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1 Introduction

The concepts used in stating or deriving propositions of a formal theory are only rigor-
ously understood when they are defined in terms of the formalism of that theory. To
illustrate, consider this example: “Let (M, gab) be a temporally orientable spacetime”
may be an assumption to prove some theorem in general relativity. In this proposition,
both ‘spacetime’ and ‘temporally orientable’ are concepts which are given mathemati-
cally precise definitions in the formalism of general relativity. Without such definitions,
the proposition wouldn’t have quantitative meaning in the theory, even if we may have
intuitive grasps on what it means to be temporally orientable. Although much of physics
seems to naturally respect this practice, some of thermodynamics does not.

I will argue that the terms ‘identical’, ‘different’ and ‘mixture’ are examples of con-
cepts that are often used without any formal definition, and yet are still used in stating
or deriving propositions in thermodynamics. Thus, statements such as “Let A and B be
two different gases” or “Consider a mixture of two ideal gases A and B” are often given
only qualitative meaning drawn from extra-theoretic considerations. There is nothing
inherently wrong with doing this; physicists often proceed with reasoning without fully
defining certain concepts, relying on intuitive or extra-theoretic understanding of the
terms. This is often necessary when new physics is being formulated and new paths of
discovery being forged. However, it is important that they should be given clear ther-
modynamic meaning in applications where certain quantitative judgments are needed,
in particular regarding subtle facts about entropy of mixing. It is also important for
philosophers of physics who are interested in understanding the conceptual foundations
of a theory in clear and rigorous terms. The dangers of not precisely defining concepts
in theoretical reasoning are illustrated in this particular case by the existence of a pur-
ported paradox in deriving the entropy of mixing: Gibbs’ paradox. Roughly speaking,
(one version of) the paradox is that we can apparently derive a non-zero entropy of mix-
ing when the gases are identical, contradicting the view that there should be no entropy
of mixing in this case.

This is not to say that these terms have eluded definition entirely. Both physicists
and philosophers who comment on the paradox mostly do take care to define these terms;
in fact, most see these terms’ definition (rightly, in my view) as the heart of the problem
and the key to the solution. Rather, my point is that existing definitions do not respect
the good practice described above: they are not thermodynamic, but extra-theoretic,
appealing to concepts and ideas outside the realm of thermodynamics. This is often
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heuristically useful and helps us muddle through abstract reasoning by latching on to
more familiar situations. But I am interested in those investigations where taking care
in this regard is to avoid paradoxical conclusions. Gibbs’ paradox is a case in point.

My thesis is that it is possible to provide thermodynamic explications of ‘identity’,
‘difference’ and ‘mixture’ using the powerful but less commonly used geometric formu-
lation of thermodynamics1. This leads to a new perspective on mixing, identity, and the
conceptual and formal structure of thermodynamics that is free from Gibbs’ paradox.

In Section 2, I introduce Gibbs’ paradox in thermodynamics and explain how it is
driven by a lack of a clear understanding of what it means for thermodynamic systems
to be ‘identical’ or ‘different’ and what it means to form a ‘mixture’. Sections 2.1 and 2.2
describe in some detail an early and prominent response to the paradox by van Kampen,
seen by many2 as the authoritative treatment of Gibbs’ paradox in thermodynamics,
before noting what I see a key difficulty with this response in Section 2.3: the lack of a
clear and precise criterion of identity for thermodynamic systems. The rest of the paper
is geared towards providing this criterion. Section 3 introduces the powerful geometric
formulation of thermodynamics. This provides the necessary formal and conceptual tools
to allow us to give a precise definition of “mixture” and “mixing” in Section 4. I argue
that the most common definition of mixture in thermodynamics is not a good one, and
I propose something better. Finally, in Section 5, I argue for a criterion of identity for
thermodynamic systems that is based on the assumption of homogeneity, and I explain
how this solves Gibbs’ paradox.

2 Gibbs’ Paradox in Thermodynamics

The setup for Gibbs’ paradox goes as follows. Let two samples of gas at equal temper-
atures (and equal mole number and volume for simplicity) be separated by a partition.
When the partition is removed, do the gases mix? What happens to the entropy of the
system: does it increase or stay the same? Standard answers to these questions say that
it depends whether the gases are ‘identical’ or ‘different’: the gases mix and there is an
increase in entropy if the gases are different, known as the ‘entropy of mixing’. But they
are identical when the samples of gas do not mix and there is no entropy increase. The
difference between the two situations is depicted in Figure 1.

Confusions start to arise when we inquire into the precise nature of this identity
or difference and how these notions are represented in the thermodynamic formalism.
Versions of the paradox exist in both thermodynamics and statistical mechanics. Here
we are interested in the thermodynamic version. The statements of the thermodynamic
paradox that exist in the literature fall into two categories. The first:

1This formalism has been given detailed mathematical treatments by Hermann (1973) and Arnol’d
(1978) who, in fact, attribute the geometric formulation to Gibbs (1878).

2See, for example, Saunders (2006, 2013, 2018) whose treatment of the Gibbs paradox in thermody-
namics follows van Kampen, van Lith (2018, p. 7) praises van Kampen’s analysis and reviews of thermal
physics (e.g. Uffink (2007); Frigg (2008)) cite van Kampen as an authoritative treatment of Gibbs’
paradox.
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(a) Two different samples of gas separated by
a partition.

(b) Two identical samples of gas separated by
a partition.

(c) The mixture is formed when the partition
is removed.

(d) Nothing happens when the partition is re-
moved.

Figure 1: The Gibbs paradox setup. Intuition dictates that nothing happens to the
system when the partition is lifted between two identical samples of gas, while mixing
happens when the partition is lifted between different samples of gas.

GP1 On one popular definition, the entropy of mixing does not appear to have any
formal component whose value depends on whether the two gases are distinct,
thus it seems as though there would still be a non-zero entropy of mixing when
the partition is lifted between two identical samples of ideal gas, contradicting the
intuition that there is no entropy of mixing for identical gases.(3)

GP1 is driven by two conflicting representations of happens when the partition is lifted.
On one representation, the lifting of the partition allows the samples of gas on each side
to expand into the other half of the container, inviting us to imagine mixing as two
spatially separate expansions occurring independently (see Figure 2).

But if we represent the partition-lifting process in this way, then the result of lifting
the partition is completely independent of whether the gases are identical or different,
since it is explicitly represented as two spatially separated samples expanding in their
own containers; the identity or difference of the substances has no bearing on the result
of such independent expansions. This contradicts the result of another representation
of mixing depicted in Figure 1 which indicates that the result of removing the partition
does depend strongly on the identity of the gases; mixing happens when the partition
is lifted between two different samples of gas, while there is no mixing if the gases are
identical.

The second version of the paradox is the following:

GP2 Given that there is no entropy change when the samples of gas are identical, then
the entropy change appears to vary discontinuously from a non-zero value to zero

3Bridgman (1961, p. 1698), van Kampen (1984, p. 306), Elwell and Pointon (1972, p. 145), Adkins
(1983, p. 217), Fong (1963, pp. 48–49), Partington (1913, p. 274), Fay (1965, p. 218), Pierce (1968,
p. 319), Muller (1985, p. 193).
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(a) (b)

Figure 2: Lifting the partition between two samples of gas on each side of a partition in
a container is often modelled as each half of gas undergoing a free expansion in separate
containers. Modelling it this way does yield the correct value for the entropy of mixing
different gases (Figure 2a), but also results in the same entropy of mixing for identical
samples of gas (Figure 2b).

as the gases go from being different to identical. This contradicts a principle,
generally held dear by the physics community, that there are no discontinuities4

in physical quantities.(5)

GP2 is driven by the intuition that some substances are more similar than others,
and that this similarity can be imagined as varying continuously. This similarity and
continuous variation, it is argued, should be manifest in a continuous variation of the
mixing entropy as the substances go from being different to identical. Commentators
who are worried by this version of the paradox aim to remove the discontinuity by
demonstrating that the entropy does vary continuously as a function of some variable
interpreted as the ‘degree of similarity’ between the substances. Those who are not
worried by this version of the paradox attempt to explain why this discontinuity is not
a target of this principle.

