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Abstract

The aim of this expository paper is to argue that although Weatherall (2018)
and Halvorson & Manchak (2022) claim to ‘close the Hole Argument’, its
philosophical thrust may be resurrected by rephrasing the argument in terms
of the theorem of Choquet-Bruhat & Geroch (1969) on the existence and
uniqueness of maximally globally hyperbolic solutions to the Einstein field
equations for suitably posed initial data. This not only avoids the pointwise
identification of manifolds at the base of non-isometric space-times (although
it remains controversial if earlier versions of the Hole Argument actually need
to do this), but has the additional advantage of being based on a precise notion
of determinism intrinsic to gr (as an initial value problem). We also speculate
that the Hole Argument corroborates van Fraassen’s empiricist structuralism.

1 Introduction

Initially, the Hole Argument (Lochbetrachtung) was an episode in Einstein’s strug-
gle between 1913–1915 to find the gravitational field equations of general relativity.
At a time when he was already unable to find generally covariant equations for the
gravitational field (i.e. the metric) that had the correct Newtonian limit and satisfied
energy-momentum conservation, the Hole Argument confirmed him in at least tem-
porarily giving up the idea of general covariance (which he later recovered without
ever mentioning the Hole Argument again). More generally, Einstein’s invention of
the argument formed part of his analysis of the interplay between general relativ-
ity (of motion), general covariance (of equations under coordinate transformations),
and determinism. The more recent emphasis on substantivalism versus relational-
ism (Earman & Norton, 1987) is not Einstein’s, but since for him this opposition
was closely related to the problem of absolute versus relative motion and hence to
general relativity, (Earman, 1989) he would certainly have been interested in it.1

∗If anything, this paper is a tribute to the weekly Cambridge–LSE Philosophy of Physics
Bootcamp, in which the hole argument was often discussed. I am especially indebted to the
organizers of this seminar, Jeremy Butterfield and Bryan Roberts, as well as to Henrique Gomes,
Hans Halvorson, and JB Manchak, for comments on earlier drafts of this paper. I also wish to
thank Michel Janssen for historical comments, most of which have found a way to the Introduction.

1See Janssen & Renn (2022) for the final reconstruction of Einstein’s struggle, with §4.1 devoted
to the Hole Argument. The earliest known reference to the Hole Argument is in a memo by
Einstein’s friend and colleague Besso dated August 1913, provided this dating is correct (Janssen,
2007). Einstein subsequently presented his argument four times in print; I just cite Einstein (1914)



In modernized form (using a global perspective and replacing Einstein’s coordinate
transformations by diffeomorphisms), his reasoning was essentially as follows:2

• Let (M, g) be a space-time.3 The transformation behaviour of the Einstein
tensor Ein(g) under diffeomorphisms ψ of the underlying manifold M is

ψ∗(Ein(g)) = Ein(ψ∗g). (1)

Similarly, for any healthy energy-momentum tensor T (g, F ) constructed from
the metric g and the matter fields F that matter we should have

ψ∗(T (g, F )) = T (ψ∗g, ψ∗F ). (2)

Consequently, if g satisfies the Einstein equations Ein(g) = 8π T (g, ϕ), then
ψ∗g satisfies these equations for the transformed matter fields ψ∗F .

• Now consider an open connected vacuum region H in space-time possibly
surrounded by matter (i.e. F = 0 in H); H is referred to as a “hole”, whence
the name of the argument.4 Furthermore, find a diffeomorphism ψ that is
nontrivial inside H and equals the identity outside H, so that in particular,

T (ψ∗g, ψ∗F ) = T (ψ∗g, F ) = T (g, F ), (3)

both outside H (where ψ is the identity) and inside H (where T (g) = 0).

• It follows from the previous two points that if g satisfies the Einstein equations
for some given energy-momentum tensor T , then so does ψ∗g. Hence the space-
times (M, g) and (M,ψ∗g) both satisfy the Einstein equations for the same
matter distribution and are identical outside H, but they differ inside the hole.

Einstein saw this as a proof that the matter distribution fails to determine the
metric uniquely, and regarded this as such a severe challenge to determinism that,
supported by the other problems he had at the time, he retracted general covariance.

as the paper containing his final version. See Stachel (2014), Norton (2019), and Pooley (2022),
and references therein for reviews of the Hole Argument in both a historical and a modern context.

2We write the Einstein tensor as Ein(g), where its dependence on the metric g is explicitly
denoted; in coordinates we have Ein(g)µν = Gµν = Rµν − 1

2gµνR.
3As usual we take a space-time to be a 4d connected Lorentzian manifold with time orientation

(this nomenclature of course hides philosophical issues to be discussed later in this paper). More
generally, my notations and conventions follow Landsman (2021) and are standard.

