
Chapter 8

Case Study II: Gauge
Quantities

8.1 Introduction

The symmetries discussed in the previous chapters — Leibniz shifts, uni-
form mass scalings, and so on — are all examples of global symmetries. In
this chapter I turn my attention to local symmetries. Global symmetries are
often defined as symmetries whose action is constant, whereas local symme-
tries vary across spacetime. But this definition is problematic: for example,
boosts of the universe are paradigmatic global symmetries, but their action
varies over time. Therefore, I will adopt a more precise definition accord-
ing to which local symmetries depend on an infinite number of parameters,
whereas global symmetries only depend on finitely many parameters (for
this reason, Gomes (2019) calls global symmetries ‘rigid’ and local symme-
tries ‘malleable’).1 In particular, I will focus on local symmetries of internal
(i.e. non-spatiotemporal) degrees of freedom, also called gauge symmetries.2

The main example I will use in this chapter is the gauge freedom of scalar
electrodynamics.

Gauge symmetries raise many of the same issues as the symmetries dis-

1 For a slightly less formal characterisation, see Wallace (2002).
2 The terminology here is particularly confusing: among philosophers, it is not uncom-

mon to use the term ‘gauge symmetry’ for any symmetry that relates physically equivalent
states, whereas physicists reserve the term for local symmetries; see Weatherall (2016b).
Furthermore, there is some debate over whether external symmetries, such as the dif-
feomorphism invariance of General Relativity, count as gauge; see, for example, Wallace
(2015) and Dewar (2020). I will use the term ‘gauge symmetries’ in the technical sense to
denote local internal symmetries.
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cussed before, such as the presence of undetectable quantities. The ar-
gument here is exactly analogous: since symmetry-transformations of the
universe are unobservable, the existence of such symmetries seems to im-
ply the empirical underdetermination of our models. As a consequence, the
values that vary under those symmetries are unmeasurable. Furthermore,
the local character of gauge symmetries entails a particularly harmful form
of indeterminism, analogous to the Hole Argument in General Realtivity.
Since gauge symmetries are local, there exist symmetries whose action is
trivial up to some time t, but non-trivial thereafter. This means that the
physical facts at and before t do not determine the facts after t: a failure
of determinism. This failure seems particularly problematic because of the
fact that the divergent futures are observationally equivalent.

As before, there are three broad strategies for interpreting symmetry-
related models (SRMs). The first is literalism: SRMs represent physically
distinct states of affairs. In order to avoid indeterminism, however, one has
to supplement literalism with some further claim. For example, one could
claim that only one out of an equivalence class of SRMs represents a possible
state of affairs, namely one that satisfies a certain gauge condition. Such
a claim in effect elevates a particular gauge fixing condition to become an
additional law.3 But such a strategy has various issues — most importantly,
that the particular choice of ‘gauge law’ is essentially arbitrary — so I will
not further consider literalism here.

Instead, I focus on the choice between reduction and sophistication.4

Recall that reduction aims at a novel reduced theory formulated in terms of
invariant quantities, such that each model of the reduced theory uniquely
correspond to an equivalence class of SRMs of the old theory. Sophistication,
on the other hand, aims at a restructured theory such that the theory’s SRMs
are isomorphic. Since isomorphic models are structurally equivalent, the
latter method allows one to interpret SRMs anti-haecceitistically or anti-
quidditistically as physically equivalent. I will defend sophistication over
reduction as the correct interpretation of gauge theories. Specifically, I will
argue that sophistication makes most sense of physics’ use of the fibre bundle
formalism in modern formulations of gauge theories, which for a reductionist
this formalism seems to possess excess structure.5

3 This is similar to Maudlin’s (1998) ‘ONE TRUE GAUGE’ approach, although Maudlin
does not go so far as to consider the gauge fixing condition as a law.
4 As far as I am aware, Dewar (2019) was the first to explicitly draw this distinction; see

also Martens and Read (2020).
5 I thus agree with Dewar’s (2019) third example of sophistication. I extend on his

example in this chapter by offering both a more detailed technical account of the example,
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The plan is as follows. In §2, I use the Aharonov-Bohm effect to illus-
trate how gauge symmetries pose a problem for the interpretation of gauge
theories. In §3, I survey and criticise various reductionist responses to this
problem, including Healey’s (2007) holonomy realism and Wallace’s (2014a)
deflationary account of the Aharonov-Bohm effect. In §4, I introduce the
fibre bundle framework, which, I argue, is the appropriate setting for a so-
phisticated account of gauge symmetries. In §5, I consider gauge symmetries
from the perspective of the fibre bundle picture. In §6, I consider the meta-
physics of fibre bundles on a sophisticated account. Specifically, I argue
that anti-quidditism about gauge quantities allows us to interpret SRMs as
physically equivalent. In §7, I discuss whether my account is local in various
senses. I argue that the fibre bundle account is both local and separable,
but that it also implies a form of holism about physical explanations. §8
concludes.

8.2 The Aharonov-Bohm Effect

The Aharonov-Bohm effect is essentially a modified double-slit experiment.
Between the plate and the screen, a solenoid is placed. We assume that
the solenoid is impenetrable. The Aharonov-Bohm effect refers to the fact
that the interference pattern changes when we let a current run through
the solenoid. Specifically, the positions of the interference peaks are shifted
within the interference envelope. This is the case despite the fact that the
electromagnetic field vanishes outside the solenoid, where the matter field is
non-trivial. Hence, we cannot simply understand the effect as the result of
that field acting locally on the matter field. This led Aharonov and Bohm
to posit the four-potential, which does not vanish outside the solenoid, as
causally responsible for the effect (Aharonov and Bohm, 1959).

In more detail,6 recall that the electromagnetic field tensor Fµν can be
expressed in terms of the electromagnetic four-potential Aµ:

Fµν = ∂µAν − ∂νAµ (8.1)

In terms of Fµν and Aµ, the Lagrangian of scalar electrodynamics is

L = (Dµφ)(Dµφ)∗ −m2|φ|2 − 1

4
FµνF

µν (8.2)

and by filling out the accompanying metaphysical picture.
6 The exposition draws from Healey (2007) and especially Brown (2016).
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where Dµ := ∂µ + iqAµ. Here, φ denotes a classical matter field. The
Lagrangian is invariant under the following gauge transformation, where e
is the charge of the field:

Aµ → Aµ + ∂µα(x)

φ→ eiqα(x)φ
(8.3)

where α(x) is a function of the spacetime coordinates x and q is a scalar
quantity that denotes the field’s charge.

For the Aharonov-Bohm effect, we consider the matter field

ψ(x) = ψI(x) + ψII(x), (8.4)

where ψI and ψII are the components of the field that pass the left and right
slit respectively. Let P denote the source of the field, and Q an arbitrary
point on the screen. We can always choose a gauge such that α(P ) = 0. For
a matter field in a region in which Fµν = 0, then, we can always choose a
gauge such that Aµ = ∂µα (as long as our spacetime is simply connected)
and hence write:

α(x) = α(x)− α(P ) =

∫ x

P
dα(x) =

∫ x

P
∂µ(α)dxµ =

∫ x

P
Aµdx

µ (8.5)

With this result, we can re-express the transformation of ψ in (8.3) as
follows:

φ(x)→ eie
∫ x
P Aµdx

µ
φ(x) (8.6)

When applied to the particular field of interest in (8.4), this results in:

ψ′(Q) = eiq
∫
I A

µdxµψI(Q) + eiq
∫
II A

µdxµψII(Q) (8.7)

= eiq
∫
I A

µdxµ
(
ψI(Q) + eiq

∮
AµdxµψII(Q)

)
(8.8)

= c
(
ψI(Q) + eiq

∮
AµdxµψII(Q)