These two versions of the paradox identify very different problems. Those concerned
with GP2 assume that the mixing entropy for identical gases is zero, seeing the problem
to be that the mixing entropy does not vary continuously down to zero as the gases
become more similar. By contrast, those concerned by GP1 see the problem precisely in
the assumption that GP2 takes for granted: the mixing entropy for identical gases being
zero. Since GP1 identifies an issue in something GP2 takes for granted, it is a deeper
problem and must be solved first. We will therefore focus our efforts in this paper to

4This principle is seen to originate historically with Leibniz (Natura non facit saltum: ‘nature does
not jump’).

5Denbigh and Redhead (1989, p. 284), Dieks (2014, p. 1305), Dieks (2011, p. 368), Barsky (2017,
p. vii), Denbigh and Denbigh (1985, p. 76), Kondepudi and Prigogine (1998, p. 157), Landsberg (1978,
p. 74), Roberts and Miller (1960, p. 379), Sears and Salinger (1975, p. 241), Smith (1952, p. 137),
Zemansky and Dittman (1997, p. 391), Swendsen (2018), Dieks (2018), van Lith (2018), Uffink (2007,
p. 1000), Klein (1958, p. 80).
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solving and understanding GP1.
Needless to say that solutions to GP1 abound and, furthermore, commentators on the

paradox agree on the problem and solution. In fact, commentators on Gibbs’ paradox
universally agree that the thermodynamic paradox has been solved, seeing the interesting
and difficult work as articulating and solving the statistical mechanical paradox. My
main contention in this paper is that statements of and solutions to the thermodynamic
Gibbs paradox suffer from conceptual and mathematical problems, which arise from
qualitative extra-theoretic definitions of mixing and identity. Once we clarify these, we
end up with a very different, but much more secure, solution.

The strategy typically taken to solve GP1 is to argue somehow that the representation
of mixing as two free expansions cannot apply when the gases are identical. In the next
Section, I will showcase an extremely popular and oft-cited presentation of this line of
reasoning. I will then critically analyse this account and identify mathematical and
conceptual problems with it which I will go on to solve.

2.1 Van Kampen’s Account

Van Kampen is a frequently cited and highly praised commentator on Gibbs’ paradox,
who states and gives his own solution. He begins by deriving the entropy as a function
S(p, T ) of pressure p and temperature T . He leaves the derivation of this function, very
typical in standard textbooks on thermodynamics, to the reader, but it is instructive for
our purposes to spell it out in detail6.

We begin by stating what is known as the First Law of thermodynamics for a thermo-
dynamic system consisting of variables for energy U , temperature T , entropy S, pressure
p, and volume V :

dU = TdS − pdV. (2.1)

Now let N be the (constant) mole number and R the ideal gas constant. Adopting the
equations of state U = (3/2)NRT and pV = NRT for the ideal gas, and observing that
dU = (3/2)NRdT , we find that, after some rearrangement, Equation (2.1) becomes,

dS =
3NR

2T
dT +

NR

V
dV. (2.2)

Integrating, we get S(V, T ) = 3
2NR lnT+NR lnV +K, and if we substitute V = NRT/p,

we get van Kampen’s expression for S(p, T ):

S(p, T ) =
5

2
NR lnT −NR ln p+ C (2.3)

where C is a constant of integration absorbing terms containing N and R.
At this point, we depart typical entropy derivations and follow van Kampen’s unique

argument to calculate the entropy on mixing identical gases and different gases. Van

6The derivation presented in the main text dodges a problem stemming from an inconsistency in van
Kampen’s presentation, namely: is the number of molecules N a constant or a variable? As I explain
in Appendix B.1, he seems to treat it as both. I argue that his expression for S(p, T ) can be derived
rigorously assuming that N is a variable throughout.
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Kampen points out that C cannot be a function of p or T , but may be a function of
anything else includingN . He then supplies an argument for determining the dependence
of C on N (and hence entropy’s dependence on N) on the basis of the following two
propositions:

“Convention 1. If I have a second system, identical with the first one, I
agree to assign to it the same C and therefore the same S(p, T ). This is
obviously convenient but not logically necessary and by itself contains no
information about the physical world.

Convention 2. Two separate systems may be regarded as forming together
a single system. I agree to take as the entropy of the combined system
the sum of the entropies of the two parts. Of course, each part must be
in equilibrium but they don’t need to be in equilibrium with one another.
Hence this convention may serve to define the entropy of systems that are
not in equilibrium themselves but can be divided into subsystems that are.”
(van Kampen, 1984, p. 305)

On the basis of these conventions he argues for the following expressions for the
entropy, along with their associated interpretations.

• The entropy of one gas:

S(p, T,N) =
5

2
NR lnT −NR ln p+ cN (VK1)

where this is just Equation (2.3) with the constant of integration chosen to be such
that C = cN for some constant c.

• The entropy of two gases, A and B:

S(pA, pB, T,NA, NB) =
5

2
(NA+NB)R lnT−NAR ln pA−NBR ln pB+cANA+cBNB

(VK2)
where pA = pNA/(NA+NB) and pB = pNB/(NA+NB) are the ‘partial pressures’
of the gases A and B.

This equation is derived by calculating S(pA, TA, NA)+S(pB, TB, NB) where each
of the summands is given by (VK1) and setting T = TA = TB.

• The entropy of two gases, A and B:

S(pA, pB, T,NA, NB) =
5

2
(NA+NB)R lnT−(NA+NB)R ln(pA+pB)+c(NA+NB).

(VK3)
This equation is derived from Equation (VK1) by setting N = NA + NB and
p = pA + pB.
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We notice immediately that while Equations (VK2) and (VK3) are intended to apply
when we have two gases A and B, it is not clear, from what has been said so far, when
we apply one and when we apply the other. Van Kampen argues that Equation (VK3)
applies when the gases are ‘the same’ or ‘identical’ and Equation (VK2) applies when
the gases are ‘different.’ We shall summarise his argument for this shortly, but first we
must understand van Kampen’s version of the Gibbs paradox.

The paradox stems from the fact that Convention 1 together with Equations (VK2)
and (VK3) give rise to a contradiction. Convention 1 may be reasonably interpreted as
a necessary condition for two systems to be ‘identical’: they are assigned the same C.
If we apply this to Equation (VK2) by setting7 c = cA = cB then it would seem to give,
according to van Kampen’s analysis, the entropy for two ‘identical’ gases A and B. But
this entropy is not the same as that given by Equation (VK3), which is also supposed
to give the expression for the entropy of two ‘identical’ gases. The difference between
Equation (VK3) with c = cA = cB and Equation (VK2) is

−NAR lnNA −NBR lnNB + (NA +NB)R ln(NA +NB). (DIF)

The preceding argument is what van Kampen takes to establish the Gibbs paradox:

“The fact that [Equation (VK2)] does not reduce to [Equation (VK3)] when
A = B constitutes the Gibbs paradox. The difference is given in [Equation
(DIF)].” (van Kampen, 1984, p. 306)

We are in a situation where we have a valid argument leading to a contradiction.
The task, then, is to isolate the false premise.

