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Tolerance for Spacetime Singularities 
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A common reaction to the Penrose-Hawking shlgularity theorems is that 
Ehlstehl's general theory of relativity contahls the seeds of its own destruction. 
This attitude is critically e.xamhled. A more tolerant attitude toward spacetime 
singularities is recommended, 

"Progress in physics can proceed both from tolerance and intolerance." 
C. W. Misner 

1. I N T R O D U C T I O N  

Charles Misner ~ distinguished three attitudes towards spacetime singularities 
in models of Einstein's general theory of relativity (GTR). 2 The first attitude 
("Einstein avoids a singularity") holds that such singularities are merely 
artifacts of the unrealistic idealizations of the models (e.g., the perfect spherical 
symmetry and pressure-free dust matter of the Oppenheimer-Snyder model 
of gravitational collapse). This attitude was exemplified by the Russian 
school of Lifshitz, Khalatnikov, and co-workers, who claimed to have shown 
that a generic solution to Einstein's field equations (EFE) is singularity freeJ -'~ 
They were eventually forced to recan( 3~ in the face of a series of theorems, due 
principally to Penrose and Hawking, ~4~ which were generally acknowledged as 
showing that singularities in solutions to EFE are to be expected in generic 
circumstances in both gravitational collapse and cosmology. 3 

Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, 
Pennsylvania 15260. 

-'Actually, Misner was concerned principally with the initial singularity in big bang 
cosmological models; but his remarks apply equally well to other types of spacetime 
singularities. 

3 A bit of caution is required here: the Penrose-Hawking theorems demonstrate the existence 
of singularities only in the sense of geodesic incompleteness; see Sect. 2. 
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The second attitude ("Nature avoids Einsteinian singularities") holds 
that, since GTR does entail singularities, the theory fails to accurately 
describe nature. This is no doubt the attitude that Einstein himself would 
have espoused had he lived to read the Penrose-Hawking theorems, at 
least if we are to believe Peter Bergmann's report of Einstein's intolerance 
of singularities: 

It seems that  Einstein always was of the opinion that singularities in classical field 
theory are intolerable. They are intolerable from the point of view of classical field 
theory because a singular region represents a breakdown of the postulated laws of 
nature. I think one can turn this argument  around and say that  a theory that 
involves singularities and involves them unavoidably,  moreover, carries within itself 
the seeds of its own destruction...  4 

The third, more tolerant and more optimistic, attitude ("Nature and 
Einstein are subtle but tolerant") was advocated by Misner himself. It 
views the existence of singularities in solutions to EFE "not as proof of our 
ignorance, but as a source from which we can derive much valuable under- 
standing of cosmology. ''5 

It is fair to say that advocates of this third attitude are few and far 
between. Not surprisingly, there have arisen two types of research 
programs to cope with the spacetime singularities of GTR. One seeks to 
modify classical GTR in such a way that singularities are avoided while 
retaining the verified predictions of GTR for weak gravitational fieldsJ r'" 7~ 
The other program does not attempt to tinker with classical GTR but seeks 
to show that quantizing GTR will smooth away spacetime singularitiesJ s" 9~ 

There is, perhaps, a parallel here with quantum mechanics (QM) in 
that a growing number of physicists and philosophers of science hold that 
the measurement problem shows that QM contains the seeds of its own 
destruction. 6 If these twin attitudes of intolerance are correct, we arrive at 
the stunning conclusion that, despite their many empirical and conceptual 
successes, the two main theories of twentieth century physics are self- 
refuting. This conclusion may well prove to be correct, but precisely 
because of its stunning quality, caution is in order. In the case of QM many 
attempts have been made to rebut the seeds-of-its-own-destruction charge. 
(In my opinion, the devices that have been invoked to preserve standard 
QM (many worlds, many minds, hidden variables,.., v) are sufficiently 

4 Rel~renee 5, p. 186. 
5 Reference I, p. 1329. 
6 Bell and Nauenberg wrote: "It seems that the quanturn mechanical description will be 

superseded. In this it is like all theories made by man. But to an unusual extent its ult imate 
late is apparent  in its internal structure. It carries in itself the seeds of its own destruction." 
( Ref. 10, p. 285 ). 

v See AIbert'l~t for a review of various approaches to the measurement  problem in QM. 
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implausible that if I had to make a bet, it would be on investigations that 
modify Schr6dinger dynamics, perhaps along the lines suggested by 
Ghirardi, Rimini, and Weber. ~'2~) By contrast, very little has been done to 
investigate the viability of Misner's attitude of tolerance towards spacetime 
singularities. The present paper takes some tentative steps in that direction. 

