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Abstract

I introduce and organize into a coherent framework for inquiry the major research topics in the
foundations of general relativity. In doing so, I hope to shape the research agenda for established
philosophers of physics, graduate students searching for work in these topics, and other interested
academics. The overriding theme of this Element is that nearly all of general relativity’s foundational
issues concern, in some way or another, (1) what possibilities it represents, (2) the internal structure
of those possibilities and their interrelations, and (3) how those possibilities differ from what’s come
before.
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1 Interpreting Relativistic Spacetimes

1.1 A Partial Interpretation

In 1919, four years after Albert Einstein completed his formulation of the general theory of relativity, the
English astronomer Arthur Eddington organized two expeditions to test its prediction of the deflection
of light around massive objects. Their observations of starlight around the Sun during a solar eclipse
vindicated Einstein’s theory and brought it immediate worldwide attention, including its apparently
revolutionary implications for the nature of time, space, and scientific method (Ryckman 2005).! Having
passed all subsequent tests yet made of it, that theory—now commonly known by the moniker “general
relativity”—is still our currently best theory of space, time, gravitation, and the cosmos. It is thus still an
essential font from which we paint the scientific image of the world. Painting that image is the business
of interpreting the general relativity: metaphysically, depicting what the world, or parts of it, could
be like if the theory were true; semantically, giving the truth conditions of the theory’s commitments.
A partial interpretation, then, is an unfinished canvas, depicting some aspects of what could be, or
giving some truth conditions. What Curiel (2009, 46) calls a “concrete” interpretation is at least a
partial interpretation, for it “expresses the empirical knowledge the framework contains—for example,
the fixation of a Tarskian family of models, or, less formally, the contents of a good, comprehensive
text-book” like Synge (1960), Hawking & Ellis (1973), Misner et al. (1973), Wald (1984), or Malament
(2007, 2012). (In what follows, I assume familiarity with the differential geometry these textbooks use
in formulating general relativity.)

An example of such a “concrete” interpretation starts with the “pure” gravitational models that ab-
stract away from matter. These are the smooth, four-dimenensional Lorentzian manifolds, (M, g). They
represent ways that a universe or a portion of a universe could be. Those that represent possible universes
are sometimes termed cosmological. The points of the manifold M represent atomic events, which have
no extension or duration, such as an idealized finger snap that gets shorter and smaller without limit; the
smooth structure of the points represents how these events are connected together in a four-dimensional
continuum modeled locally on R*. This means that each of the three spatial dimensions and the one
temporal dimension are modeled (again, locally) on R. Because of this interpretation in terms of events,
there are a few restrictions on M:

1. M is Hausdorff. This ensures any two distinct atomic events can be separated as being parts of
disjoint, extended, composite events.

2. M is path-connected. A path or curve in M is a continuous functiony : I — M, with/ C R a
connected interval, so being path-connected ensures that any two points lie on a common path.
This ensures that all events are a part of the same connected continuum.

3. M is second countable. This ensures that the collection of events is not so large that a derivative
operator (discussed below) cannot be defined on it (Geroch 1971). For example, it precludes
collections of events based on the long line (Steen & Seebach 1978, 71).

Ultimately, the interpretation of M in terms of events and the concomitant restrictions on the structure
of M derive from the interpretation of the spacetime metric g. It represents the durations, lengths, and
other derived and related quantities of certain classes of events. Showing how requires some preliminary

!See Crelinsten (2006) and Kennefick (2019) for details about the expeditions and later controversies about their results.
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elaboration. The metric mathematically is a smooth pseudo-Riemannian metric tensor field, meaning
that it smoothly assigns a symmetric bilinear form g, to the tangent space T, M of each point p € M.
(Here, and in what follows, I have the occasion to use the abstract index notation, on which see, e.g.,
Wald (1984) or Malament (2012).) That the metric has a Lorentzian signature means that one of its four
eigenvalues (in any orthogonal basis) is of the opposite sign as the other three. Thus, in each tangent
space T,M, there is a double cone, emanating from the origin, of vectors v* satisfying gav™? = 0.
Appropriately, the vector in these cones are called null or sometimes lightlike; those in the interior are
called timelike, and those in the exterior are called spacelike. The justification for these labels comes
from a certain mathematical fact about curves and a set of representational postulates. The mathematical
fact is that tangent vectors at p represent directions in the manifold that a C' curve y : I — M passing
through p can point. Such curves can then be classified as null (lightlike), timelike, or spacelike when
all their tangent vectors have these respective labels. If v* is the tangent vector field to any such curve
v, then the magnitude of the curve, |y|, is defined as fl Igabv“vb |'2ds, where the integrand is called the
magnitude of the vector v*. Note that |y| is invariant under reparameterization, so curves with the same
image have the same magnitude. The first pair of representational postulates pertain to certain of these
curves:

Duration v is timelike iff then |y| represents the duration of the events in y[/]. (This postulate is
sometimes called the clock hypothesis for reasons to which I turn in section 2.)

Length 1y is spacelike iff |y| represents the length of the events in y[I].2

That timelike curves have duration while spacelike curves have length in part justifies the names “time-
like” and “spacelike” for their respective sets of tangent vectors. For example, a timelike curve might
represent a process or a person’s history, and the curve’s magnitude the duration of that process or his-
tory. These postulates entail that every atomic event has zero duration and length, as well as the others
features I attributed to them above.

In addition to representing durations and lengths, the metric provides a criterion of change for the
(signed) magnitude of a vector field u® along a curve y: u® is constant in (signed) magnitude with
respect to g just in case the scalar field gqpu®u® is constant on y. A (covariant) derivative operator
(or affine connection) V, provides another criterion of change. (As alluded before, these operators exist
globally iff the M is second countable.) If, as before, v is the tangent vector field to y, then v*V,u® is
the directional derivative of u® along y, which vanishes just in case u® is constant with respect to V on
v. (Both notions of constancy can be generalized to any tensor field on M.) In general there will be
infinitely many derivative operators on M, but the Levi-Civita derivative operator is the unique, torsion-
free one compatible with the metric, in the sense that a vector field along a curve is constant with respect
to the derivative operator only if it is constant in magnitude with respect to the metric. (Compatibility is
logically equivalent with the computationally useful equation V,gp. = 0.) In this sense, the Levi-Civita
derivative operator extends the notion of change provided by the metric.

A derivative operator determines a Riemann curvature tensor field R, ,, which encodes how the
operators V. and V, fail to commute, as represented by the path-dependence of parallel transport of
vectors. R“bc J in turn determines the Ricci tensor field Ry, = Rcabc and, with the metric, the scalar
curvature field R = R,,¢%". The Einstein field equation correlates these curvatures—hence the structure
of durations and lengths—with the energy-momentum tensor, 7 gp:

8nG

1
Rup — ERgab —Aga» = C_4Tabe (1)

where A is the cosmological constant, G is Newton’s gravitational constant, and c is the speed of light
in vacuum. Equation (1) shows that the metric, through curvature, determines the distribution of energy

2One can add principles supplemental to Length for representing areas, volume, and angles in the obvious way, the former
two using the volume measure induced on metric submanifolds, the latter using the usual cosine formula.
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and momentum. The “trace-reversed” form of the equation,

1
Ry = 8nG (

6_4 Tab - ETgab) - Agab’ (2)

where T = T,,g’, shows that the distribution of energy and momentum determines only the Ricci
tensor, hence only constrains the metric.’ However, the metric does not determine which matter fields
contribute to energy and momentum, nor how they contribute. To represent matter more explicitly in
general relativity, one must supplement the pure gravitational models with mathematical fields and with
rules for how the fields and their interactions contribute to 7. (If one writes T, as a sum of tensor fields
that depend on the fields representing matter, the interaction terms are those that depend non-trivially on
more than one field.) If the matter theories have a Langrangian formulation, then the associated action
principle determines their contributions to energy-momentum and their equations of motion (although
nothing in general relativity requires that matter theories have a Langrangian formulation).* These equa-
tions of motion sometimes invoke further spacetime structure—fields that do not themselves contribute
to energy-momentum—such as a temporal or spatial orientation. The fields themselves are often tensor
fields on M, but more generally they can be sections of any principal bundle over M. Importantly, for
every p € M, each field takes on a value in its bundle’s fiber over p, representing a sort of part of the
field. This further justifies interpreting p as an atomic event, for it is the event of point-coincidence (or,
perhaps better, part-coincidence) of matter fields at p.

Aside from matter fields, it is also common to consider relativistic spacetimes with certain types of
material point particles, the treatment of which further supports the interpretation of each p € M as an
atomic event or material coincidence. This treatment adds three representational postulates:

Histories The images of smooth timelike curves represent one-to-one the possible histories of massive
test particles. (The curve producing such an image is called the corresponding particle’s world-
line.)

Geodesic Principle The images of smooth timelike geodesic curves represent one-to-one the possible
histories of free massive test particles.

Light The images of smooth null geodesic curves represent one-to-one the possible histories of (test)
light rays (or photons, quantum connotations notwithstanding) in vacuum.

These principles invoke some terms to explicate. First, a fest particle (whether massive or light) is one
whose mass does not contribute to T,;. Their histories are affected by the curvature of the spacetime
geometry, but not vice versa. (I will have more to say about the peculiarities of test particles in sections
2 and 5.) Combined with Duration, Histories implies that the magnitude of a test particle’s worldline
is the duration of its history. Second, a curve y : I — M is a geodesic when its tangent vector field
v satisfies the geodesic equation, v*V,»” = 0, which states that the tangent vector field is constant
along 7y, or equivalently, that the (four-)acceleration of the v*V,v” of the curve vanishes. Third, the
free particles are those that are free of net force. Thus the Geodesic Principle is the four-dimensional
general relativistic analog of Newton’s first law. The analog of Newton’s second law states that the net
(four-)force F¢ satisfies F* = mv*V,»’, where m is the particle’s mass. Fourth, that Light refers to
histories of light rays in vacuum means only that the light rays do not interact with matter at the events
of their histories, e.g., so as to undergo refraction. They behave as if they were the only material system
under consideration. Fifth, each of these representational postulates describes possible rather than actual
histories. In a pure gravitational model, each appropriate curve image is a representational candidate that
can be added explicitly to the model to make it more representationally complete.

3Perhaps surprisingly, these relationships depend on the four-dimensionality of spacetime; what, exactly, the field equation
is supposed to be for other dimensions (if this is even a meaningful question) is subtle (Fletcher et al. 2018).

*One can also derive equation 1 from a Lagrangian formulation with the Einstein-Hilbert action (Hawking & Ellis 1973,
75), but this will not play a role in my subsequent discussion.
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For reasons I detail more fully in sections 2 and 5, test particles occupy a liminal position in the
structure of general relativity. So, stipulating postulates about them adds unnecessary precariousness
to the theory’s interpretation—even more so if these, rather than Duration and Length, are taken as
the theory’s basic representational stipulations, as some authors do. Nevertheless, versions of these
postulates may be derived in special cases from Duration, Length, and particular matter theories, such
as electromagnetism. Consequently, my partial interpretation does not adopt these as stipulations, but
does invoke them on occasion in clearly applicable circumstances.

In sum, while the minimal, “pure” gravitational models of general relativity are Lorentzian mani-
folds (M, g), the models more fully include the cosmological constant A, further spacetime structure y,
and matter fields @ (including, perhaps, test particles): (M, g, A, x, ®). Each of y and ¢ is or can be
represented as a field over M. Mathematically, two models, (M, g, A, y, ®) and (M’, g’, A, ', D’), are
isomorphic when there is a diffeomorphism ¢ : M — M’ that preserves all of the structure of these
models, i.e., A = A’ and its pullback ¢* satisfies ¢*(g’) = g, ¥*(x’) = x, and y*(®’) = ®.> Isomorphic
models have the same representational capacities, meaning that they can represent the same states of
affairs equally well, because the representational postulates refer only to the structures of the models.

1.2 Plan of the Remainder

Alluding to interpretations like the above, Curiel (2009, 47n3) writes that “One can fairly argue over the
virtues and demerits of each with respect to depth, rigor and thoroughness, and with respect to a whole
set of particular philosophical problems and issues,” while holding that they are nevertheless sufficiently
clear, in contrast with the case of quantum theory. Such contrasts aside, this fair arguing, using the
above interpretation as the foil, is the goal of this Element’s remaining sections. The problems and
issues introduced—some venerable, some new—Ilargely fall into three themes: (1) what possibilities
general relativity represents, (2) the internal structure of those possibilities and their interrelations, and
(3) how those possibilities differ from what’s come before, e.g., from special relativity and Newtonian
gravitation.

e Section 2 concerns the representational principles adumbrated above and others for frame-independent
and frame-dependent quantities and the cosmological constant. What makes these well-justified,
if they are or can be, and what aspects of them are conventional or dispensable?

e Section 3 turns to ontology of the stuff represented, such as the points of M and the metric g,5, and
the nature of the relations of dependence between these and typical material fields and particles.
It also includes a discussion of the (in)famous hole argument and the nature of determinism in
general relativity.

e Section 4 returns to principles, but ones that play other principle roles for general relativity besides
representation, such as constraining its models, relating it to prior theories such as special relativity
and Newtonian gravitation or broader classes of theories. This lattermost occasions investigations
of the motivation and force of various attempts to “deduce” properties or laws of the general
relativity, such as the field equation (1).

e Section 5 focuses entirely on its concept—or, perhaps, concepts—of energy, including gravita-
tional energy, constraints on how energy can be distributed, known as energy conditions, and the
distinction between local and global energy. I use the example of gravitational waves to motivate
and illustrate.

e Section 6 transitions to time and causality. In what sense does general relativity permit time
travel or time machines, and with what implications for the metaphysics of time? What is the
connection between the theory’s notion of causality and that notion more broadly, including its
remit to legislate the propagation of matter or information?

SFor matter fields valued outside of products of the tangent and cotangent space at a point, the structure-preservation
conditions are more complicated, but eliding that subtlety is of little moment to the remainder.
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e Section 7 discusses two of general relativity’s most striking predictions: spacetime singularities
and black holes. Defining what these concepts are is surprisingly subtle. Do singularities signal a
“breakdown” in general relativity? In what sense do black holes have thermodynamic properties,
and what of this require venturing into semi-classical theory?

e Until this point, the discussion is largely about classical general relativity. Section 8 is a coda
reflecting on how the answers to the foregoing questions, and perhaps the questions themselves,
influenced and are influenced by the search for an adequate quantum theory of gravity.

2 The Role of Principles, I: Representation

2.1 Two Views on Representation

In section 1.1, I adumbrated an interpretation of general relativity by stipulating what certain of the
mathematical elements in the models represent. This enables one of the core functions of modeling,
facilitating surrogative reasoning. In reasoning about the models—Lorentzian manifolds, perhaps with
extra structure—we arrive at conclusions about what the models represent—ways that a gravitational
universe, or part of one, could be. There are, of course, many important questions about the nature of
scientific representation, and even more competing detailed answers thereto (Frigg & Nguyen 2021).
But this interpretation of general relativity does not demand anything more of scientific representation
than that for other typical scientific theories.

There is another interpretation, or program for interpretation, of general relativity that does demand
more. The “dynamical” approach or perspective of Harvey Brown (2005), elaborating suggestions by
Eddington (1965, 146) and Anderson (1967, 342), insists in particular that the metric g can represent
durations, lengths, and other geometrical facts if and only if it correlates appropriately with the behavior
of material clocks and rigid rods. (This is not intended as a reductive definition, as time and distance are
implicit in what it means for a physical system to be a clock or rod.) One establishes this correlation,
Brown and colleagues suggest, in a two-step justification (cf. Read et al. 2018, §4.1). First, one does so in
special relativity, where one argues that the Minkowski metric 7 is merely a codification of and reduces to
the dynamical symmetries of matter, including clocks and rods (Brown & Pooley 2001, 2006). Second,
one assumes the strong equivalence principle (SEP) (Brown 2005, 8-9, 151, 170). (Brown (2005, 9)
also invokes versions of Duration and Length, which I only discuss further in the following subsection
since they drop out of later discussions (e.g., Read et al. 2018).) There are many formulations of the SEP,
to which I will turn in section 4, but in the present context it amounts to the claim that for any p € M of
a relativistic spacetime (M, g), there is a neighborhood of p and inertial coordinates (determined by g)
thereon, according to which the metric g approximately takes the form of 77 and the equations of motion
for matter fields approximately take on their special relativistic form. One then interprets the metric g
locally and approximately as one would the Minkowski metric 7. Since 7 is correlated with the readings
of clocks and measures of rigid rods in special relativity, so too must g, locally and approximately.

This alternative strategy is striking, but it faces challenges at every step of its execution and justifi-
cation. First, it is not yet clear why the successful representation of physical magnitudes ought to meet
a different standard in general relativity than in other, generic scientific modeling contexts. Rugh &
Zinkernagel (2009, 2017), arguing for a similar thesis regarding time, assert that some material process
in a spacetime region needs to set a time scale in order for one to represent time in that region. This
is because the constants appearing in the EFE, ¢ and G, do not set a time scale themselves. However,
they are mistaken that this is a necessary condition: particular solutions to the EFE can well determine a
time scale even if the EFE do not, and if the cosmological constant A is nonzero, it sets time and length
scales in concert with c. In any case, fixing a time scale is not necessary for representing time—rather,
it presupposes that time is already represented in a model, only with the unit for time unfixed.

One might instead justify a different standard in cases in which the targets of the model is obscure,
as is the case arguably in quantum mechanics and quantum gravity (Curiel 2009, §§5-6). But the targets
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in general relativity are familiar quantitative concepts of duration, length, and concepts derivative from
them. They are no more obscure in general relativity than they are in other spacetime theories. In reply,
Brown (2005, 8, 150) might emphasize that only in general relativity is the metric, which is to represent
these concepts, “a dynamical agent” that interacts with matter. Read et al. (2018, §2.2) clarify that this
means that the metric is not a fixed field in the models of general relativity, and it enters ineliminably
into the EFE. This is true, but from it nothing about standards for representation with this field follows.
Nothing about spatiotemporal concepts obscures how non-fixed fields could represent them.

