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a b s t r a c t

I argue that, contrary to folklore, Einstein never really cared for geometrizing the gravitational or
(subsequently) the electromagnetic field; indeed, he thought that the very statement that General
Relativity geometrizes gravity “is not saying anything at all”. Instead, I shall show that Einstein saw the
“unification” of inertia and gravity as one of the major achievements of General Relativity. Interestingly,
Einstein did not locate this unification in the field equations but in his interpretation of the geodesic
equation, the law of motion of test particles.
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1. Introduction

What could be more beautiful than the idea that all there is to
the world is geometry? What could cause a bigger sense of
wonder than finding out that something we do not normally
conceive as geometrical is exactly that at its core: a feature of the
geometry of space or spacetime. Finally, what could be clearer
than that this is exactly what happens in General Relativity \(GR
for short), and that it is what distinguishes GR most clearly from
previous theories of gravity: gravity is being ‘geometrized’. In this
spirit, Vizgin writes:1

The basic feature of general relativity that distinguished it sharply
from all other physical theories, including the first quantum
theories, was the inherent idea of the geometrization of a physical
interaction (the gravitational interaction). The interpretation of the
gravitational field as the manifestation of space- time curvature…
was a departure from the traditional theories of physics.

The sceptic of the geometrization programme, on the other hand,
is most prominently represented by Weinberg:2

In learning general relativity, and then in teaching it to classes
at Berkeley and M.I.T., I became dissatisfied with what seemed

to be the usual approach to the subject. I found that in most
textbooks geometric ideas were given a starring role, so that a
student who asked why the gravitational field is represented by
a metric tensor, or why freely falling particles move on
geodesics, or why the field equations are generally covariant
would come away with an impression that this had something
to do with the fact that space- time is a Riemannian manifold.

Of course, this was Einstein0s point of view, and his preeminent
genius necessarily shapes our understanding of the theory he
created. […] Einstein did hope, that matter would eventually be
understood in geometrical terms […]. [I believe that] too great
an emphasis on geometry can only obscure the deep connec-
tions between gravitation and the rest of physics.

Even though scholars may disagree on how far the idea of geometriz-
ing physics can be pursued, both admirers and sceptics agree that
Einstein was the champion of the programme, that he was the man
who ‘geometrized’ gravity and spent the rest of his life trying to do the
same with the only other interaction known at the time, electro-
magnetism. Indeed, Vizgin and Weinberg in particular seem to agree
on Einstein0s alleged twin goals: geometrization, which would even-
tually lead to a unification of all known interactions.

However, note that it is not necessary for the two goals to go
hand-in-hand; special relativistic electrodynamics gives us a
unification of electric and magnetic fields without, it seems, any
kind of ‘geometrization’. It clearly seems possible to unify two
physical fields without relating them in any way to (spacetime)
geometry: ‘geometrization’ and ‘unification’ are compatible but
conceptually distinct research goals.
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In this paper, I shall show that Einstein saw himself much more as
a traditionalist that as someone who gives a completely new kind of
gravitational theory via geometrizing gravity. Indeed I will argue that
Einstein saw himself as a traditionalist in two important respects:
(i) he thought that General Relativity was no more and no less
geometrical than Maxwell0s theory of electromagnetism; and (ii) that
the important achievement of GR was the advancement of the
unification programme in direct continuation of special relativistic
electrodynamics. Einstein thought that the special theory unified
electricity and magnetism, the general theory inertia and gravity.
Yet, we shall see that, unbeknown to most scholars, Einstein was
emphatic in his belief that this should not be interpreted as a
‘geometrization’ of gravity, especially if ‘geometrization’ was seen as
a reduction of gravity/inertia to spacetime geometry.

The argument will proceed as follows. Section 2 sets the stage by
giving a series of almost unknown writings of Einstein that show his
strong opposition to interpreting GR as a “geometrization of gravity”.
The respective quotations range from 1925 to the end of the 1940s, i.e.
until near the end of Einstein0s life. Despite of stretching almost the
quarter of a century, the reader may wonder whether Einstein only
acquired this opinion at the beginning of the 1920s, which was a time
of conceptual reorientation for Einstein with regard to the interpreta-
tion of GR. In Section 3, I shall show that even though Levi-Civita0s and
Weyl0s work of giving themodern geometrical conception of the affine
connection only took place in 1917, Einstein had all the necessary
mathematical and conceptual tools for thinking of GR as a reduction of
gravity to geometry, at the latest by 1916. For it will become clear that
already then Einstein thought of the geodesic equation as a ‘general-
ized law of inertia’ and of test particles subject to arbitrary gravita-
tional fields as moving on geodesics. In Section 4, I shall argue that
nevertheless Einstein did not adopt this position. Instead, he saw the
geodesic equation as manifesting the unification of inertia and gravity
in GR, a unification he saw as very similar to the unification of electric
and magnetic fields in special relativity. Furthermore, he thought of
the geodesic equation as allowing for an arbitrary split into gravita-
tional terms on the one hand and inertial terms on the other. However,
he also insisted that such labeling, the very distinction between gravity
and inertia in GR, was in principle unnecessary, even though useful
when comparing GR to its predecessor theories. This conception of
unification brought with it a view of ‘gravitational field’ that allows the
attribution of its presence only relative to a given coordinate system.

That0s the story to be told. Let0s start with the claim that
Einstein geometrized gravity, and see how adamant he was that he
did not see his work in that way.

2. What Einstein did not believe: the geometrization of gravity

What does it mean to say that GR ‘geometrized’ gravity? Does it
just mean that gravity is described by using particular mathema-
tical tools? Or does it mean that gravity has been ontologically
reduced to (spacetime) geometry in some sense? In this section,
we shall see that Einstein believed that at best ‘geometrization’
means the former—and is thus trivial—and at worst it means the
latter and is wrong. We shall see that Einstein saw even Maxwell0s
and Hertz0s use of three-vectors as equally geometrical as the use
of metric tensors in GR; and we shall see that Einstein0s opinion on
this stayed unchanged between the formal completion of GR in
1915 and his autobiographical notes in 1949.

2.1. The Einstein-Meyerson debate: against the reduction of gravity
to geometry

One might think that Einstein was unlikely to think of gravity
as reduced to geometry in GR as long as he thought that the metric
field gμν itself was reducible to the relationship between material

bodies, i.e., as long as he believed in various forms of what he
called Mach0s principle. However, in the early 1920s, largely fueled
by Einstein0s debate with Willem De Sitter, Mach0s principle was
facing severe pressure, to the extent that Einstein was forced to
recognise the metric field as a fundamental field in its own right
according to GR.3 Interestingly, this did not (yet) make Einstein
give up on Mach0s principle, but led him to change the role he
attributed to the principle: he changed its status from a principle
that was supposed to hold for GR as a whole, for every solution to
the field equations, to a selection rule by which physically
acceptable field equations should abide. This development culmi-
nated in the Princeton lectures in 1921, and in a series of notes in
which he attacked supposedly ‘Anti-Machian’ papers afterwards.4

Having recognised the metric field as in principle ontologically on a
par with the electromagnetic field (considering both of them as
fundamental fields as far as GR was concerned) surely made the
mission of finding a unified (field) theory of both gravity-inertia and
electro-magnetism seem all the more urgent. Many have interpreted
this mission as Einstein trying to bestow the geometrization that the
gravitational field had allegedly received in GR on the electromagnetic
field as well. In this section, I shall show that Einstein did not see GR as
a geometrization of the gravitational field, that indeed he insisted that
what the claim evenmeant was utterly unclear. Consequently, Einstein
did not see the quest for a unified field theory as an attempt to
geometrise both the gravitational and electromagnetic field.

As early as 1926 Einstein insisted, explicitly, that his work
should not be understood as reducing physics to geometry, either
his work on GR or his (and Weyl0s and Eddington0s) work on a
unified field theory of gravitation and electromagnetism. Interest-
ingly, what seems to be Einstein0s first clear statement on the
matter was prompted by a letter from Hans Reichenbach. Reich-
enbach was at the time engaging with Weyl0s and Eddington0s
theories, and wrote Einstein that he thought that seeing electricity
as geometrical in Weyl0s theory is not more than an illustration
(Veranschaulichung), one that, he argued, is equally possible (and
equally trivial) in GR.5 Einstein agreed wholeheartedly, writing6

You are completely right. It is wrong to think that ‘geometriza-
tion’ is something essential. It is only a kind of crutch (Esels-
brücke) for the finding of numerical laws. Whether one links
‘geometrical’ intuitions with a theory is a … private matter.