Section 2 defines the subject matter by giving a brief overview of 
attempts to pin down the elusive concept of spacetime singularity. Sections 
3 and 4 critically discuss two versions of the seeds-of-its-own-destruction 
argument. The first version holds that, even taken in its own terms, classi- 
cal GTR reveals itself to be false, or incomplete, or otherwise defective. The 
second version holds that the prediction of singularities by GTR is to be 
taken as an indication that the classical description breaks down near 
singularities because quantum effects become dominant and that singu- 
larities are absent in the correct quantum description. Section 5 presents 
some concluding remarks. 

2. W H A T  IS A SPACETIME SINGULARITY?  

Talk of singularities is thing talk--i t  encourages the notion that singu- 
larities are localizable objects. But the official definition of a relativistic 
spacetime does not seem to accommodate such talk: a spacetime is a pair 
M, g,,h, where M is a differentiable manifold and gob is a Lorentz signature 
metric that is defined and C"(n >i 2(?)) for all of M; so there are no singular 
points or regions in the spacetime. This does not mean that object talk 
about singularities is beyond the pale, but it does mean that the objects 
have to be constructed. Three steps are involved in the construction: first, 
the singular spacetimes have to be distinguished from the non-singular 
ones; second, for a singular M, g,a, we can try to represent singularities as 
boundary points of M; and third, the set of boundary points needs to be 
equipped at least with a topological structure and, one hopes, differentiable 
and metric structures as well. There are a number of attempts to implement 
this scheme, but all of the extant ways of carrying out the second and third 
steps lead to counterintuitive results. Geroch, Liang, and Wald ~t3~ argue 
that this is no accident. They show that any construction satisfying some 
seemingly natural conditions will have the consequence that the singular 
boundary points are not Hausdorff separated from points of M. It seems 
that we must be prepared to find that there is no satisfying way to talk 
about spacetime singularities as localizable objects. 

We are left with the task of fashioning a definition that captures the 
set of singular spacetimes. My thesis here is that no simple definition will 
be forthcoming since to call a spacetime singular is to call attention to one 
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or more members of a large family of conceptually distinct but interrelated 
pathologies that can infect relativistic spacetimes. I will mention four such 
pathologies,  trying to give the main ideas while omitt ing technical details. 8 

The most obvious and intuitively appealing idea is that a singular 
spacetime is one in which one or more scalar curvature invariants "blow 
up." A little more precisely: a singular spacetime is one in which a curva- 
ture invariant becomes unbounded along a curve in the spacetime. But 
what kind of curve? If a curvature invariant becomes unbounded only as 
the curve trails off to spatial or temporal  infinity, then no singularity in the 
spacetime itself seems indicated. 9 Thus, it is necessary to stipulate that, to 
use Einstein's ~5~ phrase, the singular behavior  occurs "at a finite distance." 
There are various ways to make this st ipulation precise, but in order  to 
have a concrete proposal  at hand, let us say that a spacetime is singular if 
and only if a curvature invariant becomes unbounded within a finite affine 
distance along a geodesic in the spacetime. This definition counts as 
singular familiar examples such as the Rober t son-Walker  big bang models 
and Kruskal-Schwarzschi ld spacetime. However, there are spacetimes 
where the definition fails but nevertheless the curvature is sufficiently ill- 
behaved that arguably these spacetimes should be counted as singular. For  
example, all curvature scalars may remain bounded at finite affine distances 
even though some of the physical components  of the Riemann curvature 
tensor as measured in a parallely propagated  (p.p.) or thonormal  tetrad 
frame diverge at finite affine distances. ~~ Furthermore,  the blow-up of 
curvature is not the only way curvature can be ill-behaved. Suppose that 
a spacetime contains a half-geodesic (a geodesic which has an endpoint  and 
which is extended as far as possible in some direction from that point)  that 
is incomplete (i.e., has finite affine length). And suppose also that al though 
the physical components  of the Riemann tensor in any p.p. or thonormal  
frame along the half-geodesic remain bounded,  some of the physical 
components  oscillate wildly as an affine parameter  approaches its limiting 
value. Does such behavior qualify the spacetime as singular? The original 
intuition with which we started has become fuzzy. 

Another  idea is that geodesic incompleteness by itself is indicative of 
a singular spacetime. Certainly the ghost of an observer whose world line 
is an incomplete timelike geodesic would have grounds for complaining 
that the spacetime is pathological.  There is a link to the first idea since 
curvature blow-up at a finite distance induces geodesic incompleteness. But 

8 See Chap. 2, Reference 14, for more details and references to the literature. 
9 But see the discussion below of naked singularities. 
~~ e~, i = 1 , 2 , 3 , 4 ,  is an orthogonormal tetrad field, the physical components of the 

