanics, or about substantivalism versus relationalism
about spacetime. The interesting point here is that there obviously had been a radical
change in the regnant standard of theoretical equivalence in the philosophical com-
munity. Only seventy years prior, these debates would have been considered pseudo-
debates, for they attempt to choose between theories that are empirically equivalent. In
short, the philosophical community as a whole had shifted from a more liberal to a more
conservative standard of theoretical equivalence.
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There have been, however, various defections from the consensus view on theoretical
equivalence. The most notable example here is the Hilary Putnam of the 1970s. At this
time, almost all of Putnam’s efforts were devoted to liberalizing standards of theoretical
equivalence. We can see this not only in his model-theoretic argument, but also in the
numerous examples that he gave of theories with “different ontologies,” but which he
claimed are equivalent. Putnam pointed to different formulations of Euclidean geometry,
and also the famous example of “Carnap and the mereologist,” which has since become
a key example of the quantifier variance debate. We discuss the geometry example in
Section 7.4, and the mereology example in Section 5.4.

One benefit of the formal methods developed in this book is a sort of taxonomy
of views in twentieth-century philosophy. The realist tendency is characterized by the
adoption of more conservative standards of theoretical equivalence; and the antirealist
tendency is characterized by the adoption of more liberal standards of theoretical equiv-
alence. Accordingly, we shouldn’t think of “realism versus antirealism” on the model
of American politics, with its binary division between Republicans and Democrats.
Indeed, philosophical opinions on the realism—antirealism question lie on a continuum,
corresponding to a continuum of views on theoretical equivalence. (In fact, views on
theoretical equivalence really form a multidimensional continuum; I’'m merely using
the one-dimensional language for intuition’s sake.) Most of us will find ourselves with
a view of theoretical equivalence that is toward the middle of the extremes, and many of
the philosophical questions we consider are questions about whether to move — if ever
so slightly — in one direction or the other.

In this book, we will develop three moderate views of theoretical equivalence. The
first two views say that theories are equivalent just in case they are intertranslatable —
only they operate with slightly different notions of “translation.” The first, and more
conservative, view treats quantifier statements as an invariant, so that a good translation
must preserve them intact. (We also show that this first notion of intertranslatabil-
ity corresponds to “having a common definitional extension.” See Theorems 4.6.17
and 6.6.21.) The second, and more liberal, view allows greater freedom in translating
one language’s quantifier statements into a complex of the other language’s quantifier
statements. (We also show that this second notion of intertranslatability corresponds
to “having a common Morita extension.” See Theorems 7.5.3 and 7.5.5.) The third
view of equivalence we consider is the most liberal, and is motivated not by linguistic
considerations, but by scientific practice. In particular, scientists seem to treat theories
as equivalent if they can “do the same things with them.” We will explicate this notion
of what a scientific theory can do in terms of its “category of models.” We then suggest
that two theories are equivalent in this sense if their categories of models are equivalent
in the precise, category-theoretic sense.

Summary and Prospectus

The following seven chapters try to accomplish two things at once: to introduce some
formal techniques, and to use these techniques to gain philosophical insight. Most of
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the philosophical discussions are interspersed between technical results, but there is one
concluding chapter that summarizes the major philosophical themes. We include here a
chart of some of the philosophical issues that arise in the course of these chapters. The
left column states a technical result, the middle column states the related philosophical

issue,

and the right column gives the location (section number) where the discussion

can be found. To be fair, I don’t mean to say that the philosophers mentioned on the
right explicitly endorse the argument from the metalogical result to the philosophical
conclusion. In some cases they do; but in other cases, the philosopher seems rather to
presuppose the metalogical result.

