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Abstract

In this paper I challenge the distinction between “epistemic” and “ontic”
states that was propounded by Harrigan and Spekkens (2010) by pointing
out that because knowledge is factive, any state that represents some-
one’s knowledge about a physical system thereby also represents some-
thing about the physical system itself, so there is no such thing as “mere
knowledge”. This criticism leads to the reformulation of the main ques-
tion of the debate: instead of asking whether a given state is ontic or
epistemic, we should instead ask whether a given change of a state is on-
tic or epistemic. In particular, in the context of quantum mechanics, one
can ask whether the collapse of the quantum state could be understood
as an epistemically successful change of the observer’s beliefs about the
complete state of the system that is not associated with any change in the
physical reality. I argue that the answer to this question should be in the
negative. This is because it is possible that in a series of measurements
the collapse rule tells us to update a certain state to a different one and
then back to the same state; if both of these updates are merely changes
of our beliefs, then they could not both be epistemically successful.

1 Introduction

Quantum mechanics is famously difficult to interpret, mostly because in its
standard version it involves two incompatible rules governing the change
of quantum states: the Schrödinger evolution and the quantum state col-
lapse (which is used only in special circumstances, namely, just after the
“measurement” has been made). This has led some thinkers to the idea
that at least some aspects of the formalism of quantum mechanics should
be interpreted epistemically.

A contribution to this discussion was made by Harrigan and Spekkens
(2010; henceforth HS), who distinguish between an “ontic” and an “epis-
temic” understanding of quantum states. The fact that their defini-
tions are formulated in purely mathematical terms enabled the proof of
theorems concerning this distinction. For example, Pusey, Barrett and
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Rudolph (2012; henceforth PBR) have shown that (given some additional
assumptions) quantum states cannot be “epistemic” in the sense of HS.
If the additional assumptions they made are tenable, and the definitions
of “ontic” and “epistemic” are adequate, then this result is a strong argu-
ment in favour of interpreting quantum states as representing something
physically real.

However, the adequacy of HS’s framework has been questioned (e.g.,
Oldofredi and López 2020, Hance, Rarity and Ladyman 2021). In this
paper, I offer a critical assessment of the conceptual side of this debate,
giving novel arguments for the philosophical inappropriateness of HS’s
terminology. I also propose a reformulation of the central question of the
debate and provide a new argument in favour of one of the answers to
the reformulated question. Before I explain this in more detail, I need to
introduce some terminology.

By the “physical state of the system” I mean the state that the system
is objectively in (at some given time). If a set of states is considered in
an abstract way, without any reference to what it represents, its elements
will be called “theoretical states”. Quantum states, which are the subject
of this paper, are an example of theoretical states. The crucial definition
is as follows:

Definition 1 (Ontic and epistemic states). If a given theoretical state can
represent a (possible) physical state of a system (perhaps in an incomplete
way), then it is called an ontic state. If a given theoretical state can
represent the (possible) beliefs of some observer about the physical state of
a system, it is called an epistemic state.1

Notice that these definitions do not exclude that the same theoretical
state can be both ontic and epistemic: it is conceivable that the same
theoretical state can represent a physical state of the system and the
observer’s knowledge about this state (cf. section 3.3 and footnote 14).

After reviewing HS’s definitions of “ontic” and “epistemic”2 states
(section 2), I will spend some time introducing the epistemological con-
cepts that are crucial for the debate (sections 3.1–3.2). Then, I will argue
(sections 3.3–3.4) that if a theoretical state represents someone’s knowl-
edge about the system (and as such it is epistemic), it is thereby also
ontic, that is, it also represents something about physical reality. This is
because knowledge is standardly understood as factive, that is, as entail-
ing that what is known actually holds. Therefore, the distinction made by
HS cannot be conceptually adequate. Some other possible readings of this
distinction are also considered (sections 3.5–3.6), with the conclusion that
they are either inconsistent with some of HS’s assumptions or also inade-
quate. I will propose that the question of whether a given state is ontic or

1Strictly speaking, the term “doxastic” would be more adequate than “epistemic”, as we
can also consider false beliefs. However, I will use the term “epistemic” to remain closer to
the original terminology of the debate.

2To avoid any confusion, from now on I will use quotation marks whenever I mean HS’s
formal sense of ontic vs. epistemic (defined in terms of non-overlapping vs. overlapping prob-
ability distributions, see Def. 2) and no quotation marks whenever I mean the philosophical
sense of ontic vs. epistemic (i.e., representing physical reality vs. representing beliefs, see Def.
1). The former is intended by HS to coincide with the latter, but this is what I will question,
so they need to be keep separate.
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epistemic should be replaced by a different one, namely, whether a given
change of a state is ontic or epistemic, that is, whether it is a change in
the physical reality or merely in our beliefs about it (section 3.7). Then, I
will present a novel argument that a particular kind of change of quantum
states, namely, the measurement-induced collapse, cannot be interpreted
as an epistemically successful change of beliefs about the complete state
of the system (section 4). In section 5, I will consider the options that
remain for the defenders of the epistemic view on quantum collapse. In
section 6, I will extend my analysis to some variants of quantum mechan-
ics that do without the concept of measurement-induced collapse. Finally,
section 7 will provide a short summary.

2 The standard definition of “ontic” and
“epistemic” states

The distinction between “ontic” and “epistemic” states was introduced by
HS (2010) within the framework of ontological models.3 They start with
an operational formulation of quantum mechanics, the primitive terms of
which are preparations (denoted by P ) and measurement procedures (de-
noted by M). Quantum states (denoted by ψ or φ, possibly with labels)
are assumed to be in one-to-one correspondence with preparation proce-
dures. The operational formulation of a theory gives us the probabilities
of the outcomes of different measurements given different preparations
(i.e., probabilities Pr(k|M,P ) that the measurement M will give the out-
come k for the preparation P ). Such operational formulation of quantum
mechanics can be associated4 with its ontological model, which postulates
the set of complete5 states the system might be in (it is denoted by Λ and
its elements by λ). Complete states, by definition, capture all the infor-
mation about the system (all its properties at a given time). With each
preparation procedure (and, therefore, with each quantum state) there is
associated a probability distribution Pr(λ|P ) over Λ, which determines
what is the probability that the system created by means of the prepara-
tion P is in the state λ. The ontological model needs to agree with the pre-
dictions of quantum mechanics in the sense that

∫
dλ Pr(k|M,λ) Pr(λ|P )

should recover the values given by the Born rule.
Given this framework, HS claim that certain quantum states under-

stood as probability distributions over the set of complete states Λ repre-
sent the physical reality, whereas others represent “an observer’s knowl-
edge of reality rather than reality itself” (2010:126). The former are char-
acterized by having non-overlapping supports, whereas the supports of the

3Formally speaking, ontological models are the same as hidden variable models, which is
a more popular term. However, the authors avoid it, because they want their framework to
encompass the option that quantum states (which are not hidden) are already complete (cf.
HS 2010:129, footnote 5).

4“Associated” in the sense that the ontological model represents the underlying ontology
that gives rise to possible experimental results accounted for by the operational formulation.

5HS call these complete states “the ontic states”. However, I will avoid this identification,
as I will call “ontic” any state belonging to what they call “ψ-ontic models”.
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latter may overlap. Their full classification of types of ontological models
is as follows (2010:129–134):

� An ontological model is ψ-complete if quantum states are complete
states (see HS 2010:131 for technical details).

� An ontological model is ψ-ontic if for any pair of preparation proce-
dures, Pψ and Pφ, associated with distinct quantum states ψ and φ,
we have Pr(λ|Pψ) Pr(λ|Pφ) = 0 for all λ.

� An ontological model is ψ-epistemic if it is not ψ-ontic.

An important feature of HS’s proposal is that a state does not need to
be complete in order to be “ontic”. Concerning terminology, HS prefer to
attribute the property of being “ontic” or “epistemic” to models, whereas
I attribute this property to states, but these two ways of speaking are
equivalent and easily inter-translatable. In ψ-complete models quantum
states are complete states, in ψ-ontic models quantum states are “ontic”
states and in ψ-epistemic models quantum states are “epistemic” states;
quantum states considered in abstraction from what they represent are
in my nomenclature called theoretical states. Therefore, I will use the
following definition expressing HS’s distinction:

Definition 2 (“Ontic” and “epistemic” states). Consider a set of theo-
retical states which are probability distributions over a certain state space
(whose elements are interpreted as possible complete states of some phys-
ical systems). If a given theoretical state is such that its support does
not overlap with the support of any other theoretical state in this set, it
is called an “ontic” state; if its support does overlap with the support of
some other theoretical state in this set, then it is called an “epistemic”
state.

Our question is whether Def. 2 captures the same distinction as Def. 1.

3 Criticism of the standard definitions of
“ontic” and “epistemic” states

In this section, I will argue that the definitions of ψ-ontic and ψ-epistemic
models coined by HS are conceptually inadequate.6 I will begin by care-
fully introducing the epistemological concepts involved in the debate (sec-

6I know of two other papers that have similar aims: Oldofredi and López (2020) and Hance,
Rarity and Ladyman (2021). Let me shortly discuss the differences between my approach and
their approaches.