2.2 Van Kampen’s Solution

The logical essence of van Kampen’s solution is to block the application of Equation
(VK2) to identical gases. This would remove the contradiction. Van Kampen’s strategy
is to explain why Equation (VK2) applies only when the gases are different and (VK3)
only when the gases are identical.

First, regarding identical gases he writes:

“Consider a set of systems, consisting of identical vessels containing the same
gas but in different amounts. One is free to represent all possible states
obtained in this way in a space with coordinates p, T,N . There is no way,
however, to compare entropy values belonging to different N , unless one
introduces a new kind of process by which N can be varied in a reversible
way. This is done by the familiar device of taking two identical vessels with
the same p, T,N and opening up a channel between them. Together with
convention 1 this leads to the conclusion that S(p, T,N) must be proportional
to N .” (van Kampen, 1984, p. 305, original emphasis)

7Despite the fact that van Kampen does not say this explicitly, it is necessary to make the step to
get his result.
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(a) Allow each gas to undergo a free expansion. (b) Then ‘overlap’ the containers by applying
Gibbs’ theorem.

Figure 3: Representing mixing as two free expansions and an application of Gibbs’
theorem.

He thus arrives at Equation (VK1). As explained above, this allows the derivation of
Equation (VK2) for non-identical gases by substituting N = NA+NB and p = pA+ pB.
He does not carry out this calculation explicitly, but this step is necessary for deriving
his Equation (DIF). He then goes on to consider different types of gases, writing:

“If two vessels contain different gases A,B the entropy of the combined sys-
tems is defined by convention 2. When a channel is opened up an irreversible
mixing occurs, so that this device cannot be utilised to define the entropy
S(p, T,NA, NB) of the resulting mixture. In its stead one now uses the fa-
miliar reasoning based on semi-permeable walls and obtains for the ideal gas
[Equation (VK2)]” (van Kampen, 1984, p. 306, original emphasis)

The ‘familiar reasoning’ based on semi-permeable membranes is not familiar to all, so
let me reconstruct what van Kampen might have meant.

Suppose before the partition is lifted we have gas A on one side and gas B on the
other. And suppose, for simplicity of discussion, that the number of moles of each gas
is the same, and that each occupy half the total volume of the container, so that the
pressure of each gas is the same. We now allow each gas to undergo a free expansion
into two separate volumes (see Figure 3a), and then ‘overlap’ the volumes of gas (Figure
3b). This chain of reasoning is a typical way of representing mixing and calculating the
associated entropy increase8.

The first step is simply two free expansions. The second step is an application of
what is sometimes called Gibbs’ theorem. It states that the entropy of a mixture of ideal
gases at temperature T and volume V is the sum of the entropies the individual compo-
nents would have if they each occupied separate containers of volume V at temperature
T . Typical ‘proofs’ of this theorem9 make use of the concept of semi-permeable mem-
branes. These are membranes which are impermeable to one component of a mixture
but permeable to all others. Installing two such membranes in between the containers of
gas, one permeable to gas A but impermeable to gas B and another impermeable to gas

8The most explicit example of this reasoning may be found in Adkins (1983, p. 217).
9A classic text demonstrating Gibbs’ theorem with semipermeable membranes is Planck (1903,

pp. 219–220) and other expositions may be found in Buchdahl (1966, pp. 170–171) and Mandl (1988,
pp. 129–130).
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A but permeable to gas B, allows us to overlap the gases in the very same volume and
form a mixture without doing any work and while remaining at a constant temperature.

Claiming to have derived equation (VK2) via this reasoning, van Kampen then re-
solves the paradox by arguing that

“two different processes had to be chosen for extending the definition of
entropy. They are mutually exclusive: the first one cannot be used for two
different gases and the second one does not apply to a single one.” (van
Kampen, 1984, p. 306)

The two processes he is alluding to here are the removal of the partition between the
two samples, and the two free expansions plus the ‘overlapping’ with semipermeable
membranes. These, it is argued, are mutually exclusive; the removal of the partition
will not work for calculating the entropy of a mixture since this change of state would
happen irreversibly under this process. On the other hand, the process of reversible
mixing with semi-permeable membranes will not work with identical gases, since there
is no differentiating feature which would allow semi-permeable membranes to exist in
principle. This means that the step applying Equation (VK2) to identical gases is
blocked, since the process used to establish that equation cannot be used on identical
gases. This purportedly removes the contradiction at the heart of GP1.

Van Kampen’s resolution has been echoed and endorsed in virtually every subsequent
treatment of Gibbs’ paradox in thermodynamics. His comments have been interpreted as
indicating that distinguishability, in the sense that there in principle exist semipermeable
membranes which allow the application of Gibbs’ theorem, is what is important in
resolving Gibbs’ paradox. Gases may be different in any sense you like, i.e., there may
be a number of properties that the gases do not share, but if there is no process which
can reversibly mix or separate the gases in principle, then Equation (VK3) is to be used.
Otherwise the gases are distinguishable in that sense, then Equation (VK2) gives the
correct value for the entropy of the mixture.

There are variations on this theme of semipermeable membranes. Van Kampen actu-
ally ends up articulating a rather strong variation himself, to give the issue a pragmatic
dimension: an experimenter dealing with two samples of gas may even know that they
are distinguishable, but chooses to ignore this fact and treat them as if they were indis-
tinguishable. In this case, he argues, the experimenter will be led to no contradiction in
using (VK3). His solution can be summed up as the view that

[t]he expression for entropy [...] depends on whether or not [the experimenter]
is able an willing to make a distinction. (van Kampen, 1984)

The lesson van Kampen wants us to learn for Gibbs’ paradox, is that identity (un-
derstood as the sharing or not of intrinsic properties) is not relevant for calculating the
entropy of mixing, but rather that the more operational concept of distinguishability is
what is important. This operational theme aligns with Bridgman (1961, pp. 168–169)
who uses Gibbs’ paradox as a case study of how his idea of the ‘universe of operations’
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to operationally define physical concepts such as distinguishability can be used to solve
problems. Another variation is Dieks (2011) who adds another level of justification, ulti-
mately grounding the difference between (VK2) and (VK3) in differences in the physical
or chemical properties between the gases, and arguing that this is sufficient to establish
the existence in principle of semipermeable membranes for the pair of gases.

In summary, it is widely agreed that distinguishability via semipermeable membranes
is what explains the choice between equations (VK2) and (VK3) and therefore solves
Gibbs’ paradox in thermodynamics.

2.3 The difficulty

It is not clear what criterion of identity van Kampen himself intends to articulate, if any.
On my reconstruction, he is giving an operational criterion of identity: two gases are
distinguishable if and only if there exist semipermeable membranes which can be used
to reversibly separate/mix the gases. But this criterion applies only insofar as we can
supplement thermodynamics with a theory of semipermeable membranes. Although it is
plausible that we do have this in the context of fluids10, it is unclear whether it applies
to other candidate thermodynamic systems such as elastic bands, magnets, or black
holes. This criterion relies on extra-theoretic reasoning which is not clearly generally
applicable. If we read van Kampen in this way, the analysis does not go far enough: we
still need a fully general criterion of identity which applies to any kind of thermodynamic
system.

Aside from not being generally applicable, this criterion of identity falls foul of the
physics good practice with which we began this paper: the definition of identity in terms
of the existence of semipermeable membranes (or any reversible separation procedure)
is extra-theoretic and non-thermodynamic. While they are certainly useful heuristic
devices for imagining reversible mixing and separation, semipermeable membranes are
not a part of the thermodynamic formalism. In many formulations, this even relies on
non-thermodynamic talk of the gases’ constituent atoms and their atomic properties.
Indeed, it is precisely because the semipermeable membrane mechanism is explicated in
terms of the well-known underlying microphysics of the gases that it is so heuristically
useful. But this same fact makes its usefulness totally unclear when we do not yet
understand a system’s microphysics.