Brown (2005, 160, 175) and Read et al. (2018, §6) also correctly observe, using examples from
alternative gravitational theories, that a field cannot represent durations, lengths, etc. solely in virtue of
its mathematical form. (Indeed, general doctrines about scientific representation that identify it with
structural isomorphism face similar, grave difficulties (Frigg & Nguyen 2021, §4.2).) However, they
seem to conflate this formalist or structuralist position regarding representation with any in which “the
metric field has a primitive [i.e., unanalyzed] connection to spacetime geometry.” That the interpretation
of section 1.1 does not explicate concepts of durations, lengths, etc. does not imply that they cannot,
or should not, admit of further conceptual and operational analysis. But such analysis is fundamental
metrology’s province, not general relativity’s.

The second challenge targets the first step of the justification, that the Minkowski metric is reduced
to a codification of the dynamical symmetries of matter, including rods and clocks, in special relativity.
As Norton (2008) and Hagar & Hemmo (2013) argue, these sorts of justification must fail if they do not
already assume some primitive spacetiotemporal concepts. The underlying idea is simply that describing
the dynamics of matter, or interpreting abstract equations as representing matter and its change over time,
presupposes the representation of the very spatiotemporal concepts under consideration. Pooley (2013,
572) and Myrvold (2019, §6) concede on behalf of the dynamical approach that they must represent
some spatiotemporal concepts in order to secure the justification in question, emphasizing that this is
nonetheless acceptable for some of their onotological claims about the reducibility of the Minkowski
metric or the explanation of its symmetries (for more on which, see section 3). However, it amounts to
abandonment of the stronger demand for what it takes to represent durations, lengths, and so on.

The third challenge targets the second step that applies the interpretation of the Minkowski metric
n—the second challenge notwithstanding—Ilocally to the interpretation of the general spacetime metric
g. This step infers from the approximate, local coincidence of symmetry groups of equations involving
n and g the interpretation of g, but it is not clear why this step is valid. After all, as discussed above,
the mathematical properties of an object in a model do not determine anything about what the object
represents. It seems rather that a spatiotemporal interpretation of g must be presupposed in order to infer
that this mathematical coincidence has representational significance, but this is to presuppose the very
fact to be established. Moreover, there is no logical relationship between symmetries of equations and
spacetime symmetries, even of the approximate local sort (Fletcher 2020a).

In light of these challenges, one might abandon the stronger requirement for what it takes for a
representation to be of spatiotemporal concepts but still pursue the above adumbrated two-step process
in interpreting general relativity. Ehlers (1973, 45) considers this option, remarking that it is still not
“theoretically completely satisfactory” without elaborating on why. Nevertheless, one can adduce at
least four reasons:

1. It is circular. The third challenge showed that the second step of the process must presuppose
facts about how g represents durations and lengths in order to justify why the local matching of
the structure of g with that of i has any interpretational significance.

2. It is doubly vague. First, because the interpetation relies on an approximate rather than an exact
matching of metric structure and matter dynamics in a local region, it is unclear to what extent
its validity depends on the precise notion of approximation and its degree. Different notions of
approximation will in general be incompatible with one another (Fletcher & Weatherall 2022b).
Second, because there is no unique way to match locally and approximately the structure of g
with that of p—there are infinitely many different ns that will agree only at a point (Fletcher &
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Weatherall 2022a)—there is no unique degree to which the approximation holds.

3. It is doubly restricted. It only provides an interpretation of the local structure of spacetime, while
certain global properties, such as those concerning causality and spacetime singularities (cf. sec-
tions 6-7), are certainly of interpretational interest. It also restricts the possible matter models to
those that satisfy the SEP, relative to the notion and degree of approximation chosen.

4. It conflicts with some of our explanatory expectations. By interpreting the general theory of
relativity through the lens of the less encompassing, accurate, and fundamental special theory of
relativity, it seems to conflict with the common expectation that the order of interpretation (if
any) should be in the other direction, from more fundamental to less. Rather than explaining the
success of special relativistic physics, such success is seemingly guaranteed by interpretational
postulate. In this way, the two-step interpretational strategy is similar to Bohr’s employment of
“classical concepts” in the basis of his interpretation of quantum mechanics (Faye 2019), and is
vulnerable to analogous criticisms.

None of these reasons is decisive; we may well accept an interpretation of a theory with each of these
vices if there is no better on offer. But the interpretation of section 1.1 suffers from none of these vices,
in addition to being much simpler and easier to apply.

There is nonetheless an important insight within the original demand to connect representations
of duration and length with material models of clocks and rods. To see why, suppose that instead of
Duration and Lengths, I had chosen the following simpler, absurd alternatives:

No Duration The duration of any collection of events is 0.
No Length The length of any collection of events is 0.

I am of course free to stipulate these representational principles. But if I were to do so, I would find that
the resulting models misrepresent systematically: essentially any case of spacetime modeling of interest
will involve representing durations and lengths well above zero. This may move me to revise my models
and—especially in this case, in light of the pattern of misrepresentation—my representational principles
of the models’ targets. The defeasible process of testing and adjusting models and representational
principles against empirical and theoretical evidence about the target phenomena to arrive at a reflective
equilibrium, however temporary until new evidence arrives, supports the equilibrium commitments over
those others considered (Daniels 2020).

Even when there are no other potentially suitable representational principles explicitly under con-
sideration, one might wonder how much this is just due to a lack of imagination. If stipulated represen-
tational principles can be (in part) responsible for misrepresentation, then how can one be confident that
one’s adopted principles don’t contribute to misrepresentation in some subtle, systematic way? There
are at least three strategies.

1. The extensive successful application of a theory, using its representational principles, provides
some inductive evidence at least for the models successfully applied. General relativity has passed
all applications in which it clearly applies, as of this writing.

2. When the models of a theory closely approximate the descriptions and predictions of the models of
a successfully applied prior theory (including its representational principles) to a common target,
it provides abductive evidence also for those models. Most commonly for general relativity, these
prior theories are the special theory of relativity and Newtonian gravitation.

3. We may construct simple, paradigmatic examples within models of the theories, examples that
we have largely independent reasons to believe should illustrate or instantiate the representational
target. (They might be regarded as thought experiments (Brown & Fehige 2022), the role of
simplicity in which is only to exclude inessential distractions.) In the case of general relativity,
these targets would be durations, lengths, and concepts derived from them.
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The last two strategies for gleaning evidence of the adequacy of representational principles resem-
ble Brown’s requirements for justifying why the metric g can represent spatiotemporal quantities. But
these strategies do not serve to make the metric’s representation of durations and lengths possible or
justified: one can well stipulate how the metric represents these targets, as I have done in section 1.1.
Instead, these strategies, when successful, merely provide evidence that the principles do not contribute
to systematic misrepresentation. I turn to some of these justifications, and other connections between
the representational principles of general relativity, in the next subsection.

2.2 The Representation of Kinematical Properties

What evidence do we have that Duration does not lead general relativity into systematic misrepresen-
tations? At the least we have the sorts of evidence that the first two strategies discussed in the previous
subsection afford: inductive evidence from the successful application of general relativity in tasks that
depend on precise timing, such as in GPS systems (Ashby 2003), and abductive evidence from the
approximate matching of the representation of durations in Newtonian gravitation (Fletcher 2019) and
special relativity (Fletcher & Weatherall 2022b). But both of these could be challenged: perhaps the
duration of a timelike curve vy is best represented by a quantity that diverges from |y| in circumstances
we have not examined, such as in high accelerations (Mainwaring & Stedman 1993, Mashhoon 2017)
or strong ambient matter fields (Hojman 2018). Rindler (1960, 28-30) observes, for instance, that rep-
resenting the duration of y as being independent of its acceleration is only the syntactically simplest
extension of the formula for less controversial cases where its acceleration vanishes.

Syntactic simplicity, however, is not always the mark of truth or accuracy. This is in part why I
pursued the third strategy by constructing models of light clocks in an arbitrary relativistic spacetime
(Fletcher 2013). For a given timelike curve, I showed how to construct an infinite sequence of “com-
panion” timelike curves that in a precise sense converge to the given curve. These curves represent
idealized mirrors, between which bounces a null geodesic, representing a light ray. As the companion
curve converges, the construction “measures” the magnitude of any closed segment of the given curve,
as accurately and regularly as one wishes, in terms of the number of bounces and a certain measure
of the distance d between the given curve and its companion. If one assumes that such constructions
are paradigmatic clocks, then one should represent the duration of a timelike curve by its magnitude.
In other words, if arbitrarily small light clocks are ideal clocks, measuring duration perfectly, then one
should adopt Duration. This is why Duration is often labeled as the clock hypothesis and is stated in
terms of ideal clocks (that they measure the magnitudes of curves). (Some state the clock hypothesis
merely in terms of the independence of the rate of an ideal clock from acceleration, but such statements
are incomplete because they do not fix the duration of y as |y|.) Other interpretive principles support,
but do not establish, that light clocks are paradigmatic clocks: Light establishes what the bouncing null
curve represents, and Length justifies why the numerical quantity d represents a length. Lights clocks’
simplicity is an interpretive virtue: complex constructions that represent actual clock mechanisms better
may fail to be ideal due to how they are engineered.

The logic of this construction is important for its interpretation. It does not state that, for some
standard of accuracy and regularity, there is a light clock of a single size that measures the magnitude
of (any closed segment of) any timelike curve to those standards. Rather, the size of the clock needed
is bespoke to the curve: for some standard of accuracy and regularity and (any closed segment of) any
timelike curve, there is sufficiently small light clock that measures its magnitude to those standards; the
order of the last two quantifiers is reversed. It is thus compatible with the claim that “for any given clock,
no matter how ideal its behaviour when moving inertially, there will in principle be an acceleration such
that to achieve it the external force acting on the clock will disrupt its inner workings” (Brown 2018, 54).
It is not any individual light clock that is ideal, but the entire family of them working in concert. There
is no need to demand one clock to rule them all. Thus I would demur that, as Knox (2010) and Brown
(2018) respectively suggest, the clock hypothesis fails for certain neutrino oscillation systems and for
accelerated iron atoms and muons. Rather, the analysis of these systems merely shows their periodic
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behavior or their decay rates cannot serve as ideal clocks under certain conditions.

Another sort of response to my results has been to question the adequacy of Light, which I used
as part of the support for the premise that light clocks are paradigmatic clocks. Menon et al. (2020,
§4.3) point out that in a variably dispersive or refractive medium, the worldlines of light rays may not
effectively have the same relative velocity to a timelike worldline (representing a mirror in the light
clock), so that in such contexts null geodesics are not adequate representations of light. (They also
erroneously assert that the worldlines of light rays may not have any geometric optics limit, but some of
them have since retracted this claim (Linnemann & Read 2021a).) Just so, but there is a sense in which
this objection misunderstands both Light and the structure of the third strategy towards which I employ
my construction.

Light is a representational postulate for test light rays in vacuum, which are limits of certain so-
lutions to the Maxwell’s electromagnetic field equations. That they are test light rays means that their
energy and momentum do not contribute to T, in the EFE; that that are “in vacuum” means not that
T,» = 0 at the events they are present, but rather that they do not interact with any dispersive or refractive
material medium. Thus objecting to Light on the basis of dispersion or refraction, if one permits test
light rays in vacuum in this sense, is simply to conflate such rays with ones not in vacuum.

There seems to be little room in the practice of the general relativist not to permit test light rays
in vacuum. While I affirm that test matter requires more delicate treatment than it is usually afforded,
there are coherent and fruitful treatments. But to the extent that, as I discuss more in section 5, it is
an idealization of matter that we expect to be realized in the best general relativistic models of portions
of our universe, one might hold the assumption that light clocks are paradigmatic clocks to be less
plausible. The simplicity of the light clock, in other words, may turn from virtue to vice if too extreme.
One can ameliorate this softened version of the objection, if admitted, by providing an entirely analogous
construction that allows the bouncing light ray or particle to have a variable speed in the inter-mirror
medium, which can either be varying sufficiently slowly (Fletcher 2013, 1382n9) or for which one
merely corrects with a more complicated limiting formula. It is immaterial whether light is the periodic
mechanism.

Before returning to the other representational principles about test matter—Histories and Geodesic—
at the end of this subsection, I focus attention on Length, then briefly on other representational principles
derived from or supported by it and Duration.

From the beginning of relativity theory (Einstein 1923/1905), rigid measuring rods have often been
invoked in the same breath as lengths, just as clocks have with duration (see Brown 2005, 4 et passim.).
If one wishes to purse the third strategy of justification for Length, then one might begin in analogy
with Duration by analyzing a simple, paradigmatic model of rods. (Of course, both the first and second
strategies are also available.) But one would be quickly frustrated: there is no completely satisfactory
concept of rigidity for an extended object in relativity theory, as the best option, Born rigidity, precludes
any acceleration (Synge 1960, Ch. II1.5). Moreover, it is less obvious whether it is possible to define any
concept of rigidity at all without already presupposing that the magnitudes of spacelike curves represent
lengths—for what is rigidity if not the constancy of all spatial dimensions? Even without rigidity, it
is not entirely obvious how to define uniquely the length of an object in relativity theory, as several
definitions that are equivalent in pre-relativistic physics are not in general relativity (Geroch 1978, 140—
150). Synge (1960, 108) goes so far as to deny the need for an additional representational principle like
Length at all: “For us time is the only basic measure. Length (or distance), in so far as it is necessary
or desirable to introduce it, is strictly a derived concept”. Synge (1960, Ch. II1.4) goes on to define the
length of a spacelike vector in terms of that of timelike and null vectors, but it is unclear if this really
serves to eliminate or reduce length to time for spacelike curves.

It may yet be possible to fulfill Synge’s ambition through some conceptual and technical ingenuity,
but I shall take an intermediate position here by sketching a construction that assumes Duration, Light,
and (perhaps eliminably) Geodesic. Instead of using rods, it uses radar (light) ranging of distant events
(Geroch 1978, Chs. 5-6), much as Einstein (1923/1905) originally proposed, but inspired by the dis-
cussion of Synge (1960, Ch. II1.12). (One can well dispense with Einstein’s rods and refer only to the
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events where light is incident on their ends.) Given a spacelike curve, construct a sequence of timelike
geodesics intersecting and normal to it with the following property: each geodesic (except for the last)
has a pair of null geodesics, representing light rays, connecting an event on its past and its future to the
event where the next geodesic intersects the spacelike curve. The sum of the durations of these timelike
curve segments in between the light emission and reception are proportional to an estimate of the dis-
tances between the events where these timelike curves intersect the spacelike curve. As this sequence
grows in number and closer together, the quantity proportional to this sum converges to the magnitude of
the length of the curve. Insofar as this radar ranging method for distances is a paradigmatic construction
for determining distances, we should represent the latter according to Length.

I conjecture that the details of this construction can be filled out to give a justification of Length
based on Duration, Light, and perhaps Geodesic that is as satisfactory as the one I gave for Duration in
terms of Length and Light. (I am untroubled by a coherentist justification for representational principles
in which some help justify others and vice versa—cf. what Weatherall (2017) calls the “puzzleball” view
of physical theories.) Aside from Length, one could engage in similar projects for justifying our usual
representations of angle and relative velocity (Synge 1960, Ch. II1.6-7), energy and momentum (Synge
1960, Ch. IV), rotation (Malament 2012, Ch. 3.2-3), and much else.

Notably, many of these derived quantities are relational to some auxiliary spacetime structure or
material field, such as a particular frame field—a quadruple of pointwise orthonormal vector fields,
one timelike and the rest spacelike—or a coordinate system defined by such a field. It is sometimes
expressed, especially in the context of the principle of general covariance (cf. section 4), that frame-
or coordinate-dependent quantities are not meaningful in general relativity. If one elides the auxiliary
structure in the expression of a spacetime model, such quantities might not seem to be invariant under
diffeomorphisms. But once such structure is included, it too must be pulled back along the diffeomor-
phism.

Finally, both Histories and Geodesic deserve a brief special discussion. They are both representa-
tional principles for test particles, but there is something dubious about test matter. As I discuss more
in section 5, all realistic matter fields—ones that are at least in the neighborhood of being satisfactory
representations of matter in our actual universe—contribute to 7,5, unlike test matter. We allow test
matter into our ontology only because it is an idealization of matter with relatively meagre energy and
momentum; we allow particles into our ontology only because they are an idealization of matter that is
relatively localized.®

Given this, “What should we make of a foundational principle that, by the lights of the theory of
which it is part, relies on the counterfactual behavior of impossible objects?” (Weatherall 2020, 222).
That our interest in test particles is thus only derivative, suggests that Histories and Geodesic should
be derivative, too, on more fundamental principles about matter fields, namely their equations of motion
and contributions to energy-momentum. (The same goes for Light, but we have already discussed the
geometric optics limit above.)

Since almost the advent of general relativity in 1915, there have been attempts to derive Geodesic
in particular from other assumptions (Brown 2005, 162). I confine my discussion to the most recent
development (Geroch & Weatherall 2018) and refer to the citations within and Weatherall (2020) for
broader reviews. Geroch & Weatherall (2018) show Geodesic follows from a few assumptions: the
matter fields under consideration are source free, and their associated stress-energy T, satisfies the
conservation condition, V,7% = 0 and the dominant energy condition: for every timelike vector v* at
any event, T,,v? > 0 and T2V is timelike or null. T discuss the interpretation of energy conditions
in more detail in section 5, but the first two conditions simply state that the field is not undergoing any
external forces and is not interacting with any other matter fields. This is exactly what one should expect
of free particles. Moreover, Geroch & Weatherall (2018) prove Histories for Maxwell’s equations with
sources. None of these results require the EFE, so it appears that similar results extend to many other

See Weatherall (2020, §2.1) for some of the problems with non-test particles as distributional sources for the EFE; see
Fletcher (2020c¢) for problems for Histories in spacetimes with closed timelike curves, problems which I discuss further in
section 6.
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spacetime theories, even non-relativistic ones (Weatherall 2017, 2019).

2.3 Einstein’s Field Equation and the Cosmological Constant

As I mentioned in section 1.1, the EFE, equation (1), correlates curvature at an event with the energy
and momentum at that event. In section 3, when I turn to the nature of the dependence relations between
spacetime structure and matter, it will be helpful to know more about how they correlate and depend
on one another. For this purpose we can adapt some of the representational insights of the previous
subsection to express two distinct characterizations of the meaning of the EFE in terms of orthonormal
frames. (For these characterizations, I adapt the treatment of Malament (2012, 162-6).)

