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Brit. J. Phil. Sci. 49 (1998), 531-555 

Understanding Electromagnetism 
Gordon Belot 

ABSTRACT 

It is often said that the Aharonov-Bohm effect shows that the vector potential enjoys 
more ontological significance than we previously realized. But how can a quantum- 
mechanical effect teach us something about the interpretation of Maxwell's theory-let 
alone about the ontological structure of the world-when both theories are false? I 
present a rational reconstruction of the interpretative repercussions of the Aharonov- 
Bohm effect, and suggest some morals for our conception of the interpretative enterprise. 

1 Introduction 
2 Gauge theories and their interpretation 
3 Interpreting electromagnetism 

3.1 Interpretations 
4 Quantization and the Aharonov-Bohm effect 

4.1 Quantizations and interpretation 
4.1 Quantizing the charged particle in a magnetic field 
4.3 The Aharanov-Bohm effect 

5 Conclusion 

1 Introduction 
When one first learns classical electromagnetism, one is taught to think of 
Maxwell's equations as governing the evolution in time of the electric and 

magnetic fields (or, more subtly, of the electromagnetic field). Under this 

interpretation the theory is both deterministic and local: deterministic in the 
sense that specifying the present state of the fields suffices to fix their past 
and future; local in the sense that if we want to know what will happen next 
here, the theory tells us that we need only look at the field values hereabouts 

right now-we do not need to know what is happening arbitrarily far away. 
Thus construed, electromagnetism is the paradigm of all that a classical (i.e. 
non-quantum) theory should be. 

Although this way of thinking about electromagnetism remains the peda- 
gogical standard, it has been known for some time to be untenable. In 1959, 
Aharonov and Bohm argued that a charged quantum particle moving in the 

region external to a solenoid would be sensitive to whether or not current were 
running through the device, despite the fact that the field values in the regions 
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of space occupied by the particle would be unaffected by the operation of the 
solenoid. 

It is widely agreed that the subsequent experimental detection of the 
Aharonov-Bohm effect discredited the familiar way of understanding electro- 

magnetism. One can maintain the traditional interpretation of the theory only 
by maintaining that fields act where they are not. But this flies in the face of the 
well-entrenched principle that classical fields act by contact rather than at a 
distance. It would seem, then, that the electric and magnetic fields cannot 
constitute the ontology of electromagnetism. It is now standard to maintain that 
the Aharonov-Bohm effect shows that the vector potential, formerly viewed as a 
mere mathematical convenience, must in fact be physically real. The advantage 
being that in the region exterior to the solenoid the vector potential-unlike the 

magnetic field-depends on the state of the device, so that one can explain the 
behaviour of the particle in terms of the values of vector potential in the region 
it actually occupies. 

Thus, it is often said that the Aharonov-Bohm effect shows that the 
traditional interpretation of electromagnetism must be replaced. I subscribe 
to this conclusion. But I would put it somewhat differently: until the discovery 
of the Aharonov-Bohm effect, we misunderstood what electromagnetism was 

telling us about our world. This formulation captures what I take to be the 
kernel of the common wisdom. But it is intentionally provocative: it brings to 
the fore the epistemological and metaphysical puzzles inherent in episodes like 
the post-Aharonov-Bohm reinterpretation of electromagnetism. 

After all, by the time the Aharonov-Bohm effect was discovered, it had long 
since been accepted that electromagnetism does not accurately describe our 
world. In an influential paper of 1933, Bohr and Rosenfeld argued that there 
can be no consistent theory of the interaction between charged quantum 
particles and a classical electromagnetic field.1 Thus our world could not 

possibly contain the sort of field described by Maxwell's equations: electro- 

magnetism is a false theory. Now there is a very straightforward sense in which 
a false-but eminently useful-theory like electromagnetism can tell us about 
our world: it makes empirical predictions which are very accurate within a 
certain circumscribed domain of applicability. But it seems strange to say that 
the interpretation of such a theory tells us about our world. To interpret a 

theory is to describe the possible worlds about which it is the literal truth. Thus, 
an interpretation of electromagnetism seems to tell us about a possible world 
which we know to be distinct from our own. On the other hand, whatever world 

1 Bohr and Rosenfeld's paper is reprinted as Ch. 1 of Cohen and Stachel [1979]. The models which 
are used to predict the Aharonov-Bohm effect are idealizations in which the classical field acts 
on the particles, but the particles are not sources of the field. Thus, although they may be useful 
for describing certain phenomena, they cannot be taken to be accurate representations of our 
world any more than can the models of electromagnetism. 
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electromagnetism is true of, it is not one which contains quantum electrons. So 
it is difficult to see how a quantum-mechanical effect can teach us anything 
about the interpretation of electromagnetism. Of course, quantum mechanics 
itself is false (being nonrelativistic). So our world is one about which neither 

electromagnetism nor quantum mechanics is true. None the less, I maintain, 
we learn something about our own world when we study the interpretative 
interaction between these two false theories. 

I will present a logical reconstruction of the Aharonov-Bohm effect which 

suggests a resolution of the tension between falsehood and interpretative 
interest. My first task is to describe and situate the formalism and interpretative 
problems of electromagnetism. I begin in Section 2 by sketching the formalism 
and interpretative problems of gauge theories in general. This allows me to 

present electromagnetism as a gauge theory in Section 3, and to show how its 

interpretative problems arise out of its gauge freedom. The presentation of 
these two sections is quite abstract, but I believe that this approach gives 
valuable insight into the structure of the classical theory. In Section 4, I show 
how attention to quantum mechanics can shift the balance of power among 
competing interpretations of electromagnetism: there is an ambiguity inherent 
in the construction of a quantum model of a charged particle moving in an 

electromagnetic field; distinct interpretations of electromagnetism suggest 
different ways of resolving this ambiguity; the empirical success of one or 
another quantum treatment can then have repercussions for our attempts to 

interpret electromagnetism. In particular, we will see that in the aftermath of 
the Aharonov-Bohm effect, we are forced to accept that electromagnetism is 
either indeterministic or nonlocal. Thus we find that the requirement that our 
false theories mesh in an appropriate way-ontologically as well as empiri- 
cally-places strong constraints upon our interpretative practice. In the final 
section of the paper, I attempt to explicate a sense in which false theories tell us 
about our world, and to show how this fact has important consequences for our 

understanding of the structure and content of our physical knowledge. 
Before beginning my main task, I would like to say a few words about a 

distinction which will play a fundamental role in what follows. I distinguish 
three components of a physical theory: the formalism, the interpretation, and 
the application. The formalism is some (more or less rigorous) mathematics. 
This might be of interest to a mathematician with no interest whatsoever in 

physics. The application is a set of practices which allow one to derive and to 
test the empirical consequences of the theory. The interpretation consists of a 
set of stipulations which pick out a putative ontology for the possible worlds 
correctly described by the theory. Schematically, we can imagine the physical 
theory being taught in a course for undergraduates: the formalism is developed 
on the blackboard during lectures; the application is worked out in problem sets 
and in the lab; the interpretation is fixed via verbal asides which give the 
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students a heuristic grasp of the content of the theory. A command of all three 
components will be essential for any student who aspires to full understanding 
of the theory. 