Oldofredi and López (2020) make two objections. First, they claim that complete states
can be thought of as attributed to individual systems as well as to ensembles of individual
systems, whereas HS take into account only the first of these options. Second, they point
out that in some interpretations of quantum mechanics complete states are perspectival or
relational, which again is not taken into account by HS. My criticism of HS’s terminology is
tangential to that of Oldofredi and López and goes much deeper than theirs—they think that
if complete states are understood as attributed to individual systems and are regarded as
intrinsic (i.e., neither perspectival nor relational), then HS’s definitions are adequate, which
is what I disagree with.

Hance, Rarity and Ladyman (2021) make claims seemingly similar to mine, namely, that
“Harrigan’s and Spekkens’s terms, ψ-ontic and ψ-epistemic, do not formalise the informal
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tions 3.1–3.2). Building on this, I will argue (sections 3.3–3.6) that “epis-
temic” and “ontic” states in the sense of HS (see Def. 2) can be both
epistemic and ontic in the sense of representing both someone’s beliefs
and the physical reality (see Def. 1) at the same time. Finally, I will pro-
pose the reformulation of the debate in terms of changes of states rather
than states themselves (section 3.7).

3.1 A short primer on some epistemological con-
cepts

The aim of this subsection is to introduce certain epistemological concepts
that will be used in the argumentation. The presentation will be much
more detailed than in any paper I am aware of which is devoted to the
quantum ontic vs. epistemic debate, but at the same time it will be very
sketchy compared to what is available in the epistemological literature.
I will not be assuming any particular epistemological theory and instead
rely solely on theses that most contemporary epistemologists would agree
with. The following common notation will be used: S will denote an
epistemic subject (who may be also called “agent” or “observer”) and
p will denote a proposition towards which S can have various attitudes
(called “propositional attitudes”).

First, epistemologists distinguish between two families of propositional
attitudes: full beliefs and partial beliefs; the latter are also called credences
or degrees of belief (see, e.g., Jackson 2020, Genin and Huber 2021). Full
beliefs are an all-or-nothing matter. For any p, S can believe p, disbelieve
p or suspend judgement with respect to p; the fact that beliefs can come
in various strengths is not taken into account here. In contrast, partial
beliefs are graded and are often modelled by real numbers between 0 and 1.
These numbers capture the strength of the subject’s beliefs. If S believes
that p to a degree dS and S′ believes that p to a degree dS′ such that
dS′ > dS , then S′ believes p stronger than S does.

Second, beliefs can be true or false. What this means precisely is
a matter of debate, but here we do not need to delve into details. We
will only assume that whether a belief is true or false depends on what
the world is like (which is in accordance with the classical conception of
truth). This is surely a controversial assumption in philosophy, but it
seems to be implicit in the discussion this paper contributes to, so it is

ideas correctly” and that “models can be simultaneously ontic and epistemic”. The latter
thesis can be understood in two different ways. The first is that a state is “simultaneously
ontic and epistemic” if some part or aspect of it represents the reality and another part or
aspect represents the observer’s knowledge. This seems to be the authors’ intended reading.
Therefore, they seem to agree with the common assumption of the debate that something can
represent mere knowledge without representing reality, which is my main target of criticism.
The second reading is that a state taken as a whole can represent reality and the observer’s
knowledge about reality at the same time. This is the reading I am sympathetic towards; I
want to even strengthen this thesis, by saying that theoretical states that represent someone’s
knowledge not only can, but even must represent the physical reality as well.

Also Schlosshauer and Fine (2012) distance themselves from HS’s terminology, as they
rename “ψ-epistemic”/“ψ-ontic” models to “mixed”/“segregated” models (which they find to
be “less charged” terms). However, their interest in PBR theorem is mathematical rather
than interpretational, so they do not offer any assessment of HS’s nomenclature.

5



not problematic in this context.7 S’s belief that p is true if it is the case
that p and false otherwise. In particular, S’s belief that a system Q is
in a state λ0 is true if the system Q is indeed in the state λ0 and false
otherwise.

Third, partial beliefs, as they are usually conceived, are closely related
to probabilities. There are arguments that partial beliefs of a rational
agent should satisfy the axioms of probability (see Genin and Huber 2021,
section 3.1.3 and references therein). This connection can be used in at
least two ways. On the one hand, if I want my partial beliefs to be rational,
I should better ensure that they satisfy the axioms of probability—so this
connection gives me a constraint that my partial beliefs should satisfy.
On the other hand, given some probabilities whose nature is unknown,
this connection opens the possibility of interpreting such probabilities as
representing partial beliefs of some subject (instead of representing, e.g.,
relative frequencies or propensities). It is the latter way of exploiting the
connection between partial beliefs and probabilities that will be of our
interest here. If quantum states are probability distributions over Λ, then
they could be understood as representing one’s partial beliefs about the
system being in one of the states belonging to Λ.

Fourth, various analyses of knowledge have been proposed in episte-
mology (see, e.g., Ichikawa and Steup 2018), but fortunately the point I
am going to make depends only on the assumptions that most of these
analyses share. Knowledge is usually regarded as bearing a close rela-
tion to beliefs on the one hand and truth on the other. “S knows p”
means that S believes that p, p is true and some further conditions are
satisfied. Contemporary epistemologists have hotly debated what these
further conditions should be (e.g., justification, causal connection to the
fact that makes p true, safety...), but they usually accept the first two
conditions. There are exceptions to this rule, but they do not seem to
be relevant in our context, so I will not discuss them here for the sake of
brevity.

This way of thinking about knowledge has the following consequences.
If we claim that S knows that the system Q is in the state λ0, then
this presupposes that S believes that the system Q is in the state λ0 as

7One can object that for a proponent of the epistemic nature of quantum states it would
be natural to use some non-classical, epistemic concept of truth (e.g., identifying truth with
rational acceptability). However, we do not discuss here all possible positions that treat
quantum states as epistemic, but only those that can be expressed in HS’s framework of
ontological models. It seems that the most popular positions that assume the epistemic
nature of quantum states reject the existence of complete states altogether (cf. option (1) in
section 5). However, they are just outside of the scope of this paper (and outside of the scope
of the papers of HS 2010 and PBR 2012). The framework of ontological models presupposes a
realistic view on physical theories because complete theoretical states are supposed to represent
what the system is really like, which is in line with the classical concept of truth. What is
more, choosing some epistemic concept of truth would deprive the concept of ontic states of
the significance it was supposed to have, as under an epistemic view on truth, from the truth
of the statement that a system is in such-and-such ontic state, nothing follows about what this
system is really like—that would be a very weak notion of onticity. Of course, one can just
start from accepting some non-classical concept of truth and assuming the epistemic nature
of all states; however, in HS’s approach, both types of states (i.e., “epistemic” and “ontic”)
need to be conceivable and definable in a single framework.
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well as that the system Q is indeed in the state λ0 (we have substituted
“the system Q is in the state λ0” for p in the general analysis of the
previous paragraph). The latter feature of the concept of knowledge is
called “factivity”. If some p is known, then p must be true, that is, it
must be the fact that p (this is where the name “factivity” comes from).
In other words, saying that “S knows that p but p is false” or “S knows
that p but p is not really the case” amounts to a contradiction.

Fifth, the relation between full and partial beliefs is a complicated issue
and epistemologists do not agree how exactly it should be approached.
One natural idea is to set a certain threshold such that if S has a partial
belief that p with the value equal to or greater than this threshold, then
S also believes8 p in the sense of having a full belief that p. However, it
is not clear, for example, what the value of this threshold should be and
whether it should be the same in all contexts.

3.2 Full beliefs, partial beliefs and quantum states

The importance of the problem of the relation between full beliefs and
partial beliefs for our considerations comes from the fact that we want
to analyse what it means that quantum states represent knowledge, but
knowledge is usually defined as a full belief satisfying certain constraints,
whereas quantum states, being probability distributions, can only repre-
sent partial beliefs, not full beliefs. Therefore, it is not clear how exactly
the claim that a quantum state represents knowledge should be under-
stood (and, more generally, what could it mean to attribute the status of
knowledge to partial beliefs). One minimal reading of such claims, which
I think captures adequately the intentions of HS and their followers, is
that a quantum state represents S’s knowledge iff it represents S’s partial
beliefs about the state of some physical system and assigns a non-zero
probability to the complete state the system is actually in (and some
further conditions necessary for knowledge are satisfied).

This can be related to the standard way of understanding knowledge
in the following way. Assume that Λ is the set of all states the system Q
might be in and that S knows that this is the case, so that S can ascribe
to the system Q only states belonging to Λ. Then, the following principle
(which may be called the Full Belief-Partial Belief Link) holds:

If Λ0 ⊆ Λ is the largest subset of Λ such that for any λ ∈ Λ0,
S’s degree of belief that the system Q is actually in the state λ
is non-zero, then S believes (in the sense of having a full belief)
that Q is in one of the states belonging to Λ0 and is not in any
state belonging to Λ \ Λ0.

S’s partial beliefs are knowledge (in the minimal sense we are interested in
here) iff the corresponding full belief given by the above Full Belief-Partial
Belief Link is knowledge in the standard sense.