We may put the point another way: thermodynamics is an extremely powerful and
general theory for when we do not have access to the underlying microphysics of physical
systems. As it happens, in the case of gases, we do know about the physics of the micro-
constituents and this may be why we are naturally attracted to expressing identity in
terms of the properties of those constituents. But, in general, we should not assume that
we have access to the microphysics and so we should not let definitions of concepts such
as identity to be tied to it. We should strive to explicate identity of thermodynamic
systems in purely thermodynamic terms.

10For example, Planck (1903, p. 218), Zemansky and Dittman (1997, p. 387) and Partington (1913,
p. 272) mention the separation of hydrogen from air using a palladium or platinum membrane in support
of the the theoretical use of semipermeable membranes in thermodynamics.
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In spite of its popularity, van Kampen’s discussion of the paradox is left wanting.
Happily, there is another solution, which I turn to in the following sections.

3 Geometric Thermodynamics

Let me begin by setting out what I will take to be the formal structure of a thermody-
namic system.11 The assumptions we work with are the following.

1. The equilibrium state of a thermodynamic system is represented by a point in the
(k + 1)-dimensional smooth real manifold M with global coordinates (X0, ..., Xk).

2. These variables are related by a function f such that

X0 = f(X1, ..., Xk), (3.1)

which is called the fundamental relation. This defines a k-dimensional surface in
M .

3. f is a homogeneous first-order function of X1, ..., Xk:

f(λX1, ...,λXk) = λf(X1, ..., Xk) (3.2)

for every positive real number λ and for all X1, . . . , Xk.

The variables Xi will be taken to represent thermodynamic properties like energy,
entropy, volume and mole number. The function f , when expressed in differential form,
turns out to express what is known as the first law of thermodynamics.

We would like to be able to identify a model of thermodynamics with the same pre-
cision as we do in classical and quantum mechanics, each of which is equipped with a
precise definition of the mathematical structure of their models. For example, a model
of Hamiltonian mechanics is a symplectic manifold; and, a model of quantum mechan-
ical system is a Hilbert space with an algebra of observables. This kind of precision
inspires the following definition of a thermodynamic system, based on the framework
just outlined.

Thermodynamic System. A thermodynamic system is a pair (M, f), where:

(i) M is a (k + 1)-dimensional configuration space given coordinates X0, ..., Xk.

(ii) X0 = f(X1, ..., Xk) is the fundamental relation defining a k-dimensional surface in
M , where f is first-order homogeneous.

Equivalently, we have a k-dimensional manifold N which is given coordinates Y1, ..., Yk
and a function f : N → R, where we can smoothly embed N into a (k + 1)-dimensional
manifoldM via the map Φ : N → M . Then we can think of f as defining a k-dimensional
surface in M whose coordinates are given by X0, .., Xk where Xi(Φ(p)) := Yi(p) for
i = 1, ..., k and X0(Φ(p)) := f(p).

11The presentation here largely follows Callen (1960).
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Let me illustrate how this formalism gives rise to the more familiar expressions of
thermodynamics using the simple case of the ideal gas. We assume the configuration
variables to be S (the entropy), U (the internal energy), V (the volume) and N (the
mole number). The fundamental relation in Assumption 2 takes the form

S = f(U, V,N) (3.3)

and the homogeneity in Assumption 3 takes the form

λS = λf(U, V,N) = f(λU,λV,λN) (3.4)

Equation (3.4) is often interpreted as the claim that entropy is ‘extensive,’ a term typi-
cally used to describe variables that scale with the ‘size’ of the system.12

To make contact with a more familiar expression of thermodynamics, we write the
fundamental relation of the ideal gas in differential form as

df =
∂S

∂U
dU +

∂S

∂V
dV +

∂S

∂N
dN (3.5)

Now adopt the following definitions to denote the partial derivatives occurring in
this equation:

∂f

∂U
≡ 1

T
;

∂f

∂V
≡ p

T
;

∂f

∂N
≡ −µ

T
(3.6)

where T , the temperature, p, the pressure and µ, the chemical potential, are known as
the system’s intensive parameters.13 These intensive parameters are clearly functions of
the extensive parameters U, V,N . Relationships expressing the intensive parameters as
functions of the extensive parameters are known as equations of state14.

We may therefore write the differential form of the fundamental relation, which is
commonly referred to as the first law,

dS =
1

T
dU +

p

T
dV − µ

T
dN. (3.7)

12The geometric framework offers a precise way of defining what extensive variables are in terms of the
scaling symmetry of the fundamental relation. In short, we will say that a collection of thermodynamic
variables are ‘extensive’ when we impose the first-order homogeneous property on the fundamental
relation. This is explained in further detail in Appendix A.

13The intensive parameters are often characterised as those which do not scale with the size of the
system. This may be understood more precisely as follows. In the formal setup presented here, the
intensive parameters are defined to be the partial derivatives of the fundamental relation with respect
to the other extensive parameters. Since they are derivatives of one extensive parameter with respect to
another, the intensive parameters are invariant under the scaling of the extensive configuration variables.

14It is yet another advantage of this formulation of thermodynamics that it puts the equations of state,
familiar to all students of thermodynamics, in their proper conceptual place in the foundations. While
important, they are actually derivative from the fundamental relation. An individual equation of state
is not sufficient to capture all the thermodynamic information about a system. Taking all the equations
of state, however, is equivalent to taking the fundamental relation itself, and hence is sufficient.
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It follows from Euler’s theorem on homogeneous functions that15

S =
1

T
U +

p

T
V − µ

T
N. (3.8)

This equation may be used to find the entropy of the ideal gas as a function of the
extensive parameters U, V,N provided we know 1/T , p/T and µ/T each as a function of
U, V,N . From our empirical investigations, we know the first two as follows:

1/T = 3NR/2U (3.9)

p/T = NR/V. (3.10)

These are the familiar equations of state for the ideal gas. We can work out an explicit
expression for µ/T from the other two since the three intensive parameters are not
independent. This follows from the Gibbs-Duhem relation which is also a consequence
of the fundamental relation being first-order homogeneous (see Appendix B.1). The
fundamental relation of the ideal gas is thus derived to be

S =

!
3

2
R
N

U

"
U +

!
NR

V

"
V −

#
R ln

$
N5/2

V U3/2

%
−K

&
N. (3.11)

This equation may be simplified and substitutions of the equations of state may be
made to express the entropy as a function of the other variables. I prefer to express
the fundamental relation in this form, in order to emphasise the homogeneity of the
fundamental relation and to emphasise the conceptual place of the equations of state as
the derivatives of S with respect to U , V and N .

4 Mixtures, Equilibration and Mixing

We now use this framework to formulate a precise definition of a mixture as a thermo-
dynamic system. My starting point is to recognise that mixtures are, in some sense,
‘composite’ systems formed out of individual ‘subsystems’. For example, a mixture of
hydrogen and helium is, in some sense, a composite system formed out of the individual
hydrogen and helium components. I will therefore begin in Section 4.1 with a precise
and general definition of composite thermodynamic system before using it to define a
thermodynamic mixture in Section 4.2.