Now, in 1925, a year before Einstein0s correspondence with Reich-
enbach, Émile Meyerson had wriiten the book ‘La déduction relati-
viste’,7 in which he claims that Einstein0s GR is the natural next step in
what he saw as Descartes0 project of reducing physics to geometry,
and that Weyl0s theory is the next step in turn, ‘geometrizing’
electromagnetism after Einstein had allegedly geometrized gravity.
In 1927, Einstein would write a review of the book.

The review was written in German by Einstein, and then
translated into French by A. Metz, as solicited by Meyerson, and

3 See e.g., Einstein (1920).
4 See Einstein (1922a–b) and the annotation of these articles in Vol. 13 of the

Collected Papers of Albert Einstein (CPAE for short); and compare Hoefer (1994,
1995), Renn (2007) and Brown and Lehmkuhl (forthcoming).

5 Reichenbach to Einstein, 24 March 1926, AEA 20-085.
6 If not otherwise indicated, translations are either mine or, in the case where

Einstein articles have already been published in the translation volumes of the
CPAE, those of the translation volumes, sometimes with minor modifications. In the
case where the German originals are already available in the CPAE, I do not
reproduce them in the footnotes. The passage in the main text is my translation of
part of Doc. AEA 20-117 of the Albert Einstein Archives (AEA for short), Einstein to
Reichenbach, 8 April 1926: ‘Sie haben vollständig recht. Es ist verkehrt zu glauben,
dass die ‘Geometrisierung’ etwas Wesentliches bedeutet. Es ist nur eine Art
Eselsbrücke zur Auffindung numerischer Gesetze. Ob man mit einer Theorie
‘geometrische’ Vorstellungen verbindet, ist [unleserlich] Privatsache.’

7 Meyerson (1925). See Zahar (1980, 1987) for details on Meyerson0s philoso-
phy of science.
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eventually published as Einstein and Metz (1928). An English
translation was published only as late as 1985, as an appendix to
a translation of Meyerson0s book. Einstein0s comment regarding
‘geometrization’ is the main critical point in an otherwise rave
review. Also, it gives what may be the clearest explication of
Einstein0s opposition to the idea of ‘reducing physics to geometry’,
although we shall see similar statements from the 1930s and
1940s below. So the passage merits being quoted in its entirety:8

Meyerson sees another essential correspondence between
Descartes0 theory of physical events and the theory of relativity,
namely the reduction of all concepts of the theory to spatial, or
rather geometrical, concepts; in relativity theory, however, this
is supposed to hold completely only after the subsumption of
the electric field in the manner of Weyl0s or Eddington0s theory.

I would like to deal more closely with this last point because I
have an entirely different opinion on the matter. I cannot,
namely, admit that the assertion that the theory of relativity
traces physics back to geometry has a clear meaning. One can
with better justification say that, with the theory of relativity,
(metrical) geometry has lost its special status vis-á-vis regula-
rities which have always been denoted as physical ones. Even
before the proposal of the theory of relativity it was unjustified
to consider geometry vis-á-vis physics as an “a priori” doctrine.
This occured only because it was usually forgotten that geo-
metry is the study of the possible positions and displacements
of rigid bodies. According to the general theory of relativity the
metric tensor determines the behavior of the measuring rods
and clocks as well as the motion of free bodies in the absence of
electrical effects. The fact that the metric tensor is denoted as
“geometrical” is simply connected to the fact that this formal
structure first appeared in the area of study denoted as “geometry”.
However, this is by no means a justification for denoting as
“geometry” every area of study in which this formal structure
plays a role, not even if for the sake of illustration one makes use of
notions which one knows from geometry. Using a similar reason-
ing Maxwell and Hertz could have denoted the electromagnetic
equations of the vacuum as “geometrical” because the geometrical
concept of a vector occurs in these equations.

After pointing out that he does not think that GR and/or unified
field theories are about “geometrizing” things, Einstein comes to

what he thinks unified field theories are about. After a gap of only
one sentence he adds9

Thus, what is essential about Weyl0s and Eddington0s theories on
the representation of the electromagnetic field is not that they
have incorporated the theory of this field into geometry, but that
they have shown a possible way to represent gravitation and
electromagnetism from a unified point of view, whereas these
fields entered the theory as logically independent structures
beforehand.10

Of course, this is not at all how Weyl himself saw his theory11; he
saw his theory as achieving both geometrization and unification
and saw the two aims as intimately related. In 1918, he wrote
about his theory:12

[A] geometry comes about, which, if applied to the world, surpris-
ingly explains not only the gravitational phenomena but also those of
the electromagnetic field. According to the theory thus coming into
existence, both emanate from the same source; indeed, in general
one cannot divide gravitation and electricity without arbitrariness.

This quotation is from one of two papers Weyl wrote on the matter
in 1918; this paper was directed at physicists. In the companion
paper, aimed primarily at mathematicians, Weyl makes particu-
larly clear what he means by ‘the source’ from which both gravity
and electromagnetism emanate:13

In this theory everything real, everything that exists in the world,
is a manifestation of the world-metric; the physical concepts are
none other than the geometrical ones.14

Weyl clearly thought of gravitational and electromagnetic phe-
nomena as reduced to the geometry of spacetime in his theory.
Einstein did not agree, neither with regard to GR nor with regard
to any unified field theory. And he was very insistent on the point,
as is shown by his correspondence with Meyerson directly after
sending him the draft of his review.

Einstein had invitedMeyerson to accompany the reviewwith notes
of his own, in which he could reply to the points made by Einstein.
After Meyerson had sent Einstein the French translation of the German

8 Doc. AEA 91-248: ‘In Descartes’ Theorie des physikalischen Geschehens sieht
Meyerson noch eine wesentliche Gemeinschaft mit der Relativitätstheorie, nämlich
die Zurückführung aller Begriffe der Theorie auf räumliche bezw. geometrische
Begriffe; bei der Relativitätstheorie soll dies allerdings erst nach Einordnung des
elektrischen Feldes nach Art der Weyl0schen bezw. Eddington’ [sic] Theorie
vollständig zutreffen. Auf diesen letzteren Punkt möchte ich näher eingehen, weil
ich hier entschieden anderer Meinung bin. Ich kann nämlich nicht zugeben, dass
die Behauptung, die Relativitätstheorie führe die Physik auf Geometrie zurück
einen klaren Sinn habe. Man kann mit mehr Recht sagen, dass die Relativitätsthe-
orie es mit sich gebracht habe, dass die (metrische) Geometrie gegenüber den
Gesetzmässigkeiten, welche man stets als physikalische bezeichnet habe, ihre
Sonderexistenz eingebüsst habe. Auch vor Aufstellung der Relativitätstheorie war
es ungerechtfertigt, die Geometrie gegenüber der Physik als eine Lehre “a priori” zu
betrachten. Dies kam nur daher, dass man meist vergessen hatte, dass die
Geometrie die Lehre von den Lagerungsmöglichkeiten starrer Körper sei. Gemäss
der allgemeinen Relativitätstheorie bestimmt der metrische Tensor das Verhalten
der Masskörper und Uhren sowie die Bewegung frei beweglicher Körper bei
Abwesenheit elektrischer Wirkungen. Dass man diesen metrischen Tensor als
“geometrisch” bezeichnet hängt einfach damit zusammen, dass das betreffende
formale Gebilde zuerst in der als “Geometrie” bezeichneten Wissenschaft aufge-
treten ist. Dies rechtfertigt es aber keineswegs, dass man jede Wissenschaft, in
welcher jenes formale Gebilde eine Rolle spielt, als “Geometrie” bezeichnet, auch
dann nicht, wenn man sich bei der Veranschaulichung vergleichsweise jener
Vorstellungen bedient, welche man aus der Geometrie gewohnt ist. Mit ähnlicher
Argumentation hätten Maxwell und Hertz die elektromagnetischen Gleichungen
des Vakuums als “geometrische” bezeichnen können, weil der geometrische Begriff
des Vektors dabei in diesen Gleichungen auftritt.’