Now, of course, in saying that we misunderstood electromagnetism prior to 
the discovery of the Aharonov-Bohm effect, I do not mean to suggest that 
Einstein misunderstood the formalism of the theory or that Hertz misunderstood 
its application. These remain fixed as our interpretation changes (or, more 

properly, they evolve via their own dynamics which need not be directly 
correlated with interpretative developments). But I do insist that a change in 

interpretation constitutes a change in understanding. 

2 Gauge theories and their interpretation 
I am going to sketch a couple of frameworks for doing classical mechanics, 
and discuss their respective interpretative problems.2 One is the familiar 
Hamiltonian formalism. The other is a generalization of the Hamiltonian 
framework: the language of gauge theories. They share a great deal of their 

conceptual apparatus. Both Hamiltonian systems and gauge systems consist of 

triples of mathematical objects: a space, a tensor which gives this space some 

geometric structure, and a real-valued function on the space, called the 
Hamiltonian. When equipped with its geometric structure, the space is 
called the phase space, and its points are thought of as representing the 

dynamically possible states of some classical physical system (typically a 
set of particles or fields). The Hamiltonian then determines a class of curves 
in phase space. These are thought of as representing the dynamically possible 
histories of the system-if we know which point represents the present state of 
the system, then a curve through this point passes through points representing 
the dynamically possible future and past states of the system. 

This much, Hamiltonian systems and gauge systems have in common. The 
difference between them lies in the nature of the geometric structure of phase 
space. As we will see, the weaker geometric structure of gauge systems brings 
with it a thorny interpretative problem. 

(i) Hamiltonian systems 
The geometric structure of the phase space of a Hamiltonian system is called a 

symplectic form.3 Its chief virtue is the following: specifying a real-valued 
function on the phase space (the Hamiltonian, H) suffices to determine a 

unique dynamical trajectory through each point of phase space.4 Figure 1 is 

2 The following presentation is meant to be accessible to a general reader. Details are given in the 
footnotes. 

3 The phase space consists of a manifold, M, equipped with a closed, nondegenerate, two-form, o. 
4 These curves are the integral curves of the vector field XH which solves XH J oW = dH (the left- 

hand side of this equation is the contraction of XH with c). 
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x? 

phase space 

x(t) 

Fig. 1. Hamiltonian systems. 

a representation of a Hamiltonian system: at the top, we have a phase space; 
specifying a Hamiltonian serves to determine a unique curve, t ->x(t), through 
each point x. 

The simplicity of the Hamiltonian formalism makes the following literal 

approach to interpretation quite attractive. Given a Hamiltonian system, one 
would like to set up a bijection between points of phase space and dynamically 
possible states of the system. Then the theory at hand will be deterministic: 

given a point representing the present state of the system, the dynamical 
trajectory passing through that point represents the only physically possible 
past and future of the state. 

Typically, it will be quite straightforward to develop such an interpretation. 
Most of the phase spaces of classical mechanics have the following form. One 

begins with a space Q, called the configuration space, which represents the 

possible configurations of some set of particles or fields relative to an inertial 
frame. One then constructs the cotangent bundle, T*Q, of Q. This is the set of 

pairs (q, v) where q E Q and v is a vector at q. There is a canonical way of 

endowing T*Q with a symplectic structure, so that it may be viewed as a phase 
space. Since a point q E Q represents a possible (generalized) position of the 

system, we can think of v as representing the system's (generalized) momentum. 
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[x] 

x 

phase space 

x(1) 

x"(x) 

Fig. 2. Gauge systems. 

The value of the Hamiltonian, H, at a given point of phase space will just be the 

energy of the state represented by that point. 

(ii) Gauge systems 
The geometry of the phase space of a gauge system is determined by a 

presymplectic form. This notion of geometry is weaker than the symplectic 
geometry of Hamiltonian systems.5 For our purposes, the upshot is the following: 
the phase space of a gauge system has a natural partition into subspaces, called 

gauge orbits (see the top half of Figure 2).6 The gauge orbits are all of the same 

dimensionality. Each point, x, of phase space lies in exactly one gauge orbit, 
denoted [x]. As in the Hamiltonian case, we specify the dynamics by choosing 
a real-valued function on phase space, the Hamiltonian.7 Whereas in the 
Hamiltonian case there was a single dynamical trajectory through each point 

5 A presymplectic form, a, on a manifold N is a closed but possibly degenerate two-form. It is 
standard to assume that the dimensionality of the null space of a is the same at all points of N. A 
Hamiltonian system is a gauge system for which the null space is everywhere zero-dimensional. 

6 Two points lie in the same gauge orbit iff they can be connected by a curve, all of whose tangent 
vectors are null vectors of a. That is, the gauge orbits are constructed by integrating the null 
distribution of a. 

7 That is, we again look at the integral curves of vector fields which solve XH-J C = dH. We require 
that H be 'gauge invariant' (see below). 
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of phase space, we find in the gauge-theoretic case that there are infinitely 
many trajectories through each point of phase space.8 The saving grace is that 
the dynamical trajectories through a given point, although disagreeing in 

general about which point represents the future state of the system at a 
given time, do agree about the gauge orbit in which this point lies. That is: 
if t'->x(t) and t ->x'(t) are dynamical trajectories which have their origin at 
the same point x(O) = x'(0) = xo, then we have that [x(t)] = [x'(t)] for all 
t E R, even when x(t):x'(t) (see Figure 2). Thus, although the presymplectic 
geometry is not strong enough to determine a unique dynamical trajectory 
through each point, it is strong enough to force all of the dynamical trajec- 
tories through a given point to agree about which gauge orbit the system 
occupies at each time. 

There is an obvious obstacle to the application of gauge theories in classical 
mechanics. Hamiltonian systems have well posed initial-value problems: if we 
specify initial data (i.e. a point, xo, in phase space), then there is a unique 
solution of the equations of motion for that initial data (i.e. a dynamical 
trajectory, x(t)). Now, note that any given observable classical quantity can 
be represented by a real-valued function, f, on phase space (since the state of 
the system determines the values of all classical quantities). Thus, if we want to 
know the value of the quantity at time tI, we need only calculate f(x(tl)), where 
x(t) is the unique dynamical trajectory through xo. But in the case of a gauge 
system, there are many dynamical trajectories, x(t), x'(t), x"(t),..., through 
each point of phase space, so it is impossible to predict the future value of an 
arbitrary function on phase space from the initial state: in general, x(tl):x'(tI), 
so we expect that f(x(tI)):if(x'(tI)). 