)
(8.9)

Since c := eiq
∫
I A

µdxµ is a unit complex number, we can safely ignore it.
From an application of Stokes’ theorem, it follows that∮

∂D
Aµdxµ =

∫
D
FµνdS (8.10)
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where D is the surface bounded by paths I and II through the left and right
slit respectively. The expression in (8.8) is equal to the flux Φ through D.
Therefore, our final expression for the gauge transformation of ψ is:

ψ(Q)→ ψ′(Q) = ψI(Q) + eiqΦψII(Q) (8.11)

Importantly, this expression is gauge-invariant. This is puzzling, how-
ever, since Ψ depends on Fµν , which vanishes outside the solenoid. In other
words, the phase shift of the matter field seems to depend on a field which
with it does not locally interact. For this reason, physicists often consider
the four-potential Aµ (which does not vanish outside the solenoid) as the
physically real field that interacts with the wavefunction. Aharonov and
Bohm, for example, wrote that

[I]n a theory involving only local interactions [...] the poten-
tials must, in certain cases, be considered as physically effective,
even when there are no fields acting on the charged particles.
(Aharonov and Bohm, 1959, 490)

Similarly, Feynman simply posits local action as a necessary condition for a
field to be real:

In our sense then, the A-field is “real.” You may say: “But there
was a magnetic field.” There was, but remember our original
idea—that a field is “real” if it is what must be specified at
the position of the particle in order to get the motion. The B-
field in the whisker acts at a distance. If we want to describe
its influence not as action-at-a-distance, we must use the vector
potential. (Feynman et al., 1964)

However, the fact that Aµ, unlike Fµν , is not gauge-invariant is prob-
lematic for now-familiar reasons. Solutions to (8.2) related by the transfor-
mations (8.3) are observationally equivalent. Therefore, reifying the four-
potential implies underdetermination of the theory’s models. Furthermore,
there exist gauge transformations that act as the identity before some time
t but non-trivially thereafter (i.e. α(x) 6= 1 iff x0 > t). The existence of
such transformations seems to imply that electrodynamics is indeterministic.
This form of indeterminism is particularly problematic because the differ-
ence between outcomes is unobservable, so the indeterminism does not hold
at the level of observables (unlike the indeterminism of QM). Therefore, a
literalist approach to Aµ according to which gauge-related models represent
physically distinct states of affairs has several undesirable features.
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8.3 Problems with Reduction

There are various alternatives to A-field realism that aim to avoid this inde-
terminism. The three main proposals are F-field realism, holonomy realism
and field monism. I will discuss each of these in turn.

As I will show, these accounts are all instances of reduction. Recall that
reduction aims to avoid the underdetermination of SRMs by constructing
a new theory — the reduced theory — in terms of invariant quantities of
the old theory, such that there is a unique correspondence between models
of the new theory and equivalence classes of symmetry-related models of
the old theory. I will argue that these instances of reduction are unsatisfac-
tory. Specifically, the No Cosmic Coincidences argument against reduction
of Chapter 3 also applies to the first two approaches discussed below. The
third approach, meanwhile, solves the issue for scalar electrodynamics, but
does not extend to more complex gauge theories.

8.3.1 F-field realism

F -field monism is the view that the electromagnetic field-tensor Fµν is fun-
damental. Historically, of course, F-field realism wasn’t obtained as the
reduct of A-field realism. Rather, F-field realism was the de facto account
of electrodynamics that the Aharonov-Bohm effect put pressure on. Never-
theless, F-field realism is a form of reduction, since Fµν = ∂µAν−∂νAµ is an
invariant quantity defined in terms of Aµ; there is a unique correspondence
between models in terms of Fµν and equivalence classes of gauge-related
models in terms of Aµ (Weatherall, 2016b, 1041-42).

There are two main issues with B-field realism. The first is the well-
known fact that an explanation of the Aharonov-Bohm effect in terms of B
implies a violation of the principle of Local Action. Since there is no overlap
between the electromagnetic field and the wavefunction, the former can only
act on the latter at a distance. This is universally seen as sufficient reason
to reject B-field realism, and I concur with this view.

The second issue, less well-known but more closely related to the debate
between reduction and sophistication, is that B-field realism implies a ‘cos-
mic coincidence’ (Dewar, 2019, 498). This follows from the fact that Fµν
is in some sense a relational quantity: it depends on the values of A at in-
finitesimally close points. I argued in Chapter 3 that any invariant relational
quantity is involved in cosmic coincidences. In this case, the coincindence
is the Gauss-Faraday law ∂[µFνρ] = 0: expressed in terms of Aµ, this is
a mathematical theorem. But if Aµ is merely a mathematic abstraction,
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then it is mysterious that Fµν behaves as if it is the exterior derivative of
the four-potential. Therefore, B-field realism incurs an explanatory loss in
addition to its violation of Local Action.

8.3.2 Holonomy Realism

While F-field realism has virtually no advocates, holonomy realism is a popu-
lar interpretation of electrodynamics (Belot, 1998; Lyre, 2004; Healey, 2007).
According to holonomy realism, the so-called holonomies H of Aµ are fun-
damental:

H(l) = exp

(
−i
∮
l
Aµdx

µ

)
(8.12)

On this picture, there is a fundamental non-localised property associated to
every closed curve in spacetime: holonomies are not composed of field-values
at individual space-time points, but attach to these curves as a whole. When
a matter field interacts with these holonomies, it does so ‘at once’ around
the loop. In this sense, interactions for holonomy realism are local: the
holonomies spatiotemporally overlap with the matter field.

LikeB-field realism, holonomy realism is an instance of reduction: holonomies
are gauge-invariant quantities such that an assignment of holonomy values
to spacetime loops uniquely corresponds to an equivalence class of gauge-
related A-fields (Barrett, 1991; Rosenstock and Weatherall, 2016). Fur-
thermore, holonomies are relational quantities. Specifically, the holonomy
around a closed path l is a function of the path integrals of Aµ over any pair
of paths l1, l2 that compose l. In other words,

H(l) = e−i
∮
l Aµdx

µ
= e
−i

∫
l1
Aµdxµe

−i
∫
l2
Aµdxµ (8.13)

Thus, H(l) is relational in the sense that it is defined as a function of pairs
of objects (in this case, paths), just as for example distance is defined as a
function of pairs of particles. It is for this reason that Arntzenius (2012)
calls Healey’s view ‘gauge relationism’.

There are two issues with holonomy realism. The first is that an ontology
of holonomies is non-separable: the intrinsic facts about a spacetime region
X ∪ Y do not supervene on the intrinsic facts about X on its own and the
intrinsic facts about Y on its own. We can easily see this when we consider
two partially overlapping regions X and Y close to the solenoid, as in the
following diagram:
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Figure 8.1: The holonomies in X and Y are zero, but there are non-trivial
holonomies around the region X ∪ Y which encloses the solenoid. Repro-
duced from Wallace (2014a).

Since X does not enclose the solenoid the flux through its surface is zero,
and similarly for Y . But now consider the union X ∪ Y . This region does
enclose the solenoid, and so has a non-zero holonomy value. Therefore, the
intrinsic facts about X and Y on their own don’t suffice to determine the
intrinsic facts about X ∪ Y : separability fails.

Now, it is questionable whether this is an issue. Perhaps the world just
is non-separable — quantum entanglement already gives us some reason to
think this is the case (although, as Maudlin (1998) argues, the entanglement
here is of a different nature). Therefore, I find the second issue associated
with holonomy realism more serious. This issue is that certain relations
between holonomies are postulated as brute facts. This ‘cosmic coincidence’
is analogues to that faced by F-field realism.7 Specifically, the holonomies
of two distinct loops l1 and l2 must satisfy the following relation:

H(l1 ◦ l2) = H(l1)H(l2) (8.14)

Here, l1 ◦ l2 is the concatenation of the two loops, that is, the result of first
going around l1 and then going around l2 (see Fig. 5.3). Call this feature
composite loop multiplication (CLM).