8The connection between partial beliefs and full beliefs can be understood either as de-
scriptive (if S has certain partial beliefs, then this means that S also has certain full beliefs)
or as normative (if S has certain partial beliefs, then S should also have certain full beliefs).
This difference will not matter for our discussion, as we are here considering rational agents
only, so we assume that S’s full beliefs are as they should be given S’s partial beliefs.
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3.3 Quantum states and the factivity of knowl-
edge

After this epistemological introduction, let us return to our main topic,
namely, the interpretation of quantum states. Could they represent mere
observer’s knowledge? In the light of our observation that knowledge
is standardly regarded as factive, it is difficult to make sense of such
a claim. If a state represents an observer as knowing that p, then it
thereby implicitly represents the reality as being such that p is the case.
There is a complication here, arising from the fact that quantum states, if
interpreted epistemically, do not represent full beliefs, but partial beliefs
and knowledge is usually understood as a full belief satisfying certain
additional conditions. This complication does not change the essence of
my objection, but makes it technically more challenging to express.

Consider a quantum system Q, a quantum state ψ (associated with a
probability distribution over Λ) and an observer S whose partial beliefs
about which state Q is in are represented by ψ. The last assumption
means that for any λ ∈ Λ, ψ assigns λ probability Pr(λ) = p0 iff S’s
degree of belief that Q is in the state λ is p0.9 Denote by Λ0 the subset
of Λ that contains all and only elements of Λ to which ψ assigns non-
zero probability. By our Full Belief-Partial Belief Link, in such a case S
believes (in the sense of having a full belief) that Q is in one of the states
belonging to Λ0 and is not in any state belonging to Λ \ Λ0. If this belief
is false, then we cannot attribute knowledge to S. If this belief is true,
then we can say that S knows that Q is in one of the states belonging
to Λ0 and is not in any state belonging to Λ \ Λ0 (provided that some
additional conditions necessary for knowledge are satisfied; I set this issue
aside as irrelevant for our discussion). Our question is the following: in
this assertion about S’s knowledge, do we use ψ to merely represent S’s
knowledge or also (some part of) the physical reality? The answer is, as
already observed, that we would not be allowed to assert that S knows
that Q is in one of the states belonging to Λ0 and is not in any state
belonging to Λ \ Λ0 if it was not the case that Q is in one of the states
belonging to Λ0 and is not in any state belonging to Λ\Λ0.10 Therefore, in
the assertion about S’s knowledge we use ψ in two ways: first, explicitly,
in our statement that S knows that Q is in one of the states that are in

9One might be suspicious about the idea that quantum states can represent our partial
beliefs about the complete state of a system, given that the space of complete states Λ is
unspecified here and we do not know what it is. One can represent an agent’s partial beliefs
as probability distributions over options that this agent is aware of, but this move becomes
dubious if the options are unknown. This might be countered by saying that we are interested
in possible partial beliefs of possible agents, not in partial beliefs of actual agents, and quantum
states could represent partial beliefs of hypothetical agents (perhaps future scientists) who
know the space of complete states. However, under this reading, the debate becomes much
less relevant for the interpretation of the practice of actual scientists (who do not know the
space of complete states). In the main text, I set this problem aside and just consider agents
for whom it makes sense to say that quantum states represent their partial beliefs.

10Of course, we could be mistaken here, that is, we can make an assertion about S’s knowl-
edge because we believe wrongly that Q is in one of the states belonging to Λ0 and is not in
any state belonging to Λ \ Λ0. In such a case our assertion of S’s knowledge would just be
false.
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the support of the probability distribution associated with ψ and second,
implicitly, in our presupposition that Q is indeed in one of the states that
are in the support of the probability distribution associated with ψ. In
the statement we interpret ψ epistemically (i.e., as representing beliefs
of the observer), but in the presupposition we interpret ψ ontically (i.e.,
as representing something about the physical reality). We cannot make
this statement without making this presupposition (unless we reject the
factivity of knowledge), which means that we cannot use ψ in an epistemic
way without using it also in an ontic way.

Therefore, if a quantum state is epistemic in the sense of Def. 1, then
it is also ontic in the sense of this definition. A similar (but weaker)
connection holds in the other direction. Assume that ψ represents the
state of the system Q (i.e., it is ontic) and that it is in principle possible
for some observer S to know that this is the case. Then, to represent
S’s (possible) knowledge about the state of the system, we need to use
the state ψ again. Therefore, if a quantum state is ontic in the sense of
Def. 1 and is in principle knowable, then it is epistemic in the sense of
this definition. The connection here is weaker because it does not hold
for ontic states that cannot be known even in principle; but quantum
states are assumed to be knowable, so this restriction is irrelevant for us.
Therefore, any quantum state is both ontic and epistemic in the sense of
Def. 1—that is, it can represent the physical state of the system and the
observer’s knowledge about it. This entails that Defs. 1 and 2 cannot
coincide, as in the latter “ontic” and “epistemic” states are two disjoint
classes of states.

Is there any way for the proponents of HS’s definition of “ontic” and
“epistemic” states to avoid this argument? An obvious move is to talk
about mere beliefs, without presupposing anything about their truth val-
ues. However, HS’s definition of “epistemic” states seems to presuppose
that we have to do with true beliefs, not just any beliefs. If we allowed
treating quantum states as representing both partial beliefs that assign
non-zero probability to the actual complete state of the system and par-
tial beliefs that assign zero probability to the actual state of the system,
this would undermine HS’s rationale behind defining “epistemic” states
as having overlapping supports, because then two quantum states with
disjoint supports could represent partial beliefs about the actual state of
the same system, as we do not require the actual complete state to be in
the supports of both of them.

3.4 A simple example

To illustrate the irrelevance of the distinction between states with over-
lapping and non-overlapping supports for the issue of their being ontic or
epistemic, let us consider the following simple example. Suppose we are
investigating the masses of objects. Consider the following three sets of
possible mass states (where the subscript “M” stands for mass):

� ΛM = R+;

� OM = {(0 kg, 4 kg], (4 kg, 8 kg], (8 kg, 12 kg], . . .};
� EM = {(0 kg, 4 kg], (1 kg, 5 kg], (2 kg, 6 kg], . . .}.
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Using HS’s terminology, one should say that states belonging to ΛM are
complete (these are exact masses of objects, expressed by real numbers),
whereas states belonging to OM and EM are incomplete. Furthermore,
states belonging to OM do not overlap, whereas some of the states belong-
ing to EM do overlap, which means that the former should be regarded
as “ontic”, whereas the latter should be regarded as “epistemic” in HS’s
sense.11

Now the question becomes: are we willing to say that there is a funda-
mental metaphysical difference between states belonging to OM and states
belonging to EM? Any state belonging to either OM or EM can be used
to represent either a mass of a physical object (albeit in a non-exact way)
or an observer’s knowledge about that mass. If the mass of the object is
3.5 kg, then it is objectively true that its mass is between 0 and 4 kg (so
it can be described by the first state in OM ), but it is no less objectively
true that it is between 1 kg and 5 kg, as well as between 2 kg and 6 kg,
and so on (so it can also be described by any of the first four states in
EM ). Given the exact mass 3.5 kg, it follows by pure mathematics to
which intervals this mass value belongs.

What is more, irrespective of whether we use states belonging to OM
or to EM , we will represent the mass of the object as belonging to a
certain interval of length 4. Therefore, changing from EM to OM does
not increase our precision.

Another obvious obstacle for treating the two sets as having meta-
physically different status is the fact that OM is a subset of EM . Do the
states belonging to OM cease to represent the reality, whenever this set is
extended to EM? This sounds rather absurd.

One might object that I have used arbitrarily defined sets of states to
make my point, but the sets we actually use (e.g., in quantum mechanics)
are not chosen at will, and their choice is a result of a conglomerate of
experimental and theoretical considerations. If such considerations (the
objection might go) lead to a set of non-overlapping states, this could be
only because we are “cutting nature at the joints”, we are revealing some
objective distinctions in the physical reality itself.

To see why this is not true, let us return to our mass example. Suppose
you have a weighing scale with weights of 4 kg each. The scale has two
arms. You put the object whose mass you want to measure on the left
arm and one weight on the right arm. If the left arm is above the right
arm, you know that the object has a mass between 0 kg and 4 kg. If the
left arm is below the right arm, you put another weight on the right arm.
If now the left arm is below the right arm, you know that the object has
a mass between 4 kg and 8 kg. If not, then you put yet another weight
on the right arm... You repeat the procedure until the left arm is above
the right arm. The states you can detect in this way are precisely the
elements of OM . However, this does not mean that you have revealed
some deep division in the nature of mass, namely, that masses come in

11There are no probabilities here, which makes the example easier to grasp intuitively, but
at the same time because of this it might seem too dissimilar to the quantum mechanical case
we are interested in. To avoid this objection, we can just assume that the elements of OM and
EM are uniform probability distributions over the interval of real numbers instead of being
the interval itself.
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chunks of 4 kg each. Instead, this is a result of your accidental epistemic
constraints—the measurement device that is available to you can detect
only such states. This illustrates that the states that we actually use can
be non-overlapping for rather epistemic reasons.

This does not mean (of course) that the elements of OM should be
regarded as merely epistemic states. They can reveal something about
the mass of the object you are investigating—namely, its real value with
a given precision. The elements of OM can be used to represent your
knowledge that a physical object has a mass between 0 kg and 4 kg or
between 4 kg and 8 kg (and so on), but also to represent the object itself
having such a value of mass. And the same is true for EM .