But we know that it must be possible to apply such theories, since many 
of the most interesting classical field theories-electromagnetism, general 
relativity, Yang-Mills-are gauge theories.9 The solution is quite straight- 
forward: observable quantities must be gauge-invariant. That is, if a real- 
valued function on phase space is to represent an observable quantity, then 
we require that f be constant on gauge orbits-if [x] = [y], then f(x) = f(y). The 
initial value problem of such a quantity is well-posed: if xo represents the initial 
state of the system, and x(t) and x'(t) are dynamical trajectories through 
xo, then f(x(ti)) = f(x'(ti)). Thus, despite the ambiguity in the evolution of 
the states of our gauge system, there is no ambiguity in the evolution of 
observable quantities-so long as we restrict our attention to gauge-invariant 
quantities. 

8 Indeed, let X and X' be vector fields on N, and suppose that X solves X0 wC = dH. Then X' solves 
X' co = dH iff Y = X - X' is a null vector field of a (since 0 = Xj a - X'oa = Yfj a). 

9 There are also gauge theories which describe the gravitational interaction of point particles. 
These are of philosophical interest because they delimit the precise sense in which 
Mach's Principle can be implemented in classical physics. See Barbour and Bertotti [1982] 
and Lynden-Bell [1995]. 
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But how can we interpret this formalism? There are three important 
interpretative approaches. 

The most straightforward option is to mimic the literal approach that worked 
so well for Hamiltonian systems. This has the advantage of simplicity: one 
insists that each point of the phase space corresponds to exactly one physically 
possible state of the system. There is, however, a prima facie grave disadvan- 

tage to this approach: if the present state of the system is xo, then in general 
x(tl) and x'(tl) will correspond to distinct possible states of the system; 
the present will have many possible futures. Thus, literal interpretations 
render the theory indeterministic.10 Of course, if we supplement this account 
of the ontology of the theory with an account of measurement which implies 
that its observable quantities are gauge-invariant, then the indeterminism will 
not interfere with our ability to derive determinate predictions from the theory. 

The second interpretative option is to stipulate that each gauge orbit of the 

phase space represents exactly one physically possible state. In this simply 
gauge-invariant case, our theory will be deterministic. We know that if x(t) and 

x'(t) are two dynamical trajectories for the same initial data, then [x(t)] = [x'(t)] 
for all times t. Under a simply gauge-invariant interpretation, this is equivalent 
to saying that the present state determines the future and past states. In effect, 
our theory is construed as a theory of gauge orbits rather than points. There is 
an elegant construction which makes this precise: one can (usually) endow the 
set of gauge orbits of the gauge system with a symplectic structure and a 

Hamiltonian.1" The resulting Hamiltonian system is called the reduced phase 
space. A point in the reduced phase space corresponds to a gauge orbit of the 

original gauge system; a dynamical trajectory of the reduced phase space tells 
us which gauge orbits the system passes through, given its initial gauge orbit; a 
real-valued function on the reduced phase space corresponds to a gauge- 
invariant function of the original system. Thus, the reduced phase space 
captures all of the gauge-invariant information of the gauge system. A 

simply gauge-invariant interpretation of the gauge system is equivalent to a 
literal interpretation of the reduced phase space-in both cases, one contends 
that physical possibilities stand in one-to-one correspondence with the gauge 
orbits of the original gauge system. 

The third option is to adopt a coarse-grained gauge-invariant interpretation, 
according to which the representation relation between gauge orbits and 

physically possible states is many-to-one. Of course, since there is no physical 
difference between points in the same gauge orbit, coarse-grained gauge- 
invariant interpretations are deterministic (by the argument of the preceding 
paragraph). 

10 The hole argument of Earman and Norton [1987] is a special case of this observation. See Belot 
and Earman [1998a, b]. 

" In rare cases, technical complications can make it impossible to carry out this construction. 



Understanding Electromagnetism 539 

This taxonomy provides us with a framework for discussing the interpreta- 
tive possibilities for gauge theories. We can now see that it is an immediate 

consequence of the formalism of gauge theories that every such theory admits 

multiple interpretations. Settling on an interpretation is an important part of 

understanding the theory, since rival interpretations will disagree about 
whether or not the theory is deterministic, and about how much of the structure 
of the phase space is physically relevant. 

This is likely to seem somewhat overwrought at this stage. After all, isn't it 

fairly clear that the preferred interpretation of a given gauge theory is a simply 
gauge-invariant interpretation? Since this is the same as a literal interpretation 
of the reduced phase space-and given that it is supposed to be straightforward 
to construct a literal interpretation of a Hamiltonian system-doesn't it follow 
that it should be straightforward to formulate such an interpretation? If this is 
so, then literal and coarse-grained gauge-invariant interpretations of gauge 
theories will never arise in practice. 

I grant that simply gauge-invariant interpretations are, ceteris paribus, to be 

preferred. But I maintain that things are not always equal: sometimes it turns 
out that the available simply gauge-invariant interpretations are less plausible 
than their competitors. We will see an example of this below, in the case of 

electromagnetism. The problem is that, although the task of finding a simply 
gauge-invariant interpretation for a gauge theory does indeed reduce to the task 
of finding a literal interpretation of the theory's reduced phase space, it does 
not follow that it is straightforward to find a plausible interpretation of 
this Hamiltonian system. Literal interpretations of Hamiltonian systems are 

impeccable when the phase space has the structure of the set of possible 
positions and momenta of some set of fields or particles. But, in general, 
there is no guarantee that the reduced phase space of a gauge system will have 
such a structure. 

3 Interpreting electromagnetism 
The language of gauge theories provides the setting for a very elegant for- 
mulation of electromagnetism. Let physical space be modelled by some 
three-dimensional Riemannian geometry, S.12 Then the phase space of elec- 

tromagnetism consists of pairs, (A(Q), E(Q)), of vector fields on S, subject to 
the condition that div E =0. That is, each point in the phase space of 

electromagnetism gives us a pair of maps, A and E, each of which assigns a 
three-vector to each point of S, with div E = 0. We call A the vector potential, 
and E the electric field. Our infinite dimensional phase space comes equipped 
with a natural presymplectic structure. 
12 The metric structure of S plays a hidden role in what follows: it allows us to define div, grad, and 

curl for non-Euclidean spaces. 
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The gauge orbits of the phase space have the following structure: (A, E) and 
(A', E') belong to the same gauge orbit iff for all CES, we have that 

E(Q) = E"() and that there exists a smooth function A: S---R such that 

A(Q) = A'(Q) + grad A(s). The Hamiltonian for electromagnetism is just H = 

fs(IEI2 +I curl A | 2)d?. The dynamical trajectories are then determined by the 
following equations: 

A=-E 1 i 
= curl (curl A) (3.1). 