While we are analysing mixtures, we cannot avoid giving an analysis of ‘mixing’.
Mixing is typically described as the process whereby both samples of gas, each initially
confined to their half of a container, finally come to occupy the full volume of the
container when the partition dividing them is removed. Thus, Dieks writes that mixing
is the gases “expanding into the same final volume” (Dieks, 2018) and van Lith writes
that we have a mixture when the gases are “spread out over the whole container” (van

15For a proof of this, see Callen (1960, p. 47).
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Lith, 2018). It is readily admitted that equilibrium thermodynamics has nothing to say
about the process of mixing, because it is obviously a non-equilibrium process. But
this provides all the more reason to try to make sense of non-equilibrium talk in an
equilibrium theory. To this end, I will describe thermodynamic equilibrium in general
terms in Section 4.3 before describing mixing in Section 4.4. Roughly, the strategy I
will adopt will be the following. “Removing a partition between two thermodynamic
systems”, means more formally that we remove a constraint on the thermodynamic
variables of a third system, which we call the “mixture” of the original two. Informal
heuristic expressions about the “non-equilibrium process” or the “flow” of extensive
quantities between two systems are shorthand for the removal of this constraint.

Some readers may note that, despite van Kampen (1984) being the “go-to” reference
for modern accounts of Gibbs’ paradox in thermodynamics, his account differs from some
in a noteworthy respect. In particular, van Kampen identifies the paradox as lurking
in Equation (DIF), which is the difference between the entropies of Figures (1c) and
(1d), whereas more modern accounts locate the paradox in the difference between the
entropies of Figures (1a) and (1c). In other words, van Kampen calculated the entropy
difference between a mixture and a pure ideal gas, while modern accounts calculate the
entropy difference between the unmixed state of a mixture and the mixed state.

One can formulate this observation as two slightly different puzzles. Van Kampen’s
puzzle is to try to ground the fundamental relations of ideal gas mixtures and pure ideal
gases in some assumption that may be interpreted as difference and identity. The other
puzzle is to explain why we do not get an entropy increase when we remove a partition
between two identical samples of gas. Both puzzles can be solved. In Section 5, I will give
the derivations of the fundamental relations of ideal gas mixtures and pure ideal gases.
In this Section I will argue that by clarifying what exactly ‘partitions’ and ‘membranes’
are in thermodynamics, and what it means to remove them, we can understand what
happens when the partition is removed.

4.1 Subsystems and Composite Systems

Suppose we have k thermodynamic systems (M (1), f (1)), ..., (M (k), f (k)), whose manifolds
are each given coordinates (U (i), V (i), N (i)) for each i = 1, ..., k. Then we may define the
composite of these individual thermodynamic systems as follows.

Composite System. Let (M (1), f (1)), ..., (M (k), f (k)) be k thermodynamic systems
where the manifolds M (i) can have different dimensions. Then system i is given coordi-

nates X
(i)
1 , ..., X

(i)

dim(M(i))
. Then the thermodynamic system (M, f) where dim(M) = n

is a composite system of (M (1), f (1)), ..., (M (k), f (k)) iff M can be given coordinates

X0, X1, ..., Xn each of which is a function of the coordinates X
(i)
1 , ..., X

(i)

dim(M(i))
for all i.

For each i = 1, ..., k, we say that (M (i), f (i)) is a subsystem of (M, f).

Specifying that the coordinates of the composite system must be functions of the
coordinates of the subsystems incorporates an important assumption about the relation
between the composite system and its subsystems, namely that the composite system
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supervenes on its subsystems: there may be no change in the composite system without
some change in the subsystems. I do not claim that this is the only definition of compos-
ite system possible—there may well be others—but I do claim that it relies on a plausible
thesis about the relation between composite systems and their subsystems. This defini-
tion can help us understand mixtures; my strategy is to understand a thermodynamic
mixture to be a thermodynamic system that contains (at least) two subsystems, which
represent the components of the mixture.

4.2 What is a mixture?

We all have an intuitive understanding of mixtures: they are made by combining two
or more different substances in the very same volume without any chemical reaction
happening; if one were to mix two substances which are the same one would not get a
mixture, but simply more of the same substance. In Section 5, we will explore the precise
sense in which components of a mixture are different, but first we must give a precise
definition of a thermodynamic mixture in the geometric framework. In this Section, I
will discuss and compare two candidates for such a definition. The first is inspired by
many discussions of Gibbs’ paradox which follow van Kampen in treating the ‘partial
pressures’ of the gases as bona fide thermodynamic variables, i.e. as partial derivatives
of the fundamental relation with respect to some extensive variables. I then provide a
second definition which I argue should be preferred since it avoids certain difficulties
with the first.

For simplicity, let us consider an ideal gas mixture consisting of just two components,
denoted 1 and 2. We treat the mixture as a composite system formed out of the individual
systems (M (i), f (i)) for i = 1, 2 where M (i) is given coordinates U (i), V (i), N (i) and f (i)

is the fundamental relation for the ideal gas. The first definition of this mixture we
consider is the composite thermodynamic system (M+, f+) where M+ given coordinates
(U, V1, V2, N1, N2), where U := U (1) + U (2), V1 := V (1), V2 := V (2), N1 := N (1) and
N2 := N (2), and where the fundamental relation is

S = f+(U, V1, V2, N1, N2) =
1

T
U +

p1
T
V1 +

p2
T
V2 −

µ1

T
N1 −

µ2

T
N2 (4.1)

with

1

T
=

3

2
R
N1 +N2

U
; (4.2)

pi
T

= R
Ni

Vi
; (4.3)

µi

T
= R ln

$
Ni(N1 +N2)

3/2

ViU3/2

%
+Ki. (4.4)

In this system, the terms pi/T and the µi/T are well-defined intensive thermody-
namic variables, because pi/T is the partial derivative of f+ with respect to Vi and µi/T
is the partial derivative of f+ with respect to Ni for each i = 1, 2. If this reconstructed
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system is supposed to represent a mixture of components 1 and 2 then it has the fol-
lowing unwelcome feature. Although we recover the partial pressures as thermodynamic
variables by retaining V1 and V2 as extensive variables, we pay a cost: there is no formal
representation of “the volume of the mixture”, a concept so central to the idea of a mix-
ture that we surely would want to retain it in our formal representation. To solve this
problem, we would have to make the ad hoc assumption that volumes V1 and V2 have the
same value and ‘overlap’, i.e. that they refer to the very same volume in physical space.
Now, there does not seem to be anything against doing this, since thermodynamics only
says what the values of these volumes are, not “where in space” the volumes are located.
At best, thermodynamics does not prohibit the use of this assumption. But the fact
that we have to postulate these conditions on the volume variables to make (M+, f+) a
plausible representation of a mixture should indicate to us that we should seek a bet-
ter representation. The cost of recovering partial pressures as genuine thermodynamic
variables is, I think, too expensive.