CLM guarantees that we can represent holonomies as exponents of loop
integrals of the gauge field, and hence express B in terms of A. As Arntze-

7 In Chapter 3, I offer a unified account of such coincidences.
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Figure 8.2: The loop γ ◦η is the concatenation of γ and η. Reproduced from
Asselmeyer-Maluga (2016).

nius (2012) puts it, “a fairly obvious explanation of why [CLM] hold[s] is
that the map H is, roughly speaking, the integration of a connection around
a loop”. In other words, if we define H(l) = exp

[
−i/~

∮
l A · dx

]
, then

H(l1)H(l2) = exp

[
−i
∮
l1

Aµdx
µ

]
· exp

[
−i
∮
l2

Aµdx
µ

]
= exp

[
−i
∮
l1◦l2

Aµdx
µ

]
= H(l1 ◦ l2)

(8.15)

Therefore, we can easily explain why CLM holds if we posit the existence of
a local four-potential.

On the holonomy interpretation, on the other hand, there is apparently
nothing that guarantees that CLM holds. For example, H(l1) could have
been slightly lower than it actually is. In that case, H(l1 ◦ l2) would either
have been different too, or it would remain the same. If the former is the case
CLM could easily have failed, and it seems a conspiracy that the holonomies
just happen to be related in such a way that we can represent them as loop
integrals of local field values. In the second case, on the other hand, the value
of H(l1) and H(l) are counterfactually connected, despite the fact that l1
and l only partially overlap. This counterfactual action-at-a-distance is at
least as puzzling as non-separability, if not more so.

In response to this objection, Healey appeals to the loop supervenience
of holonomy properties: “the holonomy properties of any loop ⊗iLi are
determined by those of any loops Li that compose it” (Healey, 2007, 123). In
other words, composite loops are not fundamental, since they are composed
of smaller loops. Of course, the same is true for those smaller loops, which
are themselves composed of even smaller ones. There is no end to this, and
hence no smallest fundamental unit. The question then becomes: can loop
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supervenience explain the fact that CLM holds?
I believe that it cannot. Note that the sense in which smaller loops ‘com-

pose’ larger loops is unusual. It is not the case that smaller loops constitue
composite loops in the same way that the mass of two parts determines the
mass of the whole. In the latter case, we are simply talking about mereolog-
ical composition. But composite loops are not the mereological composite
of smaller loops, since the small loops contain parts that don’t overlap with
any part of the composite loop (see Fig. 6.3). Furthermore, composition
does not have the right formal properties to count as fusion. For example,
mereological parthood is anti-symmetric: distinct objects cannot be proper
parts of each other. On the other hand, we can prove that loop composition
is symmetric. Let l−1

1 stand for the loop which goes around l1 in the opposite
direction. Then H(l1 ◦ l2)H(l−1

1 ) = H(l2). If loop composition is identical
to mereological fusion, then this implies that l1 ◦ l2 is part of l2. But since
l2 is also part of l1 ◦ l2, this means that loop supervenience is symmetric.
If the supervenience of loops has no metaphysical basis in mereology, then
Healey’s response seems no more than a question-begging restatement of the
very conspiratorial relation that we are trying to explain.

8.3.3 Field Monism

Wallace (2014b) introduces an interpretation of electrodynamics that is lo-
cal in both senses mentioned above. Since Wallace’s account implies that
“the electromagnetic and scalar fields cannot be thought of as separate en-
tities”, but joinly “[represent] aspects of a single entity”, I will call it ‘field
monism’. Instead of a complex matter field, Wallace’s fundamental fields are
the real scalar field ρ = |φ| and the covariant derivative field Dθ = ∂µθ−Aµ.
Field monism is another example of reduction: both ρ and Dθ are invari-
ant quantities, and joint distributions of these fields uniquely correspond to
equivalence classes of symmetry-related models of electrodynamics. How-
ever, Wallace’s account is not relational in the sense relevant here, since both
the real scalar field ρ and the covariant derivative Dθ are defined in terms
of the values of φ and Aµ at unique points.8 Therefore, Wallace’s account
does not entail any conspiracies of the sort discussed above.

The main issue with field monism is that it does not easily extend to
more complex gauge theories. Wallace (2014a, 17) himself admits that this
is a problem, writing that “in general, I know of no comparably simple set

8 Compare this with F-field realism above. Fµν is defined in terms of the values of Aµ at
distinct (albeit infinitesimally close) points, whereas Dθµ is defined in terms of φ and Aµ
evaluated at a single point.
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of local gauge-invariant quantities in the non-Abelian case that can serve
as a gauge-invariant representation”. This suggest that it is no more than
a fortunate accident that we can represent the simple U(1) gauge theory
Wallace considers in terms of a unique set of gauge-invariant local quantities.

Moreover, even more complex Abelian theories need not have a unique
gauge-invariant representations. Consider, for example, two complex-valued
fields ψ and χ of different masses, both of which are coupled to Aµ. The
Lagrangian of this system is:

L = L1 + L2 −
1

4
FµνFµν (8.16)

where

L1 = (∂µ + ie1A
µ)ψ?(∂µ − ie1Aµ)ψ (8.17)

L2 = (∂µ + ie2A
µ)χ?(∂µ − ie2Aµ)χ (8.18)

L1 is just the Lagrangian of a single complex field coupled to the gauge
field. Therefore, we can follow Wallace and rewrite it in terms of the gauge-
invariant quantities ρ = |φ| and Dθµ1 = ∂µθ1 −Aµ, where θ1 is the phase
of ψ. But since we have ‘replaced’ Aµ with Dθµ1 in L1, we have to make
the same substitution in L2. This gives us an ontology consisting of a real-
valued field ρ1 with charge e1, a complex-valued field χ with charge e2, and
a single connection Dθµ1 . This ontology is indeed gauge-invariant.

However, we could also have started with L2 and written that Lagrangian
in terms of a real-valued field and a connection. This results in an ontology
consisting of a complex-valued field ψ with charge e1, a real-valued field
ρ2 with charge e2, and a connection Dθµ2 . These are different ontologies!
Although both consist of a real-valued field and a complex-valued field,
the charges of these fields differ. On the first interpretation the charge
of the real scalar field is e1 and that of the complex field is e2, while on
the second interpretation this is exactly the other way around. Therefore,
in this more complex case Wallace’s approach implies a form of theoretical
underdetermination: the choice between the two ontologies is arbitrary. The
sophisticated account that I present below, on the other hand, is meant to
extend to both non-Abelian theories and theories that couple distinct matter
fields to the same gauge field.
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8.4 Fibre Bundle Accounts

Instead of reduction, then, we may try sophistication as an approach to
gauge symmetries.9 Recall that the aim of sophistication is to restructure
a theory’s models such that symmetry transformations are isomorphisms.
This allows for an anti-quidditist interpretation of gauge quantities, as I will
explain in §6. In the case of local symmetries, the appropriate mathemati-
cal structures are fibre bundles. In this section, I introduce the fibre bundle
framework. As my focus is on the physical interpretation of this formalism I
do not aim for a comprehensive treatment of the mathematics of fibre bun-
dles; for more details, see Baez and Muniain (1994); Isham (1999); Healey
(2007); Weatherall (2016a).