These are Maxwell's equations. Of course, these equations do not uniquely 
determine the evolution of the variables of electromagnetism: they do so only 
up to gauge. Thus, if we fix an initial point in phase space, (Ao, Eo), then we 
find that the value of E is determined for all times, past and future. But the 
value of A is only fixed up to the addition of the gradient of a scalar function on 

space: if (A(t), E(t)) and (A'(t), E'(t)) are two solutions for our given initial 
data, then for all t, E(t) = E'(t) and there exists a scalar A(t) so that 
A(t) = A'(t)+ grad A(t). Maxwell's equations do not determine the future 
value of A(t), but they do determine the gauge orbit in which A(t) lies. 

I will present three interpretations of electromagnetism, corresponding to 
the three strategies for interpreting gauge theories which were canvassed in the 

preceding section.13 It is helpful to have in mind some desiderata that we 
would like any interpretation of electromagnetism to fulfil. 

First of all, of course, we would prefer that our interpretation render the 

theory deterministic: that is, we would like to find a gauge-invariant inter- 

pretation of electromagnetism. 
Second, we would like our theory to be local. Here I draw a distinction 

between two types of locality:14 

(I) Synchronic locality: the state of the system at a given time can be specified 
by specifying the states of the subsystems located in each region of space 
(which may be taken to be arbitrarily small). 

(II) Diachronic locality: in order to predict what will happen here in a finite 
amount of time, At, we need only look at the present state of the world in finite 

neighbourhood of here, and the size of this neighbourhood shrinks to zero as 
At--+O. 

The first principle is meant to express the intuition that the properties 
of classical physical systems should be reducible to the properties of their 

13 There are a few other interpretations of electromagnetism-see Brown [1994], Cao [1988], and 
Kennedy [1993]. None of them serves to undercut the themes developed below. 

14 These are related to, but not identical with, the notions of separability and locality employed in 
the literature on the Bell inequality. 
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constituent parts. Classical fields, thought of as assignments of properties to the 
points of physical space, are paradigm examples of synchronically local 
systems-at each here and now the field has a state, and the state of the 
field itself is nothing but the sum of its states at each of these here and nows. 
Thus it makes sense, for instance, to speak of the state of the field in a given 
region, without reference to anything far removed from the region under 
consideration. 

An object is local in the (strictly stronger) diachronic sense if its evolution in 
time is such that in order to know what its future state will be here, we need 
only know its present state in some finite hereabouts. Not every classical 
field is diachronically local. The Newtonian gravitational field is a well- 
known example of a diachronically nonlocal object-since gravitational 
effects propagate with infinite velocity, it is necessary to know the gravi- 
tational state everywhere in order to know exactly what will happen next 
here. 

On the other hand, one expects electromagnetism to be both synchronically 
and diachronically local. It is, after all the theory of the electromagnetic field 
and so should be synchronically local. Furthermore, Maxwell's equations 
determine that electromagnetic radiation propagates at a fixed speed. This 
seems to imply immediately that electromagnetism is a diachronically local 
theory: since it will take some known finite amount of time for influences over 
there to reach here, I need only take into account what is happening over there 
when reckoning what will happen here, if I am interested in sufficiently large 
At. 

We will see, however, that electromagnetism is diachronically local under 
only one of the three interpretations discussed below. Even worse, the theory is 
not even synchronically local according to one of these interpretations. 

3.1 Interpretations 
(1) The vector potential as a physical field. Under this first interpretation, one 
maintains that the vector potential, A, represents a physically real field on 
physical space. Most dramatically, one can maintain that the vector potential 
represents the velocity of a material ether.'5 Then the electric field, E = -A, 
would correspond to the acceleration of the material ether.'6 This gives us a 
literal, hence indeterministic, interpretation of the gauge-theoretic formulation 
of electromagnetism: each pair (A, E) satisfying div E = 0 represents a distinct 

15 Frank Arntzenius points out that this ether would be a strange object, since it would not possess 
the usual conserved quantities of classical fluid mechanics. 

16 This is only one step removed from historical reality: in Maxwellian electrodynamics the 
current was sometimes interpreted as representing the acceleration of the ether. See Buchwald 
[1985], p. 24. 
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dynamical state of the ether, and two solutions, A(t) and A'(t) = A(t) + grad 
A(t), for the same initial data represent two physically distinct physical 
histories of the ether (according to A, this bit of ether ends up here; according 
to A' it ends up over there).'7 

This interpretation is synchronically local, since the state of the field reduces 
to the state of the field at each point of space. But it is diachronically nonlocal: 

changing the magnetic field in a given region can change the vector potential 
throughout space instantaneously-changes in the vector potential can 

propagate with infinite velocity even though electric and magnetic radiation 

propagates with a finite velocity. So in order to know what will happen to us 
next, we need to know what is presently happening arbitrarily far away. We 
will see an example of this phenomenon in the next section. 

(2) The traditional interpretation. One would like to avoid the conclusion that 

electromagnetism is indeterministic. Thus, one would like to look for a gauge- 
invariant interpretation of electromagnetism. Here the most obvious option is 
the familiar one. We begin by defining the magnetic field to be B - curl A. The 
value of the magnetic field at a point of physical space is a gauge-invariant 
quantity, since curl A = curl (A + grad A). Together, E and B capture almost 
all of the gauge-invariant content of electromagnetism.'8 Indeed, it is not 
difficult to show that the equations (3.1), together with the constraint div 
E = 0 and the identity B =- curl A, are equivalent to the familiar vacuum 
Maxwell equations: 

B = -curl E 2div B = 0 

E = curl B divE = 0 
(3.2). 

The initial-value problem for (3.2) is well posed: if we specify E and B at an 
initial time, then there is a unique solution of (3.2) which gives E and B for all 
future times. 

Thus, if we stipulate that the ontology of electromagnetism consists of phy- 
sically real electric and magnetic fields, then we have an interpretation which is 
deterministic (being gauge-invariant) and is clearly synchronically local (being 
based on fields).19 Furthermore, this interpretation is diachronically local: 
Maxwell's equations imply that the electric and magnetic fields propagate at 
the speed of light-in order to know what will happen here in At seconds, we 
need only consider the electromagnetic state in a sphere of radius At x c. 

17 As usual, we can none the less maintain that the theory is predictable if we can argue that only 
gauge-invariant quantities are measurable. If, for instance, our ether were an imponderable 
fluid, which interacted with ordinary matter only via electric and magnetic phenomena, then we 
would be unable to distinguish empirically between points of phase space which lie in the same 
gauge orbit. 

8 The significance of this 'almost' will be made clear below. 
19 Under this regime the vector potential becomes a useful mathematical fiction, with no physical 

content beyond that encoded in the magnetic field. 
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There remains one further question: is this interpretation simply gauge- 
invariant or coarse-grained gauge-invariant? It turns out that the answer 

depends upon the topology of physical space, S. If the topology of space is 
trivial, in the sense that S is simply connected, then the reduced phase space of 

electromagnetism is just the set of divergence-free electric and magnetic fields 
on S.20 In this case, our interpretation may be viewed either as a literal 

interpretation of the reduced phase space or as a simply gauge-invariant 
interpretation of the original gauge system. If, however, S is topologically 
nontrivial, then the reduced phase space has a more complex structure (see 
below). Then the traditional interpretation counts as coarse-grained gauge- 
invariant: a number of gauge orbits correspond to each configuration of the 
electric and magnetic fields. In this case, there will be points in phase space, (A, 
E) and (A', E'), such that [(A, E)] [(A', E')] but A and A' correspond to the 
same magnetic field. We will see in the following section that this is the 
downfall of this otherwise very attractive interpretation. 