One expression of the meaning of the EFE concerns the geometry of space relative to every observer

at an event p € M. Represent the observer with an orthonormal frame { ¢} at p with timelike component

0 . . . . . L o
€. Consider any spacelike hypersurface S intersecting p, with vanishing extrinsic curvature, whose

tangent vectors there are spanned by the spacelike components of the frame. (To say that it has vanishing
extrinsic curvature means that every geodesic of the hypersurface, considered as a metric submanifold,
is a geodesic of (M, g).) Such a hypersurface represents any construction of space at p for the observer
that is standard at p. The subset of these consisting of geodesically generated hypersurfaces, whose
events are composed from those of the spacelike geodesics through p, are those that are standard on
every point on which they are defined. Now let Rs denote the scalar curvature of S at p. The EFE holds

at p if and only if for all such frames {elz“} and surfaces S,

167G . 0,0,

RS = 7 Tabe e’ +2A. (3)
C

Since Ta;,gagb is the energy density at p according to the observer, this equivalence states that the scalar
curvature of space for any observer is an increasing linear function of the energy density that the ob-
server would ideally measure. The cosmological constant A determines the function’s intercept. In
case it seems remarkable that the EFE can be characterized using only energy density, as 7, also de-
scribes momentum, recall that this requires the energy densities as ideally measured by all observers:
the momentum flux observed for some becomes energy for others.

The second expression of the meaning of the EFE concerns the relative acceleration between free

observers. Consider now not just a single observer with an orthonormal frame but a frame field {i } on
an open set of spacetime, again with timelike component X but whose integral curves are geodesws
Further suppose that on at least one of the integral curves v, £oe =0forie {1 2,3}. Then e“Va(ebee )
represents the relative acceleration of integral curves with vy in the direction ¢, Call the average of the
radial components of these relative accelerations at a point p—the components respectively parallel to
{é“}—the average radial acceleration (ARA) at p. The EFE holds at p if and only if for all such geodesic
frame fields {é"} on a neighborhood of p,

&G 1 0,0, Ac?
ARA = _ﬁ (Tab — zTgab)e e’ + T (4)
Negative values of ARA indicate that, effectively, gravitation is attractive, in the sense that on average
nearby freely falling observers will accelerate towards one another in their frames of reference.
To get another sense for the meaning of equation (4), it can be helpful to specialize to a perfect fluid
model (cf Baez & Bunn 2005). In this case, supposing that the frame ﬁeld is comoving with the fluid,

T = peaeb + Z = peaeb, where p is the energy density of the fluid and p is the fluid’s pressure in the

0,1,2.3
direction ¢®. The fluid has a volume function V = Eapcae’ePeCe?, where €404 is @ volume element defined
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in a neighborhood of p. Then 3(ARA) = [V ,(¢?V,V)1/V = V/V, and

14 1 23 :
L
‘_/:_47TG(p+c_2 P

i=1

+ Ac. (5)

Thus the EFE holds at p if and only if the change in the rate of change of volume, per unit volume, is
proportional to the sum of the energy density at p, the pressures in three orthogonal spatial directions at
p, and the cosmological constant.
One can gain further insight by combining equations (3) and (4). This yields that the EFE holds at p
if and only if
4nG . Rsc?  2Ac?

ARA = 91 . 6
32 6 3 ©)

The EFE evidently demands a certain algebraic balance at every event between average radial accel-
eration of geodesic reference frames and a weighted combination of energy, momentum, scalar spatial
curvature, and the cosmological constant. Equation (6) is in turn equivalent to the pair of equations

(871G /cHT = —R — 4A, 7
ARA = —(R + Rs)c? /6, ®

where equation (7) is the trace of the EFE, which substituted into equation (6) yields equation (8).
Remarkably, as this latter equation shows, the aforementioned balance can be cast entirely in local
geometrical terms—without reference to energy or the cosmological constant—as being proportional to
the average of the spatial and spatiotemporal scalar curvatures there. This equation alone is implied by
but does not imply the EFE, however, as it determines nothing about how curvature and acceleration are
correlated with matter and the cosmological constant. But it turns out that only the trace of the EFE,
equation (7), is needed to provide this correlation.

So far, I have discussed the meaning of the EFE while leaving tacit that of the cosmological con-
stant. Einstein brought attention to the possibility of the term Ag,, in the EFE in 1917 to allow general
relativity to model a certain static cosmological model, one in which the universe described is neither
expanding nor contracting. He then abandoned it by the early 1930s when (among other reasons) ob-
servational evidence indicated that in fact the universe was expanding. Since then, astronomers and
cosmologists have repeated reenacted variations on this theme as they attempt to reconcile cosmological
models with observation. (See Ray (1990), Earman (2001), and O’Raifeartaigh et al. (2018) for more
details of this history of justifications for introducing or discarding the constant.)

Despite its chequered history, the cosmological constant currently plays a central role in modern
cosmology’s standard model, called the ACDM (or concordance) model (Smeenk 2013). (“CDM” is
a abbreviation for “cold dark matter.”) The current best estimates for A give it definitely nonnegative,
but small, value (Aghanim et al. 2020). Its most straightforward interpretation is as a new constant of
nature that, if nonzero, sets an intrinsic length scale—hence, with ¢, an intrinsic time scale—to pure
gravitational models. Equations (3—7) detail what this scale means for local spatial geometry, ARA,
etc. For instance, at events with an effective vacuum, meaning that 7,, = 0, a nonzero A ensures
a correspondingly nonzero spatial curvature and ARA. This role as a constant, dimensionful number
coheres with its representation as such in the Einstein-Hilbert action.

I will return to the relationship between A and an effective vacuum shortly. But first I turn to a
different sense in which A could be a “constant,” with alleged implications for the possible models of
general relativity. Substituting equation (7) into the EFE (1) to eliminate A yields the “trace-free” EFE,

o Ll o _8G( 1 ©
ab 4 8ab = C4 ab 4 8ab | -

This equation is not equivalent with the EFE, but when combined with any one of the following three
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equations, it is:

V. T% =0, (10)
V.[(87G/cMHT + R] = 0, (11)
(87G/c*)T + R = const. (12)

The point of this reformulation is that one can rewrite the EFE in terms of equations that eliminate
reference to A. In fact, it can be recovered by labeling the constant in equation (12) as —4A, in which
case the equation just becomes equation (7). Earman (2003, 563) writes of this reformulation that “it
is not a new universal constant of nature but rather a humble constant of integration” so that, unlike the
standard formulation, “the value of [A] can vary from solution to solution (in the philosophers’ jargon,
from physically possible world to physically possible world)” (Earman 2003, 562). (Earman (2003, 562)
also considers, implicitly, another reformulation in which the cosmological “constant” is not a number
but a scalar field A that satisfies a the field equation V,4 = 0. Then, presumably, A would be just a
“humble” scalar field. Remarks analogous to mine about constants below apply mutatis mutandis to
such fields.)

Whether this comparative conclusion follows depends on what further assumptions one is willing to
make. On my reconstruction, Earman implicitly assumes the following two premises:

1. A dimensionful constant associated with a physical theory appears in the theory’s fundamental
laws if and only if it is a universal constant of nature.

2. A dimensionful constant associated with a theory is a universal constant of nature if and only if it
takes on only one value in the theory’s models.

The first premise is needed to conclude that some constants, such as ¢, are universal constants of nature,
and that others, such as A (as a “humble constant of integration”), are not. The second premise is needed
to conclude that this division entails a difference in the possible values the constants can take on in the
models of the theory. Each part of each conclusion employs one direction of each of the biconditionals.

There are good reasons to reject each of these premises. As I mentioned in section 1.1 and discuss
in more detail in section 3, the mathematical formalism of a theory is only a guide to its interpretation.
Any strict rule for correlating them, such as the first premise, can hold at best ceteris paribus. In this
case, the ceteris are not paribus, for it conflicts with scientific practice. For instance, Earman (2003, 562)
indicates the electron charge as an example of a constant of nature, but according to QED, this is only
an effective quantity arising from the bare charge of the electron. The same goes for the mass of many
of the fundamental particles. So there are constants of nature associated with a theory that do not appear
in fundamental equations. Conversely, the quantity 87G/c* appears in all versions of the EFE, but it is
not itself considered to be a fundamental constant, but an algebraic function of the constants of nature ¢
and G.

The second premise also conflicts with scientific practice. Contrary to what Earman seems to sug-
gest, it is very common for physicists to consider models with different values of physical constants as
solutions to a physical theory. The principal interest the the models whose constants take on the actual
values is that they, presumably, will be more descriptively and predictively accurate than those with dif-
ferent values, not because they somehow think that these models are the only true models of the theory.
Conversely, it is sometimes useful to restrict what one would otherwise have plausibly considered to
be possible values of quantities that are not fundamental constants. This was Sommerfeld’s strategy, in
introducing his quantization condition, for avoiding the ultraviolet catastrophe and recovering Nernst’s
law.

So, there is no good reason to suppose that reformulating the EFE according to the above outline
automatically changes the range of values that A can take in the models of the theory. Proposals for
wider or narrower ranges of values, which assert corresponding ranges of physical possibilities, are
equally compatible with the standard EFE and these alternatives, such as the trace-free EFE with the
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conservation condition. Nevertheless, these different proposals do suggest an interpretation of A is
more or less relatively fundamental. Thus the proposals may support the same possibilities for A while
differing in what subjunctive (counterfactual) conditionals they support. In the standard EFE, A is not
determined by any other constant, structure, or field. Consequently, as one varies 7', for instance, A
remains the same. But using the trace-free EFE plus conservation condition, A is determined by the
values of T and R. Hence, as one varies T, A will in general vary, too. (I am setting aside how to
implement the semantics for these dependencies in terms of conditionals, but see Fletcher (2021a) for a
proposal.)

In section 3, I will have much more to say about relations of determination and dependence in
general relativity. Before doing so, I conclude this section with a quite different perspective on what
A represents that has been influential in cosmology, and a “problem,” or research question, that it has
engendered.

In the two characterizations of the EFE in terms of spatial curvature and ARA, A formally plays a
similar role as energy and momentum, except that it does not vary from event to event. Indeed, one can
formally rewrite the EFE simply by moving the cosmological constant term to the “matter” side from
the “geometry” side:

1 8nG 8nG A
R, — _Rgab = —4Tab + Agab = Top +Tap (13)
2 C c

A
where one has defined 7, = (Ac?/ 81G)gap. One then interprets Ty, not as the net energy-momentum

tensor, but only that for ordinary, non-gravitational fields; ?‘ab is the energy-momentum of the “gravi-
tational field” g or of spacetime itself. Here, A is still a constant of nature, but quantifies the scale of
gravitation’s or spacetime’s contribution to energy-momentum.

This interpretation is in conflict with the interpretation of section 1.1, since it ascribes energy-
momentum to g or events themselves. I elaborate reasons to reject this interpretation in sections 3 and
5, where I discuss the ontology of the “gravitational field” and constraints on acceptable matter theories
in terms of how they contribute to energy-momentum.

These reasons notwithstanding, if one assumes that a “vacuum” is a model of general relativity

in which T, = 0, then %ab represents the local energy and momentum of such a vacuum. It is then
extremely tempting to identify this “energy of the vacuum” with the “vacuum energy” of quantum field
theory, i.e., the expected energy of the ground state of the quantum fields of matter. (Earman (2003, 565)
drolly characterizes this dubious identification as “a bit of word play.”) But the resulting calculation of
this energy yields a value for A that differs from its observed value by up to 120 orders of magnitude in
standard units. This has been dubbed the “cosmological constant problem” (Rugh & Zinkernagel 2002).
But if it truly is a problem at all—and careful analyses casts severe doubt on it (Bianchi & Rovelli 2010,
Koberinski 2021)—then it is a problem for the interpretation of the quantum field theoretic vacuum in the
context of curved spacetime, rather than a problem for general relativity per se. It might therefore best be
interpreted as a heuristic for research in quantum gravity (Schneider 2020), much as the various heuristic
principles discussed in section 4 help constrain possible alternatives to general relativity (although it is
yet unclear how successful it has been (Koberinski 2021)).

3 Dependence and Ontology
3.1 Models as a Guide to Metaphysics

In the following subsections, I will use the structure of the models of general relativity as a guide to
its attendant metaphysics (cf. Coffey 2014, §6). A metaphysical interpretation of general relativity
extends the partial interpretation of section 1.1, providing much more about what theory claims beyond
the broadly empirical. Roughly speaking and at a first pass, the models themselves represent possible
worlds or states of affairs, while each model’s objects and mathematical relations might represent its
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ontology and metaphysical relations, respectively. Relations of functional dependence and determination
between these objects and relation might represent relations of metaphysical dependence and relative
fundamentality.

This is only a “first pass” because, as we shall see below, nothing compels one to match so neatly the
formal parts of the models with what they represent. Since one can stipulate whatever “interpretational
schema” one likes for a certain modeling purpose (Nguyen 2017), one cannot simply transcribe meta-
physical commitments from formal structure. This would be so even if one had a recipe for transcription.
For, we model for many other purposes besides metaphysical clarity, such as computational efficiency,
pedagogical effectiveness, or cognitive understanding (Frigg & Hartmann 2020). Also, in general our
models idealize—abstract from or distort what they represent. We can often de-idealize—augment or
change a model so that it misrepresents less—but usually only dialectically with a (perhaps temporarily)
assumed interpretation.

Despite these limitations—despite being only a guide—the structure of the models should guide
our interpretation of general relativity (pace Teitel 2021). An interpretation of a scientific model that
harmonizes with the structure of the model facilitates surrogative reasoning with the model. This is so
with metaphysical interpretations as much as it is with “concrete” ones. It is virtuous to the extent that
reasoning with the model enables precision and impedes incoherence and inconsistency. With mathe-
matical models, as we have for general relativity, our confidence in the consistency of the underlying
mathematics underwrites, at least in part, our confidence in the consistency of the interpretation.

Interpretations of models that harmonize with the structure of the models are not necessary to avoid
error, but it is difficult to emphasize enough how much they help. A little thought experiment may
illustrate this. Imagine a planet whose atmosphere is so windy that every part is in fluid motion; at each
place on it, the air moves smoothly across it. Have you got it? Are you ready for metaphysical inquiry
into that no windier than which can be imagined? You haven’t and aren’t, despite what it may seem. The
reason is that there can be no such planet to imagine. The hedgehog (or “hairy ball”’) theorem states that
there is no continuous vector field on the smooth sphere that is nowhere vanishing. If one can adequately
represent the direction and magnitude of the wind on the planet with such a vector field, then its air must
be still somewhere.

When the phenomena and metaphysics are complex, one can fall into incoherence without realizing
how local, simple interpretations can fail to join consistently. Harmonizing interpretation with struc-
ture helps to prevent this. Still, as I alluded above, neither the formal nor non-formal aspects need be
completely fixed in the process of interpreting a theory. Given an interpretation, its ontology, properties,
and (meta)physical dependencies should find formal correlates in the models. Given a set of models,
their objects, structures should reflect the models’ objects, relations, and functional dependencies. Each
consideration may warrant adjustment. Other virtues, besides this harmony, are relevant as well, virtues
such as saving the empirical phenomena, wide scope, and economy of commitment. Thus will the
structure of general relativity’s models guide the following interpretation.

3.2 Determination and Dependence

It may seem queer to treat determination and dependence in general relativity, hence relative fundamen-
tality and metaphysical dependence, before the ontology of spacetime and matter. However, queerness
is virtuous for investigating the metaphysics of general relativity, as many of the central ontological po-
sitions and argument turn on considerations of fundamentality and dependence. So, in this subsection,
I'll first describe the facts about mathemetical determination and dependence in the models of general
relativity. Then I’'ll explain what interpretations these facts suggest. Next, in section 3.3 I'll review
and critically evaluate some alternative proposals for interpretations. Finally, I’ll discuss determinism in
general relativity, conceptions of which will play a role in the discussion of section 3.4.
Mathematically, within a class of models, the objects in one set, A, (non-trivially) determine those in
another, B, when those determined are a (non-constant) function of those determining. In other words,
there is a (non-constant) function f : A — B such that f(a) = b if and only if the pairing (a, b) appears in
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(b) With matter fields and auxiliary spacetime structure

Figure 1: Commutative diagrams of the determination relations for models of general relativity, in the
“pure” case and the case with matter and auxiliary spacetime structure. Among the objects g, is the
metric, A is the cosmological constant, y is auxiliary spacetime structure, @ is the collection of matter
fields, V is the affine connection, 7 is the energy-momentum tensor, Rdabc is the Riemann tensor, and
R, 1s the Ricci tensor. Among the arrows, 7; is the ith component projection, ¢ is the delta (contraction)
tensor, “def” is a mathematical definition, “EoM” is the assignment of energy and momentum from the
matter fields, “EFE” is the Einstein field equation, and “LC” is the Levi-Civita construction. All arrows
not labeled follow from the universal property of products. (Note that the trace-reversed arrows are not
needed for these.) Inessential projection arrows are omitted.
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one of the models. Figure 1 depicts the central determination relations among the objects of the models
of general relativity, in both the cases of pure gravitation and of matter and auxiliary spacetime structure.
There are just a couple of non-trivial ones shared in both cases. First, the Levi-Civita construction, as
I mentioned in section 1.1, determines from the metric g, a unique, torsion-free affine connection V,
hence unique associated Riemann and Ricci tensors, Rdahc and R, respectively. Second, given the
metric gqp, any two from the triple (A, Ryp, T4p) determines the third via the EFE and its trace-reversed
version. According to the alternative I discussed in section 2.3, in which the EFE is replaced by the
trace-free EFE (equation 9) and one of equations 10-12, A and T, would switch places everywhere in
the diagram the pure gravitation case, making it more similar to the case with matter fields and auxiliary
spacetime structure. The diagram for that latter case would not be affected by adopting this alternative.
In that case, though, (g4, Y, @) also determine the energy-momentum tensor 7,,—in principle, every
component is needed. In general, none of the reverse determinations hold. (See Fletcher (20210) for
more details on these.) Note that the manifold M does not appear in the diagrams, as all the objects
invoked (with the exception of A) are fields on M or (in the case of V) operators thereon.” So, in a way,
each of them determines M (and none vice versa), but only because, considered as functions, M is their
common domain.