4Einstein’s arrangement looks unnatural compared to Hilbert’s (1917) reformulation as an
initial-value problem in the pde sense, see below, but Einstein was probably inspired by Mach’s
principle, where “the fixed stars at infinity” determine the local inertia of matter; see Maudlin
(1990), Hofer (1994), and Stachel, 2014). There is another argument that actually favours Ein-
stein’s curious setting for the Hole Argument: the smaller the hole, i.e. the larger the complement
of the hole, the greater the challenge to determinism, for if even things almost everywhere except
in a tiny hole fail to determine things inside that hole, then we should really worry (Butterfield,
1989). This pull admittedly gets lost in the initial-value formulation of the argument below. See
Muller (1995) for the explicit construction of a hole diffeomorphism (the only one I am aware of).
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From a modern point of view the energy-momentum tensor is a red herring in
the argument,5 which may just as well be carried out in vacuo, as will be done from
now on (this also strengthens my subsequent reformulation of the argument, since
the theorem on which this is based is less well developed in the presence of matter).

Earman & Norton (1987) famously revived the Hole Argument. Streamlining:

1. Although (M, g) and (M,ψ∗g) are different space-times (unless of course ψ
is an isometry of (M, g), i.e. ψ∗g = g), physicists–usually tacitly–circumvent
this alleged lack of determinism of gr by simply “identifying” the two, i.e. by
claiming that (M, g) and (M,ψ∗g) represent “the same physical situation”.

2. In this practice they are encouraged by the trivial observation that (M, g) and
(M,ψ∗g) are isometric; indeed, the pertinent isometry is none other than ψ.6

3. However–and this is their key point–this spells doom for space-time substan-
tivalists (like Newton), who (allegedly) should be worried that if in order to
save determinism, x ∈M , carrying the metric ψ∗g(x), must be identified with
ψ(x) ∈ M , carrying the same metric, then points have lost their “this-ness”:
they cannot be identified as such, but only as carriers of metric information.

Apart from its intended bearing on space-time substantivalism and determinism, the
Hole Argument also has implications for the general philosophy of science, but either
way, there can be no implications whatsoever if the argument is void, as claimed
by Weatherall (2018) and his followers.7 The goal of this paper is not to decide if
these authors are right, but, in the light of the indisputable Cartesian fact that their
arguments can and have been doubted,8 to present a version of the Hole Argument
that should be uncontroversial, while leading to the same philosophical issues.

5Continuing footnote 4: Janssen (2007), footnote 98, notes that Einstein formulated his re-
quirement that the matter distribution fully determines the metric only in 1917; in 1913 Einstein
still thought of Mach’s principle in the light of the relativity of inertia. Furthermore, Einstein
(1914) explicitly introduced the final version of the hole argument in terms of a conflict between
general covariance and the “law of causality” (“Kausalgesetz”), which was contemporary parlance
for determinism. In sum, it seems safe to say, with Janssen (2007), that the ‘worries about deter-
minism and causality that are behind Einstein’s hole argument have strong Machian overtones.’
See Norton (1993) for Einstein’s general struggle with general covariance, and its aftermath.

6We say that (M ′, g′)
ψ→ (M, g), where ψ : M ′ → M is a diffeomorphism, is an isometry iff

g′ = ψ∗g (in particular, following Hawking & Ellis, 1973, we always take an isometry to be a
diffeomorphism). Now simply take M ′ = M and g′ = ψ∗g. See Weatherall (2018) and Halvorson
& Manchak (2022) for the meaning of this for gr and for what the alternatives could (not) be.

7Such as Fletcher (2020), Halvorson & Manchak (2022), and Bradley & Weatherall (2021).
8See e.g. Arledge & Rynasiewicz (2019), Roberts (2020), Pooley & Read (2021), and Gomes

(2021) for critiques. The main issue seems to be whether it is a valid move in gr (or more
generally in Lorentzian geometry) to first take a (hole) diffeomorphism ψ of M and subsequently
assume a metric g and construct the pullback ψ∗g. This is deemed invalid since in saying that
the transformed metric ψ∗g at x ∈M is such and such and comparing it with the original metric
g at x, one identifies points x across models through the identity map idM : M → M in the
category Man of (smooth) manifolds, instead of through a morphism in the category Man of
Lorentzian manifolds (or preferably, in view of Theorem 2 below, in the category ST of space-
times, see footnote 3, whose isomorphism are isometries preserving time orientation), of which it
is claimed (or some would say shown) that it has to be an isometry. The only hope for this to
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In some sense, propagated e.g. by Stachel (2014), the version of the Hole Argu-
ment to come goes back to Hilbert (1917), who gave the first analysis of gr from
a pde point of view.9 The initial-value problem of Einstein’s equations is very in-
volved, but due to the efforts of especially the “French school”, in direct lineage of
doctoral descent consisting of Darmois, Lichnerowicz, and Choquet-Bruhat (whose
early papers carry the name Fourès-Bruhat), the abstract situation is well under-
stood now, at least in vacuo and for initial data given on a spacelike hypersurface.10