(3) Holonomies.21 One would like an interpretation of electromagnetism which 
would be simply gauge-invariant, no matter what the topology of physical 
space. This is possible, but requires some ingenuity-and some sacrifices. The 
first step is to observe that although the value of the vector potential at a given 
point of physical space is not gauge-invariant (since in general A(s) # A(s) + 
grad A(s)), the integral of A around a closed curve, y, 

h(y) = exp 
(fly 

iAa()d a) 

is gauge-invariant. In fact, if we substitute a vector potential, A', into the 

integral which defines h(y), then this quantity is unchanged if and only if A' is 
in the same gauge orbit as A. h(y) is called the holonomy around 7, and is a 

complex number of unit modulus. 
It is a remarkable fact that we can construct the reduced phase space of 

electromagnetism by taking the set of holonomies around all curves in physical 
space as the elements of our configuration space. That is, if we call the set of 
closed curves in physical space loop space, each point in our configuration 
space is just a map from loop space to the complex numbers of unit modulus. 
Let us call these maps holonomy maps. The value of a given holonomy map on 
a given loop is just the holonomy around that loop. We proceed to construct the 

phase space by building the cotangent bundle, which is just the set of pairs 
consisting of a holonomy map and a divergence-free electric field. After we 
20 A space is said to be simply connected if every closed curve in the space may be contracted to a 

point without leaving the space. Otherwise, it is said to be multiply connected. Thus, in two 
dimensions the sphere and the plane are simply connected, while the cylinder and the torus are 
multiply connected (imagine drawing a circle which goes around the circumference of the 
cylinder or torus-such a curve cannot be contracted to a point without leaving the surface). 

21 See Wu and Yang [1975] for an influential presentation of this approach. 
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impose the canonical symplectic structure, and the correct Hamiltonian, we end 

up with a Hamiltonian system which is the reduced-phase-space formulation of 

electromagnetism. 
We would like to give a literal interpretation of this reduced phase space 

formalism. We know that this can be done in terms of the electric and magnetic 
fields iff physical space is topologically trivial. But in general, the topology of 
S is nontrivial, and this move is not available-we cannot identify the space of 

holonomy maps with a space of tensors on S. 
It is, none the less, possible to formulate an interpretation of electromagnet- 

ism which is simply gauge-invariant no matter what the topology of space. The 
reduced phase space formulation of electromagnetism suggests that a state of 
the electromagnetic field should be thought of an assignment of complex 
numbers to closed curves in space (holonomy), together with an assignment 
of vectors to points of space (electric field). This requires a revision of our 
notion of field. We can no longer think of the electromagnetic field as simply 
being an assignment of properties to points of space. Rather, we must also 
consider closed curves in space to be carriers of the electromagnetic predicates. 
This interpretation is, of course, deterministic, since it is simply gauge-invariant. 
But it is also synchronically (and hence also diachronically) nonlocal, since 

specifying the electromagnetic state of any given region of physical space 
requires knowledge of the holonomy around every loop in space, and hence 

requires mentioning regions of space arbitrarily far away from the one under 
consideration. 

These, then, are our three interpretations. Here we find ourselves in a 
situation of the sort alluded to at the end of the previous section. Ceteris 

paribus, we would prefer a simply gauge-invariant interpretation of our theory. 
But in the case at hand this is awkward: unless physical space has a very special 
topological structure, the reduced phase space of electromagnetism cannot be 
viewed as the space of positions and momenta of a set of fields relative to 

physical space. Thus, simple gauge-invariance can only be had at the price of a 
revision our intuitions about classical fields. 

In this context, it seems clear that interpretation (2) is to be preferred. It is 
the only interpretation which is both deterministic and diachronically local. 
When S has a non-trivial topology, it is true, this traditional interpretation has a 
vice: since it is coarse-grained, it loses information which is stored in the other 

interpretations. As a result, this interpretation is vulnerable to empirical 
refutation: it is an empirical question whether or not there exist measurable 

physical quantities which distinguish between each pair of gauge orbits. If 
there were any such quantities, no coarse-grained gauge-invariant interpretation 
would be tenable. Within the realm of classical physics, however, (2) is 
vindicated-there are no phenomena which allow one to distinguish between 
two gauge orbits [A] and [A'] which correspond to the same magnetic field. 
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Thus, there are no grounds internal to electromagnetism upon which to 
criticize the traditional interpretation. 

4 Quantization and the Aharonov-Bohm effect 
The story of the Aharonov-Bohm effect is normally told in a very abbreviated 
form: something like: 'The quantum treatment of a charged particle in an 
external magnetic field shows that it is possible to distinguish between vector 

potentials which correspond to the same magnetic field. So quantum 
mechanics shows that the vector potentials of electromagnetism are physically 
real.' This sort of account gives the correct flavour. But it is also quite 
misleading: if the vector potential is physically real in the way that the electric 
field is supposed to be, then electromagnetism is indeterministic (as in inter- 

pretation (1) of the previous section)-but few commentators mean to commit 
themselves to such a view. In this section, I present a rational reconstruction of 
the way in which the Aharonov-Bohm effect bears upon the considerations of 
the previous section.22 

The story has a complex structure, so I have broken it down into several 

parts. The first part consists of a generic account of how interpretative beliefs 
about classical theories bear upon quantization, and vice versa. In the second, 
this apparatus is applied to the special case of a charged particle in a static 

magnetic field. The Aharonov-Bohm effect makes its appearance in the third 
and final part. 

4.1 Quantization and interpretation 
Here I focus on canonical quantization, where the initial input is a classical 

theory in Hamiltonian form, and the output is a quantum theory which-one 

hopes-has the original classical theory as its h--+0 limit. It is important to 

emphasize that neither quantization nor the taking of a classical limit is entirely 
straightforward. The details of either sort of process vary greatly from case to 
case. Thus there is considerable play at either end whenever we attempt to set 

up a correspondence between classical and quantum systems. This freedom in 

bridging the classical-quantum divide is closely related to an interplay which 
exists between interpretative issues at the classical and quantum levels. 

