Problem of Time as a Hamiltonian shadow of the Hole Argument: Background to Gryb–Thébault

Cambridge-LSE Bootcamp

May 26, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Hole Argument: Einstein versus Hilbert

- Key point: if ψ is diffeomorphism (originally: coordinate transformation) of space-time M then Ric(ψ*g) = ψ*Ric(g) so if g solves vacuum EE Ric(g) = 0 then so does ψ*g
- Einstein (1913): ψ nontrivial inside 4d "hole" H in M
- \Rightarrow boundary conditions outside H do not determine g within H
- Hilbert (1917): ψ nontrivial outside 4d (tubular) nbhd T of Cauchy surface Σ ⊂ T ⊂ M (initial values EE given on Σ)
- \Rightarrow initial conditions within T (i.e. on Σ) do not determine g outside T, or: Cauchy problem for EE has no unique solution
- Einstein's rendition looks unnatural compared to Hilbert's but Einstein was inspired by Mach's Principle: "stars at infinity" should determine local inertia of matter (Stachel, 2014)
- Modern understanding of Cauchy problem for EE (Hilbert ~> Darmois ~> Lichnerowicz ~> Choquet-Bruhat ~> Geroch):
 EE are simultaneously underdetermined (Hole Argument) and overdetermined (initial values are constrained)

Geometric uniqueness theorem (C-B & Geroch, 1969):

- Correct initial value formulation for EE solves issue that EE Ric(g) = 0 as PDEs for g cannot be posed on given 4d mfd M since M is typically constructed along with g, so:
- ► Initial data for EE are $(\Sigma, \tilde{g}, \tilde{k})$ where (Σ, \tilde{g}) is 3*d* Riemannian mfd equipped with extra covariant symmetric 2-tensor \tilde{k}_{ij}
- Solution of EE for such data is triple (M,g,ι), where
 (i): (M,g) is space-time whose metric g solves EE,
 (ii): map ι : Σ → M is embedding, (iii): ι*g = ğ,
 iv): k̃ is extrinsic curvature of submanifold ι(Σ) ⊂ M
- (M, g, ι) always globally hyperbolic with Cauchy surface $\iota(\Sigma)$ $(\Rightarrow M \cong \mathbb{R} \times \Sigma)$ and M is foliated as $M = \bigcup_t \Sigma_t$ with $\Sigma_t \cong \Sigma$
- Maximal solution contains any other solution (up to isometry)
- Theorem: For each smooth initial data set (Σ, ĝ, k̃) satisfying the constraints, EE have maximal solution (M, g, ι) which is unique up to isometries fixing ι(Σ) ⊂ M: in other words, some solution (M', g', ι') is maximal iff there is an isometry ψ: M → M' such that ψ*g' = g and ψ ∘ ι = ι'

Making the (maximal) solution unique

Goal is to single out solution (M, g, ι) within its equivalence class

- Covariant approach (C-B, 1952): give additional (covariant) equations for g like wave gauge $\hat{W}^{\mu} = g^{\rho\nu}(\hat{\Gamma}^{\mu}_{\rho\nu} \Gamma^{\mu}_{\rho\nu}) = 0$ that uniquely fix solution g to EE (and make these hyperbolic)
- ► Non-covariant approach: fix (spacelike) foliation $M = \cup_t \Sigma_t$
- $\Leftrightarrow \ {\sf fix} \ {\sf lapse} \ {\it N} \ {\sf and} \ {\sf shift} \ {\it \beta} \ (\sim g_{00} \ {\sf and} \ g_{0i}), \ {\sf write} \ {\sf EE} \ {\sf in} \ 3\!+\!1 \ {\sf form}$
- ⇒ Only (gauged) spatial EE $R_{ij} = 0$ (for given N and β) and initial-value constraints $G_{\mu 0} = 0$ need to be solved ⇒ $R_{\mu v} = 0$
- Fixing a foliation fixes the gauge and makes solution unique
- Connection with diffeomorphisms: foliation is F : ℝ × Σ → M; two such F₁, F₂ related by diffeo ψ = F₂ ∘ F₁⁻¹ ⇔ F₂ = ψ ∘ F₁
- Suggestion: subjective choice of "now" (= F) fixes solution Freedom in choosing F is what makes GR truly "general"

Punch line: Hole Argument vs Problem of Time

- Hole: Any (covariant) gauge describes same physical situation (since different gauges give isometric solutions to EE)
- ⇒ Any two foliations F (being special cases of a gauge condition) describe same physical situation, including foliations that only differ monotonously in their labeling of t (???)
- Time: Moving up in time among the Σ_t is a special case of such a relabeling and hence is a gauge transformation
- Confirmed infinitesimally by Thiemann (c.s.), and globally by Fischer–Marsden (1979): "group" Emb(Σ, M,g) "acts" on initial data set (ğ, k) and pushes in gauge direction
- And yet every physicist takes "gauge" motion along the Σ_t to be real time development (FLRW, numerical relativity, ...)

Where is the mistake?

• Argument that shifts $(\Sigma_t, \tilde{g}_t, \tilde{k}_t) \mapsto (\Sigma_{t+s}, \tilde{g}_{t+s}, \tilde{k}_{t+s})$ are gauge transformations and hence are physically trivial is based on the fact that initial data $(\Sigma_t, \tilde{g}_t, \tilde{k}_t)$ and $(\Sigma_{t+s}, \tilde{g}_{t+s}, \tilde{k}_{t+s})$ produce isometric space-times (M,g) and hence define same point in reduced phase space $\{\text{solutions}(M,g) \text{ of } \text{EE}\}/\text{Diff}(M)$ So from block universe point of view these shifts are indeed physically trivial but for mortal comoving observer they are not \Rightarrow Hole Argument takes place entirely in block universe and seems innocent (solved by Weatherall-like manoeuvre with realization that (M,g) is not space-time but is a model of it) Problem of Time (though its Hamiltonian shadow) seems genuine issue about objective/subjective nature of time (and seems resolved *classically* by accepting the latter)