Asymmetric determination generally suggests relative fundamentality: the more fundamental objects
determine the less fundamental ones, but not vice versa. Product objects are perhaps an exception to this:
they asymmetrically determine their components, but insofar as the project objects are constructed from
the components, it suggests that the components are more fundamental. According to these doctrines,
in both the pure gravitation and matter cases, the metric g, is more fundamental than the connection
V, which is more fundamental than the Riemann tensor Rdabc, which is more fundamental than the Ricci
tensor R,p. In both cases also Ty, is less fundamental than g,, and A together, and in the non-pure
gravitation case, Ty, is less fundamental than spacetime structure (g, and y) and matter (®) together,
but in general not less fundamental than either separately (cf. Lehmkuhl 2011). In no other cases is one
object more fundamental than another.

Objects which are not determined by any others (save for product objects) or which (perhaps also)
collectively and minimally determine all other objects suggest interpretation as the absolutely funda-
mental. These two requirements are sometimes respectively labeled as independence and complete
minimal basis (Tahko 2018). In the pure gravitation case, g, is absolutely fundamental in the indepen-
dence sense but not the complete minimal basis sense, while the converse holds for (g,,, A). Again,
according to the alternative I discussed in section 2.3, in which the EFE is replaced by the trace-free EFE
(equation 9) and one of equations 10-12, A would be replaced by T, in this case of pure gravitation.
(The common practice of omitting A from the pure gravitational models arises usually not because of
this alternative but either in contexts where the EFE is not assumed or where the value of A is tacitly
assumed to be some fixed constant.) In the case with matter fields and auxiliary spacetime structure,
each of (gap, v, @) is absolutely fundamental in the independence sense and the collection is absolutely
fundamental in the complete minimal basis sense.

Ehlers et al. (1972, 2012) (EPS) propose a different “constructive axiomatics™ for general relativity
that also suggests different determination relations. They begin with the worldline of free test particles
and light rays as their basic objects, on which they impose conditions so that the sum of these worldines
results in a Lorentzian manifold. There have been many developments and refinements of this approach;
see, e.g., Pfister & King (2015, Ch. 2) or Linnemann & Read (2021b) for recent reviews. However,
a central deficiency they all share as an alternative view of the internal determination relations is that
they take test matter as basic (hence seemingly absolutely fundamental) objects. As I discuss more in
sections 3.3 and 5, test matter is an idealization of matter that contributes to 7, in any spacetime model
representing actual phenomena. We allow it into our ontology as a convenience, justified through how
it approximates more realistic matter fields. Insofar as this justification seems already to presuppose the
usual spacetime structure, so test matter is ill-suited to serve such a foundational role. But this does not

7As I mentioned in section 2.3, one could alternatively take A to be a constant scalar field on M instead of a numerical
constant.
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make the EPS constructive program worthless. In my view, it is better to interpret it as fulfilling a role
analogous to that of my work on light clocks discussed in section 2 (Fletcher 2013) or to that of heuristic
principles and justifications discussed in section 4. It helps to justify why a symmetric, non-degenerate
tensor field of Lorentz signature is a good representation of physical quantities, and suggests alternative
theories against which general relativity can be tested (cf. Ehlers et al. 1972, 64).

Weaker than mathematical determination is mathematical dependence. Within a class of models
consisting of tuples from a product of sets A X B X - - -, the objects in one set, B, depend locally on A at
a € A when fixing that value restricts the values of B. In other words, let S € A X B be the paired objects
associated with the models of interest, and suppose, without loss of generality, that dom(S) = A and
ran(S) = B. Then B depends locallyon Aata € Ain S when {b € B : (a,b) € S} C B. B depends locally
on A simpliciter when it depends locally on A at some a € A. B depends globally on A when it depends
locally on A forall a € A. According to this definition, determination is a particular type of strong global
dependence in which {b € B : (a,b) € S} is a singleton for each a € A, i.e., it is a function. (One can
also formulate dependence in terms of multi-valued functions, which can be useful for discussions of
supervenience, but I leave that to another occasion.) So, all the determination relations discussed above
are also global dependence relations. But the determining tuple of objects in these cases also locally
depends on the determined objects unless the determination function is constant. This dependence is
global if the determination function is injective.

What are the dependence relations among the absolutely fundamental objects? Those that are ab-
solutely fundamental in the independence sense can still globally depend on each other as long as that
dependence doesn’t rise to the level of determination. Whether matter fields ® depend even weakly on
spacetime structure g,p, ¥ or vice versa is a function of the former’s equations of motion and energy-
momentum contributions. (Whether y depends on g, depends on the nature of y. For example, time
orientations will in general depend globally on g, and vice versa, but fields encoding only topological
properties of M, such as its Euler characteristic, will not.) For instance, in topological field theory, there
is no such mutual weak dependence as M determines T,,. When a matter field’s contribution to energy-
momentum is constant across models, as is the case with test matter, that field can well globally depend
on g, without g,; even weakly depending on the matter field. But these tend to be exceptional cases;
typically, g.» and @ depend globally on each other.

What is the nature of the dependence relations between all these elements? There are many options
available—grounding, ontological dependence or priority, among others (McKenzie 2022)—but much
of the discussion has focused on whether the dependence relations between matter @ and spacetime
structure (gqp, x) are causal. For recent defenses and offenses, see respectively Weaver (2020) and
Vassallo (2020), and references therein. (Vassallo (2020) also criticizes interpreting the dependence as
grounding, and .) I will not intervene in this debate here except to point out that both of these authors
seem to assume erroneously that ® and g, are not mutually dependent on one another.® This option
is not available for general matter fields if mathematical dependence guides metaphysical (or causal)
dependence. Similar conclusions hold for the suggestion of (Baker 2005) that A is a cause of motion of
matter if one is considering models of GR with matter fields explicitly represented.

Whatever the interpretation of these dependence relations, it is generally acknowledged that such
relations support explanations. In light of them, one can illuminate a question that Read et al. (2018, §5)
pose to any interpretation of general relativity, to explain the following two coincidences (what they call
“miracles”), in the context of discussion of the “dynamical” approach discussed in section 2.1:

1. All non-gravitational interactions are locally governed by Poincaré invariant dynamical laws.

2. The Poincaré symmetries of the laws governing non-gravitational fields in the neighbourhood of
any point coincide—in the regime in which curvature can be ignored—with the symmetries of the
metric field in that neighbourhood.

8Weaver (2020, §6.3) does offer an abductive argument for the claim that “The gravitational field’s dynamical action is
primary and causally prior to the inertial motion of massive bodies.” In any case, even for readers who follow his argument,
whether one dependency is “primary” or “prior” isn’t apparently relevant to the fact of mutual dependence at hand.
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The “invariance” and “symmetries” expressed are those of the coordinate form of the metric and equa-
tions of motion for matter fields. The underlying query is motivated by the idea that, in some sense, the
symmetries of laws for matter are more fundamental than the symmetries of spacetime structure.

Strictly speaking, there is nothing to explain because the first explanadum isn’t true and the second
presumes the truth of the first. For example, the laws for source-free electromagnetism are invariant
under a group of symmetries wider than the Poincaré symmetries, which include conformal transforma-
tions, and the laws for the weak interaction are invariant under a smaller group of symmetries, as they
must preserve orientation structure in addition to the metric. (The implications of these facts for the “dy-
namical” approach do not seem to have been fully appreciated.) Nonetheless, there is a line of inquiry in
the conceptual vicinity without this fault: Why do the dynamical equations for matter all depend on the
metric or on structures it determines? The answer is that insofar as dynamics is about change over time
(or perhaps, in a generalized sense, place), it must include a representation thereof; the metric represents
these times and determines the representation of change in models of general relativity. This is just
what it means for matter dynamics to be adapted to spacetime geometry (Weatherall 2020, §2). Matter
dynamics depends only on the spacetime structure there is, while whatever spacetime structure there is
depends on (because it must include) whatever structure the matter dynamics presupposes. Neither is
more fundamental than the other, in line with the conclusions drawn above.

The line of inquiry might continue: Isn’t it a coincidence that all matter fields involve the same
notions of time, distance, and change? Couldn’t there be notions of these bespoke to particular types of
matter? I can think of three sorts of answers to this second question. The first is dismissive:

1. Is this a coincidence worth an explanation? What was one expecting, after all? If this is a coinci-
dence, it is not unique to general relativity, but applies equally to all spacetime theories, relativistic
and non-relativistic. It has been an adequate modeling assumption for all of these, and there is no
clear evidence otherwise. That’s why Newton, in the Scholium to his Principia, makes this same
assumption.

One can also well resist on conceptual grounds that this is a coincidence, or that it cannot be explained
through a kind of theoretical equivalence. The second and third answers elaborate on this pair of con-
ceptual responses in particular ways.

2. If in fact there is only one matter field, only one representation of time, length, and change is
needed. Such a unified field theory needn’t have the strong ambitions of that program in particle
physics to have a simple Lie group as the gauge group; allowing product gauge groups would
suffice as long as one could interpret values in this space as that of a single material field. One
could argue that this has already been achieved in the Standard Model of particle physics.

3. If there were matter fields with separate notions of time, distance, and change, and yet those fields
interacted, it might be possible to rewrite their dynamical equations in terms of a single metric
(or metric-like) structure representing just one notion of time, distance, and change, perhaps with
extra spacetime structure. Then such a theory with, e.g., multiple structures representing time
would be equivalent with one with a single such structure. Some such theories have already been
proposed, especially in the context of problems in cosmology (e.g., Hossenfelder 2008, Hohmann
2014, Petit & d’ Agostini 2014).

These sketches of answers deserve fuller pursuit than I can sustain here. It is worth emphasizing nonethe-
less that the questions to which they respond do not concern the interpretation of general relativity per
se. Just as one can stipulate what the metric represents, one need give no apology for a single metric
(and associated structure) if it appears to be representationally adequate. The explanations that these
questions entreat draw not from a single theory, but an implicit collection of alternatives, responding
to how one might account for some atypicality in general relativity within this class (Weatherall 2011,
Lehmkuhl et al. 2016). Such comparative questions, and principles invoked in towards answering them,
will be the topic of section 4.
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3.3 Ontology of Gravity and of Spacetime Structure

The traditional ontological debate in the philosophy of space was between positions we now call sub-
stantivalism and relationalism (Pooley 2013). Substantivalists maintain that space is a sort of entity that
exists independently of matter, while relationalists insist that it is only an abstraction from the spatial
relations between material bodies or parts thereof. In the transition to modern and relativistic physics,
an analogous debate continues concerning spacetime, hence concerning the status of spatiotemporal
structures.

Before addressing this debate and how the interpretation of section 1.1 interfaces with it, I will
discuss the distinction between and identification of spacetime structure and matter. This distinction
raises issues about the interpretation of test matter. I then draw some consequences for the ontology of
the gravity itself and its relation to the notion of a gravitational field in general relativity. Only then do I
return to the initial question about the ontology of spacetime, with the results of the previous discussion
in hand.

As I mentioned in section 1.1, the interpretation of general relativity I described there has two sorts:
spacetime structure and matter fields. For each of these sorts, I mentioned a representational criterion and
a formal criterion, which (with one exception to be explained presently) align as necessary and sufficient
conditions that partition the fields into the two sorts. Matter fields are the stuff that events are (at least
potentially) about: they involve coincidence values of these fields. Familiar cases, such as the density
and pressure of fluids and the strength of electromagnetic fields, illustrate this, but it can be difficult to
apply to unfamiliar cases. The formal criterion is much easier to apply: matter fields are just those fields
for which there is an explicit procedure for how they variably contribute to the energy-momentum, in the
sense that the latter is a function of (hence, determined by) the values of the former. That matter fields
interact means that they have the potential to exchange energy and momentum, leading to differences in
their dynamics.

Test matter presents a problem case for the alignment of these criteria: it ostensibly represents stuff
that events could be about, but it does not contribute to energy-momentum. One response to this is
to interpret the criteria as not logical criteria but cluster criteria, in the sense that something is more
deserving of the title “matter” to the extent that it satisfies each of the criteria (Baker 2021). Test matter
then occupies a liminal position between (non-test) matter and spacetime structure. However, I prefer
instead to make an explicit exception for test matter in light of its theoretical role in general relativity
and in spacetime theory more generally. We allow for test matter in our models to the extent that it
approximates, as a limiting case, the properties of matter fields that do contribute to energy-momentum.
This will present a contrast with spacetime structure. (In section 5, I will discuss in more detail one way
of how to implement this interpretation of test matter by reviving the old distinction between active and
passive charges or properties.)

Unlike matter, spacetime structure is not stuff that events are about, but rather encodes spatiotem-
poral properties of collections of events. In other words, spacetime structure represents spatiotemporal
concepts. In general relativity, these include the familiar cases of duration, length, angle, change, etc., as
represented by the metric g,; and possibly an orientation field. Like with the representation criterion for
matter, this may be difficult to apply when faced with an unfamiliar structure, and there is some vague-
ness regarding which concepts are spatiotemporal. Also as before, the formal criterion is much easier to
apply: fields that represent spatiotemporal structure are just those that do not contribute variably to the
energy-momentum. Test matter fields are an explicit exception; spacetime structure is not generally the
limit of (non-test) matter.

Discussions of spacetime structure often have various spacetime theories as their subject. Although
such generalization is not my primary object here, I would venture that the formal criterion of energy-
momentum contribution would be the most important when exploring the interpretation of an unfamiliar
proposal for a spacetime theory. If such a theory is not explicitly stipulated to represent spatiotemporal
concepts, as some claim to be the case with certain models of quantum gravity, then “spacetime struc-
ture” might be a misnomer, even if the contrast with matter is still apt. It may in such theories be the case
that the candidates one identifies for representing emergent spacetime are partly “pre-spatiotemporal”
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and partly material.

In any case, this generalization, focusing on the formal criterion, also contrasts with other recent
characterizations of matter and spacetime structure in the literature, of which I’ll consider three. First,
Martens & Lehmkuhl (2020) present a list of eight criteria of increasing strength for matter and eight
criteria for spacetime structure. However, both sets of criteria are unsatisfactory. Their weakest matter
criterion is that “The object under consideration is not constant/static, but varies/changes.” Static, non-
vacuum relativistic spacetimes fail this criterion but by stipulation contain matter fields, such as perfect
fluids. Unless one wants to eliminate such models as physical possibilities, this and all their other criteria
cannot be necessary. Their spacetime structure criteria just stipulate that particular structures, such as
Lorentzian manifolds or affine connections, represent spacetime structure, but no mathematical structure
represents anything spatiotemporal in virtue of its mathematical properties alone.

Second, Baker (2021, S290) proposes that spacetime structure is a cluster concept, listing nine dif-
ferent criteria (without claiming completeness). One criterion is my formal criterion, that spacetime
structure does not carry energy or momentum. While I’'m sympathetic to the idea that many natural
concepts are cluster concepts, I’'m also not convinced that any of the other criteria he listed have much
independent weight. Many of them, like the criteria of Martens & Lehmkuhl (2020), are much too spe-
cific to particular mathematical structures, or are plausible only to the extent that they presuppose the
functional, representational criterion, such as “ground[ing] or explain[ing] a family of modal facts about
which states are geometrically possible.”

Third, Knox (2019, 122) proposes a functionalist criterion just for spacetime structure:

spacetime is whatever serves to define a structure of inertial frames, where inertial frames
are those in whose coordinates the laws governing interactions take a simple form (that is
universal insofar as curvature may be ignored), and with respect to which free bodies move
with constant velocity.

The representational component of my criterion also has a functionalist flavor, but locates the function
more broadly in spatiotemporal concepts rather than narrowly in inertial frames. (Read & Menon (2021,
§5) note this alternative functionalist possibility but rightly complain that it makes it difficult to apply
to unfamiliar cases, as I acknowledge. The formal component of my criterion, I should emphasize by
contrast, is not functionalist.) This narrower conception leads to unsatisfactory results even just within
general relativity (and setting aside what it means for the laws to be “simple”). In one respect, it is
too narrow: it rules out orientation structure, since it plays no role in determining inertial frames. It
also rules out the spacetime metric, since neither the signature of the metric nor its scale factor are
needed to determine such inertial frames: it provides more structure than is needed. In another respect,
it is too broad: in perfect fluid models, the velocity vector field of the fluid defines a frame in which
the equations of motion simply even further (Fletcher 2020a), but this field represents material, not
spacetime structure. (See Baker (2021) and Read & Menon (2021) for further criticisms.)

Turning now to the ontology of the gravity itself, Lehmkuhl (2008) provides a helpful classification
of three types of positions concerning the relative ontological priority of gravity and spacetime geometry.

Geometric Gravitation reduces to, or is nothing more than, a manifestation of spacetime geometry.

Field Spacetime geometry reduces to, or is nothing more than, a manifestation of gravitation, i.e., the
gravitational field.

Egalitarian Gravitation and spacetime geometry are identical, with neither reducing to the other.

Spacetime geometry consists of the facts about durations, lengths, angles, changes, etc. that the metric
represents. “Gravitation” is more imprecise: it refers to the more vaguely defined class of gravitational
phenomena whose common source one might reify in a material gravitational field. Lehmkuhl (2008, §4)
considers three candidates for such a reification, opting for the metric itself, since it determines all the
other objects that have gravitational significance—i.e., those that play a role in describing gravitational
phenomena. One can see this in figure 1a (taking a tacit, fixed value of the cosmological constant).
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However, the fact that the metric determines the other structures of a relativistic spacetime with grav-
itational significance does not entail that it represents a material gravitational field or potential. There
are also two positive reasons against it. First, the usual conception of a field or potential, from matter
theory, is that there is a zero section of the field bundle which represents a vanishing field, the absence
of the field’s material effects. In the case of gravitation, one should find this at least in Minkowski
spacetime, which characteristically represents a relativistic universe (or a portion of one) in the absence
of gravitation. But the metric, always being non-degenerate, admits of no zero section. It does not help
to identify the gravitational field as the difference between the metric g, and the Minkowski metric 7,5
(cf. Pooley 2013, 539n34), for this quantity is not well defined when the underlying manifold is not R*,
and not uniquely defined when it the underlying manifold is R*.