I am not the first to suggest that the fibre bundle framework can aid our
interpretation of electrodynamics: Leeds (1999); Nounou (2003); Maudlin
(2007); Weatherall (2016a) all appeal to them one way or another. But my
account differs from these on a few significant issues. Leeds, Nounou and
Maudlin all aim to draw metaphysical conclusions from the fibre bundle for-
malism. Nounou, for example, argues that it is the topology of the fibres
that explains the Aharonov-Bohm effect, whereas Maudlin emphasises the
consequences of a fibre bundle picture for the status of universals. How-
ever, none of their accounts address the underdetermination associated with
gauge symmetries. Indeed, Leeds explicitly acknowledges that his picture
“traffics heavily in non-measurable properties and quantities”; Nounou simi-
larly admits that “we also part with determinism in the sense that [...] there
are infinitely many gauge fields corresponding to one electromagnetic field”.
The aim of a sophisticated account of gauge theories, on the other hand, is
to rid ourselves of underdetermination by interpreting SRMs as physically
equivalent. The proposal is therefore closer Weatherall, who notes that
gauge transformations in electromagnetism are similar to those in General
Relativity. In the latter case, we already have a deflationary interpretation
of gauge symmetries, and Weatherall suggests applying the same interpre-
tation to the symmetries of electrodynamics. However, Weatherall remains
silent on the metaphysical picture this implies: what are the fundamental
entities of electromagnetism, and how do they interact? I aim to present a
perspicuous metaphysical picture that corresponds to this formalism.

In the remainder of this section I will set out the mathematical details of
the fibre bundle formalism. For an intuitive idea, start with the concept of
a ‘value space’ discussed in earlier chapters. The value space of a quantity

9 Dewar (2019) was the first to explicitly suggests that this is possible.
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such as mass has a certain structure, and objects are mapped into this space.
We could consider the value space of the four-potential, VA, to have the
structure of a four-dimensional vector space. According to A-field literalism,
then, spacetime points are mapped into this vector space by a function
Aµ(x) :M→ VA.

Recall that in Chapter 6, I defined (internal) symmetries as transfor-
mations on a theory’s models induced by bijections of their value spaces.10

For example, if 〈M,VA, A〉 is a model of the theory then a bijection φ is (or
induces) a symmetry iff 〈M,VA, φ∗A〉 is also a model of the theory. But this
definition does not yield local symmetries. The reason is that VA carries no
information about where particular field-values are instantiated. Therefore,
a transformation φ applies everywhere equally. For concreteness, suppose
that before a local symmetry transformation is applied the value of A is the
same at x1 and x2. There exist local symmetries that non-trivially act on
A(x1), but leave A(x2) the same. However, there is no transformation on VA
that implements this symmetry. If there were such a transformation, then
φ(A(x1)) 6= φ(A(x2)). But A(x1) = A(x2), so φ(A(x1)) is equal to φ(A(x2))

This may seem like a flaw of my definition of symmetries, but I believe
that it is a virtue. The fact that a universal value space for Aµ does not
have enough structure to account for local symmetries explains the need for
a fibre bundle account. The essential idea of a fibre bundle account is to
assign a local ‘copy’ of VA to each spacetime point. In other words, instead
of a single value value VA, there is a different value space VxA for each x ∈M .
These local value spaces are called fibres. The collection of all fibres forms
a manifold, called the fibre bundle. As we will see, local symmetries are
(vertical) automorphisms of this bundle, which I will define below.

I will now canvass this picture in some more detail. I provide definitions
of all mathematical terms, but my aim is to explain the essential concepts
in relatively non-mathematical terms.11 Let’s start with the concept of a
fibre bundle:

Definition (Fibre Bundle). A fibre bundle is a triple (E, π,M) where E
and M are smooth manifolds and π : E → M is a continuous map, such
that for each x ∈ M there exists an open neighbourhood U ⊆ M and a
homeomorphism h : U × F → π−1(U) for which π(h(x, y)) = x, where F is
the typical fibre.

10 This definition is a little more loose and general than Dewar’s (2020), but the definitions
coincide for fibre bundle theories.
11 For more details, see Isham (1999).
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So, a bundle consists of two manifolds and a projection π that defines which
points on the bundle lie ‘above’ which points on the spacetime manifold. It’s
called a fibre bundle because locally E looks the product U ×F . In physical
terms, we can think of F as some value space, such as VA above. The fibre
π−1(x) above each point x, then, ‘looks like’ VA. But note that there is no
‘canonical’ map from points on E to points on F : there usually are distinct
structure-preserving maps, or local trivialisations, from π−1(x) into F .

Physical fields are represented as sections of fibre bundles:

Definition (Section). A section of a fibre bundle is a map s : M → E such
that π(s(x)) = x.

In other words, a section assigns to each point x on the manifold a unique
point p of the fibre above x. If the fibre over a point represents the possible
field values at that point, then a section determines a field value at each
point. Sections thus replace functions f : M → V from the manifold into
some universal value space shared by all x ∈M .

We now come to discuss some more specific types of fibre bundles that
are relevant to physics. The first of these is a principal fibre bundle:

Definition (Principal Fibre Bundle). A principal fibre bundle (P, π,M) is
a fibre bundle whose typical fibres are homeomorphic to a Lie group G, such
that there exists a smooth and free right action of G on P such that for any
local trivialisation ξ : U ×G→ π−1(U), ξ(p, g)g′ = ξ(p, gg′).

In other words, a principal fibre bundle is a fibre bundle whose typical fibre
is a group G, called the structure group of P . Furthermore, we require that
any local trivialisation preserves this group-structure. An intuitive way to
think of this is that the action of G defines the ‘difference’ between two
points: if p, q ∈ π−1(x) and q = pg, then g is the difference between p and
q. The requirement that a local trivialisation preserves this structure then
means that if two points on the typical fibre G are some ‘distance’ g away
from each other, then so are the images of ξ of these points.

As with bundles in general, there is no privileged map from fibres of P
onto G. This implies that for points of P on different fibres, it is indetermi-
nate whether these points correspond to the same element of G. We can,
however, endow a principal bundle with additional structure that defines a
notion of ‘sameness’ across fibres. This is called a connection:

Definition (Connection). Let TpP denote the tangent space at a point
p ∈ P . The vertical subspace Vp of Tp is defined as VpP = {τ ∈ TpP :
π∗τ = 0}, where π∗ is the pushforward of π. A connection ω on P then
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assigns a horizontal subspace HpP of TpP to each point p ∈ P such that (1)
TpP ∼ VpP ⊕HpP and (2) Rg∗(HpP ) = HpgP (where Rg is the action of G
on P ).12

In effect, a connection determines which vectors tangent to p count as hor-
izontal, such that any vector in TpP has a decomposition in terms of HpP
and VpP , where the latter consists of all vectors that point ‘along’ the fibre.
The connection is compatible with the action of G on P , such that horizontal
vectors on one fibre point in the ‘same’ direction across fibres.

I will now connect some of these mathematical structures to the theory
of scalar electrodynamics discussed above. First, the connection on the
principal bundle represents the electromagnetic potential. Relative to a
choice of (local) section, we can represent the connection ω as a vector
field Aµ on M . This is the familiar vector potential, also called the Yang-
Mills field. But Aµ depends on an arbitrary choice of section, whereas ω is
intrinsic to the bundle. Therefore, I will focus on ω as the representative of
the Yang-Mills field.

But we don’t yet have a representation of the matter fields on which A
acts. These matter fields, such as φ, live on the associated bundle:

Definition (Associated Bundle). Define the G-product X×GY of two spaces
X and Y on which G has a right action as the space that is obtained from the
product space X × Y by identifying points (x, y) and (x′, y′) iff x′ = gx and
y′ = gy for some g ∈ G. Let [x, y] denote the equivalence classes obtained
in this way.

If P is a principal G-bundle and F is a space with a right G-action,
define PF = P ×G F . The associated F-bundle of a principal G-bundle then
is a triple (PF , πF ,M) where πF ([p, v]) = p. If F is a vector-representation
of G, then the associated bundle is a vector bundle.

