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a b s t r a c t

It is well-known that Newtonian gravity, commonly held to describe a gravitational force, can be recast

in a form that incorporates gravity into the geometry of the theory: Newton–Cartan theory. It is less

well-known that general relativity, a geometrical theory of gravity, can be reformulated in such a way

that it resembles a force theory of gravity; teleparallel gravity does just this. This raises questions. One

of these concerns theoretical underdetermination. I argue that these theories do not, in fact, represent

cases of worrying underdetermination. On close examination, the alternative formulations are best

interpreted as postulating the same spacetime ontology. In accepting this, we see that the ontological

commitments of these theories cannot be directly deduced from their mathematical form. The

spacetime geometry involved in a gravitational theory is not a straightforward consequence of anything

internal to that theory as a theory of gravity. Rather, it essentially relies on the rest of nature (the non-

gravitational interactions) conspiring to choose the appropriate set of inertial frames.

& 2011 Published by Elsevier Ltd.
When citing this paper, please use the full journal title Studies in History and Philosophy of Modern Physics
1 The suggestion that TPG is a force theory has been made explicitly by a

group of researchers based in Sao Paulo (de Andrade & Pereira, 1997, 1999;
0. Introduction

A popular account of the development of gravitational theories
might go something like this: Newtonian theory casts gravity as a
force. That is, gravity causes objects to deviate from inertial
trajectories. Newtonian gravity is not a consequence of the
geometry of space and time; forces and fields propagate in fixed
Euclidean space. With the advent of general relativity, however,
we realised that gravity was best seen as a manifestation of
spacetime geometry, and the force that was gravity faded from
physics. Instead, it was suggested, massive bodies move towards
each other because spacetime itself is curved by their presence.
Thus the effects of gravity are not, in fact, the effects of a force.
Bodies freely falling in a gravitational field are held to be force-
free.

If the account were somewhat more sophisticated, it might
mention that the conceptual move was prompted by a move to a
very different mathematical form for the theory. While New-
tonian gravity is written in the language of forces (or, on a more
sophisticated formulation, potentials and fields), general relativity
is written in the language of differential geometry.

For textbook purposes, this might be a reasonable, if simpli-
fied, summary. However, from the perspective of the philosopher
of science, the situation is far more complicated. Philosophers and
Elsevier Ltd.
physicists have long known that general relativity’s uniqueness
does not lie in its mathematical format alone: Newtonian gravity
can also be written in the language of differential geometry.
Moreover, it may be reformulated in this language in such a way
that Newtonian gravity, as in GR, appears to be a manifestation
of geometrical spacetime structure. This account is known as
Newton–Cartan theory (NCT). All this is familiar, and has been
examined in depth in the literature. What is less well-known, at
least among philosophers, is that general relativity has been given
an analogous makeover, but in the opposite direction. Teleparallel

gravity (TPG) reproduces the empirical content of GR, but in a
format that more closely resembles the gauge theories of the
standard model than gravity does. The surface form of teleparallel
gravity has lead some proponents to claim that it presents a force
theory of gravity.1

We thus find ourselves in a situation altogether less simple
than a quick flick through the textbooks might suggest. If a
Newtonian universe admits of geometrical gravity, and a general
relativistic universe allows gravity as a force, then we face several
challenges to our standard conception of physics. One obvious
de Andrade, Guillen, & Pereira, 2000; Aldrovandi, Pereira, & Vu, 2004a Aldrovandi,

Pereira, & Vu, 2004b; Arcos & Pereira, 2005), but is also suggested by the common

claim elsewhere that TPG is set in ‘Weitzenböck spacetime’. The sense in which

this latter claim implies that gravity is a force is explored in Section 1.
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3 While this answers the question of theoretical equivalence in this specific

case, it’s not obvious that one can simply assert that two formulations are

theoretically equivalent if and only if they posit identical ontology; occasionally

philosophers speak of different formulations of the same theory even when they

prima facie possess different ontologies. Jones (1991) sees force and field

formulations of Newtonian gravity as examples of this.
4 The word ‘geometrical’ in this context, is, of course, somewhat ambiguous.
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worry is that we have here physical examples of the conventionalist
thesis: it seems we must accept that the geometry of spacetime is
underdetermined by data or else accept that it is not an objective
feature of the world. I argue here that such a conclusion is not
warranted; the full structure of our complete set of physical theories
and the data they entail is enough to choose between geometries.
This is because the concept of an inertial frame is both more central,
and more robust, than the literature typically gives it credit for.

However, the existence of formulations of gravitational the-
ories with different geometrical structure poses a challenge to
popular ideas about the source of general relativity’s (and New-
ton–Cartan theory’s) geometrical nature. In light of alternative
formulations, we must conclude that a theory’s geometrical
nature is not a straightforward consequence of any formal aspects
of the theory qua theory of gravitation. Rather, it essentially relies
on the rest of nature conspiring to choose the appropriate set of
inertial frames. That is, the non-gravitational interactions must
confirm that the straightest lines, the geodesics, of our gravita-
tional theory, are indeed the straightest trajectories in spacetime
itself. In GR, this amounts to the other forces obeying the strong
equivalence principle, and taking their simplest form in free-fall
frames. While this apparent fact is encoded by the minimal coupling
principle, it is, in a sense, external to the barest mathematical form
of the theory.

This paper divides naturally into two parts, the first on Newton–
Cartan theory and the second on teleparallel gravity. In both the
Newtonian and the relativistic cases we are presented with pairs of
theories, one of which incorporates gravitational effects into the
geometrical structure of the theory via the connection, and the other
of which apparently postulates a division between the geometrical
connection and the gravitational field. In both cases, I shall argue
that there are grounds for not taking the gravity/inertia split
seriously. Even the theory that appears ‘non-geometrical’ can be
interpreted as postulating the freely falling frames as inertial
frames; there is, in a sense, an effective geometry that is not
reflected in the theory’s explicit mathematical form. In the case of
Newtonian gravity, there is also a second option: it might be the
case that non-gravitational phenomena pick out inertial frames and
thus impose a gravity/inertia split. However, in the teleparallel case,
there is no such option: the only candidates for inertial frames
within the theory are those of general relativity.

Before beginning, it is worth making a few comments about
the relationship between theory equivalence and underdetermi-
nation. In a standard account, underdetermination worries come
about in a relatively straightforward way. It is proposed that it is
possible to have two distinct theories that make identical empiri-
cal predictions. Assuming (quite reasonably), that different the-
ories entail different realist commitments, such a possibility is
taken to undermine scientific realism. However, discussion of this
kind of theoretical underdetermination sometimes obscures the
heart of the issue, because the emphasis on the existence of
distinct theories suggests the need for some criteria of theory
equivalence.2 This debate is tempting in the current context; the
question of whether teleparallel gravity and general relativity
constitute distinct theories, or reformulations of the same theory,
seems to raise itself immediately. However, the worry for the
realist is that ontology might be underdetermined, and it is
possible to have ontological underdetermination even within a
single theory; for example if the theory admits of more than one
interpretation. I will focus here on the ontological worry; do these
theories/formulations posit the same spacetime structure? Hap-
pily, in answering this question in the affirmative, I will also
answer the question about theoretical equivalence. Given that I
2 See, for example, Glymour (1970) and Quine (1975).
will argue that the mathematical accounts under consideration
posit the same ontology, it is natural to see them as reformula-
tions of a single theory.3
1. Newton–Cartan theory

There is no lack of philosophical literature examining Newton–
Cartan theory, and the majority of it dates back 30–50 years. Why,
then, revisit such a well-worn topic? For one thing, the advent of
teleparallel gravity makes possible some interesting comparisons
between Newtonian theories and GR that cast the equivalence
between Newton–Cartan theory and Newtonian gravity in a new
light. For another, I argue that emphasising inertial structure
leads to an argument against theoretical underdetermination.
This argument has occasionally been hinted at, but not, to my
knowledge, made explicit. I hold that, despite what the mathe-
matical form of the theory seems to suggest, in an empirical
situation that would confirm Newton–Cartan theory, Newtonian
gravity should be interpreted as postulating the same set of
inertial frames as its more ‘geometrical’ relative.4

In this discussion it is worth being clear on exactly which form
of Newtonian gravity is under discussion. By NG here I mean the
later, field theoretic formulation of the theory developed by
Laplace and Poisson. Moreover, I’ll assume (as a jumping off
point, although I’ll question this later) that this theory is set in
neo-Newtonian spacetime, rather than Newton’s absolute space.
Although this isn’t the original Newtonian force theory, I take it in
this context that it is still appropriate to refer to the gravitational
force, in as much as forces remain well-defined in the field
theoretic version, even if they are not necessarily fundamental.