This suggests a better candidate to represent the source of gravitational effects: the Riemann tensor
R; ., (Synge 1960, viii). It vanishes in Minkowski spacetime in all and only other spacetimes where, by
definition, there is no spacetime curvature. Lehmkuhl (2008, 96) objects that this does not allow one to
describe a “homogeneous” gravitational field, even in idealization, but the basis of the objection seems
to be incorrect. Insofar as a homogeneous gravitational field is an object of Newtonian gravitation, it
can be expressed as the limit, or idealization, of certain general relativistic models (Fletcher 2019).

That said, even if the Riemann tensor encodes the local phenomena of gravitation, it cannot be
interpreted as a material field according to my criteria for matter fields. This is because it does not
contribute to energy-momentum. The same applies to the metric itself. Moreover, the phenomena
of gravitation is not merely local; it may manifest across quite extended collections of events without
appreciable curvature.

Although I postpone further discussion of gravitational energy to section 5, I can note here that this
second reason against interpreting the metric in particular as a material field bears upon some suggestions
that it must be material because it obeys its “own” dynamical equations, the EFE, and that it acts on and
reacts against matter fields (Brown 2005). Rovelli (1997, 197) expresses the idea forcefully:

A strong burst of gravitational waves could come from the sky and knock down the rock
of Gibraltar, precisely as a strong burst of electromagnetic radiation could. Why is the first
“matter” and the second “space”? Why should we regard the second burst as ontologically
different from the second? Clearly the distinction can now be seen as ill-founded.

If the EFE is really a dynamical equation for the metric, it must express how the metric changes from
one event to another. But according to what standard is the metric changing? The only absolute standard
available for change is the derivative operator V, but its compatibility condition ensures that V,g5. = 0,
i.e., the metric is unchanging within a model. This is because the derivative operator just extends the no-
tion of change that the metric itself provides. The metric cannot be dynamical merely because the metric
is not a fixed field, as is the case in special relativity or Newtonian spacetime, because auxiliary space-
time structure, such as orientation fields, are not fixed but are clearly non-material. In any case, there
is no logical implication from being dynamical to being material: The British monarchy, for instance,
obeys its own peculiar dynamical rules of succession, but not even the staunchest royalists consider it
thereby a material entity.

The rhetoric of action and reaction here is also unclear. It is true that, as discussed in the previous
subsection, the metric and matter typically depend upon one another. But this dependence, however it
is interpreted, need not entail material interaction, just as the dependence between any sort of properties
across events need not, as the example of the monarchy above attests. It is also true that the metric
typically appears in the equations of motion for material fields, but that is not sufficient to conclude
that they interact, as any such equations invoking auxiliary spacetime structure, such as an orientation,
attest. Moreover, material fields “act” on each other typically in virtue of energy-momentum exchange
or conversion as represented by contributions to 7, but the metric has no such energy to give, or so I
will argue in section 5, even for gravitational waves. (In that section I will consider attributing to the
metric a kind of energy relative to a frame field that defines a local flat metric, but that relative energy
is not the sort invoked in the criterion for material interaction, as the local flat metric can be chosen
conventionally and independently of the behavior of matter.)
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I conclude against gravitation requiring—really, permitting—a separate material entity, a gravita-
tional field, which rules out both Field and Egalitarian, the latter because it requires postulating a
gravitational field in addition to (or identical with) spacetime geometry. The spacetime metric and the
structures it determines just do not have the necessary properties to be regarded as material fields.

Finally, I return to the question with which I started this subsection: Does spacetime and its structure
exist independently from material things (substantivalism) or are spacetime and its structure just abstrac-
tions of or derive from relations between the material things, and perhaps their parts (relationalism)? I
have established twofold criteria for material fields and spacetime structure and argued that the two are
disjoint in general relativity: g,, and y (and perhaps A) represent spacetime structure, while ® represents
material fields. So one can answer the question by considering whether general relativity permits space-
time events (or whole spacetimes more generally) with only spacetime structure and no material things.
Pure gravitational models and those whose material fields all vanish at some event are therefore those
that the relationalist must extricate from the theory or explain away. Extrication is costly, for these mod-
els play important (and not clearly eliminable) explanatory roles in the application of general relativity.
There is a general strategy for explaining away, however: affirm that the spacetime models in question
are merely abstractions from models with nonvanishing matter fields (perhaps including test matter) at
every event. In this case, events still represent the partlike coincidences of material things, but some of
those things might not be represented in the spacetime model. The cost of relationalism without culling
some of the models of general relativity is therefore the theory’s representational incompleteness.

Subtanativalists pay a different cost for these models. They do not need to hold that they are repre-
sentationally incomplete, but to do so they must slightly change the interpretation of events themselves.
In light of the models in question, events cannot in general be the actual part-like coincidences of ma-
terial fields; they are rather the possible such coincidences. The cost of substantivalism is therefore
introducing an intrinsically modal interpretation of some of the basic posits of general relativity. Per-
haps one way of reducing that cost is a variant of substantivalism called supersubstantivalism. In the
context of general relativity, this position maintains that matter fields are in fact properties of spacetime
events rather than things (substances) with independent existence (Lehmkuhl 2018). This suggests that
the mathematical points of spacetime not be interpreted as events at all, but as a sui generis substance of
hyperregions that may or may not have nonvanishing material field strengths. The cost that this version
pays in exchange for the modality of events is a more unfamiliar basic ontology.

3.4 Determinism and The Hole Argument

In the previous section I did not uphold either relationalism or (super)substantivalism: each has its own
costs and benefits and is tenable given the other interpretative commitments I do uphold. But there is an
argument, the (so-called) “hole argument,” which purports to expose a hidden cost of any substantival
interpretation. The argument asks us to consider two isometric relativistic spacetimes, (M, g, A) and
(M, g,\), such that the diffeomorphism ¢ : M — M giving rise to the witnessing isometry is the
identity exactly outside of an open set (the “hole”) O ¢ M with compact closure. A proponent of
substantivalism (the argument continues) must maintain that (M, g, A) and (M, g, A) represent distinct
spacetimes because in general they assign different metrical values to points p € O. Yet the laws
of general relativity do not, from any proper initial data hypersurface outside of O, uniquely determine
whether (M, g, A) and (M, g, A) develops. Thus, the argument concludes, the substantivalist is committed
to an untoward and pernicious form of indeterminism. It is untoward in the face of a norm that physics,
not metaphysics, should decide substantive questions of determinism; it is pernicious because it applies
to all local properties in O.

As John Stachel first discussed in 1980, the contours of the hole argument originate with Einstein in
his struggle to find the EFE. Earman & Norton (1987) then redirected those contours toward the onto-
logical conclusion against substantivalism. The vast majority of attempts to defuse the argument employ
some metaphysical maneuvering in reformulating substantivalism or determinism. (The scholarly litera-
ture on the hole argument is now too enormous to canvas here, but see Norton (2019) and Pooley (2021)
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for further introduction and references.) By contrast, following the general argumentative strategy of
Weatherall (2018), in this subsection I will elaborate why one can defuse the argument by considering
only the representational postulates of general relativity. (The argument I give is different in particulars
from the one in Weatherall (2018); I comment on some of those differences in my responses to skeptics
of representational responses below.)

Before I do so, consider the notion of deferminism invoked in the hole argument. It is a version
of Laplacean determinism (Hoefer 2016), the rough idea of which is that for any time and state of
the universe at that time, there is a unique way the universe could be for all times: any instantaneous
state determines all. This is what the initial data hypersurface and the question of a unique spacetime
development in the argument refer to. However it’s made precise, determinism for a theory is a doctrine
about certain determination relations, much in the sense of those discussed in section 3, but with two
important differences (cf. Butterfield 1989, Doboszewski 2019).

First, they have different relata. Instead of, for instance, the (global) metric determining the (global)
affine connection, one considers certain fields on, for instance, an achronal region of spacetime de-
termining certain fields on the rest of spacetime. This is significant for general relativity because the
relevant analogue of a “state at a time” may not exist for all general relativistic models. Consequently
one can adopt a determinism “schema” with the relevant region, structure thereon, and structure deter-
mined thereby as open variables. In the case of the hole argument, one can then take advantage of the
fact that every point of every spacetime has a globally hyperbolic neighborhood, allowing one to apply
a theorem by Choquet-Bruhat & Geroch (1969), which states that every vacuum initial data set has a
maximal development that is unique up to isomorphism.

This uniqueness only up to isomorphism is the second difference that determinism’s notion of de-
termination demands. There is a conceptual reason for this that finds widespread implementation in
practice. That reason is that the question of determinism is only interesting regarding properties that a
theory represents, which are those invariant under the isomorphisms of the models. Otherwise, even the
simplest theories fail to be deterministic. For instance, the usual dynamics of balls rolling down ramps
would be radically indeterministic because the initial conditions don’t determine the color of the ball at
any other time. In the case of general relativity, no property or structure variant under isometry is rep-
resented. One sees this in practice among general relativists, e.g., in work on the initial value problem
and in debates about the Cosmic Censorship Hypothesis, the claim (roughly) that globally hyperbolic
spacetimes are generic among the “physically reasonsble” spacetimes, the ones that represent genuine
physical possibilities. (See, e.g., Smeenk & Wiithrich (2021) for a recent review.) The significance of
this is that if there are properties of the target of the spacetime models not represented in the models and
not determined by an initial data surface, then the sort of indeterminism involved, such as it would be,
is not at all untoward (cf. Norton 2020).

The chestnut at the heart of these observations, that scientific models (including those of general
relativity) are often abstracted, is also the core insight assuaging certain problem examples for the above
understanding of determinism. These examples involve an indeterministic symmetry-breaking process,
such as a beam buckling to one side or other, radioactive decay products emanating at some angle or
other, or a particle swerving in one direction or another (e.g., Belot 1995, Melia 1999). One would like
to say that there is more than one direction in which the process could have happened, yet all the models
that represent these processes are putatively isomorphic, hence would count them as deterministic. But if
one does not represent the different directions explicitly in the model, such as with a orientation field, it
is no surprise that the models give to questions pertaining to those directions answers most unwelcome,
just as the question of the color of a rolling ball did above in classical mechanics. Using models to reason
about properties they don’t represent can easily drive one in error. But once one adds a representation
of these properties, say through an orientation field, the models are no longer isomorphic: some process
go in one directions, other in another. (See my (20200) for further elaboration on representational
capacities, especially in the context of the hole argument.)

Now return to the hole argument. It highlights a property of a spacetime, g|p, that is variant across
isometric spacetimes: g, # g, = ¥.(g),. However, the very fact that this property is variant across
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isometric spacetimes shows that it is not a property that the spacetime models represent—it is not even
implicitly definable in the models of the theory. So, either really there is no property to represent—
just as no number-theoretic property is represented by the particular construction of the integers in set
theory—or there is such a property, which has been abstracted from the models. In the former case,
there are no undetermined properties. In the latter case, this entails not an untoward but a totally benign
sort of indeterminism, as the foregoing discussion established.

One could, of course, augment the model by adding auxiliary spacetime structure—say, a distin-
guished point p or open region O of the manifold—to represent properties assigned to the hole. But
in this case determinism still holds, for then by construction ¢ witnesses that (y(M), y.(g), A, ¥(0)) =
(M, g, A\, ¥(0)) is isomormphic to (M, g, A, O). ¥ provides a kind of “counterpart” relation, a means to
compare the structures and properties that the two spacetime models represent, and according to it they
represent the same properties. Relative to other maps implementing such a relation, such as the identity
1y : M — M, the models therefore represent different properties. There is no ambiguity about what
each model represents together once one specifies the map relative to which they are compared.

There have been several objections to representational responses to the Hole Argument. Landsman
(2022, §§1.10, 7.8) seems to focus on seeming controversies about the sense in which ¢ and 1,, are
counterpart relations, asserting that one avoids invoking them and “reopens” the Hole Argument by
reformulating the scenario to which it appeals in terms of the initial value problem. However, that I
also formulated it in this way in my own representational response shows that the focus on these maps
as essential to the core representational response is a red herring. Pooley (2021) and Pooley & Read
(2021) insist that without metaphysical commitments, the representational response does not succeed
in blocking the Hole Argument. For instance, Pooley (2021, 154) writes that “if there are pluralities of
merely haecceististically distinct possibilities, the mathematical formalism of GR, correctly interpreted,
is necessarily indifferent to differences between them. [...] And that, of course, is just to admit that,
according to any metaphysical view committed to such pluralities, GR is indeterministic.” But as I
emphasized above, this is a benign indeterminism because it involves properties not represented at all in
the models. Its harmlessness is not a metaphysical thesis but one about how scientific models represent.
Moreover, the representational response is agnostic on the existence of these possibilities because they
arise only in the conditional reasoning of one branch of the response’s disjunctive syllogism.

Roberts (2020, 255) objects that some pairs of isometric Lorentzian manifolds “cannot be con-
cretely interpreted to represent the same physical situation at once” as would be required by the general
doctrine, employed in the representational response, that isomorphic models (M, g, A) and (M, g, A)
could represent one and the same state of affairs. The example he uses is a two-dimensional half-plane
M = R x (0, c0) with the Minkowski metric restricted to it, and submanifold M =R X (s,00), with 5 > 0,
also with the Minkowski metric restricted to it. These two models, (M, g) and (M, §), are isometric, but
because M C M, “one cannot use them both to represent the same thing at once, on pain of paradoxes
of multiple denotation.” (Roberts 2020, 263). What are these paradoxes? Roberts illustrates with an in-
formal example: it is a convention whether we label one side of Manhattan “East” and the other “West.”
Consequently, using maps with each convention together would permit one to assert that “The New York
Public Library is located on the East side and on the West side (not on the East side)” (Roberts 2020,
252).

As this example illustrates, however, seeming contradiction arises only by leaving tacit how each
cardinal direction ascription is relative to a particular convention. Once those conventions are made
explicit again—e.g., “The New York Public Library is located on the East; side and on the West, side”—
no contradiction arises. In practice, these conventions are shared or context provides enough information
about which is intended, as is generically the case with indexical words. The same moral applies to
general relativity: in the example above, relative to the identity inclusion i : M — M, (M, ) represents
a proper part of (M, g) and the two would not represent the same state of affairs; indeed, i is not even a
diffeomorphism. But relative to the diffeomorphism ¢, : M — M, they can well represent the same state
of affairs at once. Once again, there is no ambiguity about what each model represents together once
one specifies the map relative to which they are compared. In a word, there are no relevant paradoxes of
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multiple denotation, either in natural language or in general relativity.

4 The Role of Principles, II: Justification and Constraint

Besides the representational principles mentioned above, many other principles have figured importantly
in the history of relativity theory. These include Mach’s principle, various principles of equivalence, of
(general) relativity, of general covariance (and sometime invariance), and background independence.
Some of these bear upon general relativity’s relationship with Newtonian and special relativistic theo-
ries. 1 will evaluate these principles along the lines of the following four types of views. First, they could
constrain which relativistic spacetimes one should admit from the broad class introduced in the first
section. Second, they could provide a means to “deduce” such an admissible class from other auxiliary
assumptions. Third, they could merely summarize important features of (perhaps only some) relativistic
spacetimes. Fourth, they could provide a heuristic role, sometimes historically, in the development of
general relativity or extensions thereof from the perspective of its predecessors.

S Energy

5.1 The Functions of Energy-Momentum and the Nature of Test Matter

Energy and momentum have several functions in GR. One is that they constrain spacetime curvature
via the EFE (equation 1). Considering this equation as a partial differential equation in which manifold
points are the independent variable and spacetime metrics are the dependent variable, energy and mo-
mentum act as a source for gravitational phenomena (solutions to the equation). But, as discussed in
section 3, one should not infer that this technical notion of “source” is that of a cause without acknowl-
edging the substantive additional interpretational commitment this incurs.

Another function of energy and momentum, common to field and mechanical theories, is to aid in the
description and explanation of matter dynamics. For instance, given a Lagrangian density for a matter
theory, its energy-momentum tensor 7% is defined by an algebraic combination of the Langrangian, its
derivatives and independent variables, and the spacetime metric (Hawking & Ellis 1973, Ch. 3.3) (Wald
1984, Ch. E.1). In fact, the field equations arising as the Euler-Lagrange equations for the matter fields
alone then guarantee that the total energy-momentum so defined will be divergence-free, i.e., satisfy
a conservation law V,7% = 0 (Hawking & Ellis 1973, 67) (Weatherall 2019, §3).° (There is some
controversy about whether “V,7% = 0” really expresses a conservation law, which I address in section
5.2.) But even if the matter theory’s dynamics are not given by a Lagrangian, energy and momentum
assignments facilitate the dynamical analysis of material behavior, often through conservation laws.
Conservation is so important to the function of energy and momentum in the analysis of physical theories
that Hawking & Ellis (1973, 61) require that any adequate matter theory must assign energy-momentum
so that V, 7% = 0.

Notably, in GR the same tensor field performs both functions: 7% is both the source in the EFE and
facilitates the description and explanation of matter dynamics, especially through its conservation. This
substantial functional unification is part of the sense in which GR explains the coincidence, in Newtonian
gravitation, of the proportionality of inertial and gravitational mass: there is only one (fundamental) mass
concept, the inertial mass, which is a component of or contributes to energy and momentum (Weatherall
2011).

Aside from conservation, mentioned above, so-called energy conditions constitute another class of
constraints commonly imposed on adequate matter theories. Such conditions are inequalities concerning
T, in relation to ideal observers or reference frames. Here I review only the interpretation of four of

“Noether’s first theorem guarantees a conservation law for the “canonical” energy-momentum if the Lagrangian is invariant
under the flow induced by the subgroup of translations of the Poincaré group, but the canonical energy-momentum is not
always the same as that defined through the Lagrangian directly (Wald 1984, 456-9). See, e.g., Baker et al. (2021) for a
discussion of this issue.
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most common conditions (cf. Hawking & Ellis 1973, Ch. 4.3)—see Curiel (2017) for a comprehensive
review. Since all the condition reviewed quantify over all events p € M and all timelike £ € T,M, 1
leave those quantifications tacit below.

e The weak energy condition (WEC) requires that T,,£%¢” > 0. Since &% can represent the in-
stantaneous trajectory of a point-like observer or reference frame so that T,,,£%¢” would represent
the energy density in that frame at p, WEC requires that the energy density for all observers is
everywhere non-negative.

e The dominant energy condition (DEC) requires WEC and that T%¢, is not spacelike. If &
represents the instantaneous trajectory of a point-like observer or reference frame, then T%¢,
represents the flux density of energy-momentum at p, so DEC requires that this flux density be
the sort that one could associate with a massive test particle or light ray (according to Histories
and Light).

e The strengthened dominant energy condition (SDEC) requires DEC and that T%?&, is timelike
wherever T, # 0. SDEC effectively demands that the energy-momentum flux at every event, if
non-vanishing, be the sort that one could associate with a massive test particle.

e The strong energy condition (SEC) requires that (7, — %Tgab)fafb > 0. (Confusingly, SEC is
independent of the other energy conditions, including WEC.) In light of equation 4, it expresses
that, on average, gravitation is attractive for massive bodies, insofar as the effects of the cosmo-
logical constant A can be ignored.