I would like to propose an alternative characterisation of mixture which avoids this
problem16. This second definition represents an ideal gas mixture as the composite
system (M∗, f∗), formed out of the individual systems (M (i), f (i)) for i = 1, 2, where
M∗ is given coordinates (U, V,N1, ..., Nk), where U := U (1) + U (2), V := V (1) = V (2),
N1 := N (1), N2 := N (2) and the fundamental relation is

S = f∗(U, V,N1, N2) =
1

T
U +

p

T
V − µ1

T
N1 −

µ2

T
N2 (4.5)

where

1

T
=

3

2
R
(N1 +N2)

U
(4.6)

p

T
= R

(N1 +N2)

V
(4.7)

µi

T
= R ln

$
Ni (N1 +N2)

3/2

V U3/2

%
+Ki for i = 1, 2. (4.8)

Under this characterisation, we must think of an ideal gas mixture as a number of
substances, all with the same temperature, occupying the very same volume. This
definition eliminates the problem of ‘overlapping volumes’ by simply having only one
volume variable which we may easily interpret as the ‘volume of the mixture’. But
this means we have to give up the ‘partial pressures’ as thermodynamic variables and
hence give up the typical representation of the mixing process as each gas pushing on a
semipermeable membrane with its corresponding partial pressure. We therefore have to
develop a different account of mixing. To fill this vacuum I have created, I will describe
a representation of mixing based on (M∗, f∗) which makes no reference to semipermeable

16This characterisation is, in fact, the same as Gibbs’. While he did not use the concepts and language
of thermodynamic systems and subsystems I am using here, it is clear that he uses the same extensive
variables and fundamental relation to define a mixture as I do. For completeness, I reconstruct his
discussion of the ideal gas mixture and its fundamental relation in Appendix C.
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membranes. But before we can do this, a preliminary step is needed: let me first review
the concepts of equilibrium and equilibration.

4.3 Equilibrium and Equilibration

Intuitive grasps on equilibrium and equilibration abound. Roughly characterised, a
system is in equilibrium if and only if the macroscopic variables which define the ther-
modynamic state of the system do not change with time.17 However, this rough charac-
terisation is problematic when it comes to saying precisely what it means in the thermo-
dynamic formalism, since there is no time parameter in thermodynamics with respect to
which to express this constancy. Equilibration is characterised as the process of coming
to equilibrium. This invites talk of the flow over time of energy or matter from one
subsystem to another. For the same reason, this characterisation poses challenges when
formulating it in the concepts and formalism of equilibrium thermodynamics: describing
processes mathematically requires changes of quantities with respect to time.

In fact, thermodynamics is equipped with a precise definition of equilibrium which
does not rely on any temporal notion. Consider a thermodynamic system with extensive
variables X0, ..., Xk. The first key step is to imagine this system to be composed of

subsystems such that each subsystem (i) has variables X
(i)
K such that X

(i)
K = λ(i)XK

with
'

i λ
(i) = 1. This implies that for some K, the X

(i)
K for all i may take on any values

consistent with
'

iX
(i)
K = XK . This decomposition of the system into subsystems is

sufficient for us to say what it means for the system to be in equilibrium.

K-Equilibrium. Let (M, f) be a thermodynamic system with variablesX0, ..., Xk which

is composed of n subsystems (M (i), f (i)) for i = 1, .., n such that
'

iX
(i)
K = XK for all

K = 0, ..., k. Then we say that (M, f) is in K-equilibrium if and only if the values of

X
(i)
K for all i are such that the entropy function S(X

(1)
0 , ..., X

(1)
k , ..., X

(n)
0 , ..., X

(n)
k ) :=

'n
i S

(i)(X
(i)
0 , ..., X

(i)
k ) is at an extremum18.

Note that the definition is indexed to an extensive variable XK ; we may choose to
extremise the entropy with respect to any number of the extensive variables, each of
which yields a particular kind of equilibrium. For example, if we choose to extremise
the entropy with respect to U , we get a system in thermal equilibrium. Extremising
S with respect to V yields mechanical equilibrium and with respect to N , chemical

17See, for example, Adkins (1983, p. 7), Baierlein (1971, p. 4) and Blundell and Blundell (2010,
pp. 32–33).

18This means that we have equilibrium when dS = 0. This definition still leaves open the precise
nature of the equilibrium which depends on the sign of d2S. If the second derivative is negative we have
a maximum of the entropy function and we say that the equilibrium is stable. If the second derivative is
positive or zero, we have extrema other than maxima and we say that the equilibrium is unstable.

This characterisation of equilibrium is a variational principle, like the principle of least action in me-
chanics. For a discussion of this analogy and its connection to the arrow of time see Uffink (2001).
Furthermore, this characterisation of equilibrium in terms of a variational principle should be distin-
guished from the so-called Minus First Law, coined in Brown and Uffink (2001).
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equilibrium. In the special case where the system is in equilibrium with respect to all
extensive variables then we make the following definition:

Thermodynamic Equilibrium. A system is in thermodynamic equilibrium if and only
if the system is in K-equilibrium for all K.

Let us illustrate how these definitions work by considering an ideal gas decomposed
into two subsystems along the lines outlined above. For the composite system to be
in equilibrium, the values of the variables U (1), V (1), N (1) and U (2), V (2), N (2) must be
such that they extremise the entropy of the composite system S which, by the additivity
postulate, is given by S = S(1) + S(2). Thus we have that

S = S(1)+S(2) =
1

T (1)
U (1)+

p(1)

T (1)
V (1)− µ(1)

T (1)
N (1)+

1

T (2)
U (2)+

p(2)

T (2)
V (2)− µ(2)

T (2)
N (2). (4.9)

To find the extremum of S we differentiate and set dS = 0. If we allow variation in all
the extensive variables, then we have, for all X = U, V,N , X(1) +X(2) = X where X is
constant implying dX(2) = −dX(1). Therefore we find:

0 =

!
1

T (1)
− 1

T (2)

"
dU (1) +

#
p(1)

T (1)
− p(2)

T (2)

&
dV (1) −

#
µ(1)

T (1)
− µ(2)

T (2)

&
dN (1). (4.10)

dS must vanish for arbitrary values of dU (1), dV (1) and dN (1) so we find the conditions
for thermodynamic equilibrium to be

1

T (1)
=

1

T (2)
;

p(1)

T (1)
=

p(2)

T (2)
;

µ(1)

T (1)
=

µ(2)

T (2)
. (4.11)

Therefore, the ideal gas is at thermodynamic equilibrium when the subsystems have
equal temperature, pressure and chemical potential. These conditions allow us to
calculate the equilibrium values of the subsystems’ extensive variables. For exam-
ple, substituting the equation of state U = (3/2)NRT into 1/T (1) = 1/T (2) yields
U (1)/N (1) = U (2)/N (2). Since U = U (1) + U (2), it follows after some rearrangement
that U (1)/N (1) = U (2)/N (2) = U/N . In the next Section, we will do this for the two
representations of mixing.

How do we recover the concept of equilibration in this framework? Since nothing
‘happens’ in equilibrium thermodynamics, and equilibration is intended to describe some
kind of process, it cannot be precisely articulated. The closest thing we can do is
compare the states of the system whose values of the subsystems’ extensive variables do
not extremise the entropy with those which do. We cannot strictly give an account of
what happens between these states nor, for that matter, can we even say which state
comes ‘earlier in time’. Thermodynamics simply does not come with the conceptual and
formal resources to articulate such thoughts. It is precisely because of this bare storyline
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from non-equilibrium (non-S-extremising) to equilibrium (S-extremising) states that we
feel we have to elaborate on it to bring it more into line with everyday experience and
language. Thus, we may feel compelled to add that the non-equilibrium state occurs
earlier in time than the equilibrium state, and that extensive quantities like energy
and matter spontaneously ‘flow’ between the subsystems in the process of equilibration
as a result of the removal of some ‘partition’ representing a constraint on this flow. It
seems that part of what makes equilibrium thermodynamics such a conceptually slippery
subject is its very simplicity and sparse conceptual landscape; we have to add so much
extra-theoretic, non-equilibrium detail to make intuitive sense of it that, at the end, it
becomes difficult to disentangle what is thermodynamics proper and what is not. Having
said all this, in the next Sections I will help myself to talk of mixing, equilibration,
partitions, and the like for the sake of being concise and readable. If this section serves
for anything, it is to remind us of the extra-theoretic and strictly non-thermodynamic
status of these concepts.