I will begin by going over the details of NCT, making explicit
the precise form of the theory that is under consideration. I will
then examine the case for underdetermination, looking particu-
larly at whether NCT and NG should be regarded as giving the
same empirical results, and at how NG should be interpreted. I
will conclude that, if they are taken to be empirically equivalent,
they postulate the same spacetime structure, and, if we insist that
they represent different spacetime structures, then we should
regard the two theories as empirically inequivalent. We therefore do
not have a case of ontological underdetermination. Finally, I will
draw some parallels between the case here and the situation in GR.

1.1. The theory

With the hindsight provided by general relativity, it is easy to
ask the following question of Newton’s gravitational theory: why,
given that inertial and gravitational mass are equivalent in NG,
just as they are in GR, should we not make the same conceptual
identification in the one as we do in the other? Why not identify
gravitational and inertial structure in Newtonian dynamics? The
answer is, of course, that, at least when considering NG in
isolation from other theories, it is perfectly possible to make this
identification and thus cast NG in geometrical terms; the result of
this reformulation is Newton–Cartan theory.
Newtonian gravity, at least when presented in its neo-Newtonian form, is a

geometrical theory in as much as it describes the geometry of spacetime, but is not

a geometrical theory of gravity, because gravity is not reduced to spacetime

geometry.



5 The covariant equivalent, hab does not exist in these theories, and we

therefore have no means of lowering indices. The index-raising procedure given

by the spatial metric is thus not quite the same as rasing indices using a full

spacetime metric like gab. The above procedure is best viewed a prescription for

creating tensors whose contravariant indices are purely spatial.
6 That this is the case has been demonstrated by Malament (1986) and Ehlers

(1991, 1997).
7 Barbour–Bertotti theory (Barbour & Bertotti, 1977, 1982) predicts no

concavity, and is in this sense not empirically equivalent to standard Newtonian

gravity.
8 The rotation standard is not the only way to bring NCT empirically into line

with NG. The symmetry group of NCT may be radically restricted by the

introduction of ‘island universe’ boundary conditions; that is, by the assumption

that spacetime is asymptotically flat. If we impose the same boundary conditions

on standard Newtonian gravity, then both theories have as their symmetry group

the Galilean group; both rotations and accelerations are absolute. However, this

assumption is unrealistic and introduces an unobservable absolute standard of

acceleration. The variations of NCT and NG that result from this addition are

therefore unattractive compared to the types considered here.
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To convince ourselves that it is possible to introduce a connec-
tion that will ‘geometrise’ Newtonian gravity, simply look at the
Newtonian equation of motion for a particle in free-fall in some
gravitational potential f

d2xj

dt2
þ
@f
@xj
¼ 0 ðj¼ 1;2,3Þ ð1Þ

We may view this path as a geodesic with affine parameter l,
which we may take to represent the time read by a clock moving
along the geodesic. In our framework, time is absolute, and thus l
will be a linear function of absolute time: l¼ atþb. This gives us

d2t

dl2
¼ 0, ð2Þ

d2xj

dl2
þ
@f
@xj

dt

dl

� �2

¼ 0: ð3Þ

By comparison recall the geodesic equation

d2xa

dl2
þGa

bg
dxb

dl
dxg

dl
¼ 0 ð4Þ

this gives a connection with coefficients

Gj
00 ¼

@f
@xj

: ð5Þ

All other connection coefficients vanish. Inserting these coeffi-
cients into the Riemann tensor is straightforward; curvature is
given by

Rj
0k0 ¼�Rj

00k ¼
@2f
@xj@xk

ð6Þ

with all other Ra
bgd vanishing. It is therefore clear that this connec-

tion, unlike the usual affine connection in standard neo-Newtonian
spacetime, is curved wherever the gravitational field has non-zero
gradient. Moreover, by contracting to the Ricci tensor, we get a
reformulation of the Poisson equation in geometrical terms

r2f¼ 4pr ð7Þ

becomes

R00 ¼ 4pr, ð8Þ

where r is the usual mass density function.
The connection, Riemann and Ricci tensors above encode all

the content of NG; this rather swift and easy process casts
Newtonian gravity in an apparently geometrical form. However,
aside from an awareness that a connection whose curvature is
influenced by mass has been introduced, we know relatively little
about the theory’s geometrical structure. Let us recast the theory
into the language of differential geometry.

Newton–Cartan theory introduces a classical spacetime /M,hab,
ta,ra,rS, where M is a smooth four-dimensional differentiable
manifold, hab is a Euclidean spatial metric (given by a tensor field
of signature (0,1,1,1)), ta is a temporal metric, with signature
(1,0,0,0) and ra is a derivative operator associated with the
connection introduced above. r takes its usual significance as
the mass density function. The temporal metric is stipulated to be
orthogonal to the spatial metric

habtb ¼ 0 ð9Þ

and the connection is constrained to be compatible with both
spatial and temporal metrics

rchab
¼ratb ¼ 0: ð10Þ

In more general form, the Poisson equation (8) becomes

Rab ¼ 4prtatb: ð11Þ
For a particle with some four-velocity xa, the geodesic equation
has the familiar form

xa
rax

b
¼ 0: ð12Þ

Other curvature constraints may be introduced by raising indices
with the spatial metric hab.5 We now add the constraint that the
connection is ‘curl-free’, needed to ensure that the theory pro-
vides the appropriate c-1 limit for GR (see Malament, 1986)

R½a c�
½b d� ¼ 0, ð13Þ

where ½. . .� represents antisymmetrization. With conditions
(9)–(13) in place, we have the minimal version of NCT. This posits
a spacetime with a flat spatial metric and an orthogonal universal
time function which will be read by any clock traversing the
spacetime. As with standard NG, this gives us a spacetime foliated
into 3-D Euclidean spaces coordinatised by an absolute time.
However, unlike in NG, the connection here, although spatially
flat, possesses curvature along timelike paths. This curvature is
affected by mass distribution, and explains accelerations of bodies
relative to one another in the presence of mass.

This form of NCT, which Bain (2004) calls ‘‘weak’’ Newton–
Cartan theory, is the c-1 limit of GR.6 However, the constraints
on the connection given by Eqs. (9)–(11) and (13) do not
sufficiently restrict the class of connections to provide either an
absolute standard of rotation or an absolute standard of accelera-
tion. Given that global accelerations are unobservable in Newtonian
gravity, the fact that the theory does not give an absolute standard
of acceleration is, if anything, an advantage. However, the failure to
provide a rotation standard is more serious, and prevents ‘‘weak’’
NCT from being equivalent to Newtonian gravity, and, for that
matter, from being a well-defined physical theory.

In order to see that weak NCT will not be empirically equivalent
to standard Newtonian gravity, consider the fact that, while absolute
linear accelerations are not observable in NG, absolute rotations are.
The water in Newton’s bucket is predicted to be just as concave in
empty space as it is in our own world. Leaving aside the substan-
tivalist/relationist debate concerning whether this is a correct
prediction of the theory,7 let us simply note that, in order for NCT
to be empirically equivalent to NG, it too must introduce an absolute
standard of rotation. In the weak form of the theory developed
above, there are too many degrees of freedom in the connection for
it to distinguish between straight, or non-rotating, trajectories, and
twisted, or rotating trajectories; the class of allowed connections is
simply too large. In order to solve this problem, we may introduce
the following constraint on the curvature of the Newton–Cartan
connection8:

Rab
cd ¼ 0: ð14Þ



11 Some might claim that this is not strictly true. If we impose island universe

boundary conditions, we can impose a standard of acceleration. However, this is a

strong physical assumption and cannot be applied in any realistic model of
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This condition was first introduced by Trautman (1965). Bain refers
to it as the rotation standard, and calls the theory that results from
adding it ‘‘strong’’ Newton–Cartan theory. A connection obeying this
constraint can differentiate between ‘twisted’ and ‘non-twisted’
world lines—that is, the connection picks out some particular class
of reference frames as non-rotating.