It is well known that all infinite dimensional Hamiltonian systems have 

infinitely many quantizations. That is: there are infinitely many unitarily 
inequivalent quantum field theories which are quantizations of any given 
classical field theory. This fact has received some attention from philosophers 

22 See Healey [ 1997] for a complementary discussion of the bearing of the Aharonov-Bohm effect 
upon approaches to interpreting quantum mechanics. 
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of physics. But it has tended to be regarded as one pathology among many in the 
foundations of quantum field theory. What has received little (no?) attention 
from philosophers, is the fact that the same situation is endemic among finite 
dimensional systems. Indeed, any Hamiltonian system with a topologically 
nontrivial phase space has infinitely many quantizations.23 Thus, the ambiguity 
involved in quantization cannot be dismissed as a pathological feature of a 

theory which is still under development-it is to be found everywhere, even in 

ordinary, non-relativistic quantum mechanics. 
We have to ask ourselves what attitude to take towards inequivalent quantiza- 

tions of a given classical theory-how many of them are physically significant? 
Often there will be a distinguished quantization.24 In this case it will be tempting 
to maintain that it alone should count as an admissible quantum treatment of the 

phenomenon under investigation. On the other hand, it can happen that one has 
reason to believe that there are many acceptable quantizations of the system 
(each appropriate for modelling a distinct physical situation), or that the structure 
of the classical system does not single out a preferred quantization (as in 

quantum field theory on curved spacetime). 
Ultimately, of course, one hopes that empirical considerations will deter- 

mine which quantizations should be taken seriously. But one sometimes finds 
oneself in a situation where available data underdetermine the question- 
indeed this situation is probably the norm at the frontiers of theoretical physics. 
Here there are a number of epistemic resources which could be mobilized to fill 
the gap. Among these are interpretative beliefs about other theories. 

One's interpretative beliefs can shape one's judgements as to the relevance 
of certain quantizations or approaches to quantization. Conversely, one must 

accept that one's interpretative beliefs are open to revision in light of the 

empirical success of the approaches to quantization which they suggest. If 
one's interpretation of a given classical theory suggests that quantization A is 

superior to quantization B, then one is bound to revise one's interpretative 
judgements if it turns out that A is empirically untenable. 

This is, I maintain, the best way of thinking of the import of the Aharonov- 
Bohm effect: we come to quantum mechanics with prior interpretative 

beliefs, about electromagnetism; these suggest a particular approach to quantizing 
classical systems involving electromagnetic fields; when this does not pan out, 
we are obliged to revise our understanding of electromagnetism. 

23 See Woodhouse [1980] for details. The physically inequivalent quantizations of a given 
Hamiltonian system are parameterized by the cohomology group H'(M,U(1)), where M is 
the classical phase space, and U(1) is the group of complex numbers of unit modulus. This group 
is a topological invariant-it is determined by the topology of the classical phase space. For our 
purposes, it suffices to assume that this cohomology group is nontrivial iff the classical phase 
space is multiply connected, although this is not quite true. 

24 Indeed, this is always the case for quantizations of finite dimensional systems, since the group 
H'(M,U(1)) always has a preferred element-namely, the identity. 
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4.2 Quantizing the charged particle in a magnetic field 
The Aharonov-Bohm effect involves a quantum charged particle moving in a 
static magnetic field. So we are interested in quantizing the classical treatment 
of such a particle.25 

In order to construct the classical treatment of the particle, we proceed as 
follows. We let S be the region of physical space in which the particle is free to 
move. The configuration space of the particle is isomorphic to S. The phase 
space of the particle is just the set of possible positions and momenta for such a 

particle (the cotangent bundle of S), endowed with a symplectic structure 
which differs from the symplectic structure for a free particle by a factor which 
is determined by the magnetic field. Finally, the Hamiltonian, as in the 
treatment of a free particle, is just the kinetic energy. 

This system will have a unique quantization iff S is topologically trivial. We 
will be interested in a case where S is (homeomorphic to) ordinary Euclidean 
three-dimensional space with the y-axis removed, and the electric and magnetic 
fields are zero. Thus, our model of the charged particle moving in S will be 
identical to our model of a free particle moving in S. This model has infinitely 
many quantizations. These quantizations can be put in a one-to-one correspon- 
dence with the set of complex numbers of unit modulus.26 That is, specifying a 

complex number, z, with [z( determines a quantization Q(z) of our classical 

system. Of course, one possibility stands out: the quantum system Q(1). Intui- 

tively, the quantization Q(z) predicts that a quantum charged particle which is 

transported around the y-axis will have its phase shifted by a factor of z.27 

Now, in the absence of empirical data, what attitude should one take towards 
these various quantizations? If we believe in a simply gauge-invariant or literal 

interpretation of electromagnetism, we will be open to the idea that each of the 

quantizations of the charged particle represents a genuine physical possibility. 
After all, the Hamiltonian representation of this particle contains only partial 
information about the electromagnetic state: the Hamiltonian H contains no 
information at all, and the symplectic form contains information about the 

magnetic field alone. But in the case at hand, where S is multiply con- 
nected, we know that specifying B is inadequate-the true electromagnetic 
state of the world contains considerably more information, since many 
gauge orbits of the phase space correspond to the same B. In the present 
case this excess information can be encoded as a single complex number 
of unit modulus-the holonomy around a loop which circumnavigates the 

y-axis.28 In light of this fact, it would be quite natural for someone who 

25 I.e. the particle is treated quantum-mechanically while the field is treated classically. 26 Since our phase space is T*S and H'(T*S, U(1))= U(1). 27 We would have to be a bit more careful at this point if we were working with B 40, and specify a 
particular curve which circumnavigates the axis. But the points established below would still go 
through. 
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espouses interpretations (1) or (3) of electromagnetism to adopt the following 
line. In order to specify the electromagnetic state of the world, one must 

specify the holonomy around a loop around the y-axis as well as the values 
of E and B. Since our Hamiltonian treatment of the charged particle in a static 

magnetic field does not contain this additional information, it is no surprise that 
there are multiple quantizations and that these are in one-to-one correspon- 
dence with the possible values of the holonomy: this just means that there is 
one quantization for each possible electromagnetic state with E = B = 0. Each 
of these quantizations should be taken seriously, since each is appropriate for a 
distinct physical situation. 

If, on the other hand, we accept the traditional interpretation of the theory- 
according to which the electric and magnetic field are the only physical 
realities, and any information contained in the reduced phase space of electro- 

magnetism which is not determined by the values of these fields is descriptive 
fluff-then we will not believe that there are any hidden variables which could 
determine which of the quantizations of our classical system is the physically 
correct one. Our attitude will be: having built all of the physically relevant 
information into our classical model of the particle moving in a magnetic field, 
we have no reason to believe that it admits of more than one physically realistic 

quantization. This line of argument will seem especially convincing when it is 
recalled that we use the same classical model to represent an uncharged free 

particle in region S-and of course we believe that in this latter case there is a 

unique physically correct quantization. 
Thus the coarse-grained gauge-invariant interpretation (2) leads to a different 

approach to quantizing the charged particle in a magnetic field than that 

suggested by the other interpretations of electromagnetism. And here we 
have an empirical question: what would a charged quantum particle do in a 
situation like this? If we find that distinct gauge orbits of vector potentials 
which correspond to different holonomies but to the same magnetic field lead 
to different interference patterns, then the coarse-grained gauge-invariant 
interpretation is sunk-it leads to an empirically inadequate quantum theory. 