Having understood the definition and structure of equilibrium, we are now able to
bring what we have learnt to bear on mixing and in particular on how to understand
the differences between the two representations of mixtures we have so far articulated.

4.4 What is mixing?

Let us begin by understanding the traditional representation of mixing based on the
representation of mixture reconstructed in Section 4.2. To represent the mixing equi-

libration process, we view (M+, f+) as being composed out of subsystems (M
(1)
+ , f

(1)
+ )

and (M
(2)
+ , f

(2)
+ ) in the way outlined in the definition of K-equilibrium. Mixing is the

transition from the unmixed state (where the values of the subsystems’ extensive vari-
ables do not extremise the entropy) to the mixed state (where they do) as a result of
the removal of a constraint on the flow of the extensive quantities.

In the context of Gibbs’ paradox, the temperatures of the samples each side of the
partition are equal, leaving only the volume and mole number constraints to be removed.
We can think of mixing as removing either the volume constraint or the mole number
constraint, but removing one of them will cause both remaining intensive parameters to
equalise. The transition from the initial to the final state as a result of the removal of
the volume constraint is summarised in Table 1.

This final state may be calculated along the lines explained in Section 4.3. Having
decomposed the system into subsystems, we allow the volume to ‘flow’ between the

subsystems, reaching values of V
(1)
1 , V

(2)
1 , V

(1)
2 and V

(2)
2 which extremise the entropy:

0 = dS =

#
p
(1)
1

T
− p

(2)
1

T

&
dV

(1)
1 +

#
p
(1)
2

T
− p

(2)
2

T

&
dV

(1)
2 , (4.12)

concluding that the condition for equilibrium is p
(1)
1 /T = p

(2)
1 /T and p

(1)
2 /T = p

(2)
2 /T .

Imposing this condition implies that the gases expand to fill the volume of the container,
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(1) (2)

(1) (2)

(1) (2)

(1) (2)

Figure 4: Depiction of mixing represented
as two free expansions. In order for this
to represent a mixture, we are to imagine
that V1 and V2 have the same value and
‘overlap’.

Variable Initial Final

U (1) U/2 U/2

U (2) U/2 U/2

V
(1)
1 V1/2 V1

V
(2)
1 V1/2 0

V
(1)
2 V2/2 0

V
(2)
2 V2/2 V2

N
(1)
1 N1 N1

N
(2)
1 0 0

N
(1)
2 0 0

N
(2)
2 N2 N2

Table 1: Transition from
initial to final state by re-
moval of the volume con-
straint, when representing
mixing on the basis of
(M+, f+).

with final values19 as illustrated in Table 1.
We may calculate the entropy change by calculating the difference between the initial

and final value of S+ = S
(1)
+ +S

(2)
+ . Since it is the volume flowing between the subsystems

that generates this entropy increase and there is no flow of energy or mole number
between the subsystems, we find that the entropy change is the difference between the
initial and final values of the expression

R(N
(1)
1 lnV

(1)
1 +N

(2)
1 lnV

(2)
1 +N

(1)
2 lnV

(1)
2 +N

(2)
2 lnV

(2)
2 ) (4.13)

where we have used the fundamental relation f+ in Equation (4.1). Substituting in the
initial and final values of these variables taken from Table 1, we can calculate that the
entropy change is 2(N1 +N2)R ln 2.

We now turn to the representation of mixing based on (M∗, f∗). In this case, the
mixing process is represented differently, due to the fact that the system has different ex-
tensive variables and hence different kinds of internal constraints on the flow of extensive
quantities.

We assume that the pressures and temperatures of each subsystem are equal by

19These values are calculated as follows. Substituting in the equation of state pV = NRT for the ideal
gas into the conditions of equilibrium p

(1)
i /T = p

(2)
i /T we get N

(1)
i /V

(1)
i = N

(2)
i /V

(2)
i . Given that the

mole numbers of the subsystems remain constant and the volumes are subject to Vi = V
(1)
i + V

(2)
i , we

get N
(1)
i /V

(1)
i = N

(2)
i /V

(2)
i = Ni/Vi. Rearranging to make V j

i for i, j = 1, 2 the subject, we calculate
the values given in Table 1.
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(1) (2)

(1) (2)

Figure 5: Depiction of mixing based on the
thermodynamic system (M∗, f∗).

Variable Initial Final

U (1) U/2 U/2

U (2) U/2 U/2

V (1) V/2 V/2

V (2) V/2 V/2

N
(1)
1 N N/2

N
(2)
1 0 N/2

N
(1)
2 0 N/2

N
(2)
2 N N/2

Table 2: Transition from
initial to final state by re-
moval of the mole number
constraint, when represent-
ing mixing on the basis of
(M∗, f∗).

removing constraints on the flow of energy and volume. However, we assume the system
still has internal constraints on the flow of the mole numbers of the components in place.
If we remove the constraint on mole number, the conditions for chemical equilibrium for

each component will be satisfied: µ
(1)
1 /T = µ

(2)
1 /T and µ

(1)
2 /T = µ

(2)
2 /T as may be easily

verified by running a similar calculation to Equation (4.12) to extremise the entropy.

From these conditions and the initial values given in Table 2, the final values of N
(1)
1 ,

N
(2)
1 , N

(1)
2 and N

(2)
2 may be calculated. The entropy change is obtained by calculating

the initial and final values of S∗ = S
(1)
∗ + S

(2)
∗ which, using the fundamental relation f∗

in Equation (B.16), is the difference between the initial and final values of the expression

R(N
(1)
1 lnN

(1)
1 +N

(2)
1 lnN

(2)
1 +N

(1)
2 lnN

(1)
2 +N

(2)
2 lnN

(2)
2 ) (4.14)

where we substitute in the values of the mole numbers from Table 2. We find ∆S∗ =
2(N1 +N2)R ln 2.

Comparing the representations of mixing, we see that they represent the process quite
differently. In the process based on (M+, f+), mixing is initiated by removing the volume
constraint, while in the process based on (M∗, f∗), mixing is initiated by removing the
mole number constraint. As a result, the calculation of the entropy change is entirely
different (the first relies on a flow of volume between the subsystems, while the second
relies on the flow of mole number). Both calculations happen to give 2(N1+N2)R ln 2. It
is interesting to note that one arrives at the very same numerical answer for the entropy
increase on mixing despite the systems and processes being entirely different. It is not
a coincidence, however, since it follows from Gibbs’ theorem (see Section 2.2) that the
entropy of a mixture of ideal gases is the sum of the entropies each component would
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have if they occupied a container with the same volume and temperature.
In the face of the problems described in Section 4.2, and given that one can recover the

standard numerical answer to the entropy increase on mixing on the basis of my preferred
representation of a mixture, (M∗, f∗), it seems reasonable to abandon (M+, f+) and the
overlapping assumption as a representation of mixtures and instead adopt (M∗, f∗) as a
better representation.

5 Homogeneity and Identity

Our careful formulation of what it means to be a thermodynamic system and what it
means to be a mixture can now be put to work. In this Section, I present a criterion
of identity in thermodynamics that is internal to the thermodynamic formalism, instead
of relying on qualitative or extra-theoretic concepts. Not only is this discussion of quite
general interest, given that similar discussions concerning the identity or equivalence of
systems already occur in the context of other physical theories, but it is also of crucial
importance in the analysis of Gibbs’ paradox.

I will begin by explaining what I take to be the traditional and intuitive view of
identity which is often appealed to in thermodynamics and in discussions of Gibbs’
paradox. Then I will give new and rigorous derivations of van Kampen’s equations
(VK2) and (VK3). Doing this will expose certain assumptions which I will go on to
interpret as difference and identity respectively.