This rotation standard is essential if NCT is to be a well-defined
physical theory. To see this, note that the restriction imposed on
the connection by the rotation standard is just that, a restriction.
As such, the connections allowed by strong NCT are a subset of
those allowed by weak NCT. Now consider a situation in which
the entire universe is put into a rotating state. Strong NCT, which,
like NG, distinguishes such motion from non-accelerating motion,
will predict a divergence of the inertial paths of particles. What
will weak NCT predict? The connection that produces the diver-
gence is a solution of the equations of weak NCT, but not the only
one; weak NCT also allows for connections that make global rotations
unobservable. As such, weak NCT does not always provide determi-
nate solutions for a given state of motion of the universe.9 Indeed, it is
not clear that the state of motion of the universe can even be
specified, given that motion is defined relative to affine structure, and
this affine structure is itself underdetermined. Despite being a limit of
general relativity, weak NCT is simply not a well-defined physical
theory, let alone an empirically equivalent competitor to NG.

1.2. Underdetermination

In order to determine whether NCT and NG constitute a case of
underdetermination, we must ask two questions. First, are they
empirically equivalent? Second, do they diverge in their ontolo-
gical commitments? I will argue that if the answer to the first
question is yes, then the answer to the second is no, and vice
versa. As a result, no underdetermination obtains. Let us see how
this works.

First, we should note that weak NCT, as noted above, is not
empirically equivalent to NG because it fails to make determinate
predictions in cases (a rotating bucket in an empty universe), in
which NG makes determinate predictions. Therefore, in evaluat-
ing empirical equivalence, we must consider strong NCT. Once we
move to the case of strong NCT, we do seem to have empirical
equivalence, at least insofar as gravitational phenomena are
concerned. Strong NCT and NG make identical predictions for
the behaviour of massive particles under gravity. To see this, we
may note that not only may we derive the NCT Poisson equation
(11), from the standard Newtonian Poisson equation (7), but, with
the aid of the rotation standard, we may also derive (7) from
(11).10 However, it is not clear what we should say about their
predictions for non-gravitational phenomena. Suppose we dis-
cover massless particles in a Newtonian universe. How do we
expect these to behave? In the absence of an interpretation of NCT
and NG, it is far from clear. If we insist that the connections in
each theory represent inertial structure, then it seems we should
expect each theory to make different predictions for the trajec-
tories of free, massless particles; empirical equivalence is broken.
However, I will argue in what follows that there is also another
path: we can refrain from insisting that the connections in both
theories must represent inertial structure.

Let us turn now to the reason that NCT and NG are generally
held to postulate different spacetime structures. While NCT has a
single connection, NG divides this into an inertial connection and
9 Christian (2001) points out that weak NCT does not possess a classical

Lagrangian density, a Hamiltonian density or an unambiguous phase space. The

point above is connected to these facts, particularly to the ambiguity of the phase

space.
10 For a proof of this, see Bain (2004, pp. 366–372).
a gravitational field

G0ab c ¼G a
b cþhad

rdftbtc : ð15Þ

A standard reading holds that, from the perspective of NG,
there is a unique correct way to effect the split described above;
at any spacetime point, the value of the gravitational field is
specified by the theory (given initial conditions). From the
perspective of NCT, on the other hand, there is no preferred way
to make the split. This reflects the fact, noted earlier, that NG
holds to an absolute, global standard of linear acceleration,
whereas NCT does not; acceleration is defined locally with respect
to inertial frames. As a result, NG has a way of specifying gravita-
tional acceleration relative to the background inertial frames. On the
one hand, in NG, we have models /M,hab,ta,ra,f,rS, wherera is a
flat affine connection, and f is the gravitational potential. On the
other hand, in NCT, we have models /M,hab,ta,ra,rS, wherera is a
dynamical connection with curvature. The ontologies of the two
theories appear to differ both in terms of the nature of the spacetime
structure they posit (absolute and dynamical respectively) and in
whether they posit the existence of the gravitational potential.

However, careful consideration of the interpretation of New-
tonian gravity gives us reason to resist this conclusion. It is
generally accepted that the Newtonian gravitational potential f
is a gauge quantity; the equations of motion are entirely unaf-
fected by the addition of a constant component to f. As a result, it
is usually asserted that the real fundamental gravitational entity
in NG is the field �rf. However, this entity is also subject to a
gauge freedom. Accelerative boosts are symmetries of the NG
equations of motion, and uniform gravitational fields are unob-
servable; in a universe in which all bodies are subject to gravity,
there is no unique physically motivated way to make the gravity/
inertia split.11 In such a situation, both the flat affine connection,
and the gravitational field, are properly thought of as gauge
quantities; their exact value makes no difference to the equations
of motion; only their sum is empirically significant. It has been
frequently noted (for example, by Friedman, 1983) that a great
strength of NCT is that it replaces two gauge quantities with one
that is non-gauge. Given that we accept the gauge argument for
the potential, why not also accept it for the field? On its most
perspicacious reading, NG should never have accepted that
different choices of the inertia/field split corresponded to differ-
ent possible worlds; the precise value of the gravitational field
has no physical significance.12

However, it is worth pausing at this stage to consider the
implications of this suggestion. When we assert that the gravita-
tional potential is pure gauge and has no physical import, we
assert that it is a piece of surplus structure, a mathematical
artefact that does not reflect physical structure. If we take the
same approach to the gravity/inertia split, and hence to both the
gravitational field and NG’s flat affine connection, then we assert
the gravity/inertia division is a piece of surplus structure; only the
sum of the two pieces represents real physical structure. How-
ever, because the physical structure in this case is spacetime
structure, some may find this conclusion less comfortable than in
the case of the gravitational potential. Some discussion of the
Newtonian cosmology. We could also use exactly the same conditions to impose a

standard of rest, which is not an argument that most physicists would take

seriously. Moreover, the fact that grounds can be found for imposing a particular

gauge does not eliminate the gauge freedom of the entity in question. For a full

survey of the problems caused by insisting on a unique split between gravity and

inertia, see Norton (1992), Malament (1995) and Norton (1995).
12 Malament (1995) makes the case for this.
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circumstances under which mathematically geometrical structure
comes to represent spacetime structure is therefore called for.

The question here concerns the claim some particular connec-
tion has to represent the geometry of spacetime; what makes it
that some particular connection is the right one for some physical
situation? It is well-known that, in the context of spacetime
theories, a connection’s link to physical structure comes about
via it’s capacity for representing the structure of inertial frames;
this is why I refer to the ‘inertial connection’ above. However,
standard discussions of inertial structure blur two definitions of an
inertial frame in such a way as to preempt questions about the
representational capacities of geometrical objects. It is common to
see inertial frames defined as those reference frames13 in which the
components of the connection vanish, and which parallel transport
their own coordinate axes according to the standard defined by the
relevant connection. This is all well and good, but it presupposes
that we know which connection accurately represents spacetime
structure; this mathematical characterisation of an inertial frame
cannot help us to determine which connection is the correct one.
Happily, there is a more physical characterisation of an inertial
frame available. Inertial frames are those reference frames in which
force-free bodies move with constant velocities, and which are
indistinguishable according to the dynamics. This second criterion
is a strong one; in order for a class of reference frames to count as
inertial, dynamical laws must take the same form in each frame.
Moreover, inertial frames must be universal; if the theory under
consideration allows for multiple types of interaction, each of these
must pick out the same class of inertial frames.

If we ask what makes some connection the right one for a
theory, the one that accurately represents the theory’s spacetime
structure, it is the second, physical, characterisation of inertial
frame that is relevant. A connection only represents spacetime
structure if the class of frames associated with it bears the right
relations to the rest of the theory. If we rely on the mathematical
characterisation of inertial frames alone, it gives the impression
that we may select a connection at random, and simply assert it to
represent the inertial structure of the theory. In reality, inertial
structure is constrained by the rest of the theory’s dynamics.

Turning back to the question of whether to extend the gauge
argument to the gravity/inertia split in Newtonian gravity, we see
that the question is really one of determining the correct class of
inertial frames, and hence the correct connection, for the theory.
However, answering this question in the context of Newtonian
mechanics is not straightforward, because Newtonian physics is
not fully defined: nothing internal to the Newtonian picture tells
us whether all bodies have mass or how the non-gravitational
interactions will transform. Let us therefore consider two New-
tonian universes, and see what follows in each.