9 ‘Das wesentliche der Theorien von Weyl und Eddington zur Darstellung des
elektromagnetischen Feldes liegt also nicht darin, dass sie die Theorie dieses Feldes
der Geometrie einverleibt haben, sondern dass sie einen möglichen Weg gezeigt
haben, Gravitation und Elektromagnetismus unter einem einheitlichen Gesicht-
spunkt darzustellen, während vorher jene Felder als logisch voneinander unab-
hängige Gebilde in die Theorie eingingen.’

10 For more on Einstein0s programme of a unified field theory of gravitation
and electromagnetism see Vizgin (1994), van Dongen (2004, 2010), Sauer (2009),
and Goenner (2004).

11 Eddington is a more complicated case; see Goenner (2004, Section 4.3) and
Ryckman (2012, Section 5), for details.

12 Weyl (1918a, p. 30): ‘[K]ommt eine Geometrie zustande, die überraschen-
derweise, auf die Welt angewendet, nicht nur die Gravitationserscheinungen, sondern
auch die des elektromagnetischen Feldes erklärt. Beide entspringen nach der so
entstehenden Theorie aus derselben Quelle, ja im allgemeinen kann man Gravitation
und Elektrizität gar nicht in willkürloser Weise voneinander trennen’.

13 Weyl (1918b), p. 2: ‘Nach dieser Theorie ist alles Wirkliche, das in der Welt
vorhanden ist, Manifestation der Weltmetrik; die physikalischen Begriffe sind keine
anderen als die geometrischen.’

14 It is important to note that whenWeyl speaks of ‘the world-metric’ or ‘the metric
of spacetime’, he is not referring to a metric tensor field gμν as we know it from
(pseudo-)Riemannian geometry. He refers to what he regards as a generalisation of the
concept of a metric obtained in his theory. Given that endowing spacetimewith ametric
tensor would allow for distant comparison of the lengths of vectors, Weyl took as the
fundamental building blocks of his geometry a conformal structure and a conception of
length transfer, thereby forbidding any distant comparison. Together, these two
structures define an equivalence class of pairs ½gμν ;Qμ�, where every gμν is a metric
tensor (in the classical sense) and every Qμ a length connection, which together make it
possible to define a unique affine connection. Weyl thus regarded the equivalence class
½gμν ;Qμ� (rather than any of its members) as ‘the metric of spacetime’. For more on
Weyl0s theory see e.g., Vizgin (1994), Scholz (2001) and Goenner (2004).
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manuscript and his answers to the few points of criticism to be found
in the review, Einstein seemed convinced that Meyerson was in the
right across the board—in all respects but one. He wrote15

Your remarks would in principle make it necessary for me to
rewrite my review, especially because it seems I did not
characterise correctly your standpoint regarding the relation-
ship between the theory of relativity and earlier physics.
However, with regard to the second point, the one about
“geometrization”, I have not changed my mind. I still think
that here the word “geometrical” is not saying anything at all.

Einstein emphasized that Meyerson0s comments on his review did
not change his mind about the fact that GR should not be seen as a
continuation of Descartes’ programme of reducing physics to
geometry, and that indeed the theory should not be seen as more
geometrical than, e.g., Newtonian gravitation theory or Maxwel-
lian electrodynamics. He would not change his mind on the issue
in the years to come either.

Still in his autobiographical notes from 1949, Einstein writes16

One is struck [by the fact] that the theory (except for the four-
dimensional space) introduces two kinds of physical things, i.e.,
(1) measuring rods and clocks, (2) all other things, e.g., the electro-
magnetic field, the material point, etc. This, in a certain sense, is
incoherent; strictly speaking measuring rods and clocks would
have to be represented as solutions of the basic equations…, not, as
it were, as theoretically self-sufficient entities.17 [There was the]
obligation, however, of eliminating [this incoherence] at a later
stage of the theory. But one must not legalize the mentioned sin so
far as to imagine that intervals are physical entities of a special
type, essentially different from other physical variables (“reducing
physics to geometry”, etc.).

An even stronger late statement, which mirrors almost verbatim
Einstein0s statement in the Meyerson review 23 years earlier, can be
found in a letter from Einstein to Lincoln Barnett from June 19, 194818

I do not agree with the idea that the general theory of relativity
is geometrizing Physics or the gravitational field. The concepts
of Physics have always been geometrical concepts and I cannot
see why the gik field should be called more geometrical than f.
[or] i.[nstance] the electromagnetic field or the distance of
bodies in Newtonian Mechanics. The notion comes probably
from the fact that the mathematical origin of the gik field is the
Gauss–Riemann theory of the metrical continuum which we
wont look at as a part of geometry. I am convinced, however,
that the distinction between geometrical and other kinds of
fields is not logically found.

In the draft, Einstein writes first ‘…that the distinction between
geometrical and other kinds of fields cannot be upheld’ (kann nicht
aufrecht erhalten werden) and then strikes it out to write the above.19

In sum, we find that Einstein did not change his mind on the
issue.20 But what exactly did he oppose, and why?

2.2. Analysis of the debate

The above quotations show that Einstein did not believe in there
being an interesting distinction between a purely mathematical sense
of ‘geometrical’ and a supposedly more substantive sense many would
like to draw between the status of, say, the geometry of a phase space
and that of spacetime. For Einstein, there is no interesting distinction
between the two cases—the use of a vector in classical electromagnetic
theory is as ‘geometrical’ as the use of a metric tensor in GR. Thus,
according to Einstein, the manifold claims that GR teaches us the
important lesson that ‘gravity is geometry’,21 that ‘gravity is a
manifestation of spacetime curvature’,22 or that in GR gravity is
‘geometrized’23 are just “nichtssagend”—they are uninformative, they
do not teach us anything interesting about the theory or about the
world. Consequently, Einsteinwould probably not have been surprised
at Cartan0s managing to formulate Newtonian gravitation theory as a
‘geometrized theory’24 by expressing Newtonian gravity in terms of
metric and curvature tensors. For Einstein, it never was the message of
GR that it did something new in relating gravity to geometry; GR did
not do anything new at all there, it just used mathematical methods to
represent gravity that were equally geometrical or ungeometrical as
the representation of the gravitational field by scalars or vectors in
pre-GR theories. Indeed, this seems quite in line with Trautmann0s
definition of ‘geometric object’; he sets out to define the term in such a
way that it “includes nearly all the entities needed in geometry and
physics”.25 However, describing something in geometrical terms should
not be misunderstood as reducing something (ontologically) to
geometry.

That for Einstein there is a clear distinction between the two
possibilities is connected to what Einstein takes the term ‘geometry’ to
refer to. In the 1925 quotation from the Meyerson review, Einstein
states that geometry “is the study of the possible positions and
displacements of rigid bodies”, and that thus geometry should never
have been regarded as an a priori discipline. This is clearly directed
against Kantian and Neo-Kantian voices which had come up in

15 Einstein to Meyerson, 21 August 1927, Doc. AEA 67-694: ‘Ihre Bemerkungen
würden es nun eigentlich nötig machen, meine Besprechung neu abzufassen,
insbesondere deshalb, weil ich Ihre Auffassung der Stellung der Relativitätstheorie
gegenüber der früheren Physik wohl nicht ganz richtig charakterisiert habe. Ueber
den 2. Punkt der “‘Geometrisierung”’ habe ich allerdings meine Meinung nicht
geändert. Ich denke immer noch, dass hier das Wort “geometrisch” völlig
nichtssagend ist.’