In chapter 6 I discuss how notions of relativistic causality—how, if at all, events in spacetime affect one
another—implicate each of these conditions in various ways.

Another kind of constraint on adequate matter theories concerns exclusively the energetic effects of
vanishing fields. Hawking & Ellis (1973, 61-2) propose that “T“® vanishes on an open set U [of M] if
and only if all the matter fields vanish on U,” which “expresses the principle that all fields have energy.”
Clearly this requirement assumes that matter fields can “vanish,” i.e., they are values in a bundle that has
a “zero” section. Hawking & Ellis (1973, 62) also acknowledge that one might object to the “only if”
direction of the biconditional with the example of two matter fields whose contributions to T, cancel
each other exactly on U. Reformulating the constraint on a field-by-field basis alleviates this problem:

All Fields Have Energy (AFHE) For any matter field ¢, its contribution to 7% vanishes on an open set
U C M if and only if ¢ vanishes on U.

At least in the case of Lagrangian theories, one can make the notion of “contribution” more precise and
even prove AFHE, subject to the assumption that the Langrangian density for a field (and its interactions)
vanishes only when the field vanishes (Weatherall 2019, §3).

There are, however, still two complications for AFHE. One arises for quantum fields. For these,
a “zero section” most plausibly refers to a ground state. Although the most general frameworks for
quantum theory do not require such a state, it is a typical and well-motivated enough assumption. More
problematically, ground states commonly have non-vanishing contributions to energy, which challenges
the “if” direction of AFHE. That said, this energy is typically proportional to some power of Planck’s
constant s, meaning that its classical limit is plausibly zero. In these cases AFHE might still hold of
matter fields that can be treated classically.

The other complication arises for test matter. As I discussed in chapters 1 and 2, test matter—
including test particles—is matter whose dynamics depends on the metric and the notion of change it
determines, but which does not contribute to the energy-momentum that sources the EFE. There is no
question of test matter conflicting with any of the energy conditions, but it does violate the “only if” part
of AFHE. I see at least three mutually exclusive options one can take with respect to this conflict.

1. Acceptit.
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However, in practice one does ineliminably refer to and describe the energy and momentum of test
particles and fields, which is inconsistent with this option’s understanding of test matter. This option
therefore gives up on one of energy and momentum’s functions—to facilitate the description and expla-
nation of matter dynamics—for test matter. It’s possible to restore this function by introducing an old
distinction sometimes found in discussions of mass in Newtonian gravitation.

2. Subdivide energy-momentum into two types, active and passive, and restrict AFHE to active
energy-momentum. Test matter then is a sort of matter with vanishing active energy-momentum;
its passive energy-momentum is just that invoked in relation to its dynamics.

Passive energy-momentum plays an inertia role and helps describes how matter is affected by grav-
itational phenomena, while active energy-momentum describes how matter affects gravitational phe-
nomena (through the EFE). In its disunification of energy-momentum, this option thus contravenes the
conclusion I had drawn above, that the same tensor field performs both functions for energy-momentum
(a source in the EFE and its role in describing and explaining dynamics). By the same token it also
raises difficult questions about what, exactly, test matter represents according to this option. There are
no known matter fields—real test fields—for which active and passive energy-momentum would truly
differ.'® Rather, one introduces test fields only to model matter whose sourcing effects are negligible
relative to a modeling purpose.
For these reasons, over these first two options I prefer a third:

3. Deny that test matter is a type of matter field at all. Instead, affirm that the “test” attribute denotes
that one is approximating a matter field’s source contribution to the EFE as zero.

This options relies on a distinction between idealizations and approximations introduced by Norton
(2012). For present purposes, an idealization is a model of GR that is less representationally accurate
than another, while an approximation is a property attribution (e.g., to a matter field) that is less rep-
resentationally accurate than another. The property attributions in approximations need not be possible
according to the models of GR; they are therefore introduced only for pragmatic convenience.

The second option, above, would therefore take GR models with test fields to be idealizations of
GR models with non-test fields replacing the test fields. The present, third option rather does not admit
test fields as components of models of GR, but as denoting an approximation of the intended field’s
energy-momentum. The worldlines of test particles, accordingly, are themselves approximations of
highly localized fields distributions. (Indeed, as I will discuss in more detail in chapter 6, this option
also coheres best with work on the relation between energy conditions and relativistic causality.) This
solves the problems of compatibility with applications that the previous options had. It also retains a
functionally unified account of energy-momentum, is compatible with AFHE, and explains further why
I take Histories, Geodesic, and Light not to be fundamental representational principles of GR—they
concern the interpretation of mere approximations. The cost of this option is acknowledging that the
inferences one makes in using the test matter approximation may be fallible to the degree that the ap-
proximation is large, and accepting the responsibility to confirm, when necessary, that the error incurred
is not too large.

5.2 Conservation of Energy-Momentum

In the previous section, I asserted that “V,T% = 0” expresses a conservation law for the energy-
momentum 7%. On the one hand, this is common enough in physics-oriented presentations that it
rarely engenders further comment or justification. On the other hand, some authors deny it, many of
these even going so far as to reject that energy-momentum is generally conserved at all in GR (Hoe-
fer 2000, Lam 2011, Diirr 2019). Although they give various reasons for this, the central one is that
equation 10 (“V,T ab — (") “cannot be used to write an integral conservation law [...]. Intuitively,

"More precisely, if they do differ, their difference is by a constant of proportionality than can be conventionally set to one.
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if energy-momentum is really being conserved locally, then when one integrates [it] up it should be
conserved over regions as well” (Hoefer 2000, 191).

This objection refers to the following procedure. As discussed in the previous subsection, for any
p € M and any unit timelike & € T,M, T, represents the energy-momentum flux density at p relative
to a frame at p with timelike component £%. If one extends & to a C! timelike vector field on an oriented
hypersurface S C M, then one can integrate T%¢;, over S to calculate the net energy-momentum flux
through that surface: fs T“bfbdaa', where o is the (oriented) volume form on M. (The sign of the
orientation merely determines the sign of the flux.) In particular, if S is the boundary of a precompact
n-dimensional submanifold 2 and one extends £ to U, then by Gauss’s theorem,

f T%¢,d,0o = f Vu(T&)0. (14)
S Uu

This states that the net energy-momentum flux through S is equal to the integral of the energy-momentum
source density V(T &,) over U. (So, pace Hoefer (2000), it is not the energy-momentum itself which
one integrates—after all, 7% is a two-index tensor field for which in general direct integration is not
well-defined—but either its flux, through a hypersurface, or its source density, over a compact four-
dimensional region.'!') Conservation holds if either side of equation 14 vanishes for all choices of U
and any suitable choice of £7.

But what makes a choice of &% suitable? Not just any is. It is well-known that choosing £ as a field
with non-vanishing acceleration prevent these integrals from vanishing—even in mundane, classical me-
chanical cases—because such fields can only well represent frames that generate non-inertial coordinate
system, whose fictitious forces can appear to do work on a system whose energy-momentum are clearly
conserved (Duerr 2019, 4). Lam (2011) and Diirr (2019) suggest that the only suitable £ is a timelike
Killing vector field (KVF), i.e., one that satisfies Killing’s equation V(& = 0.2 For in this case, the
source density vanishes: Vo (T&) = (V,T)é, + T(V &), where the first term vanishes because of
equation 10 and the second term vanishes because of Killing’s equation and the symmetry of 7%. A
special case of this occurs when a spacetime is flat, so that the Levi-Civita derivative operator V is just a
coordinate derivative operator d. In any case, not all spacetimes are stationary—i.e., admit of a timelike
KVF—which is why (the objection goes) conservation of energy-momentum holds only in such special
cases. 3

The authors of this sort of objection seem to assume that stationarity is necessary for conservation,
in addition to it being sufficient (which is only what I maintain). Some examples show that this can’t
be right. Another sufficient condition for energy-momentum conservation is that energy-momentum
vanishes: 7% = 0. But such vacuum spacetimes in general will not be stationary. One could then retreat
to the position that not stationarity, but the vanishing of either side of equation 14 in some way or other is
what is necessary. However, yet another sufficient condition for energy-momentum conservation is that
energy-momentum is covariantly constant: V.7 = 0. Note that the index on the derivative operator
is not contracted with any of the energy-momentum tensor; since the former determines the notion of
change in a GR model, this condition literally states that energy-momentum is not changing. Spacetimes
with a covariantly constant but non-vanishing energy-momentum need not be stationary.

I suggest a different necessary and sufficient condition for conservation: for each p € M and timelike
geodesic through p with tangent vector field &, the source density Va(T“bfb)|p = 0. The motivation
behind this condition is twofold. First, the geodesics through p are the timelike components of the
frames most analogous to the inertial ones familiar from flat spacetime (cf. Duerr 2019, 2). Second,
while the exact value of the source density at p may vary from frame to frame, a true source cannot be

""Lam (2011, 1016) also misleadingly describes expressions like the left-hand side of equation 14 as “the quantity of
nongravitational energy in a spatial (three-dimensional) region” rather than the net flux through that region.

I’In fact, when the spacetime in question is asymptotically flat, an asymptotic timelike KVF will do, but this special case
makes no difference in the arguments that follow.

13Hoefer (2000) seems to demand the stronger condition that one be able to replace V with a coordinate derivative operator in
the right-hand side of equation 14, but I do not see any justification for this aside from a syntactic analogy with pre-relativistic
physics.
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made to vanish in a given frame. An analogy with electromagnetism is instructive: although the charge
density of an electromagnetic source will vary from frame to frame, it will never vanish in any frame
unless it vanishes in all frames.

In any case, this condition is always satisfied in GR. The tangent vector fields &* to the timelike
geodesics through a point p are in fact approximate KVFs at p, meaning that (V&) = 0, with
the left-hand side varying smoothly in a neighborhood of p (Fletcher & Weatherall 2022a). Thus for
such &%, V,(T®¢,) vanishes at p if and only if V,79 vanishes at p. This comports with the fact that
f,u Vo(T¢,)0 can be made as small as one likes by selecting a sufficiently small neighborhood U of
p (Hawking & Ellis 1973, 63) and suggests that this holds even if one normalized this integral by the
volume of U: the source density at p is truly zero.

5.3 Gravitational Energy

It is natural for students of elementary Newtonian gravitation to ask what the analogue of gravitational
potential energy could be in GR. But, as one can gather from sections 1 and 3, if gravitation in GR is
just about the structure of space and time and gravity is not a matter field itself, then it should carry no
associated energy-momentum, either as a source for the EFE or as .'* Nevertheless, it is instructive to
consider some independent reasons for this conclusion.

Curiel (2019, §2) reviews the common argument pattern against there being a local concept of grav-
itational energy—one representable by a field on spacetime, such that the field values (or components of
them) represent the energy content or density. This pattern invokes Einstein’s principle of equivalence
that gravitational effects are represented by the connection coefficients (Christoffel symbols) in some
coordinate system (cf. section 4). Because one can always select a coordinate system in which they
vanish at a point, any energy attributable to them must vary similarly, but then it cannot be represented
by a field, which does not so vary.

This argument assumes that the connection coefficients represent the gravitational field, which an
advocate of gravitational energy may well reject in light of the argument (cf. Read 2020, 211). Curiel
also relatedly and rightly objects that the argument assumes that whatever gravitational energy in GR
could be, it must depend on the first derivatives of the metric (with respect to) Because gravitational
phenomena is associated with the second derivatives through the Riemann curvature tensor

Curiel (2019, §§6-7) provides a different argument that he interprets as proving the non-existence of
a gravitational energy-momentum tensor. In order for such a tensor to source the EFE, it must be a twice
covariant symmetric tensor field. Further, it must be expressible as a sum of fields definable from the
Riemann tensor, Ricci tensor, and the metric, such that it vanishes only if the Riemann tensor vanishes
and is divergence free in vacuum regions of spacetime. Finally, he requires that the tensor be invariant
under any homothety g,» — Agq» for constant A > 0, suggesting that this mapping represents a mere
change in units. He then proves a theorem with a corollary stating that there is no tensor field satisfying
all these constraints.

The theorem is in fact similar to one stated by Aldersley (1977) and later elaborated by Navarro
& Sancho (2008) about the uniqueness of the EFE as a field equation. As Fletcher et al. (2018, §6.1)
point out in the context of the discussion of these results, homothetic transformations represent scale
transformations, not just changes in units. If the cosmological constant A # 0 or one considers any
matter theories with intrinsic time or length scales, then one wouldn’t expect such transformations to be
symmetries as these results assume.'®> Accordingly, Curiel’s argument is not as definitive as it might at
first seem.

14In fact, it is not often appreciated that gravitational energy encounters many of the same fraught issues in the Newtonian
context (Dewar & Weatherall 2018).

SCuriel (2019) does acknowledge at least the point about the cosmological constant, countering that one must take Ag;
to be simply the energy-momentum content of spacetime itself. (Aldersley (1977) and Navarro & Sancho (2008) counsel
the same.) He does not acknowledge, however, the tension between affirming spacetime energy-momentum while denying
gravitational energy-momentum. I discuss this option further below.
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There is a different, simple argument against gravitational energy-momentum, due to Geroch and
Malament in its original form (Dewar & Weatherall 2018, §1). (What follows is a slight variation
on this form.) Recall that the two functions for energy-momentum, unified in GR, are as the source
for the EFE and to facilitate the description and explanation of the local dynamics of matter. First,
suppose that gravity contributes as a source to the EFE. It must then be representable as a twice covariant
tensor field. Then, in Ricci-flat, vacuum spacetimes (one where R,, = 0 and matter fields vanish), the
gravitational energy-momentum is just Ag,, (cf. Baker 2005). But this expression does not covary with
the gravitational phenomena possible such spacetimes, such as the presence of gravitational waves of
various amplitudes. (I analyze the case of gravitational waves in more detail in the next subsection.)
So, if gravitational energy-momentum serves as a source in the EFE, it cannot in general satisfy its
descriptive and explanatory functions for local dynamics.

Second, suppose that it does not serve as a source in the EFE. Could it still fulfill its local dynamical
role? Since by assumption it is not a source in the EFE, while the energy-momentum 7 of matter
fields is, the latter by itself satisfies the conservation condition V,7% = 0. Because (as argued in
the previous subsection) this is a legitimate expression of conservation, there is no energy-momentum
exchange between matter and gravitation. Thus if one aims for coordinate-free, frame-free descriptions
and explanations of the local dynamics of matter, gravitational energy would play no role. One therefore
reaches this same conclusion regardless of whether any putative gravitational energy-momentum is a
source in the EFE.

This simple argument however leaves open the possibility that there are coordinate- or frame-relative
notions of gravitational energy-momentum. To see how these arise, suppose that one has committed
to analysing the local dynamics of a system in terms of some specific coordinate system or frame of
reference. It could be the “laboratory” frame for a specific experiment or another constructed for some
convenience or other. With respect to this local frame or coordinate system, there is a flat derivative
operator, d, which is also the Levi-Civita derivative operator for any of a variety of only locally defined
flat spacetime metrics. With respect to this operator, one may well find that 3,7% # 0, i.e., when one
constructs a notion of change for some more or less arbitrary coordinate system or frame, one may
find with respect to it that the matter energy-momentum tensor is not divergence free. The situation is
analogous to the analysis of a classical mechanical material system in a noninertial frame or accelerating
coordinate system: with respect to these, there are yet unaccounted-for coordinate accelerations, hence
transfers of coordinate-based energy-momentum (Duerr 2019, 4). To restore coordinate-based energy
conservation, one can describe the work done on the system through (fictitious) forces like the Coriolis
force. In the context of GR, one can restore energy conservation with respect to the chosen coordinate
system by describing a coordinate-dependent gravitational energy-momentum pseudotensor, 1%, so that
3o (Igl(T% + t%F)) = 0. The exchange between T and 1*¥ expresses how the matter fields’ behavior
differs from that which would be expected if it the metric were rather a flat metric to which the coordinate
system or frame in question was adapted.

Notoriously, rather than there being a unique viable candidate for %8, there is a proliferation of
options, but there is some order to the options: each corresponds to a Lagrangian for gravity with respect
to the aforementioned fixed flat metric, or alternatively, a certain expression of Sparling’s form on the
linear frame bundle on the spacetime manifold (Szabados 2009, 1992). In the latter case, the coordinate-
dependence of 1% results from pulling back Sparling’s form along a particular coordinate section of the
linear frame bundle; different coordinate sections are like different choices of gauge for a gauge theory.
Thus, just as the energy-momentum tensor 7% for matter is not a property of matter fields alone but in
general depends also on the metric g, (Lehmkuhl 2011), any particular gravitational energy-momentum
pseudotensor is relational—indeed, doubly so: first, to either a particular gravitational Langrangian or
a choice of the expression of Sparling’s form, and second, to a particular coordinate system or frame
field. This is exactly as one expects: with respect to a reference flat metric, the exact coordinate-
dependent energetic properties of gravity will depend on its Lagrangian and the coordinates chart chosen.
Descriptions and explanations of matter dynamics using this takes motion along coordinates adapted to
the reference metric as default and assigns gravitational energy-momentum to capture departure from it.
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Does 1% represent a real property of spacetime? There are at least three issues that bear on this
question: the dependence on a coordinate system or reference frame, the dependence on the gravitational
Lagrangian or expression of Sparling’s form, and the function to which 1% is put. Coordinate or frame
dependence evinces a failure of definability unless the coordinate system or frame is given already from
other fields, such as the comoving frame of certain matter, or added explicitly as auxiliary spacetime
structure. A failure of definability does not necessarily entail anti-realism, but at least it entails that
the corresponding property is not represented in the spacetime model. (Cf. the haecceities involved
in the hole argument discussed in section 3.4.) One way to ameliorate this is to consider at once all
coordinate systems, as Pitts (2010) suggests, but it is unclear how the resulting object with uncountably
infinitely many components will aid in the description and explanation of local matter dynamics without
selecting a single component. But in applications where 1% really facilitates description and explanation,
the relevant frame is indeed determined from matter fields or added explicitly as a highly abstracted
representation of a laboratory or other regions with measurement devices.