In the first, Universe A, gravity is universal. All phenomena pick
out the freefall frames as the inertial frames: light rays follow
geodesics of the NCT connection, and the non-gravitational laws
look simplest in freely falling frames. In such a universe, it would be
natural to see the Newton–Cartan connection as representing the
inertial structure of spacetime; the theory would be geometrical in a
sense that went beyond its mathematical form (although we might
well see that form as particularly appropriate). However, such a
universe is in no way at odds with Newtonian gravity. Indeed, if
Newton’s light corpuscles possessed mass, it may well be precisely
the universe most naturally posited by the original theory.

In a second universe, Universe B, both NG and NCT give a full
account of all gravitational phenomena, but the Newton–Cartan
13 The formal definition of a frame of reference requires some subtlety, but in

this context it is helpful to think of a reference frame as a class of coordinate

systems related by rotations and translations.
connection does not encode the behaviour of non-gravitational
phenomena. In particular, light rays follow the geodesics of a flat
connection, and the laws of electro-magnetism and the other
fundamental forces take their simplest form in reference frames
that are not the free-fall frames. In such a universe, NCT might give a
useful and concise geometrical formulation of our gravitational
theory, but we would not associate its content with space or time.
Instead, non-gravitational phenomena would point to a division
between gravity and inertia. In such a case, the gravitational field
ceases to be a gauge quantity; different choices of gravity/inertia
split correspond to different non-gravitational phenomena.

What may we conclude from our two hypothetical universes
concerning underdetermination in Newtonian theories? We seem to
have two choices. The first of these, and the one that I prefer, is to
hold that NCT and NG need not be automatically interpreted as
postulating different spacetime structure. Rather, the bare theories
simply fail to return a single interpretation when taken in isolation.
In order to determine whether their connections in fact represent
spacetime structure, we must look outside Newtonian gravity, to our
whole physical theory. If gravity in fact turns out to be universal, and
the non-gravitational laws take their simplest form with respect to
the freely falling frames, then inertial structure is well-represented
by the Newton–Cartan connection. However, this is exactly the kind
of situation in Newtonian gravity in which the inertia/gravity split is
not well-defined, and should not be taken seriously. As a result, a
correct reading of Newtonian gravity, even without the insight given
by Newton–Cartan theory, should result in the conclusion that the
inertial structure of the theory is represented not by the connection
alone, but by the right hand side of Eq. (15). As a result, there is no
ontological divergence, and no underdetermination. Likewise, if non-
gravitational phenomena did specify a gravity/inertia split, NCT
would remain a correct theory of gravity, but lose its claim to a
spatiotemporal interpretation. If we accept this option, we see that
the spatiotemporal status of the objects of a theory is not merely a
matter of the theory’s mathematical form, but rather a subtle matter
of the interplay of those objects with our total physical theory.

The second, to my mind less attractive, option is to insist that
both theories can be interpreted in isolation from a complete account
of physics. If we take this option, we insist that it is part and parcel of
Newtonian gravity that it postulates flat inertial structure, and that
Newton–Cartan theory postulates curved structure. However, if one
is genuinely committed to the idea that these connections must
represent a piece of spacetime structure, then one should expect
observable manifestations of the resulting inertial structure.14 In this
case, we should not see the two theories as empirically equivalent:
they give different predictions for the behaviour of massless bodies,
and different predictions for the correct form for the non-gravita-
tional interactions. Even if there turn out to be no massless bodies,
the constraints placed by a given inertial structure on the form
of non-gravitational theories is far from trivial. Thus, even on this
reading, we do not have a case of underdetermination. However, it
should be noted that the second reading might quite well commit us
to the idea that Newtonian gravity is disproved by a universe in
which all bodies have mass, assuming that the NCT inertial structure
is the most natural in such a case. Given that this may well have
been exactly the universe that Newton himself envisioned, this
makes the position decidedly odd.

1.3. Comparing NCT and GR

Of course, we do not live in a Newtonian universe, geometrical
gravitation or no. The above debate is primarily interesting in the
light of the kind of universe we do think we live in, namely, one
14 Earman & Friedman (1973) also make this point.
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described by general relativity. We might therefore wish to ask
how a fully geometrical Newton–Cartan theory (in our second
kind of universe above) compares to general relativity; does the
latter still provide a more geometrical account of gravity?

There is certainly a sense in which GR is the more naturally

geometrical theory, in as much as a GR universe is more simply
described in geometrical terms than a Newtonian one. Where NCT
must postulate a time metric, a spatial metric, and a connection as
basic geometrical structures, general relativity is so formulated
that all relevant structure follows directly from the spacetime
metric. NCT spacetime is a less coherent and cohesive entity than
that of GR. However, it is possible to distinguish between the
broad geometric content of a theory and the extent to which it
geometrizes gravity; in terms of the extent to which each theory
describes gravity as a manifestation of spacetime geometry, there
does not appear to be any deep difference between GR and NCT.
In each case, gravitational phenomena arise as a result of the
structure of spacetime, albeit a somewhat impoverished structure
in the NCT case.

On the other hand, if we compare general relativity to NCT in
the absence of any assumptions about the non-gravitational
forces, there is a clear difference. General relativity comes with
a spatiotemporal interpretation as part of the package; the strong
equivalence principle is generally presented as part and parcel of
the theory. But we might formulate NCT in just such a way, if we
wished; simply exchange the Levi-Civita connection for the
Newton–Cartan connection in our minimal coupling rule. In a
universe where such a rule applied, one would be hard-pushed to
cite a deep sense in which gravity was less a matter of spacetime
geometry than it is in GR.

Before closing this issue, one more point deserves considera-
tion. In a 1973 paper on Newton–Cartan theory John Earman and
Michael Friedman argue that the geometrization of gravity
achieved by GR is both ‘more effective’ and ‘a geometrization in
a very different sense’ from that of NCT. Their basis for this is that

If we demand that the affine connection of a relativistic
spacetime be symmetric and compatible with the spacetime
metric, there is only one such connection rR, and therefore, no
possibility of splitting rR into an inertial and a gravitational
part as there is with the Newtonian connection r1 (Earman &
Friedman, 1973, p. 355).

As a result of this, they claim, the very notion of a gravitational
force is incoherent in GR; there is no method, even an arbitrary
one, to divide the gravitational force from inertial effects. We
shall see in the next section that technically, the above is correct.
If the affine connection is symmetric, the split is impossible.
However, if we allow a non-symmetric spacetime connection,
we can indeed effect a division of the Levi-Civita connection in a
way analogous to standard Newtonian gravity.
15 In this paper, the abbreviation TPG always refers to this empirically

equivalent theory, rather than any other.
16 See, for example, Blagojevic (2001, p. 69) or Ortin (2004, p. 11).
17 Lyre & Eynck (2003) is an exception.
2. Teleparallel gravity

The elegance of the reduction of gravity to geometry effected by
general relativity (GR) is deeply seductive. But aesthetics, though
important, are not everything in physics. Theoretical physicists have
long been aware that it is possible to create theories similar to GR in
their empirical consequences, but which replace the simple
beauty of Einstein’s original theory with an often messier, but
perhaps more useful, gauge theory. Of interest here is teleparallel
gravity (TPG), a particular variant of gravitational gauge theories.
In this theory, the Levi-Civita connection of GR, which has
curvature but no torsion, is replaced with a Weitzenböck connec-
tion, with torsion but no curvature.
Although ‘teleparallel theory’ can be used to refer to a family of
theories using the Weitzenböck connection, the variant of interest
here recreates the results of general relativity exactly.15 However,
it models gravity in a way that at first glance resembles a theory
like electromagnetism much more closely than GR does. This
resemblance, and the fact that the formal geometrical structure of
the theory is such that gravity does not lead to motion along
geodesics of the connection, makes it tempting to think of TPG as
a ‘force’ theory of gravity. This claim is made explicitly by a group
working on teleparallel gravity in Sao Paulo (de Andrade &
Pereira, 1997, 1999; de Andrade et al., 2000; Aldrovandi et al.,
2004a, 2004b; Arcos & Pereira, 2005), but is also implicit in the
common claim that teleparallel gravity involves a ‘Weitzenböck
spacetime’.16 Doubtless this phrase is not intended, by most of its
users, to carry a heavy interpretational burden, but it is sugges-
tive; it implies that the spacetime, and hence inertial structure, of
the theory is not that of general relativity, and that particles
moving as predicted by GR are thus accelerating. There will be
more discussion of the inertial structure of teleparallel gravity in
Section 1.2.