Matter fields are represented as sections of the associated bundle. For exam-
ple, the structure group of electrodynamics is U(1), and hence the associated
bundle is a vector bundle with typical fibre C. Locally, a section is then an
assignment of an element of C to each point in M . But note once more that
there is no canonical map from PF onto C, and hence a comparison of field-
values across points depends on a conventional choice of local trivialisation.

However, the connection on P endows PF with some further structure
that defines a notion of parallel translation. First, define the horizontal lift
of a curve on M to P :

12 Alternatively, one can define a connection algebraically as a Lie algebra-valued one-form
that satisfies analogous conditions.
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Definition (Horizontal Lift to Principal Bundle). Let γ(t) be a smooth
curve on M . A curve γ↑(t) on P is a horizontal lift of γ(t) iff π(γ↑(t)) = γ(t)
and γ↑(t) is horizontal, i.e. γ↑(t) ∈ HpP . For each point p ∈ π−1(γ(0)), there
is a unique horizontal lift γ↑(t) such that γ↑(0) = p.

This defines the horizontal lift of a curve on M into the principal bundle P ,
but we are interested in parallel translation on the associated bundle PF .
We can use the above to define horizontal lifts on PF as follows:

Definition (Horizontal Lift to Associated Bundle). Recall that points on
the associated bundle are equivalence classes [p, v]. Let kv(p) = [p, v]. Then,
for a curve γ(t) on M and a point [p, v] ∈ π−1

F (γ(o)), the horizontal lift of

γ(t) that passes through [p, v] is the curve γ↑F (t) : kv(γ
↑(t)) = [γ↑(t), v].

This definition allows us to define a notion of parallel translation on the
associated bundle. We can define parallel translation as a ternary relation
S[γ, p, q] between a path γ(t) on M and a pair of points p, q on PF such
that p ∈ π−1(γ(a)) and p ∈ π−1(γ(b)) for some a, b ∈ γ(t). Then q is the

parallel translation of p along γ(t) iff the horizontal lift γ↑F (t) such that

γ↑F (a) = p passes through q, i.e. γ↑F (b) = q. Intuitively, what this means is
that when one starts at p and travels along γ, one ends up at q. However,
the relation of parallel translation is path-dependent : it is possible that p
and q are equivalent via one path, but not via another. Therefore, parallel
translation does not offer a well-defined universal notion of sameness across
fibres.

Here ends my exposition of the fibre bundle picture. In the next two
sections, I will show how this picture facilitates a sophisticated account of
electrodynamics and the Aharonov-Bohm effect.

8.5 Gauge Symmetries

According to sophistication, one can interpret one’s symmetry-related mod-
els as physically equivalent when those models are isomorphic. Therefore,
the appropriate structure of a theory is one whose isomorphisms are dy-
namical symmetries. In this section I argue that fibre bundle theories are
appropriately structured in this sense.

Recall that we can extend Earman’s (1989) symmetry principles to cover
non-spatiotemporal symmetries (see Ch. 1). The idea is to define value
space symmetries as the automorphisms of a value space V, and internal
symmetries as solutionhood-preserving transformations on a theory’s models
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induced by bijections of V. In detail, let a model 〈M,V, s〉 consists of a
manifold M , a value space V and a function s : M → V that denotes some
physical quantity. Furthermore, let V = 〈D,R〉, that is, the value space
consists of a domain D and a set of relations R defined on D. The value
space symmetries then are automorphisms φ of D such that φ(R) = R for
all R ∈ R. The dynamical symmetries, meanwhile, are transformations g of
the form

〈M,V, s〉 g→ 〈M,V, φ∗s〉

such that M is a solution iff gM is.
The generalisations of Earman’s principles then state that:

SP1 If φ induces an internal symmetry, it is a value space symmetry;

SP2 If φ is a value space symmetry, it induces an internal symmetry.

The importance of these principles is that when they are satisfied, models
are symmetry-related iff they are isomorphic. For consider some relation
R on V, and a pair of field values s(x) and s(y). Let φ induce an internal
symmetry. From SP1 it follows that φ(R) = R, and hence 〈s(x), s(y)〉 ∈ R
iff 〈φ∗s(x), φ∗s(y)〉 ∈ R. Since this is the case for all relations R ∈ {R}, the
SRMs are isomorphic. Conversely, suppose that some models 〈M,V, s〉 and
〈M,V, φ∗s〉 are isomorphic, i.e. there exists some φ such that 〈s(x), s(y)〉 ∈
R iff 〈φ∗s(x), φ∗s(y)〉 ∈ R for all R ∈ {R}. This means that φ is a value space
symmetry, and so from SP2 it follows that φ induces an internal symmetry.
This reasoning straightforwardly generalises to polyadic relations.

Here is how all this applies to the fibre bundles. Instead of a universal
value space V we now have a principal bundle P and an associated bundle
PF (where I now use P and PF to denote the full bundle structure). The
dynamical quantities are the section s(x) that represents the matter field,
and the connection ω that represents the Yang-Mills field. Therefore, our
models are of the form:

〈M,P, PF , π, πF , s(x), ω〉

The equivalent of SP1 now is that for any model 〈M,P, PF , π, πF , s, ω〉, the
symmetry-related model 〈M,P, PF , π, πF , φ∗s, φ∗ω〉 is a solution iff φ(P ) =
P and φ(PF ) = PF , that is, if φ is an automorphism of both fibre bun-
dles. Likewise, SP2 says that if φ is an automorphism of P and PF , then
〈M,P, PF , π, πF , s, ω〉 is a solution of the theory iff 〈M,P, PF , π, πF , φ∗s, φ∗ω〉
is.
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In order to see whether fibre bundle theories satisfy SP1 and SP2, we
need to know their (gauge) symmetries. Now, earlier I remarked that the
local representative Aµ of the Yang-Mills field depends on a choice of section
of P . It is sometimes claimed that this fixes a gauge, and that a gauge trans-
formation simply is the choice of a different section with which to represent
the Yang-Mills field. However, this is essentially a passive transformation:
a different choice of section amounts to a different coordinatisation of Aµ.
But we are after active transformations. These are induced by maps between
sections, also called vertical principal bundle automorphisms:

Definition (Vertical Principal Bundle Automorphism). A principal bundle
automorphism is a diffeomorphism u : P → P such that u(pg) = u(p)g. A
principal bundle automorphism is vertical iff π(u(p)) = π(p).

Vertical principal bundle automorphisms are symmetries of (P, π,M): such
automorphisms preserve both the action of G on P and the map π from P
to M . But the same transformations are also symmetries of the associated
bundle (PF , πF ,M)! This is so because any principal bundle automorphism
induces an associated bundle automorphism hF : [p, v] → [u(p), v]. There-
fore, gauge transformations are indeed local value-space symmetries, and
hence SP1 an SP2 are satisfied.

We can also see this when we consider how gauge symmetries act on
the physical quantities s(x) and ω. The transformation of s is straightfor-
ward: if s(x) = [p, v], then u∗s(x) = [u(p), v]. The connection, meanwhile,
transforms via the pull-back of u to u∗ω. Now, by definition u preserves all
‘vertical’ structure of both s and ω. This leaves us with their ‘horizonal’
structure, which is captured in their parallel translation. Specifically, con-
sider a path γ and the value of s at points x, y ∈ γ. The question then is:
is it the case that S[γ, s(x), s(y)] iff S[γ, u∗s(x), u∗s(y)]? The answer is yes.
This is easiest to see algebraically: because ω transforms via the pull-back of
u, it is the case that ω(s(x)) = u∗ω(u∗s(x)), and hence the unique horizontal
lift of γ through s(x) is mapped onto the horizontal lift of γ through u∗s(x).
Therefore, the relation of parallel translation is preserved by gauge trans-
formations. Since gauge transformations preserve all vertical and horizontal
structure, it follows that gauge-related models are isomorphic.