The second two issues are, in my view, more serious threats to the reality of gravitational energy-
momentum. Different equivalent Lagrangians for gravitation or expressions of one and the same Spar-
ling’s form on the frame bundle yield different 1*%s. The gravitational energy-momentum realist would
need to select one and thereby reify distinctions which are not otherwise of theoretical importance (much
less being of any empirical significance). Further (and regarding the last issue), the sort of descriptions
and explanations given are with respect to a representation of change (9) that in general does not agree
with the fundamental representation of change (V), much in the way that straight-line motion in an ac-
celerating frame of reference will not in general agree with straight-line motion in an inertial frame of
reference. Read (2020, §3.3.3) suggests that one can reify % because one can do so for any structure
that plays a useful role in explanations, but in classical mechanics one does not reify fictitious forces just
because they figure in descriptions and explanations from ballistics to meteorology.

Quantities or structures that depend on some frame determined by spacetime or matter structure and
which avoid these second two issues thus have more of a claim to represent a real property of spacetime.
For example, Goswami & Ellis (2018) show that in spacetimes with certain symmetries, one can define
a the “square-root” of the Bel-Robinson tensor which functions as a kind of energy-momentum tensor
for “free gravity,” the components of curvature represented in the Weyl tensor. Another example is
that asymptotically flat spacetimes implicitly define a Minkowski metric to which the spacetime metric
converges at infinity, in a sense that can be made precise (Wald 1984, Ch. 11). For such spacetimes,
one can define an energy-momentum contained in entire spacelike slices. I discuss these latter examples
more in the following section, after a longer case study of gravitational waves. (For more examples, see
Szabados (2009).)

5.4 Gravitational Waves and Isolated Systems

If gravitational energy-momentum in GR has a status much like a fictitious force, as I argued in the
previous subsection, how does one explain the manifest and measured effects of gravitational waves
radiated from distant sources? In the first direct observation of the gravitational waves, the Advanced
LIGO experiment in 2015 detected the cataclysmic merger of a pair of black holes through its wave
signal (Abbott et al. 2016). Much before then, in 1974 Russell Hulse and Joseph Taylor discovered a
binary star system (now known as the Hulse-Taylor binary) consisting of a neutron star and a pulsar,
the radio pulses of latter fortuitously pointed toward Earth. GR predicts that the system slowly inspirals
as it emits gravitational waves, equally slowly decreasing its orbital period. That’s exactly what they
observed, earning them the 1993 Nobel Prize in Physics. Data over several decades continues to fit the
GR prediction well (Weisberg & Taylor 2005).

The modern theory of gravitational waves is vast and much of it subtle, but only a qualitative review
is needed here. (For standard presentations, see, e.g., Misner et al. (1973, Part VIII) or, more briefly,
Wald (1984, Ch. 4.3b).) There are at least two, related sorts of approaches to gravitational waves and
their radiative sources. The first approach decomposes the metric into a fixed part and a “perturbation”
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Figure 2: h; and hy are the two dimensions of gravitational plane-wave polarizations at a given fre-
quency. ¢ depicts the portion of the period normalized to be expressed in radians. So, each row depicts
stages in the evolution of a ring of test particles at the indicated polarization, as a gravitational wave
passes in the direction normal to the ring.

that, in some desired coordinate system, one takes to be small. One then linearizes the Einstein field
equation to show that certain initial conditions for this perturbation yield a wave equation, with the
quadrupole moment of rotating material bodies as the dominant source. The second, “shortwave” ap-
proach “grafts” a portion of a known exact plane-wave spacetime solution with a given wavelength onto
a spacetime whose typical radius of curvature is much larger, then approximates the nonlinear interac-
tion. Both are approximation (not idealization!) schemes that does not incur too much error in different
overall circumstances. Essentially, both sorts of plane waves, which idealize this radiation far from
its source, have a two-dimensional space of polarizations. Figure 2 depicts the effects of gravitational
waves with theses polarizations on a ring of test particles. It induces a periodic geodesic deviation in the
particles—not merely a periodic coordinate description.

Aptly for the present discussion, in the early history of GR, there was considerable controversy
over whether gravitational waves exist and, if so, whether they “carry energy” (Kennefick 2007). Early
researchers (including Einstein) were unclear about the distinction between wave-like phenomena and
wave-like representations, the latter of which could be of non-wave-like phenomena. For instance, by
a suitable choice of coordinates, even a massive test particle with a geodesic worldline in Minkowski
spacetime can appear to follow a waving trajectory in those coordinates. Describing their effects in
terms of frame-independent features, such as the geodesic deviation they induce, resolves this problem.

Feliz Pirani was the first to explain this in 1956. Historically, though, the relativity community was
focused on the energy question and so was convinced by a different sort of argument due to Richard
Feynman and elaborated by Herman Bondi a couple of years later. Known as the “sticky bead” thought
experiment, depicted in figure 3a, it asks one to consider a rigid rod with two ring-like beads that can
slide with friction on the rod. As a gravitational wave-front passes through, the beads will slide back
and forth on the bar, and through the action of friction heat up the bar. Surely, the argument concludes,
the bar can only heat up if the gravitational waves transfer energy to it. (Cf. the quotation from Rovelli
(1997) about the rock of Gibralter in section 5.) All this from the vacuum, naught but the unvanishing
Weyl tensor.

The thought experiment may discomfit a skeptic of gravitational energy-momentum, but they may
take a first step towards recovery by recognizing that its dramatis personae are distractingly specialized.
First, and most importantly, one can realize the relevant sliding motion of the beads through any geodesic
deviation. In figure 3b, the same bar and beads fall towards the center of a spherically symmetric planet.
In the exterior Schwarzschild metric, the beads’ inward geodesic deviation is a course in their natural
motion towards the center of the planet. (If there is anything special about the waves, it is their especially

34



Draft of November 30, 2022

Foundations of General Relativity

0 ’ , )

< —>

(a) The “sticky bead” thought experiment. The red
lines indicate peaks of the gravitational wave-front,
and the aquamarine arrow represent their direction
of travel, with the resulting blue arrows represent-

e —

(b) The “falling bar” thought experiment. The
aquamarine arrow indicates its direction of fall,
with the resulting blue arrows representing the ini-
tial induced motion of the beads.

ing the initial induced motion of the beads..

Figure 3: Comparison of the “sticky bead” and “falling bar” thought experiments.

long range, deriving from the exact plane wave solution’s Petrov type (N), compared with other effects.)
Second, geodesic deviation neither requires a non-vanishing Weyl tensor; to achieve the same result, one
can replace the external Schwarzschild spacetime with one that is conformally flat, such as an expanding
FLRW spacetime. Third, the frictional mechanism of temperature change is inessential: one can replace
the bar and beads with a more thermodynamically familiar double-pistoned tube of gas. Instead of the
beads sliding frictionally, the pistons compress or expand the gas.

One can analyze each of these thought experiments from at least two points of view in the theater of
the mind. The first is that within a selected frame, which determines a flat derivative operator. According
to it, one can assign a pseudotensor of energy-momentum to the gravitational wave or the gravity of the
planet or the cosmos. Gravity then does work on beads, some of which converts to heat, or on the pistons,
which adiabatically heat or cool the gas. Indeed, thermodynamics since Joule has been tempted to define
work and heat through the equivalent ability to raise or lower a weight against a “uniform gravitational
force,” presupposing the notions provided only through a flat derivative operator. As descriptively
convenient and useful as it is, the work done is as fictitious as the force from which it derives.

The second point of view stands in no frame. According to it, the bar does work on the beads,
impeding their natural motion, some of which converts, to heat; similarly, the gas does work on the
pistons, impeding their natural inward motion. Gravitation, including gravitation waves, can facilitate
real changes in motion and transformations of local thermodynamic quantities without the local addition
or subtraction of energy encoded in Tp,.

Morals similar in some respects apply to the binary inspiral. The inspiral and the emission of gravi-
tational waves are predictions of the EFE alone, confirmed through numerical simulation (cf. Diirr 2019,
§3.3); no energy-based explanation is needed. However, if one models the binary system as isolated,
in an asymptotically flat spacetime, then this aymptotic flatness itself defines a flat derivative operator
(or rather, a class that are asymptotically equivalent) and a boundary at infinity. One can then inte-
grate pseudotensorial energy-momentum quantities over a spacelike hypersurface extending to spatial
infinity, and incredibly, the result is independent of the particular pseudotensor and coordinate system
used to express it. The resulting quantity, called the ADM energy-momentum, is in fact independent of
the particular spatial hypersurface, as long as it extends to spatial infinity. This means that the ADM
energy-momentum is a globally conserved quantity for isolated systems. If one picks a different type
of spacelike hypersurface, asymptotic to future null infinity, one can arrive at a different quantity, the
Bondi-Sachs energy-momentum. If a central, isolated body emits gravitational waves to future null in-
finity during an isolated period, one can sandwich this period between two such hypersurfaces. One will
then find that the Bondi-Sachs energy-momentum decreases as a function of the gravitational wave flux
(encoded in a technical construction called the Bondi news function). It is tempting to conclude from
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this that “gravitational radiation always carries positive energy away from a radiating system” (Wald
1984, 292), but we should not get carried away: gravitational radiation does not have any Bondi energy
of its own because that is a global quantity not attributable to localized regions of spacetime. It is simply
the case that this notion of energy is not conserved over time.

The conservation success for ADM energy-momentum and the failure for Bondi-Sachs energy-
momentum is less surprising when one reflects on what they represent. Each of them encodes how
quickly curvature falls off as one move farther towards infinity from an isolated body, just as the to-
tal mass of a swarm of bodies in a Newtonian spacetime determines the fall-off of their gravitational
force on distant massive bodies. The ADM version selects a spacelike hypersurface that is guaranteed
to slice through all persisting matter and radiation, while the Bondi-Sachs version picks a slice that does
not intersect with radiation escaping to null infinity. For these reasons they of course must be global
quantities only defined for asymptotically flat spacetimes. But for the same reason these global con-
cepts of energy-momentum are not concepts of purely gravitational energy-momentum, for they are
insensitive to whether the central body is material. Both a black hole and a material star with the same
external Schwarzschild metric will yield the same global energy-momentum even though one is purely
gravitational and the other material.

6 Time and Causality

6.1 Time and Time Travel

In most of prerelativistic physics, time manifests many familiar properties. One can locate every atomic
event on a single timeline with a temporal metric. Thus, the duration of any process or history is
determined entirely by the atomic events on its boundary. The timeline can be totally ordered, delineating
the past and future with respect to any atomic event. In GR, these properties do not generally hold. As
discussed in section 1, the metric assigns a duration to every timelike curve—a one-dimenstional process
or history—which is not determined by the atomic events on the boundary of the curve. Consequently,
it is never possible to locate all atomic events on a single timeline. Many (though not all) relativistic
spacetimes still admit of a transitive ordering on their atomic events, however. This ordering, called a
time orientation, can be specified in many ways (Minguzzi 2019, §1.7); perhaps the simplest is by a
timelike vector field. At the tangent space of each point of the manifold, this field determines a vector
in one of the two null cones, picking it out as the “future” direction: all timelike and null vectors lying
in the same cone—those co-oriented with it—are said to be future-directed. (The rest are said to be
past-directed.) One atomic event, g, is then to the future of another, p, iff there is a continuous timelike
or null curve from p to g whose tangent vector field is future-directed.

There are some relativistic spacetimes that admit of structure with properties more analogous to
those of time familiar from prerelativistic physics. For instance, a spacetime with manifold M admits
of a time function when there is a continuous scalar field r : M — R such that whenever ¢ is to the
future of p, 1(q) > «( p).16 (¢ is said to be a temporal function if moreover ¢ is at least once differentiable
and is strictly increasing along all future directions.) Such a function assigns a kind of “time” to every
atomic event, one that mirrors the temporal ordering of the orientation, thereby locating these events
along a timeline. However, the times thereby assigned do not reflect any temporal metric; not all curves
starting at p € M and ending in g € M have a duration #(q) — #(p), and indeed it is possible that none do.
Moreover, if a spacetime admits of one time (temporal) function, then it admits of infinitely many with
different collections of level sets, the collections of atomic events assigned the same “time.”

On occasion it is possible to select a unique time (temporal) function with distinguished properties
(cf. Lachieze-Rey 2014, §5.3). In FLRW models, for example, which are the standard cosmological

16 Admitting a time function is one condition in the middle of a linear hierarchy of conditions caused the “causal ladder”
(Minguzzi 2019, §4), which characterize qualitatively how similar the global structure of time in a relativistic spacetime is to
that of prerelativistic physics. For lack space, I only discuss in this chapter the top (global hyperbolicity) and bottom couple
rungs (non-total viciousness and chronology) of the ladder in addition to the middle.
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models, one can define the cosmic time function as that which assigns to any p € M the supremum
of the durations of all future-directed continuous timelike curves ending at p. Cosmic time is always
finite in FLRW models (unlike, say, in Minkowski spacetime) because these models have a big bang
singularity, meaning that all future-directed timelike curves with future endpoint have a finite duration.
(In chapter 7 I will discuss the definitions of singularites in more detail.) Moreover, the cosmic time
of an atomic event within an FLRW model is equal to the duration of the wordline of a mote of eternal
fluid ending in that event, for in FLRW models, the matter content of the universe is a homogeneous,
isotropic perfect fluid. This fact undergirds empirical claims about the current age of the universe: they
are just claims about the cosmic time of current events on Earth as if those events were occupied by
such a mote. However, FLRW models are clearly idealized: the material content of the universe is not
literally a homogeneous, isotropic perfect fluid. In any case, because the worldlines through the Earth
never align with the geodesic congruence prescribed by the FLRW models, cosmic time does not track
the durations we experience. Nor do the hypersurfaces of constant cosmic time match (except at a single
atomic event) the hypersurfaces of standard simulateneity given by any observer, even one comoving
with the idealized perfect fluid.!”

Just as some relativistic spacetimes admit of structure with properties more analogous to those of
time familiar from prerelativistic physics, others have properties quite disanalogous. One of the most
striking of these is the existence of closed timelike curves (CTCs), which are piecewise C' timelike
curves that are not injective—they “close” back on themselves so that two distinct parameter values
map to the same atomic event. A spacetime with manifold M is said to violate/satisify chronology ift
it does/does not contain a CTC. Clearly a spacetime violating chronology does not admit of a time
(temporal) function. Any spacetime’s chronology-violating region is the set C C M through which a
CTC passes. Spacetimes for which C = M are said to be fotally vicious. One can construct a simple
example of a totally vicious spacetime by rolling up 2-d Minkowski spacetime along an adapted timelike
coordinate. Not all CTCs arise from a non-trivial topology, however.'® A famous early example is Godel
spacetime (Godel 19494, 2000) (for more on which, see Ellis & Krasifiski (2000) and Malament (2012,
ch. 3.1)). Its spacetime manifold is diffeomorphic to R*. But not all spacetimes violating chronology
are totally vicious. Misner and Taub-NUT spacetimes are so (Hawking & Ellis 1973, Ch. 5.8), as is the
interior of Kerr spacetime (Hawking & Ellis 1973, Ch. 5.6).

CTCs are widely taken to be examples of time travel, as they represent processes or objects that
loop back onto an atomic event in their past. Indeed, many authors identify CTCs with time travel in a
relativistic spacetime (e.g., Smeenk & Wiithrich 2011, 580). But this identification is too facile. Time
travel involves, somehow, a local way in which the time experienced by the “traveler” is out of joint with
the world around them. Looping processes or objects are clearly one but not the only way for time to
be locally out of joint—consider, after all the twins (“paradox’’) thought experiment (Smith 2021, §1): a
traveler sets out from Earth for a round trip on a powerful rocket ship. When they return after, say, a few
month’s travel, they arrive in Earth’s future 100 years hence, long after their twin has perished. There is
a legitimate sense in which the traveler has indeed arrived at Earth’s future without traversing any CTCs.

Perhaps a clearheaded definition of time travel will encompass CTCs and the twins. The most pop-
ular definition is due to David Lewis (1976, 145-6): one is a time traveler when one’s personal time
does not match external, objective time. In particular, one travels to the future on a journey when one’s
personal duration is shorter than the external duration of the journey; one travels to the past when one
arrives at an external time earlier than when one started. But as I reviewed above, relativistic spacetimes
do not generally admit of anything like an external time that determines the time elapsed between two
atomic events. To overcome this, Fano & Macchia (2020) appeal to the best-case scenario of a cos-
mological FLRW model with cosmic time and suggest somehow embedding any local model with time
travel, such as the interior Kerr metric, as a separate model into the FLRW model. Mathematically, this

"These distinct types of spacelike hypersurfaces are sometimes known as public space (determined by cosmic time) and
private space (determined by an individual worldline’s standard simultaneity) (Malament 2007, 251). These various ways in
which cosmic time does not capture the time of our experience plays a role in my criticism of Lewis’s definition of time travel,
below.

181n certain cases, some CTCs must arise: If M is compact, then C # @ (Hawking & Ellis 1973, Prop. 6.4.2).
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is not possible while preserving a well-defined cosmic time. But they affirm that this superposition is
contradictory “only if the following metaphysical principle, which we can call property transmission
from whole to parts, holds: If one object O has the property A and o is a proper part of O and A is in-
compatible with the property B, then o could not have B” (Fano & Macchia 2020, 4863—4). They reject
this principle; but it is rather sufficient, not necessary for contradiction, as they insist. Contradiction here
arises not from principles metaphysical, but mathematical. Even if this could be assuaged somehow,
because the Earth’s time does not match cosmic time—it is in motion relative to the average motion of
matter in the universe—anything on Earth will always count as a time traveler, for the usual time dilation
reasons. Cosmic time as Lewisian external time thus yields the wrong verdicts about what and who are
time travelers.