This half of the paper will question this interpretation of TPG.
In fact, TPG is to GR what Newtonian gravity is to Newton–Cartan
theory, and my suggestions here will proceed along the same
lines as those in the previous section. Therefore, I will argue that
TPG and GR do not constitute a case of underdetermination; they
in fact postulate the same spacetime structure. If anything, the
case for this is more clear cut, because the geometrical structure
of these theories, and its interplay with the rest of physics, is
better defined than it was in the Newtonian case.

Teleparallel gravity has not been much discussed in the philoso-
phical literature,17 and considerably more stage setting will therefore
be necessary than was the case in the Newtonian discussion. I will
start by introducing the formalism of the theory and examining its
motivation. I will then argue that, on close examination, ontological
differences between the two theories are illusory. In fact, this new
pair of formulations turns out to have much in common with our
two formulations of Newtonian gravity, not least in that an emphasis
on inertial structure, and not mathematical form, seems crucial.

2.1. The theory

Our discussion here will be concerned with a particular,
modern variant of a group of theories that have taken advantage
of the possibility of a connection with torsion. As a result, it’s
worth some brief mention of the history of the subject, and the
contrast between the theory under discussion here, and historical
theories of the same name. Teleparallel gravity has its roots in
work simultaneously developed by Einstein and Cartan (1979),
concerning the possibility of establishing a theory similar to general
relativity, but with the feature of absolute parallelism—the possibi-
lity determining the angles between distant vectors. This Fernpar-

allelismus theory introduced a curvature free connection with torsion,
and an associated tetrad field in the hope that the extra degrees of
freedom associated with these might be used to encode electro-
magnetism, and hence produce a unified field theory. The details of
this project, and the reasons for its abandonment, are detailed in an
excellent article by Sauer (2006).

The idea of using a connection with torsion in a gravitational
theory did not die with Einstein–Cartan theory. Following the
model of Yang–Mills gauge theories, Poincaré gauge theory was
developed in early 1960s in the hope of providing a gauge theory
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of both gravitation and other fundamental forces.18 Poincaré
gauge theories allow connections with both torsion and curvature
on the tangent bundle in order to produce gauge theories of the
Poincaré group. Their aim is to incorporate the spin of matter
fields into gravitational dynamics; torsion is associated with spin
much as curvature is associated with energy-momentum in GR.
General relativity may be thought of as that variant of Poincaré
gauge theory in which the torsion is set to zero. Likewise, various
theories that go under the name ‘teleparallel gravity’ may be
thought of as variants in which curvature is set to zero.19

In this context, the theory under discussion here has a rather
odd fit. As mentioned, TPG is a version of teleparallel theory that
is engineered to be empirically equivalent to general relativity. As
such, spin plays no role in the theory; torsion cannot be inter-
preted as it is in Poincaré gauge theory. Moreover, the extra
degrees of freedom conferred by the introduction of the tetrad
field are not used to represent additional forces, as in Einstein–
Cartan theory, but are gauge freedoms. These disanalogies mean
that it will be most instructive to interpret TPG primarily in
isolation, rather than in comparison to these related theories.

2.1.1. Curvature, torsion and geodesics

Teleparallel theory tears apart several geometrical notions that
we have, in GR, become used to associating. It also introduces the
relatively unfamiliar notion of torsion. It will therefore be useful,
before looking at teleparallel theory, to go over some GR territory
and reexamine some geometrical notions.

The most fundamental field in GR is the metric field, which
encodes spatiotemporal distances. However, much of the formal
apparatus of GR uses the Levi-Civita connection, which can be
derived from the metric only if one stipulates that the connection
must be metric compatible; i.e. that the metric be covariantly
constant with respect to the connection

rrgmn ¼ 0: ð16Þ

This ensures that the angle between two vectors remains the
same under parallel transport. However, this is not enough to
specify the connection uniquely. In addition, it is necessary to
specify that the connection must be symmetric in its lower
indices

Gr
mn ¼Gr

nm: ð17Þ

It is this second condition that will be replaced in teleparallel
theory. However, before moving on to the possibility of dropping
the condition, it is worthwhile to look at its original motivation.
After all, on the surface, the symmetry condition appears to have
nothing to do with the metric.

In order to see why the symmetry condition is introduced, we
may turn to the concept of a geodesic. Clearly, this idea is
fundamental to general relativity and its geometrical nature;
the idea that freely falling particles follow geodesics of the metric
is an essential component of GR. However, it is important to bear
in mind that there are two notions of geodesic at play in
differential geometry. The first is a metrical notion: geodesics
are paths of extremal length; they represent local maxima and
minima of the interval, ds. There is no need to have defined a
connection in order to introduce this notion of geodesic. The
18 Poincaré gauge theory was first proposed by Kibble (1961) and Sciama

(1962). For a good textbook overview of Poincaré gauge theories, see Blagojevic

(2001, Chap. 3). For some discussions that focus on the role of torsion in these

theories, see Hehl (1984) or Hammond (2002).
19 It is natural to think of these as ‘limiting cases’ of Poincaré gauge theories,

but it is worth noting that, unlike some other ‘limiting cases’ of theories, GR and

TPG are not derived by considering the approach to a particular limit, but rather

by simply setting curvature/torsion to zero.
second notion of geodesic centres around the connection: a
geodesic is a path that parallel transports its own tangent vector.
This notion is entirely affine; it would allow us to define geodesics
in a space with no metric. In fact, it is the notion of geodesic we
use in Newton–Cartan theory, where no spacetime metric is
defined. The motivation for the symmetry condition is this: The

symmetry condition ensures that the two notions of geodesic coin-

cide.20 In general, even for a metric compatible connection, there
will be two sets of geodesics, one associated with the metric, and
another associated with the connection.21 This will prove impor-
tant when looking at teleparallel gravity.

In addition to the notion of geodesic, the concepts of torsion
and curvature will play an important part in what follows, and are
worth a closer look. As a result of its central position in general
relativity, most of us are familiar with the ideas underlying
curvature. Because it can be conveniently realised on two-dimen-
sional surfaces, curvature appears intuitively familiar. This can
sometimes obscure the fact that the connection between pictorial
geometry and more formal geometry can be subtle, because more
than one notion of curvature is at play. Nonetheless, two-dimen-
sional surfaces are helpful in seeing that curvature is a measure of
the failure of a vector to return to itself when parallel transported
around a closed loop. Put like this, curvature is obviously a property
of the connection, and we can write the Riemann curvature tensor in
terms of the connection

Rr
smn ¼ @mG

r
ns�@nG

r
msþG

r
mlG

l
ns�G

r
nlG

l
ms: ð18Þ

Obviously, curvature is not the only formal property a con-
nection may possess. Another is torsion. Torsion is less easy to
visualize; it corresponds, not to the failure of a single vector to
come back to itself when transported around a loop, but to the
failure of two vectors to form a parallelogram when parallel
transported along one another. Taking two infinitesimal vectors
in the tangent space, wa and za, first parallel transport wa along za,
and then transport za along wa. In space with no torsion, the result
of these two processes will be the same; a parallelogram is
formed. However, if the connection has torsion, the parallelogram
will not close, as shown in Fig. 1. The non-closure is proportional
to torsion.

A more formal definition of torsion can be given in terms of in
terms of the Lie bracket of two vector fields and the covariant
derivative of one vector field along another. If X and Y are vector
fields, torsion is given by

TðX,YÞ ¼rXY�rY X�½X,Y �: ð19Þ

In co-ordinate notation, the torsion tensor is given by

Tl
mn ¼Gl

mn�G
l
nm: ð20Þ

As such, torsion is a measure of the antisymmetric part of a
connection. Thus, general relativity’s demand for a symmetric
connection amounts to a demand that the torsion tensor vanish.
Teleparallel gravity, on the other hand, postulates a metric compa-
tible connection with zero curvature, but non-zero torsion.