The culmination of the abstract pde theory is a theorem due to Choquet-Bruhat
& Geroch (1969), which we recall in §2. I see this theorem not so much as a
way to delineate possible versions of determinism that are compatible with the
Hole Argument, as in e.g. Butterfield (1987, 1989), but as the least vulnerable
version of the argument itself. It is not only uncontroversial, but it also yields the
sharpest formulation of the Hole Argument in so far as the underlying notion of
determinism is concerned; namely existence and uniqueness up to isometry of the
very specific geometric intial-value problem posed by the Einstein equations (which
on the one hand is unique to gr but on the other hand is close to what one expects in
classical mathematical physics). In particular, it basically poses the same conceptual
questions as the original version(s). These questions will briefly be touched upon in
the final section, which is much more speculative than the earlier parts of the paper.

be the case in the Hole Argument is that ψ be an isometry, which possibility in the hole situation
is excluded by Theorem 1 in Halvorson & Manchak (2022). This hits the final nail in the coffin
for the Hole Argument built by Weatherall (2018), although it seems to me that even without a
theorem like that, i.e. if there were any possibility for a hole diffeomorphism ψ to be an isometry,
the Hole Argument would be empty, since in that case ψ∗g = g all across M and the dilemma
of having both (M, g) and (M,ψ∗g) as models with the same matter distribution or other initial
data simply would not arise. Even accepting the claim that the only valid comparison maps in
Lorentzian geometry are isometries (although in my experience one often uses different maps from
those suggested by the a priori categorical structure), the Hole Argument actually uses neither
idM seen as a map from (M,ψ∗g) to (M, g), nor ψ seen as a map from (M, g) to (M, g), both of
which indeed fail to be isometries and hence admissible maps between Lorentzian manifolds (unless
of course ψ is an isometry in the usual sense). Instead, as is clear from the main text the argument
relies on ψ seen as a map from (M,ψ∗g) to (M, g), which is surely an isometry, cf. footnote 6.
The complaint that ψ should never haven been introduced in the first place seems feeble to me,
since any space-time (M ′, g′) is an object in the category Lor (or even ST), and surely one is
free, for any given metric g on M ′ = M and (time orientation preserving) diffeomorphism ψ of
M , to construct the metric g′ = ψ∗g. It simply exists as a Lorentzian metric on M and it should
not matter where it comes from: one cannot have one’s cake and eat it by insisting on the use of
categories like Lor or ST and then banning certain objects from them–in fact any object is of the
said kind and nothing would be left. However, this entire rebuttal, even if it turns out to be invalid,
is only included here to show that the nullification arguments in Weatherall (2018) and Halvorson
& Manchak (2022) can be doubted, which seems hardly the case for the Choquet-Bruhat–Geroch
theorem reviewed in §2, and which leads to similar conclusions as the original Hole Arguments. If
Weatherall c.s. turn out to be correct, I would see this as a consequence of the Hole Argument.

9Hilbert addresses the indeterminism of Einstein’s equations, and also refers to Einstein (1914)
in connection with this problem, but does not explicitly relate his analysis to the Lochbetrachtung.

10See Stachel (1992) and Choquet-Bruhat (2014) for some history, summarized in Landsman
(2021), §1.9. It is in fact more popular nowadays to give initial data for the Einstein equations on
a null hypersurface (Penrose, 1963). See Landsman (2021), §7.6, for a summary of the ideas, and
e.g. Christodoulou & Klainerman (1993) and Klainerman & Nicolò (2003) for full treatments.
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2 The Choquet-Bruhat–Geroch theorem

The initial-value approach to gr is based on pde-theory and the following ideology:

• All valid assumptions in gr are assumptions about initial data (Σ̃, g̃, k̃).

Such an initial data triple, assumed smooth, is obtained by equipping some 3d
Riemann manifold (Σ̃, g̃) with a second symmetric tensor k̃ ∈ X(2,0)(Σ̃), i.e. of the
same “kind” as the 3-metric g̃, such that (Σ̃, g̃, k̃) satisfies the vacuum constraints

R̃− Tr (k̃2) + Tr (k̃)2 = 0; ∇̃j k̃
j
i − ∇̃iTr (k̃) = 0. (4)

Here R̃ is the Ricci scalar on Σ̃ for the Riemannian metric g̃ and likewise ∇̃ is the
unique Levi-Civita (i.e. metric) connection on Σ̃ determined by g̃ (so that ∇̃g̃ = 0).

• All valid questions in gr are questions about “the” mghd (M, g, ι) thereof.