Riemann curvature tensor R,,I,,.d in this field are R,~lj~kj m =- R,,h, de~,e~e~e~ I. 
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the converse implication fails even in inextendible spacetimes. For example, 
in the Curzon spacetimes (which belong to the Weyl class of axisymmetric 
vacuum solutions to EFE), some geodesics approaching the axis of sym- 
metry are incomplete even though the curvature is well behaved. Even if 
incompleteness is taken as the touchstone of singular spacetimes, it is not 
clear what the appropriate sense of incompleteness is. Geroch ~ J6~ produced 
an example of a spacetime that is geodesically complete but contains 
timelike half-curves of bounded acceleration and finite proper length. Such 
a curve could be instantiated by a rocketship using a finite amount of fuel. 
The astronaut who steers the rocket ship would find that even if he has 
drunk of the fountain of youth, the spacetime structure does not allow him 
to live beyond a certain finite number of years. It is tempting to say that 
the reason for this bizarre limitation is that the spacetime is singular. Still 
more inclusive notions of incompleteness can be formulated using the 
concept of generalized affine length.t~ Before moving on to another idea it 
should be noted that the singularity theorems of Penrose and Hawking and 
their generalizations all use geodesic incompleteness as the criterion of a 
singular spacetime. The proof techniques of these theorems do not lend 
themselves to demonstrating the existence of singularities in the other senses 
discussed here. 

A third conception derives from Misner's ~t8~ idea that singular 
spacetimes are those that have resulted from cutting out singular (or even 
regular) points from a larger manifold. How to detect and characterize 
these "missing points" remains unsettled, but the tools developed by Scott 
and Szekeres ~'9~ seem helpful. The details are too complicated to present 
here, and I will simply mention that the present conception diverges from 
the incompleteness and curvature blow-up conceptions of singularities. 
Missing regular points (as indicated by the fact that the spacetime is 
properly extendible) give rise to geodesic incompleteness. But geodesic 
incompleteness need not indicate missing points, regular or singular, as 
shown by Misner's ~18~ example of a compact and geodesically incomplete 
spacetime. The incompleteness in this example cannot be due to missing 
points since a compact manifold cannot be imbedded as a proper subset of 
another (Hausdorff) manifold of the same dimension. Curvature blow-up is 
one reason for missing singular points, but presumably missing points can 
also arise from other kinds of pathologies not associated with curvature 
singularities. 

A fourth pathology corresponds to Penrose's idea of a naked 
singularity. ~2~ There are many ways to try to make this idea precise, but 
the strongest reasonable requirement for the absence of a naked singularity 

~ This concept is discussed in Reference 17, See. 8.1. 
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is the condit ion of global hyperbolicity. ~2 A weaker requirement would 
tolerate breakdowns of global hyperbolicity as long as they are confined to 
the interiors of black holes. In one guise the cosmic censorship hypothesis 
is the conjecture that under physically reasonable condit ions EFE do not 
permit naked singularities to develop from regular initial data. Much 
effort has gone into stating precise versions of this conjecture and either 
proving or refuting the conjectures. The fate of cosmic censorship remains 
unsettled. ~3 What  I want to emphasize is that the cosmic censorship idea 
represents a radical departure from the first two conceptions of singularities 
since nasty behavior which takes place only "at infinity" can lead to viola- 
tions of cosmic censorship and lead one to classify a spacetime as nakedly 
singular. An artificial mathematical  example suffices to illustrate the point. 
Remove from Minkowski spacetime R 4, ii,,b a compact  ball B to the future 
of the time slice t =0 .  Define a scalar field s whose value goes to 
rapidly as the (missing) B is approached.  The spacetime g~4_ B, s'22~l,b is 
geodesically complete, curvature does not blow up at a finite distance, etc. 
But it is not globally hyperbolic; the time slice t = 0 is not a Cauchy surface 
for the new spacetime, and initial data on t = 0 do not suffice to determine 
future development. 

Other pathologies that might deservedly qualify a spacetime as singular 
can surely be formulated. But ! trust that enough has been said to make 
it clear that there is no univocal concept with a simple and precise mathe- 
matical expression underlying our pre-analytic intuitions of a singular 
spacetime. 

Before closing this section an embarrassing admission needs to be 
made. When we speak of singularities or singular spacetimes, we do not 
know what we are talking about. The point is not that we don' t  know how 
to choose among the family of pathologies listed above. Rather the point 
is that what we should be interested in are essential singularities, singu- 
larities that cannot be removed by extending the spacetime; but this is 
an ill-defined notion until the continuity/differentiability condit ions on 
extensions are specified. The Penrose-Hawking  theorems prove the exist- 
ence of essential singularities (in the sense of geodesic incompleteness) 
under the assumption that an allowable extension is at least C ' - - .  Now any 
physically relevant extension must surely permit one to make sense of EFE 
at least in the language of distributions; but presumably this can be 

~-" A spacetime M, g,i, is globally hyperbolic if and only if it is strongly causal (i.e., for every 
p ~ M any open neighborhood N(p) ofp there is a subneighborhood N'(p) which no causal 
curve reenters once it leaves} and J (p )nJ  +(q) is compact for all p, q ~ M. Global hyper- 
bolicity is equivalent to the condition that there exist a Cauchy surface, i.e., a spacelike 
hypersurface that is intersected exactly once by every causal curve without endpoint. 