Logic Philosophy Location
Translate into empty theory Analytic—synthetic distinction (Quine) 3.7.10
Translate into empty theory Implicit definition (Quine) 3.7.10
Eliminate sorts Ontological monism (Quine) 53
Eliminate sorts No external questions (Quine) 5.4.17
Eliminate sorts Against quantifier variance 5.4.4,5.4.16
Indivisible vocabulary Against empiricism (Putnam, Boyd) 4.4
Beth’s theorem Supervenience implies reduction 6.7
Lowenheim—-Skglem Against realism (Putnam) 8.3
Equivalent geometries Against realism (Putnam) 7.4
Ramsefication Structural realism 8.1
Ramsefication Functionalism 8.1
Notes

In this chapter, our primary objective was to show the philosopher-in-training
some of the payoffs for learning the metatheory of first-order logic: the better
she understands the logic, the better she will understand twentieth-century phi-
losophy, and the options going forward. Although we’ve tried to be reasonably
faithful to the historical record, we’ve focused on just one part of this history.
The curious reader should consult more detailed studies, such as Coffa (1993);
Friedman (1999); Hylton (2007); Soames (2014).

For Russell’s program for rebuilding philosophy on the basis of formal logic, see
Russell (1901, 1914a).

Carnap’s personal recollections can be found in Carnap and Schilpp (1963).
Frege and Russell were early critics of Hilbert’s view of implicit definition
(see, e.g., Blanchette, 2012). In contrast, Schlick (1918, 1.7) explicitly endorses
Hilbert’s view. For Carnap’s view, see Park (2012). The discussion later got
muddled up in discussions of Ramsey sentences (see, e.g., Winnie, 1967; Lewis,
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1970), which we will discuss in Chapter 8. For an extended discussion of implicit
definition and its relation to 20th century philosophical issues, see Ben-Menahem

(2006).
. For more on the 19th century backdrop to analyticity, see Coffa (1986).
. For overviews of logical methods in philosophy of science, see van Benthem

(1982); Winnie (1986); Van Fraassen (2011); Leitgeb (2011). The primary nov-
elty of the present book is our use of category-theoretic methods. We have tried
not to mention category theory more than necessary, but we use it frequently.



1.1

Invitation to Metatheory

This chapter is meant to serve as a preview, and for motivation to work through the
chapters to come. In the next chapter, we’ll move quickly into “categorical set theory” —
which isn’t all that difficult, but which is not yet well known among philosophers. For
the past fifty years or so, it has almost been mandatory for analytic philosophers to
know a little bit of set theory. However, it has most certainly not been mandatory for
philosophers to know a little bit of category theory. Indeed, most analytic philosophers
are familiar with the words “subset” and “powerset” but not the words “natural transfor-
mation” or “equivalence of categories.” Why should philosophers bother learning these
unfamiliar concepts?

The short answer is that is that category theory (unlike set theory) was designed to
explicate relations between mathematical structures. Since philosophers want to think
about relations between theories (e.g., equivalence, reducibility) and since theories can
be modeled as mathematical objects, philosophers’ aims will be facilitated by gaining
some fluency in the language of category theory. At least that’s one of the main premises
of this book. So, in this chapter, we’ll review some of the basics of the metatheory of
propositional logic. We will approach the issues from a slightly different angle than
usual, placing less emphasis on what individual theories say and more emphasis on the
relations between these theories.

To repeat, the aim of metatheory is to theorize about theories. For simplicity, let’s
use M to denote this hypothetical theory about theories. Thus, M is not the object of our
study; it is the fool we will use to study other theories and the relations between them.
In this chapter, I will begin using this tool M to talk about theories — without explicitly
telling you anything about M itself. In the next chapter, I'll give you the user’s manual
for M.

Logical Grammar

DEFINITION 1.1.1 A propositional signature X is a collection of items, which we
call propositional constants. Sometimes these propositional constants are also called
elementary sentences. (Sometimes people call them atomic sentences, but we will be
using the word “atomic” for a different concept.)

These propositional constants are assumed to have no independent meaning. Nonethe-
less, we assume a primitive notion of identity between propositional constants; the fact
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1.2

1 Invitation to Metatheory

that two propositional constants are equal or non-equal is not explained by any more
fundamental fact. This assumption is tantamount to saying that ¥ is a bare set (and it
stands in gross violation of Leibniz’s principle of the identity of indiscernibles).

ASSUMPTION 1.1.2  The logical vocabulary consists of the symbols —, A, VvV, —. We
also use two further symbols for punctuation: a left and a right parenthesis.