One might object that the above example is inadequate because it
involves only one property and HS’s idea is that quantum states capture
some properties of the system, whereas other properties (if there are any)
are captured by the hidden variables, so considering multiple properties is
essential. In response, observe that HS assume only that quantum states
are probability distributions over Λ, properties do not enter their formal
framework, even if they are important at the intuitive level. Therefore,
all our analyses for the mass case carry over straightforwardly to the case
with multiple properties; the only difference is that now the elements of
ΛM are n-tuples of real numbers and elements of sets OM , EM are sets
of such n-tuples (but cf. section 3.6 for more on the topic of multiple
properties).

3.5 Epistemic “informational holes” in states and
epistemic changes of states

We have seen that statements such as “the quantum state represents mere
observer’s knowledge” or “the quantum state is a representation of an
observer’s knowledge of reality rather than reality itself” are problematic
in the light of the factivity of knowledge. Are there any claims in the
vicinity of these that are more reasonable? I think there are at least two.
Even though one cannot say that some state is merely epistemic, one can
reasonably say that some lack of information (or lack of knowledge) is
merely epistemic or that some change of the observer’s beliefs is merely
epistemic. Let us look at these in turn.

Whenever non-trivial (i.e., different than 0 and 1) probabilities are
used in the representation of the physical state of an individual sys-
tem, there is some indeterminateness involved and one can reasonably
ask whether the physical reality itself is indeterminate in a given respect
or this is only our lack of knowledge. It is commonly believed that in
the case of classical statistical mechanics the latter holds: the classical
particles have precise positions and momenta, but we do not know them.
However, this does not mean that the states of classical statistical me-
chanics represent “mere knowledge” about individual systems—rather,
they represent the states of physical particles in the world, albeit in an
incomplete way.12 What is merely epistemic here is the “informational

12This claim might seem to be in conflict with the ensemble interpretation of classical
statistical mechanics, but it is reconcilable. If the probabilities represent relative frequencies
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hole” in the theoretical state, not the positive informational content of it.
This “informational hole” (e.g., the missing information about the exact
positions and momenta in the case of classical statistical mechanics) does
not have any counterpart in reality—the real physical state has this hole
“filled in”, it is only a hole in our knowledge. However, the positive infor-
mational content of the state (e.g., the known information about positions
and momenta in the case of classical statistical mechanics) is not merely
our knowledge, it also captures (incompletely) the real physical state.13

It should be clear that this sense of “merely epistemic” does not under-
lie the distinction between “epistemic” and “ontic” made by HS, as all
incomplete states involve such informational holes, not only “epistemic”
ones. If quantum states have overlapping supports, then they cannot be
complete, so overlapping supports are indicators of epistemicity in the
sense of the presence of informational holes, but this is not HS’s intended
meaning of epistemicity. States with non-overlapping supports can also
have informational holes (cf. OM in section 3.4).

The second type of claims, concerning the nature of changes of states,
can be illustrated by the following example. Assume that I know for sure
that my keys are somewhere in my house and that this house can be
divided into a number of places. The set of such places (closed under the
union and intersection) is the set of possible states of my keys. Are these
states ontic or epistemic? As we should expect, they are both. On the
one hand, these states can represent the actual location of the keys—a
fact about the physical reality. On the other hand, they can represent
my beliefs concerning the location of my keys.14 This is a synchronic

of states in an ensemble, then what is primarily represented by the probability distribution
is that ensemble, but individual systems are also represented, even if in a derivative way—
namely, as being in one of the states that belong to the support of this probability distribution.
As long as not the whole state space of an individual system is in the support of the probability
distribution, this is non-trivial information about the individual systems belonging to the
ensemble.

13Sometimes in the literature one can encounter statements that some states represent only
our ignorance. I think that such phrases cannot be read literally as ignorance is something
purely negative (what we do not know), so such a state should be only the list of things that
we do not know. However, in fact a state specifies the things that we know about a system
(unless we made a mistake and attributed the wrong state to the system)—just our knowledge
happens to be incomplete. Therefore, phrases such as “this state represents our ignorance”
are acceptable only if regarded as abbreviations for something like “the informational hole in
this state represents our ignorance and not an objective indeterminateness”.

14 It should be stressed that this is true even for complete states. Assume that λkey
represents the actual (complete) state in which my keys are. Therefore, λkey is surely ontic,
but it is also epistemic: if I know that my keys are in the state λkey , then to represent my
(complete) knowledge about the position of my keys, one should also use the same state, λkey .
This is a consequence of how ontic and epistemic states were defined in section 1 (Def. 1):
a theoretical state is ontic if it can represent a (possible) physical state of a system, whereas
it is epistemic if it can represent the (possible) beliefs of some observer about the physical
state of a system. This is why even a complete state can also be epistemic—how else could we
represent the perfect knowledge of an observer if not by means of a complete state? If I had
defined an epistemic state as representing “merely knowledge” (i.e., representing knowledge
and not being able to represent anything else), then a complete state certainly could not count
as epistemic (because it is able to represent something that is not knowledge—the state of
the physical system); but I doubt that anything could count as an epistemic state defined in
this way (because of the factivity of knowledge) unless we use some non-standard concepts of
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level: at any given time, the states can represent both the location of my
keys and my beliefs concerning their location. However, there might be a
difference at the diachronic level, that is, in how the states evolve in time.
Suppose I wake up in the morning and start looking for my keys. Initially,
I have no idea where they are located, so my beliefs are represented by
the state that is the union of all places in my house. But when I start
checking place by place, then I exclude more and more places as possible
locations of my keys. My beliefs change—they are no longer represented
by the most encompassing state, the consecutive states representing my
beliefs correspond to smaller and smaller places. Therefore, the epistemic
evolution is here non-trivial. Meanwhile, during this whole process of my
looking for my keys, the keys themselves stay wherever they have been
initially. Therefore, at least up to the point when I find them and pick
them up, the ontic evolution is trivial.

In the example with keys there is a change in my beliefs without any
change in the world.15 However, this should not be conceived as a differ-
ence between two types of states because the same set of states is used to
represent possible locations of my keys and my possible beliefs about this
location. It is the change of states that can be said to be merely epistemic
here, not the states themselves. The same intuition can be applied to the
case of quantum mechanics (section 3.7).

3.6 Exact and inexact values of properties

One can object to the argument from the factivity of knowledge (section
3.3) and to my simple example (section 3.4) that “getting things ‘more or
less right’ (λ, in this case) is not enough for onticity, since onticity depends
on ψ univocally capturing λ”.16 In response, let us observe that for ψ to
univocally capture λ, there must be a one-to-one correspondence between
wave functions and complete states, which amounts to the claim that
the wave function is itself complete. Therefore, under the most natural
reading of this objection, it identifies the concept of an ontic state with the
concept of a complete state, contrary to HS’s intention. In HS’s definition
of “onticity”, it is λ that univocally determines the “ontic state”, not the
other way around (because there might be more than one λ in the support
of ψ), so the intuition invoked in this objection is not satisfied here.

A way of modifying this objection is to say that “getting things ‘more
or less right’ is not enough for onticity as it requires getting something
exactly right, even though not necessarily the entire λ”. One can continue
this train of thought by assuming that λ consists of a set of exact values
of certain properties (more than one), and a state is ontic if it captures

knowledge and/or truth. If I have defined an epistemic state as representing “merely beliefs”
(i.e., representing beliefs and not being able to represent anything else), then a complete state
would also not count as epistemic (for the same reason as before), although there presumably
are some epistemic states in this sense (e.g., being a circular square is perhaps a state such
that someone might believe that something is in this state, but nothing actually could be in
this state because it is self-contradictory).

15Of course, the opposite situation is possible as well, namely a change in the world without
any change in my beliefs.

16This objection was suggested to me by...
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the exact value of at least one of these properties. This is in fact how
HS seem to think about λ’s—as consisting of ψ and (perhaps) several
hidden variables (HS 2010:129–130). A similar idea is expressed by PBR
(2012:475–476). Let us grant this understanding of complete states as
consisting of exact values of several properties and call one of them f with
values belonging to R. Then, for each λ, the value of f is unique (so it can
be written as f(λ)). Consider two different values of this property, denoted
by f1 and f2. Each of them determines the set of all complete states whose
value of f is fi (for i = 1, 2)—that is, the set Fi := {λ ∈ Λ|f(λ) = fi}.
What is more, F1 and F2 are disjoint sets because every λ corresponds
to exactly one value of f . Therefore, if every wave function uniquely
determines the exact value of f , then the supports of such wave functions
must be disjoint, so in this case they are “ontic” states in HS’s sense.

This relation might be used to motivate HS’s definition of “ontic”
states in the following way: a state can be said to be “ontic” only if it
captures exactly the value of at least one of the properties that constitute
complete states. However, for this way of motivating the definition to
have a chance to work, the relation would need to hold in both ways,
that is, it should be the case not only that capturing the exact value of
some property implies disjoint supports, but also that disjoint supports
imply capturing the exact value of some property. But this is not the
case: the implication in the latter direction is in general false, as is shown
by the following example. Assume that every complete state consists
in the specification of the values of two properties, f and g. Consider
sets of complete states X1 := {λ1, λ2} and X2 := {λ3, λ4}, where λ1 =
〈f1, g1〉, λ2 = 〈f2, g2〉, λ3 = 〈f1, g2〉 and λ4 = 〈f2, g1〉. These sets provide
a sought-for counterexample, as X1 and X2 are disjoint, but they do not
determine an exact value of either of the properties f or g.