~3 See Chap. 3 of Rel~rence 14 for a review of the literature. 
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possible even if the metric is not C 2-  So what are the minimal continuity/  
differentiability conditions for this to be possible? And under these minimal 
conditions which of the spacetimes of general relativity that are commonly 
said to be singular are counted as essentially singular? These problems are 
unresolved, but some progress has been made/21~ 

3. D O  S I N G U L A R I T I E S  S H O W  THAT CLASSICAL GTR C O N T A I N S  
T H E  SEEDS O F  ITS O W N  D E S T R U C T I O N ?  

In this section I will critically assess the reasons that have been advanced 
for giving a positive answer to this question under the assumption that 
quantum effects are to ignored. Thus, a positive answer says that even taken 
in its own terms, classical GTR is, in an important  sense, self-refuting. 

The first motivat ion comes from Kip Thorne: 

From a purely philosophical standpoint it is difficult to believe that physical 
singularities are a fundamental and unavoidable feature of our universe. On the 
contrary, when faced with a theory which predicts the evolution of a singular state, 
one is inclined to discard or modify that theory rather than accept the suggestion 
that the singularity actually occurs in nature. Such was the case with Rutherford's 
theory of the atom... ~4 

The analogy with the Rutherford a tom is not apt. The combinat ion of the 
Rutherford model of the a tom and classical electrodynamics provides an 
illustration of the grossest form of the seeds-of-its-own-destruction argu- 
ment at work: the combined theory sends the orbital  electrons crashing 
into the nucleus, a prediction falsified by the fact that the material world 
exists. (Similarly, if the seeds-of-its-own-destruction interpretation of the 
measurement problem in Q M  is correct, then Q M  reveals itself to be 
empirically inadequate in the worst way since it cannot account for the fact 
that measurements have determinate outcomes.) By contrast,  the arche- 
typical GTR predictions of singularities do not involve any such blatant 
empirical inadequacies. Indeed, the prediction of black holes formed in 
gravitational collapse is meeting with increasing empirical success. The 
standard big bang model would be in trouble if some recent estimates of 
the Hubble  constant stand up to scrutiny since, when plugged into the 
s tandard model, these estimates produce an age of the universe that is far 
too young/23~ But the difficulty here is not due to the initial big bang 
singularity per se since the model can accommodate  the estimates by 
adding a positive cosmological constant. 

t4 Reference 22, p. 415. 
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One might in fact seek to turn the present form of the seeds-of-its- 
own-destruction argument around and view singularities in GTR not as 
seeds of destruction but rather as seeds of definitive confirmation. Hawking 
has noted that most of the classical tests of GTR involve weak gravita- 
tional fields. "Thus observations to determine whether singularities actually 
occurred would provide a test of the [EF]equat ions  for strong fields. "t5 
The rub is that determining whether singularities actually occur is not like 
determining whether some localizable object exists in spacetime; rather, it 
involves (as I hope Sec. 2 made clear) determining whether or not space- 
time has some large-scale or even global properties. But though the deter- 
mination is difficult, it is not impossible in principle. 

Such optimism might be open to challenge. How, for example, could 
it be verified that the spacetime we inhabit is timelike geodesically incom- 
plete? Even if some volunteer could be found to sacrifice himself for the 
sake of scientific knowledge, how could he tell the difference between a case 
where his geodesic (let us suppose) world line is in principle inextendible 
beyond a certain finite proper time because, say, it encounters unbounded 
curvature vs. a case where his world line is extendible in principle but not 
in practice because of curvature that is bounded but so strong as to termi- 
nate any physical measuring instrument? The short answer is that our self- 
sacrificing scientist can't tell the difference and, thus, cannot definitely 
verify the singular nature of his spacetime. But by the same token he 
cannot verify predictions about the temperature at the core of the sun. The 
interesting issue is not whether we can definitively verify predictions about 
the temperature of the core of the sun or the singularity structure of 
spacetime but whether observation and previously accepted theory can 
combine to give us reasonable beliefs about such matters. There are skep- 
tics who will give a negative answer for both cases. I have no response to 
hardline skeptics. My claim is only that to the extent that it is reasonable 
to form beliefs about nonverifiable theoretical assertions in physics, then 
assertions about the singularity structure of spacetime will be among them. 