4.3 The Aharonov-Bohm effect 
It is not possible to subject interpretation (2) to a direct empirical test-we 

simply do not know enough about the topology of physical space. And even if 

28 This is because when E = B = 0, all loops which are homotopic (i.e. which can be continuously 
deformed into one another) have the same holonomy. And when S = R3/{y-axis}, the equiva- 
lence classes of homotopic loops are parameterized by the number of times that they loop 
around the y-axis. In our case, this means that specifying the holonomy of any curve which loops 
around the y-axis once suffices to determine the holonomy of all curves, since the holonomy of a 
curve which wraps around the y-axis n times is just n times the holonomy of a curve which 
wraps around the axis once. 
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we did, it is unlikely that we would be able to detect these sorts of effects on the 

cosmological scale. There is, however, a tabletop experiment which is widely 
regarded as refuting interpretation (2). This experiment was first suggested by 
Aharonov and Bohm in 1959, and was carried out shortly thereafter. The idea is 
to restrict an electron to a region which can be treated for all practical purposes 
as being topologically nontrivial. One should then be able to see which 

quantizations are physically relevant. 
The experiment works as follows. One constructs a solenoid-a conducting 

wire coiled around a cylinder-whose length is long compared to the wave- 

length of the particle under consideration. When current runs through the 
solenoid, a magnetic field is created inside the device, but the external 

magnetic field is unaffected.29 Now suppose that we want to model the 
behaviour of a classical charged particle in the field-free region external to, 
but near, a solenoid. What manifold should we use as our configuration space? 
We could use S', some region of physical space which includes the solenoid. 
But then our symplectic form will have to encode information about the state of 
the magnetic field inside the solenoid. This will be formidably complicated 
when the solenoid is operational. 

There is, however, another option for describing the system which promises 
to be much simpler. We can assume that the walls of the solenoid are 

impenetrable. Now, under any reasonable interpretation of electromagnetism, 
the magnetic field is synchronically local (more on this below). So it seems that 
we should not have to know anything about the interior of the solenoid in order 
to model the behaviour of the particle. Thus, we should be able to take S as our 

configuration space, where S is just S' with the points occupied by the solenoid 
deleted. For all practical purposes, we can treat the solenoid as being infinitely 
long. The resulting phase space is of the form discussed in subsection (2) 
above. Since the classical particle is indifferent to the state of the field inside 
the solenoid, we always use the same Hamiltonian system, no matter how 
much current is running through the solenoid. 

When we want to construct our quantum theory of the charged particle 
moving in the region external to the solenoid, we find ourselves in the situation 
described in the previous subsection: the inequivalent quantizations of our 
system are parameterized by the complex numbers of unit modulus, and we 
want to know how many of them model physical possibilities. But now we have 
a manageable experimental question: what happens when we shoot a beam of 
electrons by a solenoid? Experiment reveals that the interference pattern which 
results does depend on whether or not the solenoid is operational. In fact, it 

29 It follows that the vector potential propagates with infinite velocity: the holonomy around a 
closed curve which loops around the solenoid once is equal to the magnetic flux through the 
solenoid; if we switch the thing on, then the values of the vector potential at some point 
arbitrarily far away must change instantaneously. 
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turns out the quantization which yields the correct predictions for a given 
experimental situation is Q(z), where z is the holonomy of a loop which 

circumnavigates the solenoid. 
Thus interpretation (2) of electromagnetism is in trouble. It led us to expect 

that only one of the quantizations would be empirically interesting. This turns 
out to be false. This, in turn, casts considerable doubt on the position that the 
electric and magnetic fields encode all of the physically relevant information. 

Interpretations (1) and (3), on the other hand, allow that the holonomies around 
closed curves carry genuine physical information over and above that con- 
tained in a specification of the fields. They are thus able to easily account for 
the Aharonov-Bohm effect. 

Where does this leave interpretation (2)? Above, I noted that it is permissible 
to employ S as the configuration space of the classical system only if we 
believe that the behaviour of the classical charged particle depends only on the 
field values where it is, and not on the field values in the interior of the solenoid. 

Now, it is possible to alter interpretation (2) so that the magnetic field acts 
where it is not. In doing so, one gives up synchronic-and hence also 

diachronic-locality. But one is able to thus account for the Aharonov- 
Bohm effect. Presumably, few would be happy with this nonlocal version of 

interpretation (2). 
For the vast majority of physicists, this has provided sufficient reason to turn 

away from interpretation (2), and to take seriously Aharonov and Bohm's 
conclusion that we should regard the vector potential 'as a physical variable' 

([1959], p. 491). But what exactly does this mean? Is it an endorsement of 

interpretation (1) or of interpretation (3)? Aharonov and Bohm themselves 
seem to have had interpretation (1) in mind.30 This was, however, before it was 
shown that one could give a simply gauge-invariant interpretation in terms of 
holonomies. Today I think that almost anyone who takes the care to distinguish 
between interpretations (1) and (3) would endorse the latter: people seem to be 
more willing to make the move to thinking of fields as properties of loops-thus 
sacrificing even synchronic locality-than they are to sacrifice determinism.31 

5 Conclusion 
The articulation of the content of our physical knowledge is one of the chief 
tasks of philosophy of physics. Much of this work is interpretative in nature. 

30 They gloss their comment quoted above by saying that '[t]his means that we must be able to 
define physical difference between two quantum states which differ only by a gauge transfor- 
mation.' I read this as indicating that they believe that points in the same gauge orbit correspond 
to distinct physical situations. 

31 One factor here is surely that holonomies and loops have provided a fruitful framework for the 
quantization of gauge theories such as electromagnetism, general relativity, and Yang-Mills 
theories. This sits well with the theme developed in the next section. 
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Naively, one seeks the correct interpretation of a given physical theory X. But, of 
course, all extant physical theories arefalse-none is both fully relativistic and 

fully quantum. What sense does it make to speak of the correct interpretation 
of a false theory? 

A better picture would be this. We can begin by thinking of the content of a 

physical theory as consisting of the set of worlds at which it is true. This 

provides only a first approximation to the notion of physical content: we 

certainly do not view each interpretation as being on a par. So we should 
think of the content of a physical theory as the set of worlds described by the 

theory together with some additional structure which encodes our evaluation of 
the relative merits of each of the possible interpretations. Interpretation is the 
articulation of this further structure. Sometimes, as in electromagnetism, there 
will be a single most preferred interpretation. We may, if we like, think of this 

interpretation as being the 'correct' one. We will, of course, reserve the right to 
revise such judgements. 