DEFINITION 1.1.3  Given a propositional signature X, we define the set Sent(X) of
X -sentences as follows:

1. If ¢ € X, then ¢ € Sent(X).

2. If ¢ € Sent(T), then (—¢p) € Sent(X).

3. If € Sent(X) and i € Sent(X), then (p AY) € Sent(X), (¢ V1)) € Sent(X),
and (¢ — 1) € Sent(2).

4. Nothing is in Sent(X) unless it enters via one of the previous clauses.

The symbol ¢ here is a variable that ranges over finite strings of symbols drawn from
the alphabet that includes X; the connectives —, A, vV, —; and (when necessary)
left and right parentheses “(” and “)”. We will subsequently play it fast and loose
with parentheses, omitting them when no confusion can result. In particular, we take
a negation symbol — always to have binding precedence over the binary connectives.
Note that each sentence is, by definition, a finite string of symbols and, hence, con-

tains finitely many propositional constants.
Since the set Sent(X) is defined inductively, we can prove things about it using “proof

by induction.” A proof by induction proceeds as follows:

1. Show that the property of interest, say P, holds of the elements of X.
2. Show that if P holds of ¢, then P holds of —¢.
3. Show thatif P holds of ¢ and ¢, then P holdsof ¢ A ¢, ¢ V P, and ¢ — 9.

When these three steps are complete, one may conclude that all things in Sent(X) have
property P.

DEFINITION 1.1.4 A context is essentially a finite collection of sentences. However,
we write contexts as sequences, for example @1, ..., @, is a context. But ¢1, ¢» is the
same context as (2, @1, and is the same context as ¢, Py, p2. If A and I' are contexts,
then we let A, T" denote the union of the two contexts. We also allow an empty context.

Proof Theory

We now define the relation A = ¢ of derivability that holds between contexts and
sentences. This relation is defined recursively (aka inductively), with base case ¢ - ¢
(Rule of Assumptions). Here we use a horizontal line to indicate that if - holds between
the things above the line, then F also holds for the things below the line.
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The definition of the turnstyle - is then completed by saying that I is the smallest
relation (between sets of sentences and sentences) such that

1. F is closed under the previously given clauses, and
2. If A ¢and A C A/, then A"+ ¢.

The second property here is called monotonicity.

There are a variety of ways that one can explicitly generate pairs A, ¢ such that A
¢. A method for doing such is typically called a proof system. We will not explicitly
introduce any proof system here, but we will adopt the following definitions.

DEFINITION 1.2.1 A pair A, ¢ is called a sequent or proof just in case A - ¢. A
sentence ¢ is said to be provable just in case - ¢. Here - ¢ is shorthand for ¥ - ¢.
We use T as shorthand for a sentence that is provable — for example, p — p. We could
then add as an inference rule “T introduction,” which allowed us to write A = T. It can
be proven that the resulting definition of - would be the same as the original definition.
We also sometimes use the symbol L as shorthand for —T. It might then be convenient
to restate RA as a rule that allows us to infer A = —¢ from A,¢ + L. Again, the
resulting definition of - would be the same as the original.

DISCUSSION 1.2.2 The rules we have given for I are sometimes called the classical
propositional calculus or just the propositional calculus. Calling it a “calculus” is
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meant to indicate that the rules are purely formal and don’t require any understanding
of the meaning of the symbols. If one deleted the DN rule and replaced it with Ex Falso
Quodlibet, the resulting system would be the intuitionistic propositional calculus.
However, we will not pursue that direction here.

Semantics

DEFINITION 1.3.1 An interpretation (sometimes called a valuation) of X is a func-
tion from X to the set {true, false}, i.e., an assignment of truth-values to propositional
constants. We will usually use 1 as shorthand for “true” and O as shorthand for “false.”

Clearly, an interpretation v of X extends naturally to a function v : Sent(X) — {0, 1}
by the following clauses:

v(=¢) = 1if and only if v(¢) = 0.

v(¢ A ) =1if and only if v(¢p) = 1 and v(¢) = 1.

v(¢ Vv ) = 1 if and only if either v(¢p) = 1 or v() = 1.
WP — ) =v(=¢ V).

DIscUSSION 1.3.2 The word “interpretation” is highly suggestive, but it might lead
to confusion. It is sometimes suggested that elements of Sent(X) are part of an unin-
terpreted calculus without intrinsic meaning, and that an intepretation v : ¥ — {0,1}
endows these symbols with meaning. However, to be clear, Sent(X) and {0, 1} are both
mathematical objects; neither one of them is more linguistic than the other, and neither
one of them is more “concrete” than the other.