Daniels (2014, 339, 343) has made a different proposal for adapting Lewis’s definition to the rela-
tivistic context: “An object, O, is a time traveller iff there is another frame wherein an object would have
a different proper time from s to e than O", where s and e are the starting and ending achronal hypersur-
faces, respectively, for O. Unfortunately this proposal is not conceptually or mathematically consistent:
the presupposed achronal hypersurfaces may not exist (e.g., in Godel spacetime) and there is a conflation
of properties of proper time with properties of frame-based coordinate time assignments. Proper times
are not frame-dependent, so presumably Daniels intends to refer to frame-based temporal coordinate as-
signment which differs from an object’s proper time. But there will always be such frames, so whenever
s and e exist, an object with a worldline through them will be a time traveller. Daniels (2014, 339—-41)
acknowledges this, affirming that not all time travelers will be “philosophically interesting,” an analysis
of which he declines. The issue, however, is that the proposed definition of time travel is trivial: it is
extensionally equivalent (where it applies) to other trivial properties such as being self-identical, so it is
difficult to see how it provides insight into the phenomenon of time travel.

Arntzenius (2006, 603) proposed a variation on this idea restricted to backwards time travel:

Suppose there is some (connected, 4-dimensional) sub-region R of space-time which one
can slice up into time-slices, so that one can define an external time confined to R. Now
suppose that there is a person whose world-line W partially lies in R. Then we can say that
person P travels back in time if there are events A and B such that according to P’s personal
time A occurs before B while according to R’s external time B occurs before A.

The “slic[ing] up into time-slices” is essentially just the assignment of a time function to the region R.
This proposal, as far as it goes, does not have the disadvantages of Daniels’s, but its scope is limited
in two ways: it does not capture time travel to the future, nor does it offer any quantitative assessment
of how far in time a time traveler has traveled. Arntzenius (2006, 605) acknowledges the former, but
demurs that it would encounter the same sort of triviality problem that afflicts Daniels’s:

According to (special and general) relativity two clocks that travel along different world-
lines from space-time point A to space-time point B will, almost always, measure different
time intervals between A and B no matter what the structure the space-time has. [...] So,
on a fairly natural characterization of what it is for there to be forwards time travel, forwards
time travel would be ubiquitous, too ubiquitous to be interesting.

Arntzenius (2006, 605) admits that perhaps there is some way of capturing a non-trivial sense of rela-
tivistic time travel to the future, but does not pursue it.

It is worth pursuing briefly here by combining certain aspects of Arntzenius’s and Daniels’s propos-
als. Abstracting from both, the essential idea in Lewis’s invocation of “external” time is not that it is
object- or frame-independent, but rather that it can provide a normality standard for determining when
some personal time (along a worldline, say) is out of joint. From Arntzenius, I take the idea that this
normality standard should be a local time function, i.e., one defined on only a portion of spacetime.
From Daniels, I take the ideas that there needn’t be a single, uniquely defined normality standard, and
that . The new ingredient I add is some measure of sow abnormally out of joint some personal time is,
attributing time travel only to those whose personal time is sufficiently abnormal. With these inputs, I
arrive at the following schema:
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Let a relativistic spacetime with manifold M be given, as well as a timelike worldline O :
I — M parameterized by arc length (with / € R an interval), a local time function on
UcCM,t:U — R, anon-negative discrepancy measure d : R X R — R, and a real number
€ > 0. Then O time travels relative to ¢, d, and € at p € U n O[I] iff d(O‘l[p], t(p)) > €,
where d(O~'[p], t(p)) gives the time discrepancy at p.

In a word, time travel occurs for O in U when the time experienced by O differs from that given by ¢
by more than € according to the discrepancy measure d. Whether any instantiation and application of
this scheme to a particular case is interesting will depend on the relevance of the standard of temporal
normality (7) and precision (d) to that case as well as the particular parameterization /. In many cases of
interest, ¢ will be generated by some local congruence of timelike geodesics, I will in some way cohere
with some of the assignments of ¢, d will be the absolute difference, and € will be some threshold of
practical imperceptibility. For instance, in the case of the twins thought experiment, ¢ will be given by
some local Newtonian model for a spacetime tube surrounding the Earth, / will initially cohere with ¢
before the traveling twin’s journey, and d and € will be as above.

Most philosophical discussions of time travel’s implications for the nature of time or matter, such
as for the debate between presentists, who maintain that only the present is real, and eternalists, who
maintain that the past, present, and future are equally real, do not draw from GR (Smith 2021, §4).
Because time travel in GR has typically been equated with CTCs, almost all of the discussion of these
specific implications has focused on the seeming causal circularity of events thereon. I will turn to these
in the last subsection. Two exceptions to these trends have been Godel’s argument for the “ideality” of
time, and an argument of my own concerning the ontology of matter, which I discuss in turn.

Drawing from his solution to the EFE containing CTC discussed above, Godel (19495, 562) argued:

The mere compatibility with the laws of nature of worlds in which there is no distinguished
absolute time, and, therefore, no objective lapse of time can exist, throws some light on the
meaning of time in those worlds in which an absolute time can be defined. For, if someone
asserts that this absolute time is lapsing, he accepts as a consequence that whether or not
an objective lapse of time exists ...depends on the particular way in which matter and its
motion are arranged in the world. This is not a straightforward contradiction; nevertheless
a philosophical view leading to such consequences can hardly be considered as satisfactory.

To understand what Godel might have had in mind here, note that a typical model of GR does not
contain as part of its auxiliary spacetime structure a distinguished time slice representing the global
present, and so does not explicitly represent how that present could flow or change. Can one merely
add this auxiliary structure just as one might add, say, a temporal orientation? A necessary condition for
this is that a spacetime admit of a global time function. Spacetimes with time travel (such as those with
CTCs, like Godel spacetime) show that it’s possible for spacetime not to admit of a global time function,
hence not have a global objective time lapse. Finally, it is not “satisfactory” for this to be a contingent
feature of a universe.

The last, modal step of Godel’s argument have been controversial, failing to convince most readers:
why shouldn’t the global passage of time be a contingent feature of the universe? (See Earman (1995,
194-200), Smeenk & Wiithrich (2011, §4), and references therein for detailed discussion.) However,
there is an two-part elaboration that restores the argument’s force (setting aside whether it is what Godel
intended). The first part, due to (Manchak 2016), relies on the concept of (weak) observational in-
distinguishability. A spacetime with manifold M is (weakly) observationally indistinguishable from a
spacetime with manifold M’ if for every p € M there is some p’ € M’ such the the pasts of p and p’
are isometric. Call the spacetime with manifold M’ a foil for the original spacetime with manifold M.
Manchak (2016) proves that every original has a foil with the same manifold that does not admit a global
time function, and that moreover the spacetime region in the foil that obstructs the existence of the time
function in the may be chosen to lie in the future of any chosen point p of the original. This entails
that there can be no unequivocal evidence from physical experience for global objective time lapse. The
second part marshals a standard Occamist norm against postulating surplus physical or metaphysical
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structure, all else being equal. From the first part, it does seem that, at least empirically, all else is equal
regarding whether one postulates a global objective lapse of time, so one should not postulate it. The
Occamist norm is not a conceptual truth, of course, so the defender of global objective time lapse can
reject it, but doing so can hardly be considered as satisfactory, methodologically.'”

The other argument that I wish to discuss here comes from my (2020c). It concerns the implications
that a special class of branching CTCs, ones whose images are dendritic—they contain a “’Y” shape, have
for the ontology of matter in GR. Suppose that these CTCs could represent the worldlines of particles
or parts of material objects, and that the equations of motion for these are locally deterministic. Yet, at
(or just before) the branching event, the local state of the matter fields and metric do not determine the
worldine of the particle (or object-part), yielding a contradiction. One must as a consequence either add
unrepresented structure to these particles (or object-parts), structure that seemingly plays no role in their
usual equations of motion but somehow makes a difference in these special cases, or switch to a field
ontology, where no conflict arises; the latter clearly is more parsimonious and explanatory.

6.2 Relativistic Causality

One of the first slogans one learns about relativity is that it prohibits superluminal signals, or influences,
or propagation of matter. It is natural to read this as a sort of causality requirement or postulate in
the theory. What exactly is the nature and status of this prohibition (if it is not just a restatement of
Histories, discussed in chapter 1)? Consider the following definition of “local causality” from Hawking
& Ellis (1973, 60):

The equations governing the matter fields must be such that if U is a convex normal
neighborhood and p and ¢ are points in U then a signal can be sent in U between p and g
if and only if p and ¢ can be joined by a C! curve lying entirely in 7/, whose tangent vector
is everywhere non-zero and is either timelike or null; [...].

A more precise statement of this postulate can be given in terms of the Cauchy problem
of the matter fields. Let p € U be such that every [inextendible] non-spacelike curve
through p intersects the spacelike surface x* = 0 within U. Let ¥ be the set of points
in the surface x* = 0 which can be reached by non-spacelike curves in U from p. Then
we require that the values of the matter fields at p must be uniquely determined by the
values of the fields and their derivatives up to some finite order on ¥, and that they are not
uniquely determined by the values on any proper subset of ¥ to which it can be continuously
retracted. [...]

This passage is remarkable for its seemingly wild combination of ideas. What should the ostensibly
anthropocentric idea of “signals” have to do with the structure of space, time, and matter? How could a
local statement of determinism for matter be a more precise expression of this idea?

The semantic connotation of “signal” perhaps misleads; it denotes here more narrowly a propagating
disturbance in a material medium. One way to made this idea precise is in terms of counterfactual
difference-making (Weinstein 2006): given a difference in the initial conditions of the medium, find
whether these differences entail differences at events spacelike related from the initial conditions. And
here the connection with the Cauchy problem is evident. Earman (2014, 103) gives this a more precise

formulation:2°

For any initial value hypersurface S and any initial datum ®( on S

(1) there is an open neighborhood U of § and a solution @ of the field equations on U that
agrees with @, and

(2) for any point p € U if p belongs to the domain of dependence D(A) of a closed subset
A of S, then for any solutions ® and @’ on U that agree with @y on A, ®(p) = ®’(p).

%A local objective time lapse may nevertheless be compatible with the argument; see Aames (2022) for a recent defense.
20See also Wald (1984, 244).
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The domain of dependence of a set A is the points p of M such that all non-spacelike inextendible
curves through p intersect A. In causal terms, it is the set of events that A determines, insofar as that
determination follows timeline and null curves.

When the matter fields satisfy wave-like equations of motion—in technical terms, they are hyper-
bolic partial differential equations (Geroch 1996)—this characterization is equivalent to another in terms
of those equations’ characteristic cones. These are cones in the tangent space, much like the null cones
of the spacetime metric, that specify the possible directions in spacetime for how a jump discontinuity
in the fields governed by the equations in question.?! Consequently, if such a discontinuity in initial
data represents an induces difference in the field medium, then one can track the characteristic surface
it induces, which will always be in the domain of dependence of the initial data set if the characteristic
cones always lie within the null cones at all events in that domain (Weatherall 2014).2> Indeed, “The re-
quirement that the matter equations should be second order hyperbolic or first order hyperbolic systems
with their cones coinciding with or lying within that of the space-time metric g, may be thought of as a
more rigorous form of the local causality postulate” (Hawking & Ellis 1973, 255).

One of the remarkable features of local causality is that it is not a consequence of other assumptions
of GR, and places no restrictions on spatiotemporal structure. It is rather an assumption about matter
fields (about which Hawking & Ellis (1973, 60) are entirely forthcoming), one that ensures that the
structure of those fields’ causal dependence falls along relations of timelike or null dependence. Matter
fields that do not satisfy it are nevertheless perfectly compatible with GR (Geroch 2011). For instance,
Weatherall (2014, §5) shows how the characteristic cones for Maxwell equations for electromagnetism
lie outside the null cones when traveling through a medium with (light frequency-independent) index of
refraction n < 1. This does not of course mean that realistic matter can be found with this property. If
one assumes instead that n depends on frequency such that n — 1 as the frequency becomes arbitrarily
large, then light’s characteristic cones will lie inside the null cones. And this, in turn, is usually justified
heuristically by appeal to the atomic theory of matter (Weatherall 2014, §6).

Sometimes one finds an alternative conception of relativistic causality for classical matter fields.
According to it, that a field ¥ satisfies DEC, which I introduced in chapter 5, means that “the energy of
F does not propagate with superluminal velocity” (Malament 2012, 144).23 There are two facts often
cited in support of this conception. First, as I stated before, since DEC entails that 7,,&, is non-spacelike
for any timelike £“, it entails that according to any frame, the flux density of net energy-momentum
is non-spacelike. Second, Hawking & Ellis (1973, 94) prove a (“conservation”) theorem that has as a
consequence the fact that if the energy-momentum tensor (or, really, any divergence-free tensor) satisfies
DEC and vanishes on a certain set A, then it also vanishes on D(A). For fields that satisfy AFHE, “This
result may be interpreted as saying that the dominant energy condition implies that matter cannot travel
faster than light” (Hawking & Ellis 1973, 94)—or, really, that it cannot encroach into the vacuum faster
than light.

The DEC, however, does not characterize relativistic causality because, while it is sufficient for the
above consequences presented in favor of this characterization, it is not necessary, nor is it necessary
for the characterization endorsed above. For instance, the Klein-Gordon field with a negative potential
satisfies a hyperbolic equation of motion, but not the DEC (Earman 2014, 104). The failure of the
DEC does not therefore entail any superluminal propagation of matter or energy, into the vacuum or
otherwise. (In any case, the speed of vacuum encroachment does not entail anything about the speed of
propagation in a non-vanishing medium—see Wong (2011) for examples and details.)

2n fact, from a mathematical perspective the null cones are also characteristic cones (Geroch 2011).

22Weinstein (2006, §2) complained that it would not be productive in general to try to find the wordline of a “signal” in
trying to make relativistic causality precise, but this discussion shows that for wavelike phenomena, it can be made precise.

23See also Wald (1984, 219).
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6.3 Interactions of Causality and Time: Time Machines

Time, time travel, and relativistic causality interact in the concept of a time machine. In the context of
GR, a time machine is some distribution of matter and metric that brings about (the possibility of) time
travel in a spacetime region when none would have existed otherwise. In other words, time machines
cause (or make possible) time travel. It is natural to understand this notion of causation in terms of
relativistic causality, and as previously mentioned, time travel in GR has historically been equated with
CTCs. Thus we have the following definition schema (Earman et al. 2022, §3):

A time machine in a relativistic spacetime is a partial Cauchy surface Xy such that no CTCs
lie to its past of Xy but every extension of the future domain of dependence, D* (Xy) satisfy-
ing an appropriate no-hole condition, contains CTCs.

A partial Cauchy surface is a spacelike hypersurface without edge that is not intersected more than once
by any timelike curve; it is a sort of initial value hypersurface. The future domain of dependence of a set
is just the intersection of the set’s domain of dependence with its future. So, this definition assumes that
there is an at least local set of initial data, through which no CTCs pass, in the past of which there are no
CTCs, but in the future of which there must be. Without the “no-hole” condition, there couldn’t be any
time machines because, given a spacetime that witnesses the above condition for some partial Cauchy
surface, it becomes possible to find maximal extensions have holes instead of CTCs—indeed, there is a
kind of duality between CTCs and holes in this context (Manchak 2014). However, the exact nature of
the appropriate ‘“no-hole” condition continues to be a matter of controversy (Smith 2021, §3).

There are several excellent and detailed reviews of various results about time machines (e.g., (Ear-
man 1995, Ch. 6.10), Smeenk & Wiithrich (2011, §5-6), and Smith (2021)), including various proposed
examples and no-go theorems. Instead of reproducing them here, I would like to highlight some ways in
which the general characterization of time machines has been unsatisfactory, ways that to my knowledge
have not received much attention.

1. As I have argued in the first section of this chapter, time travel in GR in general outstrips the
presence of CTCs, which witness time travel by being temporal loops, hence causal loops. So, the
above characterization is really more narrowly about “temporal/causal loop”” machines. (In what
follows, for clarity I set this complaint aside and continue to refer to the above characterization as
one of time machines.)

2. AsIreviewed in the second section of this chapter, GR itself does not constrain the range of causal
influence of matter, so we cannot identify the domain of influence of a matter distribution with the
future of set of events without making further assumptions explicit.

3. The characterization of time machines focuses on the “first” creation of CTCs, which is why the
definition demands that Xy be a partial Cauchy surface (a local “time” that can be first) in the past
of which there are no CTCs. But the question of identifying the first time machine(s), if any, is
different from what time machines are. A pasta machine, for instance, functions neither worse nor
falsely by there being pasta in its past or present.

4. Part of the pre-theoretic idea of a time machine is that is makes a positive difference to the success
of time travel, but the characterization above seems to be compatible with time travel arising to
the future of the time machine regardless of what was on the initial data surface.

One way to address these issues would be to use an explicit causal theory to evaluate the relevant counter-
factual, or even try to evaluate the counterfactual directly. The relevant counterfactual is something like
this: if the distribution of fields on the initial data surface were different, then the chronology violating
region would be smaller than it is.
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7 Singularities and Black Holes

Two of general relativity’s most striking predictions are singularities and black holes. The former seem-
ingly represent “edges” to spacetime itself, while the latter are regions where gravitation is so strong
that not even light can escape. These introduce a host of philosophical issues, including the very def-
initions of singularities and black holes, whether certain of them are precluded—the so-called cosmic
censorship hypothesis—and what bearing they have on the status of determinism in general relativity.
Singularities are sometimes said to evince a “breakdown” in general relativity, what is the status of
the arguments for this? Black holes are argued to have thermodynamic properties and offer a point of
contact with quantum theory through Hawking radiation and the information loss paradox. What is the
status of the arguments for and against these properties, and for different resolutions of the paradox

8 Coda: After Quantum Gravity

The interpretation of any physical theory, including the possibilities it permits, can always be affected by
the development of its successor. General relativity’s successor, if it is forthcoming, will likely be some
quantum theory of gravity. Yet consensus on what this could be is preliminary and fragile. I discuss some
of the changes these might make to the debates on time and causality, singularities and black holes, and
the status of Einstein’s field equation, looking, e.g., to the spin-2 theory of gravitation.
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