8.6 The Metaphysics of Fibre Bundles

The fact that Yang-Mills theories have non-trivial gauge transformations is
usually seen as a defect. Consider, for example, the matter field as repre-
sented by a section s(x). Generally, s(x) 6= u∗s(x), where u is an vertical
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bundle automorphism. However, since these fields are symmetry-related,
there are no experiments that can measure the empirical difference between
these sections. Since the symmetries of electrodynamics are local, this also
seems to imply that electrodynamics is indeterministic in a way analogous
to the Hole Argument.

These arguments are based on the implicit assumption that s(x) and
u∗s(x) represent distinct fields. This seems to follow from fibre bundle
realism: if every point p ∈ PF represents a field value, then an assignment
of different elements of PF to points on M must represent a distinct field.
However, this claim rests on the assumption that any point p represents
the same field value across models. Elsewhere, I call this assumption the
Value-Magnitude Link. However, sophistication rejects this assumption.
According to sophistication, field values are qualitatively identified. What
this means is that which field value is instantiated at some point x depends
on its structural relations to other field values at distinct locations.

I will elaborate on this view below, discussing matter fields and the
Yang-Mills field in turn. The result is that, since gauge-related models
are isomorphic, they represent physically equivalent states of affairs. This
avoids the underdetermination and indeterminism usually associated with
gauge theories.

8.6.1 Matter Fields

I propose associated bundle Platonism: elements of the associated bundle
PF represents physically real entities, namely the field values of the relevant
matter field. In the case of semi-classical electrodynamics, these are field
values. Sections of the associated bundle represent physical fields. Thus,
spacetime points instantiate field values in the same way that particles in-
stantiate masses, except that in the fibre bundle formalism each spacetime
point carries its own set of field values. This implies that field values at
distinct points are numerically distinct, and so distinct points simply can-
not possess the same field value. The structure of the bundle represents
the relations between field values, both vertical and horizontal; part of the
horizontal structure is the ternary relation of parallel translation. In other
words, there is a physical fact of the matter as to whether field values at
distinct points are related to each other by parallel translation over some
path γ.13

The above claims are meant literally: field values exist and bear certain

13 In this way, the present view resembles Leeds (1999).
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relations to each other. The view I propose is thus a form of Platonism. We
can contrast this view with those of Maudlin (2007) and Arntzenius (2012).
For Maudlin, field values are neither universals nor tropes; indeed, Maudlin
rejects the existence of field properties wholesale. The reason is that proper-
ties, Maudlin argues, ought to induce a notion of similarity between objects.
For example, tomatoes and strawberries are similar to the extent that both
are red. But since the fibre bundle picture implies that the field values at
each point are sui generis, there simply is no path-independent sense of sim-
ilarity for gauge fields. Maudlin concludes that the category of properties is
superceded by that of fibre bundles. The view that I propose is dismissed in
a footnote: “One could suggest that there are still color properties, but that
every point in the space-time has its own set of properties, which cannot
be instantiated at any other point. But since such point-confined properties
could not underwrite any notion of similarity or dissimilarity [...], it is hard
to see what would be gained by adopting the locution.”

It seems to me that Maudlin’s focuses too much on identity here. Sure,
if distinct objects possess the same property, that’s one way in which they
are similar. But consider two objects, one of which is 1 kg and the other is 2
kg. These objects do not possess the same mass value, yet they are similar
in that both objects are massive (in other words, both objects instantiate
different determinates of the same determinable). Furthermore, it is clear
that both objects are more similar to each other than to some third object
whose mass is 100 kg. This latter claim follows from the fact that mass
value space has a certain structure for which mass ratios are well-defined:
the closer the mass ratio of two objects is to one, the more similar they
are with respect to their masses. But it is clear that the associated bundle
that represents the matter field also has a highly non-trivial structure. The
notion of parallel transport we defined above is just one instance of this.
So, while the fibre bundle picture does not allow us to say whether distinct
points possess the same field value — or, rather, it implies that distinct
points cannot possess the same field value — this does not mean that we
cannot say anything of interest about field properties at distinct points.
Maudlin’s objection to fibre bundle Platonism is unsuccessful.

Arntzenius (2012) has a different view of fibre bundles, which Wolff
(2020) calls (fibre bundle) locationism. The idea of this view is that field
values are not Platonic universals, but are metaphysically the same kind
of entity as spacetime points are. In addition to their usual spatiotempo-
ral location, then, objects also have a location in ‘field value space’. The
advantage of this view, or so Arntzenius argues, is that it satisfies Occam’s
razor insofar as posits fewer kinds of entities. The problem with fibre bundle
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locationism is that it fails in the context of field theories. In field theories,
spacetime points themselves possess field values, rather than particle-like
objects. But while we can make sense of the idea that some discrete object
has a location in both a spatiotemporal space and in some other value space,
it does not make much sense to say that spacetime points are located in a
value space. It seems that spacetime points simply are not the kind of things
that can be located; after all, such points are locations. I therefore reject
Arntzenius’ fibre bundle locationism, and focus on the Platonist view in the
below.

Fibre bundle Platonism is one half of sophistication. As seen in the
previous section, the fibre bundle picture guarantees that the gauge sym-
metries of the theory are isomorphisms of its models. The other half is
anti-quidditism about field-values.14 According to anti-quidditism, there
are no distinct possible worlds that agree on all structural facts, but dis-
agree on which field values are instantiated. In other words, field values are
qualitatively individuated ; they are places in a relational structure. Consider
two gauge-related sections s and s′. On the literalist view described above,
these sections represent distinct field configurations. However, as I showed
in the previous sections, there are no structural differences between s and s′.
For any point x ∈M , s(x) and s′(x) are qualitatively identical. Specifically,
the relation of parallel translation is preserved by gauge transformations.
According to anti-quidditism, then, s(x) and s′(x) represent the same field
values, namely one with a certain qualitative profile.

Therefore, according to anti-quidditism there are no worlds in which
different values of the matter field are instantiated that nevertheless occupy
the same qualitative roles. It follows that gauge-related models represent
physically equivalent states of affairs. There is thus no indeterminism in
electrodynamics: the distinct futures compatible with the present state are
merely different representations of the same future.

8.6.2 Yang-Mills Fields

Since the Yang-Mills field is represented as a connection on the principal
bundle (which induces a notion of parallel translation on the associated
bundle), it is tempting to adopt principal bundle Platonism in analogy with
associated bundle Platonism. But there is an important disanalogy between

14 As mentioned in a footnote above, the suggestion to apply anti-quidditism to fibre
bundles originates from Dewar (2019); see also Martens and Read (2020). This move is
analogous to the adoption of anti-haecceitism about spacetime points in response to the
Hole Argument. For more on the latter, see Pooley (2005) and references therein.
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the matter field and the Yang-Mills field: while the former are represented
by sections of the associated bundle, the latter is represented by a connection
on the principal bundle. And while we can easily interpret a section as an
assignment of field values to spacetime points, the same is not the case for
the connection. The connection specifies relations between points in the
bundle, but what does the principal bundle itself represent?15

I will describe two responses to this question. The first is a deflation-
ary approach: neither the principal bundle nor the connection represent
anything physical. Rather, it is the induced connection on the associated
bundle that represents the Yang-Mills field. However, this approach has
difficulties in accounting for distinct matter fields that couple to the same
Yang-Mills field. The inflationary approach, on the other hand, reifies not
the principal bundle but its tangent bundle. Yang-Mills fields then are sec-
tions of this ‘bundle of connections’. The inflationary approach can explain
how distinct matter fields couple to the same Yang-Mills field, and is for this
reason preferable.