16 I changed the translation of the Schlipp volume by replacing ‘inconsistent’ by the
weaker ‘incoherent’; which is closer to Einstein0s original word ‘inkonsequent’. I also
replaced ‘intrinsically different’ by ‘essentially different’, which seems closer to Einstein0s
‘wesensverschieden’. The original (Einstein, 1949, p. 555/56) reads: ‘Es fällt auf, dass die
Theorie (ausser dem vierdimensionalen Raum) zweierlei physikalische Dinge einführt,
nämlich (1) Massstäbe und Uhren, (2) alle sonstigen Dinge, z.B. das elektromagnetische
Feld, den materiellen Punkt etc. Dies ist in gewissem Sinne inkonsequent; Massstäbe
und Uhren müssten eigentlich als Lösungen der Grundgleichungen … dargestellt
werden, nicht als theoretisch selbstständige Wesen. […] [Es bestand die] Verpflichtung,
[diese Inkonsequenz] in einem späteren Stadium der Theorie zu eleminieren. Man darf
aber die erwähnte Sünde nicht so weit legitimieren, dass man sich etwa vorstellt, dass
Abstände physikalische Gegenstände seien, wesensverschieden von sonstigen physika-
lischen Grössen (“Physik auf Geometrie zurückführen” etc.)”.

17 Note that this was Weyl0s answer to Einstein0s criticism of his (Weyl0s)
unified field theory, see Einstein (1918b).

18 Doc. AEA 6-58. The English version quoted below is the one actually sent; it
differs from the German draft in some points: ‘Ich kann nicht mit der weitver-
breiteten Auffassung übereinstimmen, dass die allgemeine Relativitätstheorie die
Physik ‘geometrisiere’. Die Begriffe der Physik sind nämlich von jeher ‘geometrisch’
gewesen, und ich kann nicht sehen, warum das gik-Feld ‘geometrischer’ sein soll als
das elektromagnetische Feld oder die Distanz von Körpern in Newtons Mechanik.
Wahrscheinlich stammt die Ausdrucksweise aus dem Umstand, dass das gik-Feld
seinen mathematischen Ursprung (Gauss, Riemann) Begriffen entstammt, die man
als geometrisch zu betrachten gewohnt ist. Genauere Überlegung zeigt aber, dass
die Unterscheidung zwischen geometrischen und anderen Feldbegriffen sich
nicht objektiv begründen lässt.’

19 The idea that the metric field in GR is just a field ‘like any other’ rather than
being special because of its alleged ‘geometrical significance’ has more recent
proponents as well; see in particular Brown (2007, chap. 9), and Brown (2009).
Compare also Anderson (1999).

20 The above establishes that Einstein did not think of GR in geometrical terms
after the formal completion of (the fundamental equations of) the theory in 1915.
Janssen (1992, pp. 349–350) gives complementary arguments showing that
thinking of the Riemann tensor and scalar, let alone the connection, did not play
a role in Einstein0s work leading up to 1915, either.

21 Hartle (2003, p. 13).
22 Misner, Thorne, & Wheeler (1973, p. 304).
23 Vizgin (1994, p. xii-xiii)..
24 Malament (2012b).
25 Trautman (1965, pp. 84–85); compare also Anderson (1967, pp. 14–16).
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defense against first special and then general relativity, and which
were particularly strong in the 1920s. The connection Einstein makes
here between arguing against the project of reducing physics to
geometry and Kant0s conception of space and time becomes some-
what clearer in his Review of Elsbach0s book ‘Kant und Einstein’ , where
Einstein writes that Kant should not have attributed special status to
spatio-temporal concepts as compared to other concepts. Arguably,
doing so is a precondition for reducing physics to geometry; thus,
he who opposes the project of reducing physics to geometry can do so
by denying the attribution of a special status to spatio-temporal
concepts.26

The picture of geometry as the study of the possible positions of
displacements of rigid bodies already occurs four years earlier, in a text
from December 1919/January 1920, which Einstein had intended as a
paper for Nature, telling the story of how he recalled the historical
development of both special and general relativity.27

The systematic decoupling of basic geometrical concepts
(straight line, distance, etc.) from the bodies of experience, of
which they are abstract representations, must not let us forget
that in the end geometry is supposed to tell us about the
behavior of the bodies of experience. If there were no practi-
cally rigid bodies that can be brought into congruence with one
another, we would not speak of the congruence of distances,
triangles, etc. It is clear that for the physicist geometry becomes
meaningful only as he associates bodies of experience with
those basic concepts, for example by associating the concept of
distance with a practically rigid body with two markings. Vice
Versa, this association makes Euclidean geometry a science of
experience in the truest sense, just like mechanics. The sen-
tences of geometry can then be confirmed or falsified, just like
the sentences of mechanics.

Geometry defined as the science of possible displacements of rigid
bodies is not easily carried over from the Euclidean geometry of space
to the geometry of (possibly curved) spacetime. Indeed, in the 1925
quotation from the Meyerson review, Einstein claims that the only
reason we call metric tensors geometrical is that they were first used
in the context of that area of study which we originally called
‘geometry’. And Einstein calls for caution regarding calling these
tensors ‘geometrical’ once we leave that original area of study. Given
that this development had already taken place, Einstein effectively
diagnoses that the use of ‘geometry’ has become so broad that stating
that something has been ‘geometrized’ is just not saying anything—it
is nichtssagend. Einstein thought that the very distinction between
geometry and physics was uninformative: geometry had become part
of physics, not vice versa.

Once this diagnosis has been made, Einstein could have just
shrugged his shoulders and said that he does not really care about
whether GR is seen as geometrizing gravity or not. The reasonwhy he
did care is that people who see GR as geometrizing gravity (like
Meyerson, Weyl and Vizgin) see this as a profound statement—not as a
statement about the mathematical language GR uses to describe
gravity but as a reductionist claim: gravity has allegedly been reduced
to geometry. We see the opposition to such reductionist claims (and to
the claim that this reduction is the novel feature of GR) in each and
every one of the above Einstein quotations. The reason that Einstein
opposed this view is that he thought that it diverted attention from

what really was the important message of GR. We shall return to the
latter point in Section 4; for now let us look to see if Einstein could
have endorsed the reductionist claim in all its sophistication.

3. What Einstein could have believed: gravity reduced
to inertia

Let us pause for a moment to see what ‘reducing gravity to an
aspect of spacetime structure’ could mean in GR. Arguably the most
promising way to explicate this statement comes via relating gravity to
inertial structure and in turn to spacetime structure. The Newtonian
conception of inertial motion is that bodies move inertially if they are
subject to nothing but space(time); in particular, they are not subject
to forces. In GR, particles subject to gravity move on geodesics, the
direct generalisation of straight lines. From here, it is only a small step
to regarding the motion of particles subject to gravity as inertial
motion, and thus gravity as reduced to inertial structure. Given that
inertial/geodesic structure is a particular aspect of the structure of
spacetime (its affine structure), ‘reduction of gravity to inertia’ can be
seen as a special case of ‘reduction of gravity to spacetime structure’.28

Could Einstein have interpreted GR in this way? If so, by when could
he have done it, and why did he not do it?

One might think that such an interpretation would only have been
possible after Levi-Civita0s andWeyl0s reconceptualisation of the affine
connection in terms of parallel transport in 1917 and 1918,29 which
brought about the possibility of seeing Ricci calculus, the connection
and the Riemann tensor in a more geometrical fashion than was
customary until then. However, we have to clearly distinguish
between using geometrical language in physics on one hand and
ontologically reducing physics to spacetime geometry (i.e., showing
that gravity is ‘just an aspect of spacetime structure’) on the other.
Given that, as we have seen in the last section, Einstein saw vectors as
equally geometrical as metric tensors, it comes as no surprise that the
possibility of defining the affine connection in terms of parallel
transport did not make him think of the gravitational field (which
he saw as represented by the connection components) as ‘more’
geometrical than prior to 1917.30 However, in this section I want to
show that independently of Levi-Civita0s and Weyl0s work in 1917 and
1918, by 1916 at the latest Einstein could have seen gravity as reduced
to inertial structure and in turn to geometry, that indeed he was
presented with this option, and rejected it.

In particular, I shall show that (i) already starting in 1913
Einstein saw the extremisation of the line element as describing
“straight and uniform motion” and, following a result by Planck from
1906, saw it as the relativistic counterpart of Newton0s law of inertia;
(ii) Einstein saw these equations as describing the motion of test
particles both in the absence and in the presence of gravity; (iii) by
1916 at the latest Einstein was aware of the idea (presented to him by
Friedrich Kottler) that gravity should be seen as reduced to inertia
because particles subject to gravity can be described as moving
inertially; (iv) Einstein rejected this interpretation of GR. Thus, by
the end of this section we shall see that by 1916 at the latest Einstein
had all the necessary mathematical and conceptual tools to see gravity
as reduced to inertia in GR, and indeed to see reduction to inertia as
identical to or a special case of reduction to spacetime geometry. Still,

26 Einstein (1924, p. 1691). For details on the reception of relativity theory by
Kantians, see Hentschel (1990, Section 4.1), Ryckman (2012, Section 3), Ryckman
(2005) and Howard (2014).