One can try to prevent situations of this kind by defining properties in
a way that makes such counterexamples impossible. This in fact seems to
be done by PBR (2012:476, description of figure 1, notation changed), who
define a physical property in the following way: they consider a collection
of probability distributions over the set of complete states labelled by
l ∈ L (i.e., {µl(λ)}l∈L) and say that if in such a collection every pair
of distributions have disjoint supports, then the label l ∈ L is uniquely
determined by λ and therefore is called “a physical property”. It is not
clear whether a probability distribution over complete states is an object
of the right category to be called a property (especially in the light of the
intuition mentioned earlier that complete states are specifications of the
values of physical properties), but at least it looks reasonable to say that
a given value of a given physical property might correspond to a certain
probability distribution (namely, the one that is non-zero for all and only
complete states that for this particular property determine this particular
value). However, there is a more serious problem with this approach
to defining properties: being a physical property depends here on what
the collection of probability distributions we started with is. The same
probability distribution will then correspond to a physical property when
“immersed” in some collections of probability distributions, but not when
“immersed” in others. This seems to be too high a level of arbitrariness
in specifying what a physical property is.
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Another way of objecting to my counterexample to the implication
from disjoint supports (i.e., “onticity” in HS’s sense) to capturing the
exact value of some property is to say that even though such counterex-
amples cannot be excluded in general, they do not hold in the particular
case we are interested in. What is needed here is the assumption that
quantum mechanics is such that either (i) probability distributions over
complete states associated with wave functions are not disjoint, or (ii)
they are disjoint and each wave function captures an exact value of some
property. Using our former notation and assuming again for simplicity
that there are only two properties, case (ii) might be realized as follows:
the wave function captures the exact value of f , whereas the value of g is a
hidden variable. Then, every wave function ψfi

17 would correspond to the
set {λ ∈ Λ|f(λ) = fi}, which is equal to {〈fi, gj〉|∃λ∈Λg(λ) = gj}. Wave
functions ψfi correspond to disjoint probability distributions and capture
the value of one property (i.e., the value of f). Of course, both f and
g can be replaced by any number of properties. Currently, I believe this
is the closest to HS’s (2010) understanding of this issue. However, some
additional argument is needed to support the hypothesis that either (i) or
(ii) holds. In other words, we need to exclude the remaining option that
(iii) probability distributions over complete states associated with wave
functions are disjoint but wave functions do not capture the exact value of
any property. That is, we need to show that the supports of probability
distributions associated with wave functions are not similar to sets X1

and X2 above. I am not aware of any argument for this hypothesis.
The remaining question is whether providing such an argument would

be sufficient to justify HS’s definitions of “ontic” and “epistemic” states.18

Associating the concept of onticity with exact values of properties seems to
be supported by the following intuition: what is real in the strict sense are
the exact values of properties, and their inexact specifications do not form
a part of our ontology, but statements about them might be true because
they are made true by these exact values obtaining in the world.19 How-
ever, in this way we do not gain any support for calling states with par-
tially overlapping supports “epistemic” (unless we assume that whatever
is not ontic is thereby epistemic, which is rather dubious). In particular,
the fallaciousness of saying that something represents “merely knowledge”
is not dismissed. What is more, the equivalence between disjoint supports
of states and the capturing of the exact value of some property by these
states is at best accidental: if it holds in quantum mechanics, this is be-
cause of particular features of this theory, not because this equivalence is

17Wave functions under these assumptions can be labelled by the values of f because each
of them is associated with a different value of f .

18Of course, one can use any terminological conventions one wants (in particular, one can
define “ontic”, “epistemic”, “real”, “knowledge” etc. in whatever way one wants), but for
the results obtained using these definitions to have philosophical importance, they must be
sufficiently close to how these notions are typically understood in philosophy.

19For example, the value fi of f is a part of our ontology, but the value of f between fj and
fk (where fj < fk) is not because adding it would be superfluous: the ontology consisting
of exact values is sufficient to provide facts that make true statements concerning both exact
and inexact values. For the latter this works as follows: the statement “system’s S value of f
is between fj and fk” is made true by the (physical) fact that system’s S value of f is fi and
the (mathematical) fact that fi is a number between fj and fk.
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analytically true for any collection of probability distributions (we have
seen that it is easy to construct counterexamples to it).

A more appropriate distinction here seems to be between what is on-
tologically fundamental vs. everything that supervenes on it20 (instead of
“ontic” vs. “epistemic”). The exact values of physical quantities might
then be said to ontologically fundamental, whereas the inexact values of
these physical quantities might be said to supervene on them (i.e., they
are still in some sense real properties, albeit non-fundamental ones and
fully determined by fundamental ones).

3.7 A reformulation of the problem

In the light of the above arguments, I would like to propose a reformula-
tion of the problem of onticity vs. epistemicity with regard to quantum
mechanics. Instead of asking “is a given state ontic or epistemic?” (a
synchronic question), one can ask “is a given change of a state ontic or
epistemic?” (a diachronic question); cf. my toy example with the location
of my keys in section 3.5.

Perhaps, at least to some extent, this diachronic thinking was a guiding
intuition for the HS’s definitions of ψ-ontic and ψ-epistemic models. This
is suggested, for example, by the following quote: “By our definitions, ψ
has an ontic character if and only if a variation of ψ implies a variation
of reality and an epistemic character if and only if a variation of ψ does
not necessarily imply a variation of reality” (HS 2010:132). However, it
is unlikely that “variation” here should be understood in a dynamical
way (as a change of a state), as the predicates “ontic” and “epistemic”
are attributed by the authors to states and not to the changes of states.
Instead, “variation” here seems to mean only “difference”. Therefore, even
if the underlying intuition was somewhat similar, the difference between
the two formulations (i.e., the synchronic one and the diachronic one) is
conceptually important and deserves a strong emphasis.

One can object here that whether a change of a state is ontic or epis-
temic should depend (at least to some extent) on whether the state itself is
ontic or epistemic. However, my question is posed for states that are both
ontic and epistemic (in the sense of Def. 1). The case under consideration
is precisely of this kind: both “ontic” and “epistemic” states in HS’s sense
(defined in terms of non-overlapping vs. overlapping supports, see Def. 2)
are both ontic and epistemic in the philosophical sense (i.e., any of them
can be used to represent the state of the system and the knowledge of an
observer that the system is in that state, see Def. 1). Depending on the
way in which they are used in a particular context, their change is either
ontic or epistemic. The question is now whether some particular ways of
changing these states (such as measurement-induced collapse or unitary
evolution) are an instance of the former or the latter type of change.

20A collection of entities A is said to supervene on the collection of entities B (where
“entities” might be of any ontological category—objects, properties, relations, facts and so on)
iff there could be no difference on A without any difference on B. Another way of expressing
this condition is to say that the specification of entities of type B uniquely determines the
specification of entities of type A.
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4 Can the collapse of the quantum state
be interpreted as a successful change of
partial beliefs?

In section 3, I argued that as long as we do not consider the evolution of
states, any state that represents knowledge (and as such is epistemic) by
the factivity of knowledge is also ontic. The appropriate question is then
not whether a given state represents the reality or our knowledge about
reality, but whether a given change of a state is a change in reality or only
a change in our beliefs about reality. This leads to a question whether by
looking merely at the formal features of the evolution of states, we can
tell what kind of change we are dealing with. I believe that, in general,
the answer is negative, in the sense that there is no universal criterion
distinguishing ontic change from merely epistemic change (especially if we
allow partial beliefs that do not have the actual state in their support).
However, I believe that we can conclude something about particular cases,
including the quantum mechanical case we are interested in.

First, the PBR theorem (Pusey, Barrett and Rudolph 2012) is relevant
for our modified question about changes of states, despite the fact that
it was formulated as an answer to the original question about states.
Assume that at time ti an observer S ascribes a quantum state ψi to a
system Q and at a later time tf the same observer S ascribes to Q a
different state ψf . Could the change from ψi to ψf be merely epistemic,
assuming that PBR theorem is true, that is, assuming that ψi and ψf
have non-overlapping supports? The answer depends on whether we allow
quantum states to represent partial beliefs that are entirely false in the
sense of assigning zero probability to the actual complete state of the
system. If we allow this, then the answer is “yes”. For example, if Q
was in the same complete state λ throughout the whole interval [ti, tf ],
ψi assigns zero probability to λ and ψf assigns non-zero probability to λ,
then S ascribed wrongly ψi to Q at ti and ascribed rightly ψf to Q at tf .
In this case, the change from ψi to ψf is merely a change of S’s beliefs
about the complete state of the system. However, if we use quantum
states to represent only partial beliefs that assign non-zero probability to
the actual complete state of the system, then the change from ψi to ψf
cannot be merely epistemic. If the system was at ti in λ, then it cannot
be at tf still in λ because in tf its quantum state is ψf , which, as PBR
theorem tells us, assigns zero probabilities to all complete states that are
assigned non-zero probabilities by ψi, including λ.