Among these questions, the one relevant to the Hole Argument concerns the unique-
ness of (M, g, ι), whence the scare quotes around ‘the’. Roughly speaking, a mghd
(for maximal globally hyperbolic development) of (Σ̃, g̃, k̃) is a maximal space-time
(M, g) “generated” by these initial data via the Einstein equations, with “time slice”
ι : Σ̃ ↪→M . In more detail,11 A Cauchy development or globally hyperbolic develop-
ment of given initial data (Σ̃, g̃, k̃) satisfying the constraints (4) is a triple (M, g, ι),
where (M, g) is a space-time that solves the vacuum Einstein equations Rµν = 0
and ι : Σ̃ ↪→M is an injection making ι(Σ̃) a spacelike Cauchy (hyper)surface in M
such that g induces these initial data on ι(Σ̃) ∼= Σ̃, i.e. g̃ = ι∗g is the metric and k̃
is the extrinsic curvature of Σ̃, induced by the embedding ι and the 4-metric g.12 It
follows that (M, g) is globally hyperbolic, since it has a Cauchy surface.13

This formulation of the (spatial) initial-value problem for the (vacuum) Einstein
equations was an achievement by itself: in particular, it cleverly circumvents the
vicious circle one ends up in by trying to find initial data for an already given space-
time (solving the Einstein equations), for it is part of the problem to find the latter
from the given initial data.14 However, the main achievement concerns the existence
and uniqueness of (M, g, ι), which (as in the far simpler case of odes) depends on
a suitable notion of maximality, which is also non-trivial and tied to gr. Namely:

11See also the references in footnote 19, or Landsman (2021), §7.6. Tildes adorn 3d objects.
12Let N be the unique (necessarily timelike) future-directed normal vector field on ι(Σ̃) such

that gx(Nx, Nx) = −1. Then k̃(X,Y ) = −g(∇XN,Y ) defines the extrinsic curvature of ι(Σ̃).
13This procedure by no means excludes the study of non-globally hyperbolic space-times in gr,

which in this approach emerge as possible extensions of globally hyperbolic space-times. This is
closely connected to strong cosmic censorship (Penrose, 1979), which in turn is related to a kind of
indeterminism in gr that is outside the scope of the Hole Argument and may occur even if we all
agree that the mghd of given initial data is essentially unique. See e.g. Earman (1995), Doboszewski
(2017, 2020), Smeenk & Wütrich (2021), or Landsman (2021), Chapter 10, and references therein.

14Having said this, there is a close analogy between the initial-value problem for the Einstein
equations and the so-called fundamental theorem for hypersurfaces of nineteenth-century mathe-
matics, see e.g. Kobayashi & Nomizu (1969), §VII.7 or Landsman (2021), §4.8, especially in so far
as the role of the constraints and the Gauss–Codazzi equations are concerned.

5



• A maximal Cauchy development or maximal globally hyperbolic development,15

acronym mghd, of given smooth initial data (Σ̃, g̃, k̃), satisfying the constraints
(4), is a smooth Cauchy development (M, g, ι) with the property that for any
other Cauchy development = globally hyperbolic development (M ′, g′, ι′) of
these same data there exists an embedding ψ : M ′ → M that preserves time
orientation, metric, and Cauchy surface, i.e., one has

ψ∗g = g′; ψ ◦ ι′ = ι. (5)

The Hole Argument à la Hilbert (1917) then follows from the (almost trivial) ob-
servation that if (M, g, ι) is a mghd of the initial data (Σ̃, g̃, k̃) and ψ : M ′ →M is
a diffeomorphism (pace Weatherall c.s.!), then the triple (M ′, g′, ι′), where g′ and ι′

are defined by (5), i.e. g′ = ψ∗g and ι′ = ψ−1 ◦ ι, with time orientation induced by
ψ,16 is a mghd of the initial data (g̃′, k̃′) induced on Σ̃ via ι′ and g′. In particular:17

Proposition 1. Given some mghd (M, g, ι) of the initial data (Σ̃, g̃, k̃), let U be a
neighbourhood of ι(Σ̃) in M . Take a (time orientation preserving) diffeomorphism
ψ of M that is the identity on U , so that in particular ι′ = ι and (g̃′, k̃′) = (g̃, k̃).

Then the “Hilbert-triple” (M,ψ∗g, ι) is a mghd of the same initial data (Σ̃, g̃, k̃).

This is a decent version of the Hole Argument,18 but since it starts from a diffeomor-
phism ψ ofM that only becomes an isometry from (M,ψ∗g) to (M, g) with hindsight,
it may be equally vulnerable to the reasoning in Weatherall (2018), Fletcher (2020),
Halvorson & Manchak (2022), etc. My claim is that this is not the case for the
highly nontrivial converse of the reasoning preceding Proposition 1, which nonethe-
less poses the same philosophical problems as the original Hole Argument(s). This
converse is the celebrated theorem of Choquet-Bruhat & Geroch (1969):19

15It might be thought that isometries enter surreptitiously via this definition of maximality, but
this is not the case. The appearance of isometries is a consequence of a local version of Theorem 2:
Any two Cauchy developments (M, g, ι) and (M ′, g′, ι′) of the same (smooth) initial data are locally
isometric, in that ι(Σ̃) and ι′(Σ̃) have open neighbourhoods U and U ′ in M and M ′, respectively,
such that (U, g) and (U ′, g′) are isometric through a diffeomorphism ψ : U ′ → U satisfying (5).
See Choquet-Bruhat (2009), Theorem VI.8.4, or Ringström (2009), Theorem 14.3.