The formalism of the theory picks out the set of possible worlds which 
underlies the content of the theory. What determines the further structure? 
Here purely metaphysical views will play some role. But surely our beliefs 
about the structure of our own world make a large contribution here. We feel 
that there is a sense in which a world containing a physically real ether is less 
like our own than one in which fields are free-standing. This contributes to our 
sense that some interpretations of electromagnetism are more far-fetched than 
others.32 To the extent that such interpretative judgements place constraints on 
our beliefs about where the actual world might sit in the space of possible 
worlds, they are indeed judgements about our world. There is a clear sense, 
then, in which the interpretation of false theories teaches us about this world. 
Our beliefs about our world are reflected in our understanding of our false 

physical theories; so getting clear on the content of a false theory is one way to 
make explicit our beliefs about our world. Admittedly, this is a strange way to 
learn about the world. But it is also a fruitful one for us: in the absence of a true 

theory, our false theories provide much of our understanding of the structure of 
the world. 

The discussion of the preceding sections shows that distinct interpretations 
of electromagnetism constitute different ways of understanding the theory: 
according to some interpretations the theory is deterministic, according to 
others it is nonlocal. The significance of the these divergent approaches becomes 
clear when we examine the conceptual relationships between electromagnetism 
and quantum mechanics: different interpretations of the classical theory of the 

32 This sort of local notion of verisimilitude does not require commitment to a corresponding 
global notion. I can understand what it means to say that an ether world is a remote possibility, 
without necessarily understanding what it would mean to ask: 'Which is closer to the truth, 
Maxwell's theory or quantum mechanics?' 
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electromagnetic field suggest distinct approaches to resolving the ambiguity 
inherent in the quantization of classical models of the behaviour of charged 
particles. Fairness then requires us to recognize that the empirical success of 
one or another of these approaches to quantization bears upon our under- 

standing of electromagnetism. Similarly, the question of whether the general 
covariance of general relativity should be understood as a principle of gauge- 
invariance forms a bridge between the interpretative problems of general 
relativity (What is the nature of the existence of spacetime points?) and 
those of quantum gravity (Do time and change exist at the fundamental 
level?).33 Different approaches to understanding the general covariance of 

general relativity are associated with different solutions to the interpretative 
problems of classical and quantum gravity. Thus, the empirical vindication 
of a given approach to quantizing gravity may have repercussions for our 

understanding of classical spacetime ontology. 
Examples such as these force us to conclude that theories cannot be interpreted 

in isolation from one another: understanding intertheoretic relations is a crucial 

component of the articulation of the content of individual physical theories. In 
order to proceed, we need to develop a way of thinking about the structure and 
content of physics which provides a useful framework for discussion of inter- 
theoretic issues, as well as intratheoretic ones. This should start from a recogni- 
tion that we have a multitude of theories on the books: classical mechanics, 
statistical mechanics, electromagnetism, quantum mechanics, quantum statis- 
tical mechanics, quantum field theory, special relativity, general relativity, and 
so on. These theories tell us about very different worlds. Some are populated by 
particles, some by fields. In some the spatiotemporal structure is an unchanging 
backdrop, in some it is an active and changing participant. It is an important fact 
that we find that peaceful coexistence rather than competition is the rule, despite 
the nontrivial overlap between the domains of applicability of these apparently 
incompatible theories. Each of these theories informs us about our world, 
despite their profound divergence of opinion concerning ontology. 

So we have a network of theories. This network is often described as a 

hierarchy, the idea being that some theories are more fundamental than others. 
In fact, a web or a lattice would be a more appropriate metaphor here, since 
theories often have more than one limit-special relativity is the curvature --, 0 
limit of GR, while the Newton-Cartan theory is its 

c--oo 
limit. It is possible to 

speak of one theory being more fundamental than another only so long as we 
don't make the mistake of assuming that 'more fundamental' gives us a linear 

ordering of the class of theories. 
Each of our theories is empirically adequate within its own domain of 

applicability, but shares parts of this domain with other theories which save 

33 See Belot and Earman [1998a, b]. 



Understanding Electromagnetism 553 

their own phenomena. Given this situation, it seems essential to demand for 

every pair of overlapping theories an assurance that their empirical predictions 
mesh in the appropriate manner. The correspondence principle, for example, 
can be understood along these lines: as requiring that quantum mechanics be 
able to account for the empirical adequacy of classical mechanics.34 

The following picture emerges. Each of our physical theories is part of a 
network of theories which stand in subtle relations to one another. Each theory 
contributes to our understanding of the world not only in virtue of its internal 
structure and empirical adequacy, but also because of the relations in which it 
stands to other theories. Indeed, we have seen that the content of a given theory 
may depend upon how it is situated in the network-quantum considerations 

help to fix the meaning of the terms of electromagnetism, the substantival- 
relational debate about the spacetime of general relativity is intimately 
connected with ongoing work on quantum gravity. In terms the web metaphor: 
if one looks only at individual nodes of the web, one gains only partial 
information; in order to grasp the full content of the fact that this web is 
useful for describing our world, one must also look at the way that nodes are 
situated with respect to their neighbours, and at the strands which join these 
nodes. More graphically-if somewhat distastefully-if one wants to survey 
the shape of an object caught in a net, it is useful to note how the threads bulge, 
as well as where they meet. 

In the case of electromagnetism, the concrete payoff of this approach is that 
one can clarify the interpretative status of the theory by looking at the relation 
between the Hamiltonian system which models a classical charged particle in a 

magnetic field and its quantization. Constructing a new node in the web of 
theories (quantum mechanics) and linking this node to its neighbour (classical 
mechanics, via quantization and classical limits) has necessitated adjusting the 

position of the web elsewhere: we have been forced to relinquish an attractive 

interpretation of electromagnetism, in light of the conceptual structure of the 
relation between classical and quantum mechanics, and the results of empirical 
investigations. 

How can we understand this constraint on interpretation? I propose that we 
think of it as a requirement that our preferred interpretations be fruitful. When 
we discover that holonomies are preferable to magnetic fields for interpreting 
electromagnetism, we do not, strictly speaking, discover something about the 

ontology of our world-in the strictest sense, it contains neither holonomies 

34 It is important to emphasize that one cannot expect too much of the correspondence principle 
and its generalizations. In general, as one takes a classical or non-relativistic limit the ontology 
of a given theory does not go over into the ontology of the limiting theory (Rohrlich [1988]). 
And this should not bother us if we keep in mind that both the given theory and the limit theory 
are false. Similarly, it is important to keep in mind that the correspondence principle requires 
only the claim that each of the theories is empirically adequate the consistency of, and not that 
the theories be empirically equivalent. 
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nor fields. But we do discover that one interpretation provides a more fruitful 
way of thinking about a certain range of phenomena than the other-both 
provide a satisfying picture of electromagnetism, but only one of them 
provides helpful hints about the quantum realm. For this reason, we think 
that electromagnetism interpreted in terms of holonomies is closer to the truth 
about our world that electromagnetism interpreted in terms of magnetic fields. 
This changes our opinion about the situation of the actual world in the space of 
possible worlds. It is in this sense that the interpretative fallout from the 
Aharonov-Bohm effect teaches us something about our world. 
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