27 See Vol. 7, Doc. 31 CPAE. As Janssen (2012, p. 160) states, the article was “but
was withdrawn in the end and replaced by a much shorter and less informative
piece”, which appeared in Nature instead. Compare also similar statements in
Einstein (1921). For an analysis of what ‘rigid’ body should be read as referring to
here see Giovanelli (2012).

28 Wald (1984, p. 67), for example, seems to see GR as doing exactly that.
29 See Levi-Civita (1917) and Weyl (1918b) for the original sources; and Reich

(1992, 1994), and Stachel (2007) for careful historical analysis of this development.
30 What did excite Einstein aboutWeyl0s way of defining the connection in terms of

parallel transport was that the connection could now be defined independently of the
metric. We see this from Einstein0s letter to Weyl directly following his reading the page
proof of Space–Time–Matter that Weyl had sent him (Einstein to Weyl, 8 March 1918,
Vol. 8 Doc. 476), from Einstein0s review of Weyl0s book (Einstein, 1918a), and from the
fact that Einstein would soon start working (in Einstein, 1923) on generalisations of GR
that took the affine connection rather than the metric as the fundamental concept.
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he did not adopt this position. In the following section, we shall then
see what Einstein thought the main message of GR to be instead.

3.1. The geodesic equation as the equation of motion of test particles
subject to gravity

Already in the first papers in which Einstein starts making use of
the metric tensor to give an account of gravitation, he is at pains to
establish the status of the geodesic equation as describing the motion
of particles as “straight and uniform” (geradlinig und gleichförmig) even
when subject to gravity. This would lead him to call the geodesic
equation a “generalized law of inertia”; redefining inertial paths such
that the category includes motion under the influence of gravity.31

The story begins in the Entwurf paper, Einstein and Grossmann
(1913). In Section 1 of the physical part, written by Einstein alone,
he states that already according to special relativity, the equation
of motion of a point particle not subject to forces follows from
extremising the line element

δ
Z

ds¼ δ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�dx2�dy2�dz2þc2dt2
q� �

¼ 0: ð1Þ

In a footnote, Einstein pointed out that this had already been
shown by Planck (1906). In this paper, Planck0s sole aim had been
to find the relativistic counterpart of Newton0s first law of motion
(i.e., the law of inertia), and he arrived at δ

R
ds¼ 0. Einstein now

stated that this equation “says nothing else but that the material
point moves in a straight and uniform line”.32

Thus, by 1913 at the latest Einstein clearly follows Planck in seeing
Eq. (1) as the relativistic law of inertia. In the Entwurf paper, he then
turns to the equivalence principle, and states that as a consequence of
the latter he found that in his scalar theory of gravitation (inwhich the
scalar field c represents both the gravitational potential and the local
speed of light) the equation of motion for force-free point particles also
applies to point particles moving in a static gravitational field, as
described by that theory; the difference being that in this case c varies
with the spatial coordinates in a given coordinate system.33

Already in a note added in proof to Einstein (1912), Einstein had
stated that equation (1) gives the equation of motion of point particles
“not subject to external forces”.34 Thus, it was clear that already in
1912, before even embarking on a metric theory of gravitation,
Einstein thought of (static) gravitational fields not as invariant force
fields diverting particles from inertial motion.35 Already, in 1912, he
thought of equation (1) as describing inertial motion on one hand, and
as describing motion in the presence of (static) gravitational fields on
the other.

The natural follow-up question is what happens if we consider the
motion of point particles in the presence of general, non-static
gravitational fields? In Section 2 of the Entwurf paper, Einstein takes
the variational principle (1) as a starting point and argues that for non-
static gravitational fields, too, we should expect equation (1) to give
the equation of motion for point particles. The only difference is that
now the line element on the left-hand side of the equation has to be
that defined by a general metric tensor gμν; the first time Einstein

introduces the latter in a published paper.36 About three months after
submitting the Entwurf paper, Einstein submitted a paper to the 85th
conference of the German Society for Scientists and Physicians, in
which he became even more explicit:37

A free mass point moves in a straight and uniform line
according to Eq. [(1)], where

ds2 ¼∑
μν
gμν dxμ dxν:

[…] In general, every gravitational field is going to be defined
by ten components gμν, which are functions of x1; x2; x3; x4. The
motion of the material point will always be governed by
equations of this form.

Thus, it is clear that already in 1913 Einstein saw the variational
principle (1) as describing inertial motion, asserting that point
particles would move in this fashion both when not subject and
when subject to gravitational fields. Einstein (1914) then used the
term “geodesic” for the first time to describe the lines arising from
Eq. (1). He explicitly states, again, that they describe the motion of
particles in arbitrary gravitational fields:38

In Section 2 it has already been shown that the motion of a
material point in a gravitational field takes place according to the
equation δ

R
ds¼ 0. Thus, from a mathematical point of view the

motion of a point corresponds to a geodesic line in our four-
dimensional manifold. […] In the original theory of relativity, those
geodesic lines for which ds240 correspond to the motion of
material points; those for which ds2 ¼ 0 correspond to light rays.
This will also be the case in the generalized theory of relativity.

Most of Einstein0s work in 1915 focused on finding the field
equations governing the gravitational field; this culminated in
his finding what became known as the Einstein field equations in
November 1915.39 After this feat was accomplished, Einstein could
take a deep breath, and work on what would become his first
major review article about the finalised theory of general relativity.
In this treatise, he returns to the question of the equations of
motion in an arbitrary gravitational field:40

According to the special theory of relativity, a freely moving body
in the absence of external forces moves in a straight and uniform
line. This also holds for the general theory of relativity for part of
the four-dimensional space, in which the coordinate system K0 can
be chosen such that the gμν have the special constant values ½δμν�.
If we consider this motion in an arbitrarily chosen coordinate
system K1, then judged from within K1 the body moves … in a
gravitational field. ...With regard to K0, the law of motion is a
fourdimensional straight line, i.e., a geodesic line. Since the
geodesic line is defined independently of the system of reference,
the equation describing this line will also be the equation of

31 See also Stachel (1995, chap. 4, p. 292).
32 Einstein & Grossmann (1913, p. 4).
33 For more on this theory, see the editorial note “Einstein on gravitation and

relativity: the static field”, pp. 122–128 of Vol. 4 CPAE, and Norton (1995, Section
5.1); for a reconstruction of the theory using modern differential geometry see
Norton (1989b, Section 3).

34 See Einstein (1912, p. 458).
35 In Section 4, we shall see that this did not stop Einstein frommaking sense of the

attribution of gravitational forces as coordinate-dependent assertions; for him, stating
that particles in gravitational fields move on geodesics was completely compatible with
saying that in a given coordinate system the presence of gravitational forces can be
asserted. Indeed, as Norton (1989b) pointed out the possibility of asserting the presence
or absence of gravitational forces depending on the coordinate system chosen was the
conceptual core of the equivalence principle in Einstein0s mind.

36 Note that in Section 4 (p. 10) of the Entwurf paper Einstein points out, also for the
first time, that for the special case of a dust energy- momentum tensor the equations of
motion for a single point particle (i.e. one element of the dust) follow from energy-
momentum conservation. This remark presents the first instance of what would later be
called the geodesic theorem: the possibility of deriving the equations of motion from
energy- momentum conservation, given certain conditions on the energy- momentum
tensor (and, in theories like the final version of GR where energy- momentum
conservation is implied by the field equations, eventually from the latter). The most
general version of the theorem to date has been provided by Ehlers & Geroch (2004). For
historical discussion see CPAE V7, p. 453, endnote 6; Havas (1989) and Kennefick (2005);
for systematic discussions see Malament (2012a) and Weatherall (2011).

37 Einstein (1913, p. 1256). See Norton (1995, Section 5.2) for an analysis of the
transition to the Entwurf theory.

38 Einstein (1914, p. 87).
39 See Stachel (1989), Norton (1984), Renn & Sauer (2006), Janssen & Renn

(2006), Renn (2007) and Janssen (2007) for the details of the tale of this grand
journey.