The above account makes curvature and torsion, and the
connections postulated by GR and TPG, sound pleasantly symme-
trical. However, there are some important asymmetries. As was
20 The symmetry condition is sufficient, but not necessary, for the two classes

of geodesic to coincide; the geodesics associated with a given connection depend

only on its symmetric part. Where torsion is not completely antisymmetric, its

symmetric part will contribute to geodesic structure and cause deviation from

metric geodesics. However, the geodesics of a connection with torsion will

coincide with metric geodesics if the torsion is completely antisymmetric.
21 In the literature where torsion is considered, the straight lines associated

with the connection are often known as autoparallels, while the term geodesic is

reserved for the extremal paths determined by the metric. However, to retain

continuity with more familiar GR literature, I’ll refer to both as geodesics here.
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Fig. 1. Torsion.
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the case for geodesics, there is more than one concept of curvature.
This comes about because curvature may be defined without making
use of the connection. Curvature may be defined as the relative
acceleration of neighbouring geodesics. If we use the metrical notion
of geodesic, this does not rely on the connection. Torsion, on the
other hand, has no metrical interpretation; it is purely a property of
the connection.

Another important asymmetry concerns the uniqueness of the
connection. While there is a unique symmetric metric-compatible
connection for a given metric, demanding metric compatibility and
zero curvature fails to uniquely specify a connection. Teleparallel
gravity therefore involves an equivalence class of connections.
2.1.2. Summary of the formalism

Armed with the above geometrical concepts, we are ready to
examine teleparallel theory. As noted, TPG introduces a connec-
tion with torsion, but zero curvature.22 This is called the Weit-
zenböck connection. Of course, it is hardly surprising that such a
connection can be defined. What is far more surprising is that the
introduction of the Weitzenböck connection can lead to a theory
of gravity that reproduces the results of general relativity. In order
to understand how this comes about, it is necessary to move into
tetrad notation, which requires further explanation.23

In standard GR, we generally work within the constraints of a
coordinate basis for our tangent space. However, in curved spaces,
these coordinates won’t generally be orthogonal. Nonetheless,
locally, we can always assign an orthonormal basis for the tangent
space. A tetrad field is a set of four vector fields which at each point
in the space provide an orthonormal basis for the tangent space at
that point. Writing the components of a tetrad field in a coordinate
basis gives us a means of transforming between orthonormal and
coordinate bases: if V is a vector in the tangent space, and roman
and greek indices represent components of vectors in orthonormal
and coordinate bases respectively, then the tetrad ha

m gives us

Va
¼ h a

m Vm: ð21Þ

Given a non-trivial tetrad field, the Weitzenböck connection24

is given by

Gr
mn ¼ h r

a @nha
m: ð22Þ

This means that the Weitzenböck covariant derivative of the
tetrad field vanishes identically, which is the feature that ensures
22 This connection is, in fact, metric compatible. However, the metric is not

explicitly introduced in the TPG formalism.
23 The account below will be, of necessity, only a sketch. For a fuller account of

the precise theory described here, look at e.g. de Andrade et al. (2000). For an

introduction to the tetrad formalism, see Carroll (2003, Chap. 10) or Wald (1984,

pp. 50–53). Jensen (2005) provides a helpful introduction to differential geometry

with torsion. Blagojevic (2001, Chap. 3) gives an introductory overview of Poincaré

gauge theories, including teleparallel theories.
24 Henceforth the Weitzenböck connection will be represented by G, and the

Levi-Civita connection by G̊. I will also work in units where c¼1.
absolute parallelism

rnha
m ¼ @nha

m�G
y
mnha

y ¼ 0: ð23Þ

Teleparallel gravity is an Abelian gauge theory of the transla-
tion group. The gauge potential Ba

m is the non-trivial part of the
tetrad field25

ha
m ¼ @mxaþBa

m: ð24Þ

The field strength may be derived from the potential in the usual
way, and turns out to be simply the torsion of the connection
written in the tetrad basis

Fa
mn ¼ @mBa

n�@nBa
m ¼ ha

rTr
mn: ð25Þ

The action is given by the following integral:

S¼

Z b

a
½�m

ffiffiffiffiffiffiffiffiffi
�u2

p
þmBamuaum� ds, ð26Þ

where ds¼ ðZabdxadxb
Þ
1=2 is the Minkowski tangent space invar-

iant interval, and ua is the particle four-velocity. Use of the Euler–
Lagrange equations leads to a force equation analogous to the
Lorentz force law

ð@muxaþBa
muÞ

dua
ds
¼ Fa

mruaur: ð27Þ

This can be reexpressed via Eqs. (24) and (25) to give

dum
ds
�Gymnuyun ¼ Tymnuyun, ð28Þ

which is the equation of motion for teleparallel gravity. This
predicts deviation away from the geodesics of the Weitzenböck
connection, and these deviations depend on torsion, and thus on
the field strength of the theory.

2.1.3. Motivation

It is worth pausing here to ask why one might prefer the
messier teleparallel theory to the more elegant general relativistic
formulation. TPG aims to reproduce the results of GR exactly, and
thus manifestly fails to have any empirical benefits. The perceived
benefits then, must be theoretical, and I shall try to outline some
possibilities here.

A first possibility concerns the motivation for all gauge theories
of gravity, including that first suggested by Einstein and Cartan:
unification. The overwhelming success of the gauge heuristic gives
good reason to believe that the way forwards in the unification
programme lies in a fully fledged gauge theory of gravity. However,
unlike Einstein’s version of a teleparallel theory, which was intended
to unify gravity and electromagnetism, modern teleparallel theory
simply reproduces the results of general relativity, and does not
pretend to posit any new results connecting gravity to other forces.
In this case, then, the unificationist motivation boils down to a
vague conviction that nature has written all her laws in the language
of gauge theories; it is a methodological unification and not an
ontological one.

A second possible motivation concerns the energy of the
gravitational field. In standard GR, this is represented by the
energy–momentum pseudo-tensor of the gravitational field: t r

l .
In teleparallel gravity, it is now more naturally represented by the
gauge current, j r

a , which is given in Eq. (36). de Andrade et al.
(2000) consider this a major advantage of the theory. They make
much of the fact that this quantity is invariant under local
translations of the tangent space coordinates, and transforms
covariantly under global tangent space Lorentz transformations.
This means it is both a well-behaved gauge invariant quantity of
the theory (remembering that the gauge group of teleparallel
25 Note that this division depends on our choice of coordinates.



29 Although this certainly guarantees the empirical equivalence of the two

theories locally, we might have some global worries. Certain topologies do not

admit of a global tetrad field. Nonetheless, the Einstein equations as standardly

written are solvable for these manifolds. As a result, it appears that there must be

some GR solutions that cannot be instantiated in TPG. Of course, this also applies

to any formulation of GR using tetrads, not just TPG. Furthermore, Bob Geroch
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theory is the translation group), and what they call a ‘‘spacetime

tensor’’.26 This contrasts with the pseudo-tensorial nature of t r
l .27

Moreover, although both the gauge current and the energy–
momentum pseudo-tensor are conserved quantities, this fact
can be expressed with a covariant derivative for the gauge
current, but cannot be expressed covariantly for the pseudo-
tensor. This is perhaps an advantage, but hardly reason enough to
abandon GR in favour of teleparallel theory, especially when we
note that j r

a is only covariant under global, and not local, Lorentz
transformations.

A final motivation for the theory is a claim, put forward in
two recent papers by Aldrovandi et al. (2004a, 2004b) that
teleparallel gravity may be formulated in such a way that it
remains valid in the face of violation of the weak equivalence
principle (WEP). That is, teleparallel theory could accommodate
the discovery that, for some matter, gravitational and inertial
mass are not identical, and that all bodies do not therefore fall at
the same rate regardless of their constitution. Of course, we have
no current reason to think that WEP is violated, and one might
well think that, if TPG loses GR’s ability to explain the validity of
the WEP, this is a disadvantage of the theory. We will return to
this issue, and its consequences, in the final section of this paper.

2.2. Underdetermination

Teleparallel gravity and general relativity appear to be candi-
dates for underdetermination. Is this really the case? As in the
Newtonian discussion, this rests on whether they are really
empirically equivalent, and whether they propose different ontol-
ogies. However, the issues here are slightly more complicated
than in the Newtonian case, and, while I’ll argue that we don’t in
fact have a case of underdetermination, I will also argue that one
of the options available in the Newtonian case, insisting that the
two theories represented different inertial structures and pro-
vided different predictions, is not available here.