16Defining time orientation by (the equivalence class of) a global timelike vector field T on M ,
so that some causal vector X is future-directed iff g(X,T ) < 0, this means that T ′ = ψ−1∗ T .

17This construction also works if U = J−(ι(Σ̃)), cf. Curiel (2018) and Pooley (2022).
18Continuing footnote 4, it is superior to Einstein’s and Earman & Norton’s formulation in that

it has shaken off any implicit reference to Mach’s principle and is closer to the usual initial value
problem for hyperbolic pdes (with a special gr twist though). But it may be weaker as a challenge
to determinism in that the open set on which initial data are given can be made arbitrarily thin.

19The original source is Choquet-Bruhat & Geroch (1969), who merely sketched a proof (based
on Zorn’s lemma, which they even had to use twice). Even the 800-page textbook by Choquet-
Bruhat (2009) does not contain a proof of the theorem (which is Theorem 12.2); the treatment
in Hawking & Ellis (1973), §7.6, is slightly more detailed but far from complete, too. Ringström
(2009) is a book-length exposition of the theorem, but ironically its proof in §14, is wrong; it is
corrected in Ringström (2013), §23. A constructive proof was given by Sbierski (2016), which is
streamlined and summarized in Landsman (2021), §7.6. Though never mentioned in statements
of the theorem, the isometry ψ is unique. This can be shown by the (well-known) argument in
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Theorem 2. For each initial data triple (Σ̃, g̃, k̃) satisfying the constraints (4) there
exists a mghd (M, g, ι). This triple is unique up to time-orientation-preserving
isometries fixing the Cauchy surface, i.e. for any other mghd (M ′, g′, ι′) there exists
an isometry ψ : M ′ →M that preserves time orientation and satisfies ψ ◦ ι′ = ι.

All reference to diffeomorphisms that are not (yet) isometries has gone! And yet
in a sense, this theorem is the Hole Argument, for it forces us to choose between:

1. Determinism, in the precise sense that the Einstein equations for given initial
data have a unique solution in the sense that we agree that triples (M, g, ι)
and (M ′, g′, ι′) as in the statement of the theorem are seen as different repre-
sentatives of the same physical situation (i.e., are physically “identified”).

2. Space-time substantivalism through denial of Leibniz equivalence, which ob-
tains if triples (M, g, ι) and (M ′, g′, ι′) represent “distinct states of affairs”
(although they seem observationally indistinguishable). This choice saves the
“this-ness” of points at the cost of accepting some invisible indeterminism.

Or, at least, this is the dilemma Earman & Norton (1987), or even Einstein (1914),
left us with on the basis of their own versions of the argument. Most philosophical
discussions of this dilemma, including more precise formulations thereof (e.g. But-
terfield, 1989; Pooley, 2022) or even dismissals (e.g. Curiel, 2018), remain relevant if
we replace controversial earlier versions of the Hole Argument by Theorem 2. This
is the sense in which the Hole Argument remains alive, which is all I wish to argue.

If we go for determinism, the specific version thereof in gr that seems enforced
by Theorem 2 is that we must “physically” identify all maximal globally hyper-
bolic space-times (M, g, ι) with Cauchy surface ι(Σ̃) that carry fixed (and a priori
“timeless”) initial data (Σ̃, g̃, k̃). Theorem 2 states that all different possibilities are
isometric, and hence isometries (preserving the given Cauchy surfaces) “morally”
play the role of gauge symmetries.20 This is unsurprising, since as in the Hole Argu-
ment(s) the occurrence of isometries in Theorem 2 is a shadow of the diffeomorphism
invariance of the Einstein equations. But is is also surprising, since the isometries of
a fixed space-time (M, g) are not given by freely specifiable functions on M , as in the
case of gauge theories.21 To assess the situation, it may help to state the analogue
of Theorem 2 for special relativity, seen as a generally covariant field theory à la
vacuum gr, but this time with field equation Rρσµν = 0 instead of Rµν = 0.

footnote 639 of Landsman (2021), to the effect that an isometry ψ is determined at least locally
(i.e. in a convex nbhd of x) by its tangent map ψ′x at some fixed x ∈ M ′. Take x ∈ ι′(Σ̃). Since
ψ in Theorem 2 is fixed all along ι′(Σ̃) by the second condition in (5) and since it also fixes the
(future-directed) normal Nx to ι′(Σ̃) by the first condition in (5), it is determined locally. This
means that Theorem 1 in Halvorson & Manchak (2022) applies, which is a rigidity theorem for
isometries going back at least to Geroch (1969), Appendix A (as they acknowledge).