To pursue the theme of confirmation, reflect on the truism that in 
testing a scientific theory it is fruitful to consider the theory not in isolation 
but in confrontation with rival theories--in the case in point, classical GTR 
would be compared with rival classical theories of gravitation that avoid 
spacetime singularities. Unless such rivals are of the ad hoc cut-and-paste 
variety, they will surely yield predictions that depart from those of GTR 
even in the regime where singularities are not involved. Consider, for 
example, Moffat's 17~ nonsymmetric gravitational theory (NGT). Einstein 
and others had utilized nonsymmetric metrics and affine connections in an 

15 Reference 24, p. 520. 
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attempt to unify electromagnetism and gravitation. Moffat employs some 
of the same formalism not in the service of a unified field theory but as a 
means of describing pure gravitation. The resulting N G T  promises to avoid 
singularities and black holes as well. Moffat ~7~ has detailed numerous subtle 
and not so subtle ways in which the predictions of N G T  differ from those 
of GTR even in regimes not involving singularities. Now suppose that 
experimental investigations favor the predictions of GTR in regimes not 
involving singularities over N G T  and other rival theories that eschew 
singularities--otherwise GTR would be rejected on straightforward grounds 
of empirical adequacy having nothing to do with singularities. In that case 
I submit that at least on the classical level, we would have good reason to 
take the singularity predictions of GTR seriously. 

Scientific theories are judged along several dimensions in addition to 
empirical adequacy. One version of the seeds-of-its-own destruction argu- 
ment is aimed at the dimension of completeness. Thus, Brandenberger et al. 
charge that "The presence of singularities is an indication that G [ T ] R  is 
an incomplete theory. ''t6 An analogy with the special theory of relativity 
(STR) suggests why this charge might seem to have merit. Consider a set 
of putative laws in the form, say, of ordinary or partial differential equa- 
tions for a field (scalar, vector, or tensor) on Minkowski spacetime. 
Suppose that it is discovered that the putative laws allow singularities to 
develop at points of Minkowski spacetime in the sense that the field 
strength becomes unbounded as these points are approached. Then the 
putative laws are incomplete in that they have nothing to say about what 
happens at these points. '7 Further, insofar as laws of nature must be 
universal--must apply to all of space and t ime--the putative laws do not 
count as genuine laws but, at best, as approximations to the real laws. 
While this attitude seems basically correct, the analogy with GTR is inapt 
because, in contrast to STR, GTR does not specify a fixed spacetime that 
can serve as a backdrop in which the singular behavior of physical fields 
can be measured. In GTR the metric field g,,b is now a physical field whose 
singularity behavior we have to judge. And the judgment has to start from 
the fact that a general relativistic spacetime M,  g,,b is such that g,,b is 
defined and differentiable at every point of M-- there  are no singular points 
of spacetime where the laws of GTR fail to apply. 

This definitional move may seem to facile. In the case of a closed 
Robertson-Walker spacetime, Brandenberger et al. see a kind of incom- 
pleteness resulting from the initial and final singularities. " [T ]he  [final] 
singularity implies that we cannot answer the question what will happen 

t~ Reference 6, p. 1629. 
L7 Unless the laws can be recast in a distributional form that applies to singular points. 
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after the 'big crunch' or (in the case of an expanding universe) what was 
before the 'big bang'. ' 'Is In response I would pose a dilemma. Either the 
initial and final singularities are essential--in the sense that it is impossible 
to extend through them in a way that EFE make sense even in the 
language of distributions (see Sec. 2 ) - -o r  not. If so, then by the lights of 
GTR,  talk about "before" the big bang and "after" the big crunch is physi- 
cally meaningless. If not, then GTR can say something about  the before 
and after. In either case G T R  does not stand convicted out of its own 
mouth of raising meaningful questions it cannot answer. 

There remains one respect in which the charge of incompleteness may 
be justified. If the singularities are of the naked variety there is a break- 
down of determinism. So if determinism is a necessary condition for a 
classical relativistic theory to be complete, G T R  is incomplete if the cosmic 
censorship hypothesis is false. Note that it is not just any spacetime singu- 
larities that sustain the charge of incompleteness; in particular, the 
singularities of the Rober tson-Walker  models do not fall under this heading 
since the initial and final singularities are not counted as naked (since the 
spacetimes of these models are globally hyperbolic). Note also what has to 
be done to defend G T R  against this form of the incompleteness accusation: 
either cosmic censorship theorems have to be proved, or else it has to be 
argued that a globally well-posed initial value problem is not essential to 
completeness and that a locally well-posed problem--which  in fact obtains 
for EFE- - i s  sufficient. The latter move is not very appealing. Presumably 
evolution does not just cease at the Cauchy horizons;19 something happens 
beyond the horizons, and if G T R  does not determine what it is, then it is 
incomplete. Thus, the fate of the incompleteness objection rests on the fate 
of cosmic censorship. 