40 Einstein (1916a, pp. 801–802).
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motion of the material point with regard to K1

d2xτ
ds2

¼Γτ
μν
dxμ
ds

dxν
ds

ð2Þ

We now make the very natural assumption that this generally
covariant system of equations determines the motion of the point
in gravitational fields also in the case that no reference system K0
exists with respect to which special relativity holds with respect to
a finite space.41

Einstein says that with respect to a coordinate system in which the
metric is Minkowskian locally, i.e. in which no gravitational fields
are judged to be present, a particle moves on a straight line, “i.e. a
geodesic line”. He then points out that even if one goes to a
coordinate system in which a gravitational field is judged to be
present, in which gμν has non-Minkowskian components, the
particle will still move on a geodesic; and that we should assume
the geodesic equation to govern the motion even if non-vanishing
components of the Riemann tensor cannot be neglected in an
arbitrarily small but finite neighborhood of the point.42

To summarize: by 1916 at the latest Einstein saw the geodesic
equation as representing (i) inertial motion and (ii) motion subject to
gravity. Did he make the step to seeing gravity as a reduction to
inertia?

3.2. Kottler and the generalized law of inertia

Already in 1916 Einstein was presented with the idea that
either gravity diverts particles from inertial paths and is thus a
dynamical force field, or bodies move on inertial paths (for
Einstein: geodesics) even when subject to gravity, and thus gravity
is reduced to inertial structure.

The distinction, and the challenge to choose, came to Einstein
in the form of a paper published by the Viennese mathematical
physicist Friedrich Kottler. Kottler had written his Habilitation in
mathematics on the application of tensor calculus to relativity
theory—in 1912, before Grossmann and Einstein started to use the
formalism in the construction of the Entwurf theory.43 In 1916,
Kottler wrote two papers that were bound to draw Einstein0s
attention: he claimed that in GR Einstein had effectively aban-
doned his own equivalence principle and reintroduced gravita-
tional forces as “real” forces, whereas in Kottler0s view the
equivalence principle required them to be regarded as inertial
forces. Kottler starts out by carefully distinguishing between a
dynamical and a kinematical conception of gravity:44

Since then, Einstein has abandoned the equivalence hypothesis.
The reasons lie primarily in a particular perception of its
results, which amounts to giving an independent existence to
the forces of the gravitational field. Here, motion in a gravita-
tional field shall be seen as force-free. Thus, the law of inertia
must be changed and gravitation be seen as a purely inertial

phenomenon. This perception seems to me a strict conse-
quence of the equivalence hypothesis; and thus can only be
abandoned together with the latter. […] The prime difference
[of my approach as compared to Einstein0s] is one of principle:
the kinematical, rather than dynamical, conception of gravity.

Kottler essentially interpreted Einstein0s talk of gravitational
forces, and his quest for finding an expression for gravitational
energy, as Einstein going back to Newton0s conception of gravity:
inertial motion is motion on straight lines and gravity is a
dynamical force (field) diverting particles from inertial paths.
Kottler saw himself as generalising the law of inertia such that
gravitational forces count as inertial forces45:

The difference of this interpretation as compared to Einstein0s
has a kinematical rather than dynamical conception of gravity
as its consequence; i.e., in place of the force field we introduce a
modification of the Galilean law of inertia. The force-free point
does not move in a uniform and straight line anymore, it moves
on a curved and non-uniform line…. As paradoxical as it may
seem: only this seems to be the consistent conception of
Einstein0s equivalence! Indeed, if the cause of the equality of
gravitational accelerations for all masses is a kinematical one,
then gravity itself has to be of a kinematical origin, i.e. it must
be an inertial phenomenon!

This seems pretty much in line with the modern conception that
particles under the influence of gravity move inertially and thus
gravitational phenomena are reduced to inertial structure.46 Most
importantly, Kottler explicitly claims that the law of inertia should
be changed so that motion in gravitational fields counts as inertial,
unforced motion. Thus, it seems that here at the very latest,
Einstein was presented with the possibility of saying that since
particles move on geodesics even under the influence of gravity
and since the geodesic equation is the new law of inertia, gravity
should be seen as reduced to inertia. This puts within Einstein0s
grasp the possibility of endorsing the idea that GR reduces
gravitational phenomena to inertial structure and thus to space-
time geometry.

Whether Einstein identified ‘reduction to inertial structure’
with (a special case of) ‘reduction to geometry’ we cannot know
for sure, although it seems plausible. What we do know is that
Einstein opposed the idea that gravity should be seen as ‘reduced
to inertia’ in GR, just as he opposed the idea that it should be seen
as ‘reduced to geometry’. It is clear that Einstein could have
endorsed the line of thought that because the geodesic equation
(2) describes test bodies moving in the presence of a gravitational
field, the latter cannot be seen as a force field but must instead be
seen as an aspect of spacetime structure, namely inertial structure.
If movement in a gravitational field is described as a generalisation
of inertial motion, is it not clear that thus the gravitational field
cannot be a force field, defined as that which diverts particles from
inertial motion?

41 For a rational reconstruction of Einstein0s conception of reference systems
and relative spaces, see Norton (1989b, Section 3).

42 This is what the final sentence of the above quote amounts to, as elaborated
by Einstein in a footnote.

43 See Call No. 14-329 EA for a Curriculum Vitae written by Kottler himself
around 1938, when Einstein helped him to leave Vienna and emigrate to the US.

44 Kottler (1916, pp. 955–956): ‘Einstein hat seither die Äquivalenzhypothese
aufgegeben. Die Gründe liegen im wesentlichen in einer besonderen Auffassung
ihrer Ergebnisse durch ihn, die darauf hinausläuft, den Kräften des Gravitations-
feldes einen selbstständigen Charakter zu geben, während hier die Bewegung im
Gravitationsfeld als kräftefrei angesehen werden soll, also das Trägheitsgesetz
abgeändert und die Gravitation als reine Trägheitserscheinung gedeutet wird. Diese
Auffassung scheint mir die strenge Konsequenz der Äquivalenzhypothese und
daher nur gleichzeitig mit ihr verwerflich. […] Der wesentliche Unterschied [zu
Einstein] ist ein prinzipieller: die erwähnte kinematische, nicht dynamische
Auffassung der Gravitation.’

45 Kottler (1916, p. 961): ‘Die ... erwähnte Verschiedenheit der hiesigen
Interpretation von der Einsteinschen hat dann eine kinematische an Stelle der
dynamischen Auffassung der Schwere zur Folge, d.h. an Stelle des Kraftfeldes tritt
eine Abänderung des Galileischen Trägheitsgesetzes; nicht mehr gleichförmig und
geradlinig bewegt sich der kräftefreie Punkt, sondern krummlinig und ungleich-
förmig … . So paradox es scheint: erst dies scheint die konsequente Fassung der
Einsteinschen Äquivalenz! In der Tat, wenn die Ursache der Gleichheit der
Schwerebeschleunigung für alle Massen kinematisch ist,so muß die Schwere selbst
kinematischen Ursprungs, d.i. Trägheitserscheinung, sein!’

46 Note that it is not clear whether Kottler thinks of the ‘curved and non-
uniform’ lines he introduces as the new inertial paths as geodesics; after all, a
major difference between Kottler0s approach in this paper as compared to
Einstein0s is that he tries to get along without non-Euclidean geometry. In Kottler
(1918) he would change his approach.
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This was not Einstein0s view. He could have endorsed it, as it
was available for him to do so. Yet he did not adopt it, for the
simple reason that he believed something else instead. He
believed that even though a particle moves on a geodesic both in
the absence and in the presence of a gravitational field, a
coordinate system can be chosen such that the connection
components Γν

μs vanish or appear, and thus a gravitational field
appears or disappears given a certain choice of coordinates.47 As
we shall see in the next section, this view is, for Einstein,
intimately related to the principle of equivalence of inertia and
gravity, and to the unification of inertia and gravity achieved in GR.