20See Gomes (2021) for a detailed analysis of the relationship between gauge symmetries in
gauge theories and diffeomorphisms in gr. What follows was inspired by correspondence with
Henrique Gomes and Hans Halvorson, who proposed to look at special relativity in this context.

21If dim(M) = n, then for any semi-Riemannian metric g the isometry group of (M, g) is at most
1
2n(n + 1)-dimensional. See O’Neill (1983), Lemma 9.28; Kobayashi & Nomizu (1963), Theorem
VI.3.3 does the Riemannian case. Thus the Poincaré-group in n = 4 has maximal dimension 10.
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The initial value problem may then be posed in almost the same way as in gr;
the only difference is that the initial data triple (Σ̃, g̃, k̃) now satisfes the constraints

R̃ijkl − k̃ilk̃jk + k̃ikk̃jl; ∇̃ik̃jk − ∇̃j k̃ik = 0. (6)

The constraints (6) are stronger than (4), which follow from (6) by contracting
with g̃ikg̃jl and g̃ik, respectively. The reason is that in gr one merely asks for
an embedding of the initial data in a Lorentzian manifold (M, g) where Rµν = 0,
whereas in special relativity (M, g) is (locally) flat, i.e. Rρσµν = 0. To avoid irrelevant
global topological issues (interesting as these might be in a different context), we
assume that both Σ̃ and M are connected and simply connected. In that case
maximality gives M ∼= R4 as a manifold,22 Instead of Theorem 2, we then obtain:23

Theorem 3. For each initial data triple (Σ̃, g̃, k̃) satisfying the constraints (6) there
exists an isometric embedding ι : Σ → R4 (where R4 = M is Minkowski space-time
with metric η = diag(−1, 1, 1, 1)) whose extrinsic curvature is the given k̃. Such an
embedding is unique up to time-orientation-preserving Poincaré transformations.

There is a complete conceptual analogy between Theorems 2 and 3, except that
the former refers to the initial-value problem in general relativity, whilst the latter
states the situation in special relativity (albeit in a somewhat unusual way). In
particular, the role of isometries in the general theory is now played by Poincaré
transformations (i.e. isometries of the Minkowski metric), as was to be expected.
And yet, whereas most physicists would be happy to regard isometries in general
relativity as gauge symmetries akin to coordinate transformations, few if any would
regard Poincaré transformations as gauge symmetries. But on this basis, they are.

It is also interesting to compare the notion of determinism in gr provided for
free by Theorem 2 to some others that have been used in the literature on the Hole
Argument. To facilitate this, here is a somewhat awkward weakening of Theorem 2:

Corollary 4. If two globally hyperbolic space-times (M, g) and (M ′, g′) contain
Cauchy surfaces Σ̃ ⊂M and Σ̃′ ⊂M ′, respectively, which carry initial data (Σ̃, g̃, k̃)
and (Σ̃′, g̃′, k̃′) induced by the 4-metrics g and g′ on M and M ′, respectively, where
both (M, g) and (M ′, g′) are maximal for these initial data, and there is a 3-diffeomor-
phism α : Σ̃ → Σ̃′ such that g̃ = α∗g̃′ and k̃ = α∗k̃′, then there exists an isometry
ψ : M ′ →M that preserves time orientation and reduces to α on Σ̃.

22Maximality of Minkowski space-time (M, η) follows from its inextendibility; see e.g. Corollary
13.37 in O’Neill (1983) for the smooth case and Sbierski (2018ab) for inextendibility even in C0.

23This is a Minkowskian version of the fundamental theorem for hypersurfaces, see e.g.
Kobayashi & Nomizu (1969), §VII.7, or Landsman (2021), Theorem 4.18. The proof is the same,
up to some sign changes: in the Euclidean case the first constraint in (6) is R̃ijkl + k̃ilk̃jk − k̃ikk̃jl,
the sign changes going back to the different signs in the Gauss–Codazzi equations in Euclidean and
Lorentzian signature, see e.g. eqs. (4.147) - (4.148) in §4.7 in Landsman (2021). These sign changes
do lead to spectacularly different possibilities. For example, in one dimension lower, Hilbert (1901)
proved that it is impossible to isometrically embed two-dimensional hyperbolic space (H2, gH)
in Euclidean R3. But it can be isometrically embedded in R3 with Minkowski metric, cf. e.g.
Landsman (2021), §4.4. Hence given (H2, gH), a symmetric tensor k̃ such that (gH , k̃) satisfy the
Euclidean constraint do not exist, but such a k̃ can be found satisfying the Minkowski constraints.
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Recall that by convention an isometry is always a diffeomorphism. This corollary is
weaker than Theorem 2, for it lacks the existence claim of (M, g) and (M ′, g′), which
are now taken as given. We mention this corollary because it relates to an influential
notion Dm2 of determinism introduced in the context by Butterfield (1987, 1989).24

Indeed, if we specialize a corrected version of Dm2 to globally hyperbolic solu-
tions to the vacuum Einstein equations, it is clear that Butterfield takes Corollary
4 to be his definition of determinism in gr, allowing his claim that gr is deter-
ministic.25 However, apart from being amenable to correction if applied to gr, this
version of determinism is unnecessarily weak since it already assumes the existence
of the space-times in question; part of the thrust of Theorem 2 is an existence proof.