Closely related to the incompleteness objection is the complaint that 
singularities in a field show that the field is not fundamental. Once again 
the motivating analogy relies on STR. In STR the Maxwell electromagnetic 
field is regarded as fundamental since, among other things, solutions to the 
Maxwell equations exhibit the global existence property. By contrast, a 
perfect fluid is not regarded as fundamental since the development of 
singularities can wreck global existence. ~2s~ The blame for the wreck lies not 
with nature but in the oversimplified idealization of the perfect fluid 
description. But yet again the analogy with GTR is faulty. In the G T R  the 
field at issue is the metric field, and in G T R  we confront the unprecedented 

~s Reference 6, p. 1629. 
~9 Ifa spacelike hypersurface S is not a Cauchy surface it will have nontrivial Cauchy horizons. 

The future Cauchy horizon H+(S) of S is defined as the future boundary of the future 
domain of dependence D +(S) of S. D +(S) consists of all those spacetime points p such that 
every causal curve which passes though p and which has no past endpoint meets S. 
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situation where the spacetime metric is not part of a fixed background 
against which it plays itself out but is itself a dynamical element that 
takes part in the drama. Is there reason to think that spacetime 
singularities indicate that GTR gives an oversimplified description of the 
dynamics of the metric field? A negative answer is indicated if, as sup- 
posed above, GTR continues to give better experimental predictions than 
rival classical theories of gravitation that eschew singularities. There is, 
however, a grain of truth to the current objection, but it leads back to the 
problem of cosmic censorship. Consider the initial value problem for the 
vacuum EFE. Choose a complete Riemannian three-manifold 2". Given 
the first and second fundamental forms hab and k,b of Z', there is a unique 
(up to diffeomorphism) maximal development M, g,,b of (s h,b, kab) 
which is a solution of the vacuum EFE and for which _r is a Cauchy sur- 
face. One can then ask whether under generic conditions this solution is 
a global one in that M, g,b does not admit of proper extensions. If not, 
GTR is open to the charge that it does not provide a fundamental 
description of the metric field since such a description should fix global 
selutions. Note that it is not just any singularity but only naked 
singularities that give rise to a negative answer. Indeed, one way to for- 
mulate the cosmic censorship hypothesis is to say that a positive answer 
is a consequence of EFE. 

In addition to empirical adequacy, completeness, and fundamentalness 
of description, physical theories are also judged in terms of their explana- 
tory power. The standard big bang model has been found wanting on the 
last grounds. The complaint is that the explanation the model furnishes for 
the uniformity of the observed cosmic microwave background radiation 
lacks robustness since it must postulate special conditions near the big 
bang. Some skepticism about the robustness requirement is in orderfl ~ But 
in any case the source of the robustness complaint is not the big bang 
singularity itself but the presence of particle horizons which seem to block 
a satisfying causal account of how generic inhomogeneous and anisotropic 
initial conditions can smooth themselves enough to accord with present 
observations. And the currently most popular solution of the horizon 
problem, inflationary cosmology, proceeds not by eliminating the initial 
singularity but by allowing even the locations on the surface of last scattering 
that are separated by large angular distances to have a common causal 
past. 

Finally, I want to examine Cornish and Moffat's t26~ charge that the 
black hole singularities of GTR generate two paradoxes. The first paradox 
is formulated as follows: 

2o See Reference 14, Chap. 5. 

825/26/5-5 
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An observer at spatial infinity would see falling matter "freeze" before it can form 
an event horizon, whereas a freely falling observer can fall through the event 
horizon without difficulty, but be unable to communicate this fact to the observer 
at infinity. This means that the spacetime is separated into two disconnected parts 
by a null surface and there exists no communication between the two spacetimes. 
A paradox arises, for these two observers completely disagree about what they see 
in a spacetime containing a black hole. 2~ 

Note that the paradox here relates not to singularities per se but to event 
horizons. Similar paradoxes can arise even in the context of STR. Consider, 
for example, an observer y in Minkowski spacetime who undergoes Born 
hyperbolic acceleration (see Fig. 1). Such an observer will have an even 
horizon E(~,). An unaccelerated observer ?' can pass though E(y) without 
difficulty but be unable to communicate this fact to ~,--), will experience the 
lapse of an infinite amount  of proper time before y' crosses E(),). I submit 
that this paradox and the Cornish-Moffat paradox alike are not genuine 
paradoxes but - - l ike  the so-called twin paradox--are  simply illustrations of 
basic features of relativistic spacetimes. 2-" 

The second paradox-Hawking's  so-called information loss pa radox- -  
is genuinely disturbing. Hawking c27~ established that black holes can 
evaporate by emitting radiation with a thermal spectrum. He later argued 
that the most plausible upshot of this evaporation is for the black hole to 
disappear completely without giving away any information about the black 
hole state. I-'8, 291 In quantum mechanical terms, an external observer would 
see an initially pure state converted into a mixture, with a resultant loss of 
information about phase relations. Such an information leak would be 
effectively plugged if black hole singularities were banished, as in Moffat's 
NGT. But other approaches are possible. For example, Banks and 
O'Laughlin 13~ have suggested that the information is preserved in tiny 
black hole remnants, which if true would have important cosmological 
implications. Stephens et  al. ~311 have offered an alternative approach to 
black hole quantization in which quantum coherence is not lost. If these 
approaches to stemming information loss should prove wanting, it remains 
open to explore the consequences of a new element of unpredictability that 
results from combining GTR and QM. Whatever verdict the future will 
render on this matter, we have a good illustration of how Misner's attitude 
of tolerance can be fruitful in producing interesting new physics. 