Deflationary Bundle Realism

Recall from §4 that the connection on P induces a connection on PF . Ac-
cording to the deflationary approach, the connection on the latter represents
the Yang-Mills field, which is thus not really a field. Rather, it specifies
relations between field values. The Yang-Mills field is thus more like veloc-
ity, in the sense that velocities supervene on the relations between nearby
spacetime points of a curve. As Wallace (2015) points out, this yields an
essentially dualistic ontology of local field values on the one hand and in-
finitesimal field relations on the other.

The principal bundle, on this picture, is a mathematical abstraction.
This is the view that Weatherall (2016a) defends. Weatherall notes that
just as it is possible to define an associated bundle from a principal bundle,
so one can do the reverse. Furthermore, the principal bundle is mathemat-
ically similar to the bundle of frames in General Relativity, whose role is
to coordinatise spacetime. The deflationary view leads us to wonder what
the function of the principal bundle is. As Weatherall points out, it is only
when we consider more than one field that the principal bundle becomes
relevant. For if distinct matter fields couple to the same Yang-Mills field, it
is useful to represent the latter ‘by itself’ on a principal bundle. The claim
that both matter fields couple to the same Yang-Mills field then translates

15 Dewar (2019, fn. 42) also mentions this puzzle.
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into the fact that both vector bundles are associated to the same principal
bundle.16

The problem with this approach is that it is a brute fact that the two
fields survey the same connection.17 In other words, there really are two
connections here: one defined over one associated bundle, and one defined
over the other. These connections are the same in the sense that both are
represented by the same connection on the corresponding principal bundle.
But it is not the case that there is an independently existing Yang-Mills
field that the associated bundle connections supervene on. This makes it
seem somewhat mysterious that these connections are the same. This coin-
cidence begs for a ‘common cause’ in the form of an independently existing
Yang-Mills field. This objection is similar to the cosmic conspiracies of the
reductionist approach considered in §8.3. I will therefore consider an al-
ternative view which can explain the coincidence of distinct connections in
terms of a physically real Yang-Mills field that is common to both.

Inflationary Bundle Realism

Recall that a connection defines a horizontal subspace at each point p ∈ P .
The function of the connection is to determine what direction counts are
horizontal. This strongly suggest that the ‘values’ of the Yang-Mills field
are not elements of P , but of TpP , the tangent bundle to P . Specifically, at
each point p the ‘value’ of the Yang-Mills field consists of a subspace HpP
of TpP that counts as horizontal.

As of yet, this is still too much structure, since the connection determines
a horizontal subspace at each point of the principal bundle, and hence still
lives on the bundle rather than on M . However, note that a specification of
ω at all points of P overdescribes the Yang-Mills field, since the connection
at one point on a fibre determines the connection elsewhere on the same fibre
via the condition that Rg∗(HpP ) = HpgP . In other words, the connection
is compatible with the action of G on P .

We can remove this superfluous structure by taking the quotient of TP
by the action of G. This gives us the so-called bundle of connections (for

16 The reason that Wallace’s view struggled with such theories (§8.3.3) is now clear: to
make sense of two matter fields that couple to the same gauge field, one represents the
latter as a connection on distinct associated bundles of each matter field. But on Wallace’s
view, at least one of the two matter fields lives on a universal real vector space, rather
than a fibre bundle.
17 For a criticism of the technical aspects of Weatherall’s deflationary view, see Menon
(2018).
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more on this construction, see Kobayaschi (1957, Ch. 4)):

Definition (Bundle of Connections). Let (P, π,M) be a principal bundle
with structure group G; TP is its tangent bundle. Let TP/G denote the
quotient of TP by G. Then (TP/G, dπ, TM) is a fibre bundle over TM
(the tangent bundle of the spacetime manifold M), called the bundle of
connections. There is a one-to-one correspondence between connections on
P and linear sections Γ of the bundle of connections.

According to inflationary bundle realism, then, the bundle of connections
is physically real, and its elements represent values of the Yang-Mills field.
However, note that TP/G is defined over the tangent bundle to M , called
TM . In other words, a section Γ of the bundle of connections assigns ele-
ments of that bundle to vectors rather than points. Or, equivalently, values
of the Yang-Mills field are instantiated by pairs of infinitesimally close space-
time points. This, of course, vindicates Wallace’s claim that the ontology
of gauge theories is dualistic: matter fields inhere in points, whereas gauge
fields are relations between points. The advantage of this inflationary view
is that the Yang-Mills field is an independently existing entity which we can
use to explain the fact that distinct matter fields are parallel translated in
the same way.

Furthermore, we can apply anti-quidditism to the Yang-Mills field, just
as we did with the matter field. For a gauge transformations maps pairs of
infinitesimally close points to different vectors in the bundle of connections.
But these vectors retain their qualitative characteristics. Specifically, the
curvature is preserved by gauge transformations. Therefore, the image of
ω under a gauge transformation is really the same connection differently
represented on the principal bundle.

8.7 Locality, Separability, Holism

The sophisticated version of fibre bundle realism faces no underdetermina-
tion, since gauge-related models are physically equivalent. However, another
puzzling feature of the Aharonov-Bohm effect is that it seems to imply that
physics is, in some sense, non-local. Is this also the case for the fibre bundle
formalism? In this section, I will argue that fibre bundle realism satisfies
Local Action as well as separability. However, there is another — less prob-
lematic — sense in which the fibre bundle account is holistic. It is this
holism that explains the non-local nature of the Aharonov-Bohm effect.
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8.7.1 Local Action

In order to see whether fibre bundle realism violates Local Action, it is
helpful to return to the Aharonov-Bohm effect. According to literal-minded
A-field realism, there is a four-potential field that acts locally on the matter
field, shifting its phase as the field propagates across regions in which Aµ
is non-trivial. This account assumes that field values are comparable across
points, such that A has an unequivocal influence on φ. This, of course, is
no longer true on the fibre bundle account, since each spacetime point has
its own set of field values. How, then, do we model interaction on the fibre
account?

The idea here is that the connection determines the evolution of the
matter field. Locally, the connection defines a notion of ‘sameness’ across
bundles: if q is the parallel translation of p over a path γ, then p and q lie
in the same horizontal plane. This means that the matter field propagates
along horizontal paths on the bundle. The matter field ‘surveys’ the con-
nection at infinitesimal distances. The account is thus fully local: it is only
the connection at (or infinitesimally close to) the location of the matter field
that determines its evolution on the fibre bundle.

In the Aharonov-Bohm effect, the connection is such that the parallel
translation of the field along a path to the left of the solenoid and the parallel
translation along a path to the right of the solenoid differ. When both halves
of the matter field ‘meet’ at Q, then, they find themselves at different points
on the fibre above Q: this is just the phase difference that causes the shift in
the interference pattern. The degree to which to which parallel translation
around closed curves is closed is called the curvature, characterised by Fµν .
This is indeed a global feature of the bundle18, but it supervenes on local
values of the connection.

8.7.2 Separability

Is fibre bundle realism also separable? Dewar (2019, fn. 56) alleges that the
connection on the principal bundle is not, and Martens and Read (2020)
concur. But I believe that on a sophisticated account the connection is
separable. The connection on the principal bundle P connects infinitesimally
close points. In that sense, it is not completely local. But such violations
of separability don’t seem particularly worrisome, and this is clearly not
the sense of non-separability that Dewar intends. Indeed, there is little
reason to believe that even classical theories are truly local in this sense,

18 Or, on Nounou’s (2003) account, a topological feature.
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as Butterfield (2006) argues. Instead, then, consider regions rather than
points. Specifically, consider two regions U and V that partially overlap.
The connection on U determines the horizontal lift of all paths on U , and
the connection on V determines the horizontal lifts of all paths on V . But
since paths on U ∪ V are composed of paths on U and paths on V , surely
their horizontal lift is now fully determined?