Second, below I will provide a new and independent argument that the
measurement-induced collapse of the quantum state cannot be regarded
as a successful change of a partial belief state. On the one hand, my
argument is more limited than that of PBR in the sense that it concerns
only the quantum state collapse, whereas PBR theorem is relevant for
any change of the quantum state. However, it is usually the collapse, not
the Schrödinger evolution, that is conjectured to be a merely epistemic
change.21 On the other hand, my argument does not assume anything

21An exception to this might be Bartlett, Rudolph and Spekkens (2012).

17



about the structure of the prepared state, whereas the PBR theorem relies
on the Preparation Independence Postulate (or some weakened version of
it, see Myrvold 2018), which makes my argument more general in this
respect. Additionally, it is interesting on its own because the plot of the
argumentation is entirely different than in the PBR theorem.

How can our belief states change? First, consider full belief states. I
will make here two assumptions (hopefully not very controversial, at least
in the context of the debate to which this paper contributes). Every belief
has a certain logical value and I will assume that there are only two such
values, truth and falsity. Every belief also has some degree of specificity
or informativeness: for example, a belief that the mass of the object is
between 1 kg and 4 kg is less specific (less informative) than the belief
that the mass of the object is between 1 kg and 2 kg.

When is a change of a full belief state successful? In terms of our two
parameters characterizing beliefs (i.e., the logical value and the degree of
informativeness), one can distinguish two such cases. The most obvious
one is if the initial belief is false and the final belief is true. In this case, the
informativeness of these beliefs does not matter: even if the initial belief
was more informative, we surely want to replace it by a true belief, even if
the latter is less informative. The subtler case is when the initial belief is
true and the final belief is also true but more informative. It seems that
at least if we are concerned only with these two parameters (i.e., logical
value and informativeness), these are the only cases of a successful change
of full beliefs.

In the case of partial beliefs, the issue becomes much more complex.
Instead of asking whether a partial belief is true or false, we should be
asking how close it gets to the truth. Let me use an example to explain
what difficulties we are encountering here. Assume that there are only
three possible complete states, that is, Λ = {λ1, λ2, λ3}, and that the
actual state of the system is λ2. S’s partial beliefs about the state of the
system are represented by Pr(λi) = pi, where 0 ≤ pi ≤ 1 and

∑3
i=1 pi = 1.

If p2 6= 0 and pj 6= 0 for at least one j 6= 2, then we cannot say that
S’s partial beliefs concerning the state of the system are simply true or
false, because a non-zero number is assigned to the actual state and a
non-zero number is assigned to one of the non-actual states. However,
if p2 � p1 + p3, then it seems reasonable to assert that S is closer to
truth than to falsity and the reverse for p2 � p1 + p3. Can this proximity
to the truth be determined in a systematic way or even measured? It
turns out that this issue is investigated in formal epistemology and various
measures (called inaccuracy measures or epistemic utility measures) have
been proposed.22

However, it is debatable which of the proposed measures (if any) is
adequate. Furthermore, one might question whether the closeness to the
truth of our partial beliefs admits a linear order at all, that is, whether
we indeed can say for any two partial belief states whether one of them is
closer to truth than the other (and if there is no such linear order, then

22The most popular such measure is the Brier score, which for our example would be
(1− p2)2 + p2

1 + p2
3 (the lower the value, the closer to truth is the partial belief state; see, e.g.,

Fallis and Lewis 2016:578–579, Wroński 2018, ch. 6).
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a fortiori there could be no measure). To see this, assume the same Λ as
before and consider two subjects, S and S′, with partial beliefs given by
( 1

8
, 3

4
, 1

8
) and ( 2

5
, 3

5
, 0) (cf. Fallis and Lewis 2016:577 for a similar exam-

ple). The former probability distribution is more “peaked” over the actual
complete state, but it does not exclude any of the non-actual complete
states, whereas the latter is less “peaked” but excludes entirely one of the
non-actual complete states. Therefore, S is closer to truth in the sense
that his credence in the true hypothesis (that the system is in the state
λ2) is higher than that of S′, whereas S′ is closer to truth in the sense
that he eliminated one of the false hypotheses altogether, which S did not
do.

For our purposes, the safest move is to assume that closeness to the
truth can be captured by a parameter that is at least partially ordered
and stay silent on whether this order is also linear (and whether this pa-
rameter is a measure, as many formal epistemologists want it to be). Are
there any other parameters that we should take into account in assessing
which of two partial belief states is better than the other? In the analysis
of the full belief case, we have mentioned informativeness and perhaps
there are also some other parameters. Fortunately, we do not need to
decide what and how many such parameters there are. We can afford
to proceed in an entirely general way and assume that there are n ≥ 1
parameters of epistemic goodness of partial belief states (denoted by Gj ,
j = 1, . . . , n), each of which is partially ordered. One can define a function
gj : B → Gj that assigns one of the elements of Gj to all partial belief
states belonging to the set B; for short we will write gji := gj(bi). Given
two belief states, bi and bi′ , there are four possible ways in which their
j-th goodness parameters may be related: (1) gji > gji′ , (2) gji < gji′ , (3)

gji = gji′ , (4) gji 6∼ g
j
i′ (incomparable).

What amounts to a successful change of partial belief states? We need
to take into account all our parameters Gj and the fact that each of them
might be only partially ordered. A transition from a partial belief state bi
to bi+1 is a clear epistemic success when at least one of these parameters
increases (in the sense of going up in the partial order) and the rest of them
either increase or do not change, that is: gji < gji+1 for some j ∈ {1, . . . , n}
and gki ≤ gki+1 for all k ∈ {1, . . . , n} such that k 6= j.

Arguably, however, the cases of clear epistemic success are not the
only cases of epistemic success. If some of the parameters increase, some
stay the same and some others change into incomparable ones, then this
still seems to be a case of epistemic success, albeit not a clear one. An
even more subtle case would be that some of the parameters decrease,
but the increase of some others compensates this. For this compensation,
we need some numerical measure that tells us how large a given increase
or decrease was. If each of our parameters has a numerical value, then
the measure of increase/decrease could just be the difference gji+1 − g

j
i .

However, in general it could be the case that even though our parameters
are only partially ordered, a measure of increase/decrease (call it v) is
locally defined, so that it enables the mentioned compensation.

What should v look like? It can be defined for some pairs of the
form 〈gji , g

j
i′〉 but not necessarily for all of them. Formally, v should be a
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partial function on (G1 ×G1) ∪ . . . ∪ (Gn ×Gn) and its values should be
real numbers. Additionally, v should satisfy the following conditions:

� if gji < gji′ , then v(gji → gji′) > 0 or v(gji → gji′) is undefined23 (i.e.,
v is larger than zero for the change from a parameter that is lower
in the partial order to the parameter that is higher);

� if gji > gji′ , then v(gji → gji′) < 0 or v(gji → gji′) is undefined (i.e., v
is smaller than zero for the change from a parameter that is higher
in the partial order to the parameter that is lower);

� v(gji → gji′) = −v(gji′ → gji ) for any gji and gji′ for which v(gji →
gji′) is defined (i.e., v should have the same absolute value and the
opposite sign for two transitions that are reversals of each other).

To sum up, in the most general case of an epistemically successful
transition of partial belief states bi → bi+1 (for a given i) we require that
some parameters increase and allow that some parameters decrease (as
long as this is compensated by the increase of other parameters), some
do not change and some change into incomparable ones. Therefore, a
transition bi → bi+1 is epistemically successful iff one can renumber the
parameters Gj so that the following five conditions hold:

� gji < gji+1 for 1 ≤ j ≤ m1 (where 0 < m1 ≤ n) and

� gji > gji+1 for m1 < j ≤ m2 (where m1 ≤ m2 ≤ n) and

� gji = gji+1 for m2 < j ≤ m3 (where m2 ≤ m3 ≤ n) and

� gji 6∼ g
j
i+1 for m3 < j ≤ n and

� if m2 > m1, then
∑m1
j=1

∣∣v(gji → gji+1)
∣∣ > ∑m2

j=m1+1

∣∣v(gji → gji+1)
∣∣

(the increase of parameters in the first group compensates the de-
crease of the parameters in the second group).

There are m1 increasing parameters, m2 −m1 decreasing, m2 −m3 un-
changing and n−m3 changing into incomparable ones; out of these num-
bers, only m1 is required to be greater than zero (as otherwise there would
be no improvement in our partial beliefs and so the transition would not
be successful).

Having developed this abstract account of what a successful change of
partial belief states might amount to (which is not a particular theory, but
a scheme that encompasses many possible theories, hopefully all reason-
able ones), we have tools to address the main question of this section: can
the measurement-induced collapse of the quantum state be interpreted as
a successful change of a partial belief state? To show that this is not the
case, we will consider a particular experiment.