2t Reference 26, p. 6628. 
,-2 Of course, in the case of a black hole the event horizon has an absolute or observer inde- 

pendent character since it is defined as the boundary of the region that can be seen from 
future null infinity. But this fact does not invalidate the point about the "paradox" of event 
horizons. 
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In introducing quantum considerations I have already strayed outside 
the first version of the seeds-of-its-own-destruction argument and into the 
second. The following section takes up the second version explicitly. 

4. QUANTUM EFFECTS AND SINGULARITIES 

The second version of the seeds-of-its-own-destruction argument does 
not claim that classical GTR, taken in its own terms, reveals itself to be 
empirically inadequate, incomplete, or otherwise defective. Rather, the 
second version makes a weaker charge that is contained in two claims: first, 
that quantum effects will come into play in regimes where GTR predicts 
singularities; and second, that these quantum effects will invalidate the 
classical description and will somehow lead to an avoidance of singularities. 
Ultimately these claims must be evaluated in the light of an adequate 
quantum theory of gravity, which we are very far from having. Absent such 
a theory, we are reduced to speculation. Still, the right sort of speculation 
can at least locate the relevant issues and suggest avenues of investigation. 

The first point to be kept in mind in assessing the plausibility of the 
claims at issue is that the question has to be divided among the various 
types of spacetime singularities discussed in Sec. 2. Take first curvature 
singularities. It is plausible that quantum effects become important on 
scales corresponding to the Planck length lp~ ~ 10 -33 cm and, thus, will 
dominate in cases where classical GTR says that, for example, the Rieman- 
nian curvature scalar approaches lpS'-. As a first indication of why quantum 
effects could lead to an avoidance of curvature singularities, one could 
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point to the amazing ability of ordinary QM to smooth away the singu- 
larities of classical mechanics. For instance, the motion of point mass 
particles under their mutual Newtonian 1 / r  2 gravitational forces is known 
to generate both collision and noncollision singularities (in the latter case 
the solution ceases after a finite time because all of the particles have dis- 
appeared to spatial infinity). By contrast, the quantum version of this 
problem is completely regular. The Hamiltonian is essentially self-adjoint 
so that the time evolution operator is defined for all times. This line of 
thought has been extended by Horowitz and Marolf, ~321 who studied the 
motion of quantum test particles in singular spacetimes. They found that in 
some static spacetimes with timelike curvature singularities, the motion of 
the quantum test particles is well behaved (unitary time evolution). 

The next step toward a quantum theory of gravity is the semiclassical 
approximation in which the quantum expectation value of the (renor- 
realized) stress-energy tensor is inserted in EFE in order to calculate the 
backreaction of quantum fields on the spacetime metric. In some model 
calculations it is found that there are states that involve negative pressures 
large enough to violate the weak and strong energy conditions 23 used in 
the Penrose-Hawking singularity theorems, and as a result the model can 
bounce before reaching a curvature singularity/81 Of course, there is no 
guarantee that such semiclassical calculations are reliable indicators of 
what will happen when the gravitational field itself is quantized, but in the 
meantime such results are encouraging for those who want to banish 
singularities. 

The picture is not so rosy when we turn to other types of singularities. 
In the case where geodesic incompleteness is not accompanied by curvature 
blow-up, there is no a priori reason to think that quantum effects will 
dominate. Thus, the best hope for the anti-singularity league is to argue at 
the classical level that this type of singularity will not arise in physically 
reasonable circumstances. A result of Clarke ~33~ can be utilized to this end, 
at least if a strong version of cosmic censorship is true. He showed that in 
globally hyperbolic spacetimes that are not too specialized in a technical 
sense, the incompleteness of timelike geodesics is due to a curvature 
singularity. 

This brings us to naked singularities in the sense of features of 
spacetimes that would violate cosmic censorship. If, as I argued in Sec. 2, 
it is not singularities in general but only naked singularities that raise 
concerns about the adequacy of GTR, then, as I will now argue, one had 