This point becomes even more subtle in predicate logic, where we might be tempted
to think that we can interpret the quantifiers so that they range over all actually existing
things. To the contrary, the domain of a predicate logic interpretation must be a set, and
a set is something whose existence can be demonstrated by ZF set theory. Since the
existence of the world is not a consequence of ZF set theory, it follows that the world is
not a set. (Put slightly differently: a set is an abstract object, and the world is a concrete
object. Therefore, the world is not a set.)

e

DEFINITION 1.3.3 A propositional theory T consists of a signature ¥, and a set
A of sentences in X. Sometimes we will simply write T in place of A, although it
must be understood that the identity of a theory also depends on its signature. For
example, the theory consisting of a single sentence p is different depending on whether
it’s formulated in the signature ¥ = {p} or in the signature ¥’ = {p, g}.

DEFINITION 1.3.4 (Tarski truth) Given an interpretation v of ¥ and a sentence ¢ of
>, we say that ¢ is true in v just in case v(¢) = 1.

DEFINITION 1.3.5 For a set A of X sentences, we say that v is a model of A just in
case v(¢) = 1, for all ¢ in A. We say that A is consistent if A has at least one model,
and that A is inconsistent if it has no models.
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Any time we define a concept for sets of sentences (e.g., consistency), we can also
extend that concept to theories, as long as it’s understood that a theory is technically a
pair consisting of a signature and a set of sentences in that signature.

DISCUSSION 1.3.6 The use of the word “model” here has its origin in consistency
proofs for non-Euclidean geometries. In that case, one shows that certain non-Euclidean
geometries can be translated into models of Euclidean geometry. Thus, if Euclidean
geometry is consistent, then non-Euclidean geometry is also consistent. This kind of
maneuver is what we now call a proof of relative consistency.

In our case, it may not be immediately clear what sits on the “other side” of an
interpretation, because it’s certainly not Euclidean geometry. What kind of mathematical
thing are we interpreting our logical symbols into? The answer here — as will become
apparent in Chapter 3 —is either a Boolean algebra or a fragment of the universe of sets.

DEFINITION 1.3.7 Let A be a set of X sentences, and let ¢» be a X sentence. We say
that A semantically entails ¢, written A F ¢, just in case ¢ is true in all models of A.
That is, if v is a model of A, then v(¢) = 1.

EXERCISE 1.3.8 Show thatif A,¢ F ¢, then A F ¢ — 9.

EXERCISE 1.3.9 Show that A F ¢ if and only if A U {=¢} is inconsistent. Here
A U {—@} is the theory consisting of —¢ and all sentences in A.

We now state three main theorems of the metatheory of propositional logic.

THEOREM 1.3.10 (Soundness) If A - ¢, then A F ¢.

The soundness theorem can be proven by an argument directly analogous to the
substitution theorem in Section 1.4. We leave the details to the reader.

THEOREM 1.3.11 (Completeness) If A F ¢, then A = ¢.

The completeness theorem can be proven in various ways. In this book, we will give
a topological proof via the Stone duality theorem (see Chapter 3).

THEOREM 1.3.12 (Compactness) Let A be a set of sentences. If every finite subset A
of A is consistent, then A is consistent.

The compactness theorem can be proven in various ways. One way of proving it —
although not the most illuminating — is as a corollary of the completeness theorem.
Indeed, it’s not hard to show that if A = ¢, then Ar F ¢ for some finite subset Ap
of A. Thus, if A is inconsistent, then A - L, hence Ar + 1 for a finite subset Ap
of A. But then A is inconsistent.

DEFINITION 1.3.13 A theory T, consisting of axioms A in signature 3, is said to be
complete just in case A is consistent and for every sentence ¢ of X, either A F ¢ or
AF —o.
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Be careful to distinguish between the completeness of our proof system (which is
independent of any theory) and completeness of some particular theory 7. Famously,
Kurt Godel proved that the theory of Peano arithmetic is incomplete — i.e., there is a
sentence ¢ of the language of arithmetic such that neither 7 = ¢ nor T = —¢. However,
there are much simpler examples of incomplete theories. For example, if ¥ = {p,q},
then the theory with axiom F p is incomplete in X.