Assume we have three spin-measuring devices and a beam of electrons
in a superposition state

ψ1 = α |z ↑〉+ β |z ↓〉 . (1)

We set the devices so that the first one measures spin in the z-direction,
the second one measures spin in the x-direction and the third one again

23Our function v can be undefined for certain pairs of parameters because we allow it to be
a partial function only.
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measures spin in the z-direction. We assume that the measurements are
very fast one after another, so that the Schrödinger evolution between
them can be ignored. One of the courses of events allowed by quantum
mechanics for this experimental setup is the following: we perform the
measurement on some electron and get the answers “up”, “right” and
again “up”. Therefore, the state of the electron changes first from ψ1 to

ψ2 = |z ↑〉 =
1√
2
|x→〉+

1√
2
|x←〉 ; (2)

then to

ψ3 = |x→〉 =
1√
2
|z ↑〉+

1√
2
|z ↓〉 ; (3)

and finally to
ψ4 = |z ↑〉 . (4)

Importantly, ψ4 = ψ2, that is, in this series of measurements we attribute
to the system the same state twice, although not in consecutive measure-
ments, but with some measurement leading to a different collapsed state
in between. If we interpret the quantum states ψi as representing S’s par-
tial belief states bi, then this amounts to the following series of changes of
partial beliefs being allowed by quantum mechanics: b1 → b2 → b3 → b4
with b2 = b4.24 However, one can show that no possible series of suc-
cessful changes of partial belief states can be like this. The intuition is
as follows: if we improve in the change from b2 to b3, then we cannot
improve in the reverse change from b3 to b2, but the latter is exactly the
same as the change from b3 to b4, because b4 = b2. The intuition behind
the argument is as simple as this, but because our conditions defining a
successful change of a partial belief state are quite complex, showing this
in detail requires more effort.

Let us start by observing that b2 = b4 entails that gj2 = gj4 for all
j = 1, . . . , n. This will be used in the following lemma:

24One can ask why it is claimed that ψ4 represents a partial belief and not a full belief,
given that in this case we know with certainty that the system has spin up. There are two
responses to this. First, even though this state is not a non-trivial superposition in one basis,
it is a non-trivial superposition in another basis. Therefore, the fact that it is not a non-
trivial superposition in the basis {|z ↑〉 , |z ↓〉} is not enough to claim that it is associated with
exactly one complete state λ. Second, even if one (or more) of the states we are analysing
was associated with exactly one λ, in which case the corresponding probability distribution
would attribute probability 1 to this λ, such a state could still be conceived of as representing
a partial belief in our sense (albeit a trivial one). Of course, this trivial partial belief would
strictly correspond to some full belief, but this is not important for us here. The framework
used in this section can be applied equally well to partial beliefs that are non-trivial (i.e., all
probabilities are smaller than 1) and to those that are trivial (i.e., one of the probabilities
is equal to 1). This is because partial beliefs belonging to both classes can be assessed
with respect to their proximity to the truth and degree of informativeness (as well as other
parameters evaluating the goodness of partial beliefs, if there are any)—and this is their only
feature that is relevant for my framework. In the case of trivial partial beliefs, some of these
parameters would perhaps obtain only extreme values (e.g., a trivial partial belief might be
either true simpliciter or false simpliciter, it cannot have any of the intermediate degrees
of closeness to truth). However, this does not prevent in any way the applicability of my
framework to them.
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Lemma 1. For every j ∈ {1, . . . , n}, if b2 = b4, then a parameter Gj

increases in one of the transitions b2 → b3 or b3 → b4 iff it decreases in
the other.

Proof. Assume that Gj increases in the first transition, so that gj2 < gj3.
Our assumption that b2 = b4 leads to gj2 = gj4, so we have gj4 < gj3,
which means that in the second transition this parameter decreases (i.e.,
the other two options, gj3 = gj4 and gj3 6∼ gj4 are excluded). Analogously,
if Gj decreases in the first transition, it needs to increase in the second
transition. Now, assume that Gj increases in the second transition, so
that gj3 < gj4. Our assumption that b2 = b4 leads to gj2 = gj4, so we have
gj3 < gj2, which means that in the first transition this parameter decreases.
Analogously, if Gj decreases in the second transition, it needs to increase
in the first transition.

The above lemma will help us in proving the theorem that excludes
the scenario we are investigating:

Theorem 1. If in a series of changes of partial belief states b2 → b3 → b4
the first and the last belief state is the same (i.e., b2 = b4), then it cannot
be the case that each transition bi → bi+1 is an instance of clear epistemic
success or unclear epistemic success.

Proof. Consider a series of of changes of partial belief states b2 → b3 → b4
such that b2 = b4. For reductio, assume that each transition bi → bi+1 in
this series is an instance of epistemic success (clear or unclear). Assume
without loss of generality that in the first transition the parameters Gj

with j ≤ m1 increase, parameters Gj with m1 < j ≤ m2 decrease, pa-
rameters Gj with m2 < j ≤ m3 do not change and parameters Gj with
m3 < j ≤ n change into incomparable ones. We know that m1 6= 0 (be-
cause for any kind of success at least one parameter must increase) and
that m2 > m1 (the lemma together with the fact that in the second tran-
sition at least one parameter increases entail that in the first transition
at least one parameter decreases). To compensate for the decrease of the
parameters Gj with m1 < j ≤ m2, we need to have

m2∑
j=m1+1

∣∣∣v(gj2 → gj3)
∣∣∣ < m1∑

j=1

∣∣∣v(gj2 → gj3)
∣∣∣. (5)

However,

m1∑
j=1

∣∣∣v(gj2 → gj3)
∣∣∣ =

m1∑
j=1

∣∣∣v(gj4 → gj3)
∣∣∣ =

m1∑
j=1

∣∣∣v(gj3 → gj4)
∣∣∣ (6)

(the first equality comes from gj2 = gj4 and the second from the properties
of function v). Similarly,

m2∑
j=m1+1

∣∣∣v(gj2 → gj3)
∣∣∣ =

m2∑
j=m1+1

∣∣∣v(gj4 → gj3)
∣∣∣ =

m2∑
j=m1+1

∣∣∣v(gj3 → gj4)
∣∣∣. (7)

This implies that

m2∑
j=m1+1

∣∣∣v(gj3 → gj4)
∣∣∣ < m1∑

j=1

∣∣∣v(gj3 → gj4)
∣∣∣, (8)
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that is, in the second transition the sum of the values of the function v for
the first m1 parameters is larger than the sum of the values of the function
v for parameters Gj with m1 < j ≤ m2. However, this is precisely the
opposite of what we wanted, because in the second transition the first m1

parameters increase, whereas parameters Gj with m1 < j ≤ m2 decrease
(and there are no other increasing or decreasing parameters, which follows
from the lemma and from the fact that these are the only increasing or
decreasing parameters in the first transition). Therefore, equation (8)
means that in the second transition the increasing parameters do not
compensate for the decreasing ones, which contradicts the assumption
that both transitions are cases of epistemic success.

5 The remaining options for the epistemic
view

I have argued that because knowledge is factive, states that represent
someone’s knowledge about the physical reality thereby also represent
something about the physical reality itself. This led me to the conclusion
that instead of asking whether a given state is ontic or epistemic, we
should rather ask whether a given change of state is ontic or epistemic. In
particular, the question worth asking in the context of quantum mechanics
is whether the measurement-induced collapse of the quantum state can
be interpreted as an epistemically successful change of our partial beliefs
about the complete state of the system. I have argued for the negative
answer to this question. However, this does not mean that no options
are left for the defenders of the epistemic view on the change of quantum
states in the measurement-induced collapse.

I think that they can take one of the following positions:

(1) Deny the existence of complete states.

(2) Accept the existence of complete states but treat quantum states
as only associated with probability distributions over measurement
results, not over the space of complete states.

(3) Assume that the changes of our partial beliefs in accordance with the
collapse rule are not always successful, that is, they are sometimes
changes from better partial beliefs to worse or incomparable partial
beliefs.

(4) Deny the assumption that the change of quantum state between
consecutive measurements due to the Schrödinger equation can be
ignored.

(5) Interpret the collapse as partially epistemic and partially ontic.

Let us look more closely at each of these positions in turn.
The first option amounts to rejecting the whole framework of onto-

logical models, as put forward by HS (2010) and reviewed in section 2.
This seems to be the most popular position among the defenders of the
epistemic view on quantum mechanics (cf. Leifer 2014:72, where the list
of proponents of this option, called by him “neo-Copenhagen” is much
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longer than the list of defenders of the epistemic view who would accept
the framework of ontological models).25 This is a significant limitation
for both my argument and for PBR theorem (as well as HS’s framework
of ontological models in general), as they rely crucially on the assumption
of the existence of complete states, which means that the most popular
variety of epistemic positions is entirely immune to these arguments.

Similarly, the approach of PBR and my own assume that a quantum
state can be understood as a probability distribution over the set of com-
plete states, which means that a defender of the second option on our list
can also ignore these arguments. However, this position seems to be un-
stable, because if there is a complete state the system is in, then this state
should constrain what the possible results of measurements conducted on
this system are and do this at least as precisely as the quantum state does;
but then, if both the quantum state and the complete state constrain the
possible measurement results, it is difficult to imagine that the quantum
state is not related in any way to the complete state.

To comment on the third option, it might seem very dubious at first
glance: if using the collapse rule renders our partial beliefs worse than
they were before (or neither better nor worse), why would we use it at
all? It seems that in such a case it would be more epistemically profitable
to abandon this rule. However, if we did not “update” the state after our
first measurement from ψ1 to ψ2, then our predictions would be empiri-
cally less adequate, so the “updating” clearly contributes to the predictive
success of quantum mechanics. Despite its initial appeal, this argumen-
tation does not entirely exclude the position with number 3 on my list.
Even if using the collapse rule always improves our predictions concerning
the measurement results, this does not automatically mean that it always
improves our partial beliefs about the complete state of the system. Per-
haps in this latter regard, the collapse rule sometimes leads to changes of
our partial beliefs that are not epistemically successful, but in a way that
is impossible for us to recognize, so that despite this drawback quantum
mechanics is still the best theory of quantum phenomena available to us.