First, we need to understand the results that lead to the claim
that TPG is empirically indistinguishable from GR. The Lagrangian
for a pure gravitational field may be written in the following
notation28:

LG ¼
h

16pG
SrmnTrmn, ð29Þ

where h¼ detðha
mÞ, and

Srmn ¼
1

2
½Kmnr

�grnTsm
sþgrmTsn

s� ð30Þ

with Kmnr being the contortion tensor

Kr
mn ¼

1

2
½T r

m nþT r
n m�T r

m n�: ð31Þ

How does this lead to empirical equivalence? It turns out that
the contortion tensor defined above is simply the difference
between the Weitzenböck connection and the Levi Civita
connection

G˚ r
mn ¼Gr

mn�Kr
mn: ð32Þ

Given that Kr
mn is built up from the torsion, which is the field

strength of the theory, the parallel with Eq. (15), which gave the
26 This term is just another way of expressing the covariance under global

Lorentz transformations.
27 This quantity does not transform like a tensor, and vanishes in freely falling

frames.
28 I use the vacuum Lagrangian and field equations here for ease of exposition.

The presence of a source field adds an extra term to the Lagrangian, and results in

the presence of the energy–momentum tensor on the right-hand side of the field

equations.
relationship between the Newton–Cartan and Newtonian connec-
tions, is obvious. In fact, the above seems to represent a gravity/
inertia split in much the same way that Eq. (15) does. This
relation is also essential in establishing the empirical equivalence
of TPG and GR, because it acts as a translation dictionary between
the equations off teleparallel gravity and those of standard general
relativity. Given this translation, the Lagrangian above turns out to
be identical, up to a divergence, to the Einstein–Hilbert Lagrangian
in standard GR.29

L¼ h

16pG

ffiffiffiffiffiffiffi
�g
p

R˚ : ð33Þ

The vacuum field equation can likewise either be translated
into the language of teleparallel gravity or alternatively obtained
by performing variations with respect to the gauge potential. It
turns out to be

@sðhS sr
a Þ�4pGðhj r

a Þ ¼ 0, ð34Þ

where jra is the gravitational gauge current30

hj r
a �

@L
@ha

r
¼�

c4

4pG
hh l

a S nr
m Tm

nlþh r
a L: ð36Þ

This quantity is conserved as a result of the field equations

Drj r
a ¼ 0: ð37Þ

The equivalence of the Lagrangians is enough to establish
empirical equivalence, but we may, at this stage, begin to have some
doubts about TPG’s status as an original and coherent theory. In the
above equation, Dr is the so-called teleparallel covariant derivative,
not the Weitzenböck covariant derivative. The teleparallel covariant
derivative is simply the Levi-Civita covariant derivative reexpressed
in terms of the Weitzenböck connection via Eq. (32)

Drj r
a � @rj r

a þðG
r
lr�Km

lrÞj
l

a : ð38Þ

Thus the gravitational gauge current is not conserved with
respect to the connection most natural to the theory, but rather
with respect to the Levi-Civita connection. The importance of the
teleparallel covariant derivative does not stop there. The minimal
coupling principle applies in TPG just as it does in GR. In order to
maintain empirical equivalence, however, ordinary derivatives
are converted not into the Weitzenböck covariant derivative, but
into the teleparallel covariant derivative.31 We shall see shortly
that this has important consequences for the inertial frames
picked out by TPG.

So far we have not mentioned the metric. In teleparallel
gravity, this is quite possible; it does not appear in the formalism
of the theory. Nonetheless, it is worth noticing that it has been
hiding in the shadows all along, closely tied to the tetrad field

gmn ¼ Zabha
mha

n, ð39Þ
(1970) has argued that it is reasonable to restrict the GR space of solutions to

those that admit of spinor fields. Many thanks to an anonymous referee for

bringing this paper to my attention.
30 j r

a may be compared to the standard GR energy–momentum pseudo-

tensor of the gravitational field, which can be expressed in our notation as:
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r
lLG : ð35Þ

31 See de Andrade & Pereira (1999).



32 The standard way of seeing this is to note that the antisymmetric part of

the connection forms a tensor, and therefore its components cannot be made to

vanish by a coordinate transformation. In fact, this story turns out to be something

of a simplification; it is now recognised that one can define ‘normal frames’ for a

non-symmetric connection, but these frames don’t correspond to coordinates in

the right way to represent extended inertial structure. See Hartley (1995) and Iliev

(2006) for details.
33 Note that this gauge freedom exists in addition to the translational gauge

freedom that standardly defines the gauge group of the theory.
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where Zab is the Minkowski metric. In fact, gmn is still used to raise
and lower indices, just as it is in GR.

One might therefore have doubts that teleparallel gravity
really postulates a different ontology; the old entities from GR
appear to be waiting in the wings. I suggested in the Newtonian
case that, under circumstances in which non-gravitational phe-
nomena failed to determine the gravity/inertia split, we should
regard Newtonian mechanics as postulating the same spacetime
structure as Newton–Cartan theory. Eq. (33), like Eq. (15), postulates
a split between gravity and inertia that constitutes the purported
ontological difference between TPG and GR. Might we have reason
here, as in the Newtonian case, not to take this split seriously? Might
TPG not really be a force theory?

Let us briefly review some reasons one might view TPG as a
force theory, and thus as ontologically divergent from GR. A
reasonable place to begin is with the common claim that TPG
involves a Weitzenböck spacetime. Unlike the straightforward
mathematical fact that the theory involves a Weitzenböck con-

nection, this claim carries some metaphysical weight; it makes a
statement about the nature of the spacetime in which the theory
is set. It implies that the Weitzenböck connection is a ‘spacetime’
connection, in contrast to, say, the connections of electromagnetic
fibre bundles. In Newtonian gravity, special relativity, and general
relativity, spacetime connections are those that determine geo-
desics and the structure of inertial frames. Indeed, this seems
constitutive of what it is to be a spacetime connection. So the
claim that TPG involves a Weitzenböck spacetime implies that the
Weitzenböck connection represents the inertial structure of the
theory. This in turn implies that particles moving in a gravita-
tional field are subject to accelerations; the geodesics of the
Weitzenböck connection differ from those of the Levi-Civita
connection, and, in a theory empirically equivalent to GR, parti-
cles moving under gravity alone follow Levi-Civita geodesics. This
grounds the claim that gravity is a force in TPG: if the Weit-
zenböck connection represents geodesic and inertial structure,
then gravity causes non-inertial motion.

This view appears to be supported by the form of the
equations listed above. Eq. (27) resembles the Lorentz force law,
while Eq. (28) appears to be an equation of motion involving a
force. Some further support might be garnered from the gauge
form of the theory; Poincaré gauge theories are modelled on
Yang–Mills gauge theories, which describe forces.

However, when we dig a little deeper, there is reason to
question this force interpretation of TPG. The analogy with
Yang–Mills gauge theories is somewhat misleading; TPG proposes
a Minkowskian frame bundle on the base space R4. The gauge
group of the bundle is the translation group, and the gauge
potential is the non-trivial part of the tetrad field. This bundle
has markedly different features from the fibre bundles of Yang-
Mills theories. For one this bundle possesses a soldering form
relating the fibre spaces to the base manifold. For another, the
algebra of constraints on the TPG bundle fails to form a Lie
algebra. One should therefore be wary of simplistic comparisons
with standard model force theories.

But the problems for the force interpretation of TPG really
arise when we consider the inertial structure of the theory in
more detail. It is essential to ask relative to which inertial frames
TPG represents gravity as a force. The answer might seem simple:
relative to those frames defined with respect to the Weitzenböck
connection. But which frames are these? In general relativity, the
inertial frames are those with respect to which the Levi-Civita
connection coefficients vanish. In these frames, the laws of
physics are returned to their special relativistic form because of
minimal coupling: non-gravitational interactions couple to grav-
ity only via the connection and when the connection coefficients
vanish, local gravitational effects vanish as well. However, no
such frames exist for a non-symmetric connection; the compo-
nents of the Weitzenböck connection cannot be made to vanish
by an appropriate choice of reference frame.32 It seems that the
geodesics of the Weitzenböck connection simply don’t have a full
inertial structure associated with them; although we can define a
class of frames that parallel transport their own axes relative to
the Weitzenböck connection, these frames can’t be the ones in
which the laws of physics take a uniform form by virtue of the
connection vanishing.