23 The stress-energy tensor T~h satisfies the strong energy condition if and only for any unit 
timelike V Q, T~h V" I '~ >/ -- ( 1/2) Tr(T,h). Tot, satisfies the weak energy condition just in case 
for any timelike V L  T,t,  V ~ V h >>- O. 
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better hope that quantum gravity does not banish curvature singularities. 
The maximal extension of the Reissner-Nordstr6m spacetime contains a 
curvature singularity that is naked in any reasonable sense of that term. 
This example, can be brushed aside as a counterexample to cosmic censor- 
ship on the grounds that it is highly nongeneric in the space of all solutions 
to EFE. Evidence for this comes from the fact that the Cauchy horizons in 
this solution are unstable: small perturbations on an initial value hyper- 
surface are amplified by a blue shift to produce an infinite effect on the 
Cauchy horizon. However, when the black hole portion of the Reissner- 
Nordstr6m solution is imbedded in de Sitter spacetime instead of an 
asymptotically flat spacetime to form Reissner-Nordstr6m-de Sitter 
spacetime, the Cauchy horizons are found to be stable under a wide range 
of parameter values. 134~ But quantum gravity may come to the rescue of 
cosmic censorship. Markovi~ and Poisson 135~ have argued that the Cauchy 
horizons are quantum mechanically unstable in the sense that the expecta- 
tion value of the renormalized stress energy tensor diverges as the horizon 
is approached. The backreaction on the metric presumably cuts off future 
development. Observers are shielded from a naked singularity by having 
them terminated by a non-naked curvature singularity. This may seem a 
rather draconian way to protect cosmic censorship. But if, as I have 
argued, the real fear of singularities has to do with their nakedness, the 
watchword should be: better dead than uncensored. 

Of course, one could hope that the need for such a draconian rescue 
is not necessary since in the fully quantized version of GTR the naked 
curvature singularity would not arise in the first place. But such a hope is 
inoperative for another way in which cosmic censorship can fail. The strong 
form of cosmic censorship can be violated not only by curvature singu- 
larities that are not hidden inside of black holes but also by the development 
of acausal features such as closed timelike curves (CTCs). An example is 
given by Misner's two-dimensional spacetime (Fig. 2) which serves to 
illustrate some of the features of T a u b - N U T  spacetime, which is a vacuum 
solution of EFE. The Taub region is as causally nice as one could desire, 
but the N U T  region contains CTCs. Such features can be just as disruptive 
to predictability and determinism as naked curvature singularities. In the 
present case, the time slice S fails to be a Cauchy surface because of the 
development of the Cauchy horizon H+(S) which separates the Taub and 
NUT regions. There are in fact different (i.e., nondiffeomorphic) extensions 
of the Taub region, and the initial data on S fail to determine which will 
be actualized. In this example the chronology horizon is classically 
unstable. But this is not the case in general, and at present there are no 
indications of an effective mechanism in classical GTR that would censor 
the development of CTCs. Hawking ~36~ proved a chronology protection 
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Fig. 2. Two-dimensional Misner spacetime 
illustrating some features of Taub-NUT space- 
time. 

theorem which was supposed to show that the combination of EFE and 
energy conditions do not permit the operation of a time machine which 
would manufacture CTCs. Although technically correct, the mathematical 
result does support this gloss. ~37) At present, it seems that the only hope for 
censoring CTCs comes from the calculations of semi-classical quantum 
gravity that indicate the quantum instability of the Cauchy horizons that 
would result from the manufacture of CTCs/38~ Once again, curvature 
singularities are being pressed into the service of cosmic censorship. 

5. CONCLUSION 

Part of my message has been that a discussion of the implications of 
spacetime singularities in general and of the seeds-of-its-own-destruction 
argument against classical GTR in particular needs to be more sensitive to 
the fact that there are many different kinds of spacetime singularities (or 
better, many different ways in which a general relativistic spacetime can be 
singular). The other part of the message is that a generalized horror 
singulariti is not warranted and that not all forms of singularities call into 
question the soundness and completeness of GTR. If GTR allowed naked 
singularities to form in circumstances that are regarded as both physically 
reasonable and generic, then the completeness of the theory would be 
called into question. Thus, cosmic censorship continues to be perhaps the 
most important unresolved problem in classical general relativity. Whether 
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or not  a q u a n t u m  theory  of  gravi ty  will banish singularit ies remains  to be 
seen. And  it also remains  to be seen whether  we should  want  q u a n t u m  
gravity to rid us o f  singularit ies;  for at present  the only known  mechan i sm 
enforcing cosmic censorship  in certain c i rcumstances  is the divergence of  
the q u a n t u m  expec ta t ion  value of  the stress-energy tensor  on the Cauchy  
hor izon and  the curva tu re  s ingular i ty  resul t ing f rom the backreac t ion  on 
the metric.  

If  the p ioneers  o f  general  relativistic physics had  lost their  collect ive 
nerve when they found that  the theory  yielded unexpected  and seemingly 
bizarre consequences,  our  current  unders tand ing  of  the universe would  be 
much impover ished.  I suggest that  a loss of  nerve  over  the predic t ion of  
spacet ime singularit ies could  p roduce  ano the r  kind of  impover i shment .  
Trust  the theory,  even when  it predicts  singularities,  and try to learn f rom 
these predict ions.  
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