4. What Einstein did believe: unification of gravity and inertia

In Section 2 I argued that Einstein did not believe that gravity is
reduced to geometry according to GR. In Section 3, I showed that
Einstein could well have defended this position by 1916 at the
latest for he had linked inertial motion to geodesic motion on
curved surfaces and saw the geodesic equation as describing the
motion of test particles subject to gravity. If it was still needed,
Kottler even gave him the last piece by claiming that a general-
isation of the law of inertia requires that gravity be seen as
reduced to inertia. The reason that Einstein did not believe in
the geometrization of the gravitational field (understood as redu-
cing gravity to spacetime geometry) as a consequence of all this
was that he did believe in something else instead, something we
want to investigate in this section.

In short, we shall see that Einstein believed (i) that the geodesic
equation shows that inertia and gravity are unified in GR, analo-
gous to the unification of electric and magnetic fields in special
relativistic electrodynamics; (ii) that a result of this unification is
that the existence of gravitational fields (in contrast to gravita-
tional–inertial fields) becomes coordinate-dependent.

Given what we saw in the previous section, it may not be
surprising that Einstein did not see himself well represented in
Kottler0s characterisation of him as having given up the equiva-
lence principle and having described gravity as a force diverting
particles from inertial motion. However, he also does not follow
Kottler in seeing gravity as reduced to inertia; Einstein refused to
make this last step. Indeed, he rejected the very distinction with
which Kottler confronted him: either gravity is a dynamical force
diverting particles from inertial motion, or it is an inertial
phenomenon itself. Einstein wrote:48

Kottler complains that with regard to the equations of motion

d2xν
ds2

þ αβ
ν

( )
dxα
ds

dxβ
ds

¼ 0 ð3Þ

I interpreted the second term as the representative of the
influence of the gravitational field on the point mass, whereas I
interpret the first term as, so to speak, the representative of
Galilean inertia. This, he claims, would introduce “real gravita-
tional forces”, which is supposed to contradict the spirit of the
equivalence principle. To this I answer that this equation is, as a
whole, generally covariant, and thus consistent with the
equivalence hypothesis. The labeling of the terms I introduced
does not really matter though and was only meant to accom-
modate our physical habits of thinking. This is also true, in

particular, for the concepts

Γν
μs ¼ � αβ

ν

( )

(components of the gravitational field) and tνs (energy compo-
nents of the gravitational field). The introduction of these labels
is in principle unnecessary, but for the time being they do not
seem worthless to me, in order to ensure the continuity of
thoughts….

Here, Einstein gives two reasons for rejecting Kottler0s claim that
by naming the two terms occurring in Eq. (3) ‘inertia’ and
‘influence of the gravitational field’, respectively, he had given up
on the equivalence principle. First, that the equivalence principle
must be fulfilled in the theory because of the latter0s general
covariance. Note that earlier in the paper Einstein had claimed that
the equivalence principle is a special case of general covariance
(which he saw as the mathematical counterpart of the general
principle of relativity). After Kretschmann (1918), Einstein (1918c)
started to distinguish carefully between the equivalence principle,
the relativity principle, and Mach0s principle; thus, Einstein0s
reasoning here would not go through after 1918, when the
equivalence principle stopped being a (straightforward) conse-
quence of general covariance in Einstein0s mind.49 However, for
our purposes Einstein0s second reason for rejecting Kottler0s claim
is much more important than the first, and, in contrast, it could be
defended even today. Einstein points out that the labeling of the
two terms of the geodesic equation (3) as ‘inertial’ and ‘gravita-
tional’, respectively, was unnecessary, only meant to accommodate
our ‘habits of thinking’ (formed, presumably, by Newtonian
theory). Einstein effectively states that the very distinction
between ‘gravity’ and ‘inertia’ is useful only for relating the theory
to its predecessor theories; it is not a distinction from within the
theory itself. Put differently, if one just looks at the theory without
relating it to predecessor theories, there is no need whatsoever to
distinguish ‘inertial terms’ and ‘gravitational terms’ in the geodesic
equation.

Before the above quotation Einstein rejected Kottler0s idea that
the gravitational field is only ‘kinematically determined’, precisely
by pointing out the limits of the equivalence principle: he states
that only homogeneous gravitational fields can be transformed
away and substituted by uniform accelerations, but not arbitrary
gravitational fields: “Thus, a ‘kinematical, not dynamical interpre-
tation of gravitation’ is not possible”.50 However, neither does
Einstein subscribe to what Kottler had called the dynamical
interpretation: the option that gravity is a force field diverting
particles from inertial paths. Einstein wants to hold the
middle ground: particles move on geodesics in the presence of
arbitrary gravitational fields. And indeed, as Kottler had stated,
the law of inertia has to be generalized to include motion in
gravitational fields. But for Einstein that does not mean that
gravity is reduced to inertial structure; instead, the very distinc-
tion between gravity and inertia breaks down. As we will see
below, Einstein would soon speak of inertia and gravity having
been unified, just as electricity and magnetism had been unified
before.

This line of thought becomes most clear in the Princeton
lectures from 1921, which would later be published as the
‘The Meaning of Relativity’ in English and as ‘Vier Vorlesungen über
Relativitätstheorie’ in German. After having shown that the com-
ponents of the connection become the Newtonian gravitational

47 Only as late as 1915 had Einstein started to see the connection components
Γν
μs as the representative of the gravitational field rather than the derivatives of the

metric: see Renn & Sauer (2006) and Norton (2007) for details.
48 Einstein (1916b, p. 641).

49 See Norton (1999) and Hoefer (1995, 1994) for details.
50 Einstein (1916b, p. 640).
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field in the Newtonian limit, Einstein goes on with a description of
how the geodesic equation links inertia and gravity:51

Formally, the unity between inertia and gravity is expressed by
the fact that the entire left side of

d2xν
ds2

þ αβ
ν

( )
dxα
ds

dxβ
ds

¼ 0

is tensorial (with respect to arbitrary coordinate transforma-
tions), whereas the two terms separately are not. In analogy to
the Newtonian equations one would have to view the first as an
expression for inertia, the second as an expression for the
gravitational force.

Note that, just as in his answer to Kottler, Einstein only
introduces the labels of an ‘inertial term’ and a ‘gravitational term’

as an “analogy” to Newtonian theory, and only after having
pointed towards the “unity” of inertia and gravity, expressed by
the tensorial nature of the two terms in the geodesic equation
taken together, but not separately.

What is the nature of this unification as Einstein saw it? Is it
just like the unification of electric and magnetic fields in special
relativity? Or is it a different kind of unification? In Einstein0s
mind, the unification was very similar indeed, as the December
1919/January 1920 text on the development of relativity shows.
There, he recalls the magnet-conductor thought experiment
described in the first paragraph of his 1905 paper on special
relativity, from which he concludes.52

The existence of the electric field is a relative one, depending
on the state of motion of the coordinate system used; only the
electric and magnetic field together can be attributed a kind of
objective reality, independent of the state of motion of the
observer, i.e. of the coordinate system.

Einstein then describes how he worked on a review article of
special relativity in 1907,53 and links the above realisation regard-
ing the electric and magnetic field to another thought experiment
regarding inertia and gravity:54

Then I had the most fortunate thought of my life in the
following form: The gravitational field only has a relative
existence in a manner similar to the electric field generated
by electro-magnetic induction. Because for an observer in free-
fall from the roof of a house, there is during the fall—at least in his
immediate vicinity—no gravitational field. Namely, if the obser-
ver lets go of any bodies, they remain, relative to him, in a state
of rest or uniform motion, independent of their special chemi-
cal or physical nature.

Taken together with the quotation from the Princeton lectures one
year later, where Einstein spoke of the “unity between inertia and
gravity” as expressed by the fact that the inertial and the gravita-
tional term of the geodesic equation transform as tensors only
together, just as the E

!
and B

!
fields do not transform as

(4-dimensional) tensors while the electromagnetic field Fμν does,
Einstein seems to think of inertia and gravity as having been
unified in GR in quite the same way that electricity and magnetism
had been unified in SR.