DEFINITION 1.3.14 Let T be a theory in X. The deductive closure of 7, written
Cn(T), is the set of ¥ sentences that is implied by 7. If T = Cn(T), then we say that T
is deductively closed.

Example 1.3.15 Let ¥ = {p},and let T = {p}. Let ¥’ = {p,q}, and let T’ = {p}.
Here we must think of 7 and T’ as different theories, even though they consist of the
same sentences — i.e., T = T’. One reason to think of these as different theories: T is
complete, but 7’ is incomplete. Another reason to think of 7 and 7"’ as distinct is that
they have different deductive closures. For example, ¢ V —¢ is in the deductive closure
of T/, butnot of 7.

The point here turns out to be philosophically more important than one might think.
Quine argued (correctly, we think) that choosing a theory is not just choosing axioms,
but axioms in a particular language. Thus, one can’t tell what theory a person accepts
merely by seeing a list of the sentences that she believes to be true. q

EXERCISE 1.3.16 Show that the theory T’ from the previous example is not complete.
EXERCISE 1.3.17 Show that Cn(Cn(T")) = Cn(T).

EXERCISE 1.3.18 Consider the signature ¥ = {p}. How many complete theories are
there in this signature? (We haven’t been completely clear on the identity conditions of
theories and, hence, on how to count theories. For this exercise, assume that theories are
deductively closed, and two theories are equal just in case they contain exactly the same
sentences.)

Translating between Theories

Philosophers constantly make claims about relations between theories — that they are
equivalent, or inequivalent or one is reducible to the other, or one is stronger than
another. What do all these claims mean? Now that we have a formal notion of a theory,
we can consider how we might want to represent relations between theories. In fact,
many of the relations that interest philosophers can be cashed out in terms of the notion
of a translation.

There are many different kinds of translations between theories. Let’s begin with
the most trivial kind of translation — a change of notation. Imagine that at Princeton,
a scientist is studying a theory 7. Now, a scientist at Harvard manages to steal a copy
of the Princeton scientist’s file, in which she has been recording all the consequences
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of T. However, in order to avoid a charge of plagiarism, the Harvard scientist runs a
“find and replace” on the file, replacing each occurence of the propositional constant p
with the propositional constant z. Otherwise, the Harvard scientist’s file is identical to
the Princeton scientist’s file.

What do you think: is the Harvard scientist’s theory the same or different from the
Princeton scientist’s theory?

Most of us would say that the Princeton and Harvard scientists have the same theory.
But it depends on what we mean by “same.” These two theories aren’t the same in the
strictest sense, since one of the theories contains the letter “p,” and the other doesn’t.
Nonetheless, in this case, we’re likely to say that the theories are the same in the sense
that they differ only in ways that are incidental to how they will be used. To borrow a
phrase from Quine, we say that these two theories are notational variants of each other,
and we assume that notational variants are equivalent.

Let’s now try to make precise this notion of “notational variants” or, more generally,
of equivalent theories. To do so, we will begin with the more general notion of a
translation from one theory into another.

DEFINITION 1.4.1 Let ¥ and ¥’ be propositional signatures. A reconstrual from X
to X’ is a function from the set X to the set Sent(X).

A reconstrual f extends naturally to a function ? : Sent(X) — Sent(X’), as follows:

1.  For pin E,?(p):i(p). B

2. For any sentence ¢, f(—¢) = —~f(¢).

3. For any sentences ¢ and 1, ?((j) oY) = ?(qb) o ?(1{)), where o stands for an
arbitrary binary connective.

When no confusion can result, we use f for f.

THEOREM 1.4.2 (Substitution) For any reconstrual f : £ — X', if ¢ = ) then
f@) = f@).

Proof Since the family of sequents is constructed inductively, we will prove this result
by induction.

(rule of assumptions) We have ¢ F ¢ by the rule of assumptions, and we also have

F(@) = f(P).