In personal correspondence, Dewar has clarified his claim as follows.
Consider regions U and V that individually don’t surround the solenoid,
but their union U ∪ V does. The connections on U and V are locallly
isomorphic to a connection that is zero everywhere within those regions (in
some local representation), even though the connection on U and V is not.
What this means is that up to gauge transformations, the connections on
U and V don’t determine the connection on U ∪ V . This is the sense in
which Dewar claims connections are non-separable. This shouldn’t come as
a surprise, since the gauge-invariant content of the bundle over a region U
just consists of its holonomies, which we already saw are non-separable.19

The problem with Dewar’s argument is that it assumes that sophisti-
cation considers states of subsystems of the universe as equivalent up to
symmetries. But sophistication is chiefly interested in states of the uni-
verse as a whole. After all, the issue of indeterminism only arises when
we consider global symmetries. In the case of gauge theories, this is ob-
scured by the fact that local symmetries that vanish to the identity are
global symmetries (Gomes, 2019). But a comparison with sophistication
with classical mechanics clarifies this. Consider, for example, two (dynami-
cally isolated) classical mechanical systems (such as fleets of spaceships, as
in Rovelli (2014)). Both systems are invariant under static shifts, and hence
the symmetry-invariant content of each system consists of their distance re-
lations. However, the distances between ships of the first fleet and those
between ships of the second fleet fail to fully determine the state of both
fleets. After all, the latter also includes the distance between the two fleets,
which is not contained in the invariant facts of either system. So it seems
as if classical mechanics is also non-separable on a sophisticated account.
But sophistication is not committed to a symmetry-invariant ontology of ei-
ther distance relations or loop holonomies. On the contrary, sophistication
embraces realism about non-invariant quantities such as fibre bundle con-
nections or locations on a manifold. In the same vein, Gomes (2019) argues

19 Note that, as Wallace (2014b) shows, this sort of non-separability of gauge-invariant
content only occurs when the matter field vanishes — an assumption that is unphysical
in light of quantum mechanics. Therefore, any form of non-separability discussed here is
essentially fictional.
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that ‘forgetting’ symmetry-variant structure of subsystems is fine when we
consider such systems in themselves, but causes trouble when we consider
the ‘gluing’ of subsystems. Instead, Gomes advocates “external sophistica-
tion and internal reduction”: in order to glue subsystems together, we need
to pay attention to their symmetry-variant features.20

Indeed, the commitment to anti-quidditism implies that although univer-
sal symmetry-related models are physically equivalent, this is not the case for
models of local subsystems. According to anti-quidditism, quantity-values
are individuated by their relations. Crucially, these relations include rela-
tions to other subsystems. Therefore, sophistication opposes forgetting the
symmetry-variant structure of subsystems, since this amounts to forgetting
the ‘identity’ of qualitatively individuated entities. Since sophistication re-
jects Dewar’s claim that only the symmetry-invariant content of subsystems
is physically real, it does not imply non-separability.

8.7.3 Holism

Yet for all that, the Aharonov-Bohm effect is distinctly non-local in charac-
ter. This is clearly brought out when we ask where the electron ‘picks up’
a phase; where, along its trajectory, does the Aharonov-Bohm effect come
about? As Healey points out, for any local representation of the connection
and any subsection γ′ of the electron’s path, there is a gauge such that Aµ
is flat over γ′. Therefore, Healey concludes, there is no path over which the
electron non-trivially interacts with the Yang-Mills field — and hence no
interaction at all!

Now, Healey’s argument is clearly invalid, for while it is true that for
any subsection there is a gauge in which Aµ vanishes, there is no gauge
such that Aµ vanishes everywhere. In other words, it is a gauge-invariant
fact that the local representation of the connection is non-trivial somewhere.
But the argument is still instructive in highlighting the holistic nature of
the Aharonov-Bohm effect.

The reason that there no meaningful answer to the question where the
electron picks up a phase is that there are no meaningful cross-point com-
parisons of phase values, since each point is associated with its own set of
field values. As we have seen, there is no canonical map from these local
fibres into U(1). Therefore, there is no picking up of phase; the electron
simply moves across the fibre as dictated by the connection. We can only

20 This is not to deny that isomorphic models of subsystems may have the same represen-
tational capacities; but this simply does not imply that such models are, for all purposes,
physically equivalent. On this point, see also Roberts (2020).
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compare field values at the same point, as when we compare the phase dif-
ference between the two electron-paths at Q. In other words, the holism
of the Aharonov-Bohm effect consists of the fact that there is not enough
structure to consider phase differences along open paths, but only around
closed paths.

Perhaps the following analogy is helpful.21 Consider the Twin Paradox:
one twin remains in her inertial rest frame on earth, while the other travels to
Alpha Centauri and returns. Since the latter measures less proper time, she
is younger on return than the earth-twin. Just as we are interested in where
the phase difference occurs in the Aharonov-Bohm effect, we may wonder
when and at which rate the age difference between the twins comes into exis-
tence. Now, this is easy to do with respect to certain planes of simultaneity.
For example, from the perspective of the earth-twin, the rocket-twin’s clock
runs slow at a constant rate. However, it is often22 thought that simultane-
ity is conventional. And, as it turns out, different simultaneity choices yield
different results for the differential aging of both twins (Debs and Redhead,
1996). For example, one can choose a convention such that the rocket-twin
does not age slower at all on the first leg of the trip, but then ages extra slow
on the return leg. This is rather similar to the fact that one can choose a
gauge such that A is zero over any open path. (Indeed, Rynasiewicz shows
that formally, a choice of simultaneity convention is equivalent to a choice
of ‘gauge’ in GR). Just as there are no invariant cross-point comparisons of
field values, so there are no objective cross-point simultaneity relations.

This implies that effects such as the Twin Paradox or the Aharonov-
Bohm effect are holistic, in this sense: although the total effect size (e.g. the
age difference) is measurable, there simply is no fact of the matter as to how
this effect comes about as the result of small local differences. For example,
the final age difference in the Twin Paradox is not the result of many small
age differences that accrue locally; similarly, the final phase difference in
the Aharonov-Bohm effect is not the sum of all the phase differences over
infinitesimal paths. We can now see that such holism, although puzzling, is
simply a consequence of the fact that value spaces are localised. This is not
a defect in our theories, but a consequence of the novel metaphysics of fibre
bundles.

21 For another helpful analogy with currency exchange rates, see Maldacena (2014).
22 But not universally — see Malament. I will not discuss this debate here.
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8.8 Conclusion

I have defended a sophisticated interpretation of gauge theories in the fibre
bundle formalism. This interpretation is local, separable and determinis-
tic; it also clarifies the metaphysics of fibre bundles. I have explained the
puzzling nature of the Aharonov-Bohm effect in terms of holism, which is a
consequence of the fact that there are no cross-point comparisons between
fibres. The account easily generates to non-Abelian gauge theories, since
nothing in the above depended on the fact that the structure group U(1)
of electrodynamics is Abelian. Therefore, sophistication is preferrable over
Wallace’s gauge-invariant account.

There is also a broader lesson about symmetries here, namely that sym-
metries are an important guide to the structure of physical quantities. This
is especially clear in the fibre bundle framework, since it is essentially the lo-
cal U(1) symmetry-group of electrodynamics that determines the structure
of its principal bundle, and hence of the associated bundle that represents
matter fields. Far from a redundancy in our descriptions, symmetries are
carriers of physical information. Instead of removing this structure from our
theories, sophistication does justice to its significance.
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