The same is true for Property R introduced by Halvorson & Manchak (2022);26

This definition is compatible with gr because of the uniqueness of the isomorphism
ψ in Theorem 2 (see footnote 19), but like Butterfield’s definition Dm2 Property
R assumes the existence of models and then makes some uniqueness claim about
it, whereas the Choquet-Bruhat–Geroch theorem proves their existence. In both
cases the difference is between assuming that the future exists and showing it is
“essentially” unique for given initial data, and also proving that it exists. In fact,
none of the abstract definitions of determinism proposed in the literature does this.

24We quote verbatim: ‘A theory with models 〈M,Oi〉 is S-deterministic, where S is a kind of
region that occurs in manifolds of the kind occurring in the models, iff: given any two models
〈M,Oi〉 and 〈M ′, O′i〉 containing regions S and S′ of kind S, respectively, and any diffeomorphism
α from S onto S′: if α∗(O′i) = α(Oi) on α(S) = S′, then: there is an isomorphism β from M onto
M ′ that sends S to S′, i.e. β∗O′i = Oi throughout M ′ and β(S) = S′.’ (Butterfield, 1987, p. 29;
1989, p. 9). However, though inspired by gr this definition is too weak to cover it and needs to be
amended by firstly adding the extrinsic curvature to the initial data induced on S and S′ (which
cannot be done by taking it to be one of the space-time tensors Oi, since in vacuum gr one just
has O1 = g), and secondly by adding a maximality condition on M and M ′, as in Corollary 4.
Unless both of these are added, gr is not even deterministic in the sense expressed by Dm2.

25Butterfield (1987, 1989) contrasts Dm2 with a Laplacian kind of definition of determinism
Dm1 he attributes to Montague and Earman: ‘A theory with models 〈M,Oi〉 is S-deterministic,
where S is a kind of region that occurs in manifolds of the kind occurring in the models, iff: given
any two models 〈M,Oi〉 and 〈M ′, O′i〉 and any diffeomorphism β from M onto M ′, and any region
S of M of kind S: if β(S) is of kind S and also β∗O′i = Oi on β(S), then: β∗O′i = Oi throughout
M .’ If we correct this similarly to Dm2, Butterfield’s point still stands: the Hole Argument (in
any version) shows that gr violates Dm1. See also Pooley (2022) for a detailed analysis of similar
definitions. Pooley’s version of Dm2 is a bit more general and also applies to gr: ‘Theory T is
deterministic just in case, for any worlds W and W ′ that are possible according to T , if the past
of W up to some timeslice in W is qualitatively identical to the past of W up to some timeslice in
W ′, then W and W ′ are qualitatively identical.’ Apart from my complaint that also this definition
assumes the existence of W and W ′ instead of proving it, a definition like this of course begs the
question what is meant by ‘qualitative’. This question is answered by Theorem 2; see below.

26Again specializing to maximal globally hyperbolic space-times solving the vacuum Einstein
equations, Property R states that if (M, g) and (M ′, g′) are two such space-times, and if two time-
orientation preserving isometries ψ : M ′ → M and ϕ : M ′ → M coincide on the causal pasts
J−(Σ̃) of some Cauchy surface Σ̃ ⊂M , then ψ = ϕ altogether. As for Butterfield, a major goal of
introducing such a definition is to contrast it with some Laplacian definition of determinism (this
time attributed to Montague, Lewis, and Earman), which is violated in gr because of the Hole
Argument. Halvorson & Manchak (2022) take this Laplacian definition to be: if, in the situation
in the main text, there is some Cauchy surface Σ̃ ⊂ M that also lies in M ′ as a Cauchy surface,
such that J−(Σ̃) ⊂M coincides with J−(Σ̃) ⊂M ′, then (M, g) = (M ′, g′).
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3 Resolving the Hole Argument

Despite their denial of the Hole Argument, Weatherall (2018) and Halvorson &
Manchak (2022) make some of the most useful comments towards its resolution:

Mathematical models of a physical theory are only defined up to isomorphism,
where the standard of isomorphism is given by the mathematical theory of
whatever mathematical objects the theory takes as its models. One conse-
quence of this view is that isomorphic mathematical models in physics should
be taken to have the same representational capacities. By this I mean that if
a particular mathematical model may be used to represent a given physical
situation, then any isomorphic model may be used to represent that situation
equally well. Note that this does not commit me to the view that equivalence
classes of isomorphic models are somehow in one-to-one correspondence with
distinct physical situations. But it does imply that if two isomorphic models
may be used to represent two distinct physical situations, then each of those
models individually may be used to represent both situations.