Of course, suspicion may seem in order regarding whether or
not Einstein was right about this last point; arguably, the analogy
is not a complete one. After all, saying that a tensor Fμν represents
the unified electro-magnetic field for which we then find field

equations is not the same as saying that the tensor making up the
left hand side of the geodesic equation (in its coordinate-
independent form vμ∇μvν) represents the unity of inertia and
gravity—for which we then don0t go on to search for field
equations. The analogy would have been more complete if Einstein
had claimed that the connection Γν

μs represents the gravitational–
inertial field,55 for this is the (non-tensorial) field which the
Einstein equations govern. Instead, Einstein claims that the con-
nection Γν

μs represents the coordinate-dependent gravitational
field (more on this below), and the tensor vμ∇μvν the full
gravitational–inertial field of which Γν

μs is the gravitational part.
Thus, Einstein locates the unity of inertia and gravity entirely in a
mathematical object occuring in the equation of motion of test
particles, rather than in a mathematical object occuring in the field
equations, as in the case of Fμν and the Maxwell equations.
However, just as the split between electric and magnetic fields,
the split between gravity and inertia in equation (3) is coordinate-
dependent given Einstein0s labeling of gravitational and inertial
terms in (3).

Either way, our main line of investigation here is historical: find
out what Einstein did think on the relationship between inertia
and gravity as compared to electricity and magnetism; leave aside
considerations of what he maybe should have thought.

So let us now bring the two strands together: Einstein0s
interpretation of the geodesic equation as giving the equation of
motion of test particles in the presence of gravitational fields on
one hand, and his claim that the unity of inertia and gravity is
expressed in the tensorial nature of combined inertia and gravity
terms in the geodesic equation.

At the beginning of the fourth Princeton lecture, Einstein starts
the discussion of the motion of point masses, and we see him
using language similar to Kottler (1916) when stating that in GR
the law of inertia has to be generalized by generalising the concept
of a straight line:56

According to the principle of inertia, the motion of a material
point in the absence of forces is straight and uniform. In the
fourdimensional continuum of special relativity, this is a real
straight line. The natural, i.e. the simplest, generalisation of the
straight line making sense in the conceptual scheme of the
general (Riemannian) theory of invariants is the straightest
(geodesic) line.

Following this, he links the generalized law of inertia to the
equivalence principle and thereby relates inertia and gravity:

Following the equivalence principle, we will have to assume
that the motion of a material point subject only to inertia and
gravity is described by the equation

d2xμ
ds2

þΓμ
αβ
dxα
ds

dxβ
ds

¼ 0 ð4Þ

Indeed, this equation becomes that of a straight line if the
components Γν

μs of the gravitational field vanish.

51 Einstein (1922c, p. 51).
52 Vol. 7, Doc. 31 CPAE, p. 265.
53 Einstein (1907).
54 Vol. 7, Doc. 31. CPAE, p. 265.

55 This position is advocated e.g., by Ehlers (1973), who also introduced the
term ‘inertial–gravitational field’ as denoting the connection Γν

μs for, as far as I
know, the first time (p. 1), by Giulini (2002), and most forcefully by Stachel (1986,
1995, 2007). Stachel (see e.g., his 1995, pp. 288–289 and p. 296, and his 2007,
pp. 1046–1047) claims that seeing the connection as the true representative of the
gravitational- inertial field is the mathematical expression of (the ontological
version of) Einstein0s equivalence principle, i.e. of the claim that inertia and gravity
are ‘essentially the same (wesensgleich)’.

56 Einstein (1922c, p. 51).
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Einstein then shows that in the Newtonian limit the geodesic
equation becomes (with dl2≔dt2 ¼ ds2 in the limit)

dxμ
dl2

¼ ∂
∂xμ

γ44
2

� �
ð5Þ

where γ44 is defined by

gμν ¼ δμνþγμν:

Following this, he points out a link between the geodesic equation
and the Newtonian equation of motion for particles subject to
gravitational fields:

This equation (5) is identical with Newton0s equation of motion
of a point in a gravitational field if one identifies �γ44=2 with
the gravitational potential. … One look at Eqs. (4) and (5)
shows that the quantities Γν

μs play the role of the field strength
of the gravitational field. These quantities are not tensorial.

Here we see Einstein making precise what he had alluded to in his
answer to Kottler: the labeling of the two sets of terms in the
geodesic equation as ‘inertial’ and ‘gravitational’, respectively,
comes about only by comparing the theory to Newtonian theory;
more precisely, by comparing the Newtonian limit of GR with the
Newtonian equation of motion of a point in a gravitational field. In
a way, there is no reason even to distinguish between gravity and
inertia in GR unless one is concerned with comparing it to
Newtonian theory (or, indeed, special relativity).

We found that (i) Einstein thought of the geodesic equation in GR
as a generalisation of the law of inertia; (ii) in which inertia and gravity
were unified so that (iii) the very labeling of terms as ‘inertial’ and
‘gravitational’ respectively, becomes in principle “unnecessary”, even if
useful when comparing GR to Newtonian theory. Finally, we found
that Einstein saw the status of the gravitational field Γν

μs as quite
analogous to that of the electric field E

!
in special relativistic

electrodynamics: their attribution only makes sense relative to a
chosen coordinate system. Michel Janssen has recently investigated
this relativity of the gravitational field in detail, and sees the arbitrari-
ness of the inertia/gravity split as themain difference between GR and
its predecessor theories:57

[W]hile the slide into general covariance turns the relativity of
non-uniform motion of space- time coordinate systems into a
feature general relativity shares with older theories, it does not
so trivialize the relativity of the gravitational field. Even in
generally covariant reformulations of these older theories,
there will be an inertial field and a gravitational field existing
side by side. The unification of these two fields into one inertio-
gravitational field that splits differently into inertial and grav-
itational components in different coordinate systems is one of
Einstein0s central achievements with general relativity.

To sum up, Einstein did not accept that gravity must either be a force
field, or an aspect of spacetime structure. He did not believe that either
one of the two options needs to be true, or that denying the truth of
one implies the truth of the other. Indeed, we saw that for Einstein
gravity is a force field in a different sense from that envisaged by
modern authors: it is a frame-dependent force field. Thus, asserting
that gravity is a force field for Einstein does not imply that it diverts
particles from inertial motion: all motion in gravitational fields is
motion on geodesics, and if a body moves on a geodesic in one frame
of reference, it does so in all frames. Even so, every frame of reference
chosen involves an arbitrary split, making part of the trajectory
‘inertial’ and part of it ‘gravitational’. However, Einstein saw this
labeling as ultimately unnecessary—unnecessary but useful for certain
purposes, especially the comparison between GR and its predecessor

theories. Finally, Einstein saw the arbitrariness of this split as the
expression of having unified inertia and gravity in the general theory
of relativity.

5. Conclusion

In Section 1, I took a quotation from Vizginwhich pointed to (some
kind of) geometrization as being what “distinguished [GR] sharply
from all other physical theories”. We have seen that for Einstein the
important achievement of GR was not geometrization of gravity but
unification of gravity and inertia. Furthermore, Einstein did not see this
as something that “distinguished [GR] sharply from all other physical
theories”; he saw his theory in direct continuation of previous
unificationary successes, especially of the unification of electric and
magnetic fields in special relativistic electrodynamics. As in many
other respects, while almost everybody else saw Einstein as a
revolutionary, he saw himself as a traditionalist.

We also saw that Einstein could well have argued, by 1916 at the
latest, that GR shows that gravity is reduced to inertial structure and
thus ultimately to spacetime geometry. Could he have thought that GR
both unifies gravity and inertia and reduces them to spacetime
structure? Of course he could have; indeed, that was Weyl0s inter-
pretation of GR: unification via reduction to spacetime structure. But
for Einstein, it might have been a bit like not wanting to eat pudding
because he had already had a big entrée for dinner. It0s not that it0s
impossible to eat both—it0s not even impossible to eat both of them at
once. It0s just that eating one may make you find the other one less
attractive: you just don0t have any appetite for it, and maybe you find
pudding dubious from the start. Einstein certainly thought of ‘geome-
trization’ as dubious, of ‘unification’ as the ultimate goal. Other people
may want to eat both dishes at once, even identify what you see as
two kinds of dish as, in fact, one and the same kind (the best main
meal is a big pudding) or see one as a necessary consequence of the
other (no dinner without pudding). Again, for Weyl and those of like
mind unification and geometrization went hand in hand: the former
was a consequence of the latter. But not for Einstein: unification was
all he wanted.
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