The fourth option is based on the observation that our decision to ig-
nore the Schrödinger evolution between measurements was an idealisation.
However, I find it implausible that it is this idealisation that was respon-
sible for the contradiction at which we have arrived. If the Schrödinger
evolution was non-negligible in this scenario, then we should get an im-
provement of our predictions of measurement results by using it, but this
is not the case—if the temporal distance between the measurements is
very small, then it can be safely ignored.

The last option might seem to be similar to what is proposed by Hance,

25For example, QBism is based on the idea that probabilities represent partial beliefs; how-
ever, these are not probabilities assigned to complete states but probabilities of measurement
outcomes calculated via the Born rule (see, e.g., Caves, Fuchs and Schack 2002:3). Fuchs,
Mermin and Schack (2014) identify measurement outcomes with an agent’s personal experi-
ences and understand quantum mechanics as “a tool anyone can use to evaluate, on the basis
of one’s past experience, one’s probabilistic expectations for one’s subsequent experience”
(2014:749); they explicitly deny the existence of complete states (2014:752) and justify this
denial by appealing to the fact that λ’s do not correspond to anything in quantum theory or
in our experience.
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Rarity and Ladyman (2021), who claim that a wave function can have in
some aspects an epistemic nature and in some aspects an ontic nature.
However, recall that what we are considering here is not the ontic or epis-
temic character of a wave function (which I argued is a rather misleading
terminology) but of the changes of a wave function. The approach to
epistemic change presented here (as well as the standard Bayesian episte-
mology) is not suitable to deal with such a mixed view. This is because
for a change to be a change of someone’s beliefs about a certain state of
affairs, this state of affairs itself must remain the same—otherwise, what
would these beliefs be about and how could we compare them with respect
to how accurate they are in capturing this state of affairs? Changes of
beliefs are implicitly understood as changes of beliefs on the same subject.
Of course, the improvement of our knowledge about some state of affairs
does not require that this state will still obtain in the world: this might be
an improvement of our knowledge about the state of affairs that obtained
in the past. What is required to not change is only the specification of the
subject of our beliefs. However, the mixture of epistemic and ontic change
seems to amount to a change of beliefs together with what these beliefs
are about; therefore, it is precisely this combination that is problematic.
I do not want to claim that one cannot build an account to deal with
epistemic change of this kind, but for this some new formal tools would
be needed.26

Summing up, my argumentation surely does not rule out all epistemic
views on the nature of quantum collapse, but puts restrictive constraints
on the class of available options. This argumentation is relevant only to
approaches assuming that there are complete states of quantum systems,
so one might say that it threatens less extreme variants of the epistemic
view and does not have any bearing on more extreme ones, such as QBism.

6 Remarks concerning theories without
measurement-induced collapse

One can object to my analysis that because quantum theories based on
measurement-induced collapse are not the most philosophically interest-
ing quantum theories currently available, proving a statement whose ap-
plication is limited only to such theories is not philosophically interesting

26In analogy to our former toy example in which the location of my keys was sought,
one might illustrate the mixed epistemic-ontic change by means of a similar example with a
running hamster. I want my beliefs about the location of the hamster to coincide with its
actual location at any moment. Because the hamster is running, it might happen that my
beliefs improve or worsen not as a result of considering some new evidence but merely as a
result of the change of the state of the hamster. This is in stark contrast with the way of
thinking in the standard Bayesian epistemology, where the improvement or worsening of my
beliefs might happen only due to the updating of my belief state in the light of new evidence.
The reason for this is that in the standard case the subject of my beliefs is held fixed, whereas
here we want our beliefs at any time to track the state of the system at that time, so the
subject of my beliefs is constantly changing.
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as well.27 I do not agree that it is uninteresting, as the concept of a
measurement-induced collapse is central, not marginal, in the discussion
about quantum mechanics throughout its history, and it is still commonly
used in the introductory expositions of quantum mechanics nowadays.
What is more, the defenders of interpretations of quantum mechanics
that do not refer to measurement-induced collapse usually regard changes
of a wave function as ontic.

In any case, one could ask whether my ideas can be extended in some
way to cover other interpretations (or versions) of quantum mechanics.
My argument in section 4 could not be straightforwardly carried forward
to this case as it crucially relies on the assumption that the collapse is
associated with a measurement because, without that, we would not get
the effect of coming back to the same state |ψ2〉. However, I believe that
the epistemic understanding of the change of a wave function is unattrac-
tive for many interpretations (or versions) of quantum mechanics that do
not postulate measurement-induced collapse, which I will argue for below
using some elements of the framework developed earlier.

Consider the following three classes of interpretations (or versions)
of quantum mechanics without measurement-induced collapse (i.e., as-
suming that there is a single evolution rule for the wave function): class
1, the wave function is complete and evolves deterministically; class 2,
the wave function is incomplete and evolves deterministically; class 3,
the wave function is complete and evolves indeterministically. Taken to-
gether, these three classes cover many of the known interpretations (or
versions) of quantum mechanics. For example, classes 1 and 3 encompass
all interpretations according to which the ontology of the physical world
is exhausted by the wave function, such as the Everettian interpretation,
wave function realism28 and some versions of GRW. Bohmian mechanics,
another widely discussed approach, belongs to class 2. Below I will for-
mulate three arguments that it is better not to combine interpretations
(or versions) of quantum mechanics belonging to these three classes with
the epistemic view on the change of a quantum state as this leads to some
very implausible consequences.

Argument 1 (for classes 1 and 3): the wave function is complete and
evolves either deterministically or indeterministically. Assume that this
evolution is epistemic. This leads us to an absurd conclusion that nothing
changes in the physical world: from the completeness assumption, all
conceivable changes in the physical world could only be changes of the
wave function, but its changes are, by assumption, epistemic, so no place
is left for any ontic changes whatsoever.

Argument 2 (for classes 1 and 2): the wave function is either complete
or incomplete and evolves deterministically. Assume that this evolution
is epistemic. Consider an isolated system and assume that we attribute
to it the wave function ψ1 at t1 (e.g., as a result of performing some mea-

27This objection was suggested to me by... For criticism of the concept of measurement-
induced collapse see, for example, Wallace (2012:11–45) and Maudlin (2019:xi).

28The name of this position might be misleading, as there are many other ways of being
a realist with respect to a wave function in the sense of assuming that it represents some-
thing real. Wave functional realism is understood as a conjunction of two theses: that the
fundamental space is a high-dimensional space and the wave function is a field in that space.
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surements on it or because we know in which way it has been prepared).
Then, we can use the equations of evolution to compute that at t2 the
wave function of the system will be ψ2, at t3 it will be ψ3, and so on for
k different times ti, i = 1, . . . , k. Now, looking back, which wave function
should we attribute to our system at t1? A natural response here is ψ1

as it was supposed to be the state of the system at t1. However, recall
that we assumed that the change due to our deterministic equations is
only epistemic. If this change is an instance of clear epistemic success,
then we should attribute to the system at t1 some state ψi with i > 1
(and if it is an instance of unclear epistemic success, we at least do not
lose anything by doing so). This is because our computations of the wave
function for consecutive ti’s are not supposed to track any changes in the
physical system that we investigate, but only how our beliefs about it
should change. The most reasonable thing to do (under the assumptions
of this argument) seems to be to attribute to our system at t1 the wave
function ψ∞ (if it is well defined). However, this is clearly in disagreement
with how the formalism of quantum mechanics is actually used.

Argument 3 (for class 3): the wave function is complete and evolves
indeterministically, so that given the wave function at t1, the probabil-
ity distribution over the space of wave functions at t2 > t1 is uniquely
determined (where these probabilities might be non-trivial, that is, dif-
ferent from 0 or 1). Assume that this evolution is epistemic. Consider
an isolated system and assume that we attribute to it the wave function
ψ1 at t1, and then we compute its evolution according to the appropriate
equations, concluding that at t2 it will be ψ2 with probability p2, in ψ3

with probability p3, and so on. If our description at t1 was adequate at all,
then it was fully adequate because of the completeness of the wave func-
tion. However, if probabilities calculated for t2 are non-trivial, then our
description at t2 is not fully adequate (because unless we attribute prob-
ability 1 to exactly one state, our closeness to truth cannot be perfect).
But recall that the change is assumed to be epistemic. Therefore, it was
either a change to a less adequate description, or our initial attribution of
the state to the system was inadequate.

7 Summary

I have argued that HS’s terminology of “epistemic” vs. “ontic” mod-
els/states is conceptually inadequate and that the debate could be re-
formulated in terms of the ontic/epistemic character of the changes of
states rather than states themselves. I have also shown that the epistemic
understanding of the change of a quantum state under the measurement-
induced collapse has certain consequences that are undesirable for those
who adopt the framework of ontological models. For interpretations of
quantum mechanics that do not use the concept of measurement-induced
collapse, the situation is less clear as they are varied, but it has been ar-
gued that—at least for some classes of them—the epistemic nature of the
change of a quantum state is also implausible.
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