(Weatherall, 2018, pp. 331–332)

Why is it, then, that there has been, and will surely continue to be, a feeling
that there is some remaining open question about whether general relativity
is fully deterministic? Our conjecture is that the worry here arises from the
fact that general relativity, just like any other theory of contemporary math-
ematical physics, allows its user a degree of representational freedom, and
consequently displays a kind of trivial semantic indeterminism: how things
are represented at one time does not constrain how things must be represented
at later times. (Halvorson & Manchak, 2022, p. 19)

These comments could just as well have been made about Theorem 2, which by
itself makes it worth delving into the idea of “representational freedom”.27 Similarly,
although it wasn’t, Theorem 2 might have been invoked as an argument in favour
of van Fraassen’s empiricist structuralism, which he summarizes as follows:

1. Science represents the empirical phenomena as embeddable in certain
abstract structures (theoretical models).

2. Those abstract structures are describable only up to structural isomor-
phism.

(. . . ) How can we answer the question of how a theory or model relates
to the phenomena by pointing to a relation between theoretical and data
models, both of them abstract entities? The answer has to be that the data
model represent the phenomena; but why does that not just push the problem
[namely: what is the relation between the data and the phenomena it models]
one step back? The short answer is this:

construction of a data model is precisely the selective relevant de-
piction of the phenomena by the user of the theory required for the
possibility of representation of the phenomenon.

(van Fraassen, 2008, pp. 238, 253)

27See also Pooley (2022) and references therein, as well as Fletcher (2020) and Gomes (2021).
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This last comment (which made a deep impression on me) seems decisive to me in
explaining the actual practice of mathematical and theoretical physicists working in
gr. Despite the unfortunate terminology, no sane person will maintain that a math-
ematical object like (M, g) really “is” a space-time, or that space-time (now meant
in the sense of the world around us) really “is” a 4d Lorentzian manifold. It even
seems unsound to me to say that space-time is modeled by some 4d Lorentzian man-
ifold, since that would leave us with the Hole Argument, or even by an equivalence
class thereof, which strictly speaking is the set or class of all Lorentzian manifolds
isometric to some given one; this extravagant class is never used in actual physics or
mathematics. What happens in practice is that some user of the theory chooses a
member of this equivalence class, whilst some other user may pick another member
(even the same user may prefer to work with various choices).28

These arguments may also work for structural realism (Ladyman, 2020), where
‘modeling the phenomena’ becomes ‘modeling reality’. However, in structural real-
ism the role of the user, which seems essential to me for an effective implementation
of the resolution of the Hole Argument (!) proposed by Weatherall, Halvorson, and
Manchak, seems weaker and less compelling than in empiricist structuralism: once
we emphasize the role of the user of the theory, as van Fraassen does, we might as
well take the second step of putting the empirical data, lying between some evanes-
cent reality and this very user, as the basis for the modeling. In for a penny, in for
a pound! Modeling the data instead of modeling some “real” metric structure also
circumvents the problem that space-time and the metric may well be emergent.29

Perhaps the “user perspective” of empiricist structuralism even explains the pos-
sibility or even coherence of seemingly incompatible philosophical points of view. For
example, no one can stop user Newton in thinking of elements x ∈ M as points in
space-time, which as some sort of a secondary quality carry a metric g(x), but nei-
ther is there any argument against user Gelfand, who sees points of his modelling
manifold as nonzero multiplicative linear functionals C∞(M) → R, whose primary
quality by definition is to carry fields. More widely, ‘the distinction between a
Fregean, or assertoric way of understanding mathematical axioms as opposed to a
Hilbertian, or algebraic one’ (Gomes, 2021, p. 64) may well be in the eye of the user.

Finally, in so far as the opposition between structural realism and empiricist
structuralism at least superficially reflects the famous opposition between Plato and
Aristotle in the philosophy of mathematics (Bostock, 2009; Mendell, 2019), the Hole
Argument again seems to me to favour the latter. Aristotle’s mathematical modeling
is based on abstraction in the sense of deletion of properties,30 and of course it is
the user rather than “reality” who does this. I plan to return to this in the future.

28Van Fraassen’s emphasis on the user also explains why say Kerr space-time, even with fixed
parameters m and a, can be used to describe different black holes, despite the mathematical identity
of the two models. Indeed, one user models the phenomena produced by one black hole, whilst
another user uses (!) the “space-time” in question to model the phenomena produced by another.

29Two examples in which the metric is at least a derived concept are two-spinor space-times
(M, ε), where the metric is a quadratic expression in the antisymmetric field ε (Penrose & Rindler,
1984), and, in the Riemannian case, four-spinor space-time, where g comes from the Dirac operator
via Connes’s distance formula (Connes, 1994). See also Franco (2018) for Lorentzian attempts.

30For example, a mathematician sees a bronze sphere as a sphere, deleting its bronze-ness.
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