Is TPG therefore a theory without inertial structure, and
therefore without full spacetime structure? Perhaps not. As noted
in Section 1.1, the minimal coupling prescription in TPG uses the
teleparallel covariant derivative (which is simply a recasting of
the Levi-Civita covariant derivative), and not the Weitzenböck
covariant derivative. As a result, all other fundamental forces take
their simplest form relative to the inertial frames picked out by
the Levi-Civita connection. Moreover, freely falling bodies still
follow geodesics of the metric, which, along with the Levi-Civita
connection, is still present in the theory, albeit in disguised form.
It therefore seems most sensible to conclude that the spacetime
of TPG is in fact precisely the same as the one in GR; only the
mathematical form is different.

This conclusion becomes still more compelling when we note
that neither the Weitzenböck connection nor the tetrad field are
uniquely determined by the theory. The tetrad field is defined only
up to a local gauge transformation,33 and this gauge freedom passes
on to the connection defined in terms of the tetrads. As a result, the
gravity/inertia split expressed in Eq. (32) is just as much a gauge
matter as it was in the Newtonian case. In fact, the situation is
worse. Because the tetrad field is subject to a local gauge freedom,
no amount of information about the tetrad field on, say, a spacelike
hypersurface will determine the value of the tetrad field in other
regions of spacetime. As a result, it is tempting to think that the
metric, and the Levi-Civita connection, should be taken as ontolo-
gically prior to the tetrad field and Weitzenböck connection.

Both TPG and GR appear to take the metric to be fundamental.
Looked at another way, we can note that both theories admit of
both the tetrad field and the metric; tetrad formulations of GR
have various uses. Moreover, rods and clocks survey the self-same
metric in both theories. The only difference is the way in which
this comes about—either via the Weitzenböck connection or the
Levi-Civita connection. It seems that both theories posit the ‘same’
spacetime; if the connections in the two theories are thought of as
modelling properties of this spacetime, they should perhaps be seen
as alternative representations of the same properties. The closer we
look, the less there appears to be any underdetermination at all.

However, this does present us with a puzzle. Torsion and
curvature represent very different geometrical properties. How
then, can TPG and GR be interpreted identically? This query
becomes more pressing when we note that in Poincaré gauge
theories, the torsion and curvature represent translational and
Lorentz gauge field strengths respectively. These then couple to
different fields, and have markedly different effects. While the
curvature of the connection plays its traditional role in General
Relativity; coupling to all matter fields, torsion, at least at the
macroscopic level, couples only to fields with spin. Prima facie, then,
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we would expect very different theories to be produced by postulat-
ing connections with only torsion and curvature respectively.

However, perhaps the analogy with Poincaré gauge theory is
misleading. The equations of TPG are set up in such a way that the
torsion of the connection plays a very different role from that in
Poincaré gauge theories. In particular, despite being broadly
associated with spin in the non-teleparallel literature,34 torsion
has no such association in teleparallel theory; given the equa-
tions, the effects of the Weitzenböck connection on matter must
in every way match the effects of the Levi-Civita connection. That
identical physical effects can be modelled either by a connection
with curvature or one with torsion is truly remarkable, but not
because there is any necessary link between torsion and parti-
cular particles or effects. The fact that the role of torsion in similar
theories can be so different teaches us that interpreting a theory
involves more than just looking at its mathematical form. In this
case, we can only understand the theory by thinking hard about
the inertial structure it posits. Despite appearing to possess very
different mathematically geometrical meanings, given the right laws,
two theories involving connections with torsion and curvature can,
under very special circumstances, have the same physical geometry.

2.3. Alternative inertial structure?

The above discussion closes with a stronger conclusion than in
the Newtonian case. What has happened to our two universes and
our second interpretative option? If Eq. (32) represents a gravity/
inertia split, can’t we imagine a situation in which non-gravita-
tional phenomena suggested that teleparallel gravity represented
the more natural spacetime theory? Is there no GR analog of the
Universe B mentioned in Section 1.2?

The difference between Universe A and Universe B lays in the
satisfaction of the equivalence principle. Recall that in GR the strong
equivalence principle has two components: minimal coupling and
universality of gravitation. Minimal coupling is maintained in TPG
with respect to the Levi-Civita connection, so there is no reason to
think that TPG might correspond to a universe in which minimal
coupling is incorrect. In particular, we can’t even consider modifying
the theory to a form with minimal coupling with respect to the
Weitzenböck connection, because there are no inertial frames in
which this connection vanishes, and therefore applying the comma
goes to semi-colon rule with respect to the Weitzenböck connection
would not give back the pre-GR forms of non-gravitational interac-
tions in any frame whatsoever. However, there has been a suggestion
that teleparallel gravity might be compatible with a universe in
which gravity is not universal, namely one in which gravitational and
inertial mass were not equivalent.

Aldrovandi et al. (2004a, 2004b), derive an equation analogous
to the Lorentz force equation which can accommodate different
values for gravitational charge mg, and inertial mass mi. They
reproduce the action for TPG, but without assuming the weak
equivalence principle

S¼

Z b

a
½�mids�mgBa

mua dxm�: ð40Þ

The force equation is now

@mþ
mg

mi
Ba

m

� �
dua

ds
¼

mg

mi
Fa

mruaur, ð41Þ

where Fa
mr is the field strength defined in Eq. (7). When mg¼mi,

this equation reduces to our original equation of motion, and, if
we substitute appropriately, can be shown to be identical to the
34 Hehl (1984) justifies this association by suggesting that the spins of

particles act like tiny gyroscopes which detect the translational field.
geodesic equation of GR. However, the motions of particles are
still well-defined even for mg ami.

What are we to make of this? First we should note that what is
being proposed is quite different from my suggestion for Universe B,
and much stronger. I proposed violation of a Newtonian version of
the strong equivalence principle; massless phenomena were to
select the geodesics of a flat spacetime. However, in this case, we
have violation of the weak equivalence principle. It is not exactly
clear what massless bodies do according to the above prescription,
but it seems plausible to hold that these bodies, at least, still follow
geodesics of the Levi-Civita connection. It is the behaviour of massive

bodies that changes. However, the change does not help us interpret
TPG as a force theory on flat spacetime. While WEP violation
certainly threatens the claim of the Levi-Civita connection to
represent inertial structure, it does nothing to award the Weit-
zenböck connection inertial significance. A theory like the above
appears simply to be a theory without inertial structure at all, and
hence without any proper notion of force. It may be that such
notions must go by the wayside in some eventual theory, but it
scarcely seems that TPG is doing any work in showing us this. Given
our ability to translate teleparallel quantities to GR ones, we can
always back-engineer the above equations into GR form.

Thus, when it comes to postulating the a flat spacetime, the
analogy between the general relativistic case and the Newtonian
one breaks down. We don’t have underdetermination in the TPG/
GR case, but the sheer complexity of the geometrical form of GR,
and the subtlety of the notion of inertial frame within it, restrict
our options. The only coherent spacetime to be found in these
theories is the curved spacetime of GR.
3. Conclusions

Two morals may be drawn from this discussion. The first is
that examples of theoretical underdetermination are harder to
come by than one might think, especially if one takes a relatively
liberal attitude to the metaphysical commitments of a theory.
Genuine potential examples of underdetermination are scarce; I
have examined two rare examples and found them lacking.

Significantly, the illusion of underdetermination came about as
a result of what John Stachel has called ‘‘the fetishism of
mathematics’’.35 It is only when we take the mathematical form
of the theories too seriously that they appear to diverge. Careful
consideration of inertial structure revealed that geometrical form
does not always determine a theory’s spatiotemporal commit-
ments. This is the second moral. We see that geometrical form is
not a sufficient condition for representing spacetime structure.
Inertial considerations play an important role in the process by
which mathematical structure comes by its spatiotemporal cre-
dentials. Moreover, the requirements on our total theory for a
particular inertial structure to be represented are stringent.

The consequences of ignoring the above are apparent in the
teleparallel literature. GR’s geometrization of gravity is a very
deep and subtle matter; we should be wary of claims that a
theory either reverses or extends that geometrization.
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