(A intro) Suppose that ¢1, P2 = Y1 A 7 is derived from ¢1 = ¢ and ¢ = ¢ by
A intro, and assume that the result holds for the latter two sequents. That is, f(¢p1) =
f@pp)and f(¢2) = f(2). Butthen f(¢1), f(Pp2) F f(iP1)A f(2) by A introduction.
And since f(P1) A f(1P2) = f(P1 A 1P2), it follows that f(P1), f(P2) F f(P1 A P2).

(— intro) Suppose that 6 -~ ¢ — 1 is derived by conditional proof from 0,¢ +
1. Now assume that the result holds for the latter sequent, i.e., f(0), f(¢) = f().
Then conditional proof yields f(0) = f(¢) — f(i). And since f(¢) — f(Y) =
f(@ — ), it follows that f(O) = f(p — ).
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(reductio) Suppose that ¢ = —1p is derived by RAA from ¢, = L, and assume that
the result holds for the latter sequent, i.e., f(¢), f(y) = f(L). By the properties of

f, f(L) = L. Thus, f(¢), f(¢) = L, and by RAA, f(¢p) = —f (). But = f () =
f(=1), and, therefore, f(¢) = f(—1)), which is what we wanted to prove.

(Vv elim) We leave this step, and the others, as an exercise for the reader. ]

DEFINITION 1.4.3 Let T be atheoryin X, let 7’ be atheory in X', and let f : & — X’
be a reconstrual. We say that f is a translation or interpretation of 7 into 7’, written
f: T — T’,justin case:

T = T'+ f(P).

Note that we have used the word “interpretation” here for a mapping from one theory
to another, whereas we previously used that word for a mapping from a theory to a
different sort of thing, viz. a set of truth values. However, there is no genuine difference
between the two notions. We will soon see that an interpretation in the latter sense is
just a special case of an interpretation in the former sense. We believe that it is a mistake
to think that there is some other (mathematically precise) notion of interpretation where
the targets are concrete (theory-independent) things.

DISCUSSION 1.4.4 Have we been too liberal by allowing translations to map ele-
mentary sentences, such as p, to complex sentences, such as ¢ A r? Could a “good”
translation render a sentence that has no internal complexity as a sentence that does
have internal complexity? Think about it.

We will momentarily propose a definition for an equivalence of theories. However,
as motivation for our definition, consider the sorts of things that can happen in trans-
lating between natural languages. If I look up the word “car” in my English—-German
dictionary, then I find the word “Auto.” But if I look up the word “Auto” in my German—
English dictionary, then I find the word “automobile.” This is as it should be — the
English words “car” and “automobile” are synonymous and are equally good transla-
tions of “Auto.” A good round-trip translation need not end where it started, but it needs
to end at something that has the same meaning as where it started.

But how are we to represent this notion of “having the same meaning”? The convicted
Quinean might want to cover his eyes now, as we propose that a theory defines its own
internal notion of sameness of meaning. (Recall what we said in the preface: that first-
order metatheory is chalk full of intensional concepts.) In particular, ¢ and 1 have the
same meaning relative to 7 justin case T = ¢ <> 1. With this notion in mind, we can
also say that two translations f : T — T’ and g : T — T’ are synonymous just in case
they agree up to synonymy in the target theory 7.

DEFINITION 1.4.5 (equality of translations) Let T and T’ be theories, and let both f
and g be translations from 7 to 7’. We write f =~ g justin case T' + f(p) <> g(p) for
each atomic sentence p in X.

With this looser notion of equality of translations, we are ready to propose a notion
of an equivalence between theories.
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DEFINITION 1.4.6 For each theory T, the identity translation 17 : T — T is given
by the identity reconstrual on L. If f : T — T'and g : T" — T are translations, we
let gf denote the translation from T to T given by (gf)(p) = g(f(p)), for each atomic
sentence p of X. Theories T and T’ are said to be homotopy equivalent, or simply
equivalent, just in case there are translations f : T — T’ and g : T" — T such that

gf ~ lT and fg ~ lT"

EXERCISE 1.4.7 Prove that if vis amodel of 7/, and f : T — T’ is a translation, then
vo f isamodel of T. Here v o f is the interpretation of X obtained by applying f first,
and then applying v.

EXERCISE 1.4.8 Prove thatif f : T — T’ is a translation, and 7"’ is consistent, then T
is consistent.