5.1 The Properties View of Identity

On a traditional and intuitive view, the criterion of identity for physical systems appeals
to their physical and chemical properties: two thermodynamic systems are identical if
and only if they have the same intrinsic properties. This is often the case, implicitly,
in discussions of Gibbs’ paradox in thermodynamics. The view is tempting because it
seems to capture the intuitions we have when we say that a box of helium is ‘of the same
kind’ as another box of helium but not of the same kind as a box of hydrogen.

The problem is that such a view is in danger of violating the good physics practice
discussed in the Introduction: the ‘properties’ appealed to are often extra-theoretic, non-
thermodynamic concepts. So, in order for us to respect the practice, something about
the thermodynamic system (MHe, fHe) representing the box of helium must be different
from the thermodynamic system (MH, fH) representing the box of hydrogen, and the
difference must lie either in the manifolds or the fundamental relation. A difference in
the dimension of the manifolds would certainly distinguish two systems. However, this
is not plausible in the hydrogen and helium case, since these gases are each described
by the same thermodynamic variables. If we are to subscribe to the properties view,
any physical and chemical differences between the substances must be found in the
fundamental relations.

Specifying that the thermodynamic system has the van der Waals fundamental rela-
tion is a natural way to incorporate physical and chemical differences in the thermody-
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namic formalism, and to make the intuitive properties view precise. The fundamental
relation for a van der Waals gas20 is

S/N = R ln(V/N − b) + cR ln(u+ aN/V ) + k (5.1)

where a, b, c are constants that will in general depend on the physical and chemical
properties of the gas and k is the constant of integration. The constant a is meant to
capture the change in energy due to intermolecular forces, the constant b is meant to
capture the volume that each molecule of the gas occupies and c is the specific heat
of the substance. The properties which differentiate helium and hydrogen are encoded
by the values of the constants. In this case, while both MHe and MH are of the same
dimension with coordinates U , V and N , the boxes of hydrogen and helium have different
fundamental relations in virtue of having different values for the constants (in some fixed
system of units) and hence, qua van der Waals gas, are different thermodynamic systems.

The problem is that, in practice, boxes of helium and hydrogen at room temperature
and pressure can be modelled, to an extremely good approximation, as ideal gases. And
the fundamental relation of the ideal gas, as we have seen, is not sensitive to any such
constants; it is a function only of U , V and N . Put another way, the ideal gas is only
sensitive to how much stuff there is, not what that stuff is. Therefore, qua ideal gases,
the boxes of hydrogen and helium might appear to be identical since they have the same
manifolds and the same fundamental relation.

We can be much more precise here. When we say that (MHe, fHe) and (MH, fH) have
‘the same’ manifolds and fundamental relations, we mean that these thermodynamic
systems are isomorphic: their manifolds are the same dimension and so we can define
a diffeomorphism ψ : MHe → MH, and their fundamental relations are all ‘the same’ in
the sense that fH = ψ∗fHe. Isomorphism is typically held in high regard as a natural
standard of equivalence or identity21, but it leads us to the absurd conclusion that all
ideal gases are identical.

I take this as a reductio that isomorphism is unsatisfactory as a sufficient criterion of
identity since it fails to capture the practice of modelling two ideal gases as non-identical
(such as in Gibbs’ paradox). Furthermore, appealing to physical and chemical proper-
ties of the atomic constituents to differentiate thermodynamic systems is essentially
appealing to extra-theoretic considerations when specifying the criterion of identity for
thermodynamic systems. Therefore, we should try and find a precise sense in which ideal
gases can be different by formulating a general criterion of identity for thermodynamic
systems which appeals only to the formalism and concepts of thermodynamics itself.

This strategy I adopt is inspired by considering mixtures. Two different gases com-
bined will form a mixture, while two identical gases combined is just more of the same
gas. Thus, the strategy is to change the question. Rather than picking up any two
thermodynamic systems and asking whether they are identical, we should instead only
be able to ask whether two thermodynamic systems are identical if they are each parts

20Note that this is not the more frequently discussed equation of state of the van der Waals gas:
p = RT/(V − b)− a/V 2. It may, however, be easily derived from this fundamental relation.

21See, for example, Weatherall (2018, p. 331).
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of a third system which is the composite of the two. How the composite system is de-
fined yields the answer to the identity question. This Section will execute this strategy
in detail. I begin by providing rigorous derivations of van Kampen’s equations (VK2)
and (VK3). This will expose crucial assumptions in the derivations which I will go on
to generalise and interpret as difference and identity. The criterion at which I arrive
departs in significant and interesting ways from the traditional and intuitive notion of
identity analysed in terms of properties.

5.2 Deriving equations (VK2) and (VK3)

Van Kampen’s Equation (VK2) purports to express the entropy of a mixture. In this
Section, I will show that Equation (VK2) follows from the definition of mixture as
(M∗, f∗). The definitions for the variables for this thermodynamic system, which were
first given in Section 4.2, are summarised in Table 3. The physical justification for these
definitions are given in Appendix B.2.

Variable Definition

S
'

i S
(i)

U
'

i U
(i)

V V := V (1) = ... = V (k)

Ni
'

iN
(i) for i = 1, ..., k

Table 3: Definitions of the variables
for (M∗, f∗) for deriving Equation
(VK2).

Variable Definition

S
'

i S
(i)

U
'

i U
(i)

V
'

i V
(i)

N
'

iN
(i)

Table 4: Definition
of the variables for
(MVK3, fVK3) for deriv-
ing Equation (VK3).

With these definitions, the fundamental relation of the ideal gas mixture becomes

S = f∗(U, V,N1, ..., Nk) =
1

T
U +

p

T
V −

(

i

µi

T
Ni (5.2)

where

1

T
=

(

i

3

2
R
Ni

U
(5.3)

p

T
=

(

i

R
Ni

V
(5.4)

µi

T
= R ln

)

*+
Ni

,'
j Nj

-3/2

V U3/2

.

/0+Ki for i = 1, ..., k (5.5)

By eliminating U in favour of T , defining the ‘partial pressures’ pi := Ni/V =
pNi/(

'
iNi), and absorbing all constants into the Ki, we recover van Kampen’s Equa-

tion (VK2) for k components in the following form:
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S =
5

2

#
k(

i=1

Ni

&
R lnT −

k(

i=1

(NiR ln pi) +

#
k(

i=1

NiKi

&
(VK2′)

where the summation indices run over the number of components in the mixture.
We now turn to deriving Equation (VK3). We assume we have k thermodynamic sys-

tems (M (1), f (1)), ..., (M (k), f (k)), whose manifolds are given coordinates or the pure ideal
gas. Out of these, we look to define a composite thermodynamic system (MVK3, fVK3)
such that Equation (VK3) may be derived from its fundamental relation and equations
of state. This equation is supposed to give the entropy when gases A and B are ‘the
same’. So it gives the entropy of a system which we create by combining two ‘identical’
gases A and B to get ‘more of the same gas’. Thus the final system is supposed to be the
same pure substance as A and B, just more of it, so the coordinates of MVK3 are going
to be S,U, V,N . The definitions of the variables for (MVK3, fVK3) are summarised in
Table 4 and their physical justification is given in Appendix B.3.

Applying these definitions, we arrive at the fundamental relation

S = fVK3(U, V,N) =
1

T
U +

p

T
V − µ

T
N (5.6)

with the equations of state

1

T
=

3

2
R
N

U
; (5.7)

p

T
= R

N

V
; (5.8)

µ

T
= R ln

$
N5/2

V U3/2

%
+K. (5.9)

If we eliminate U in favour of T and V in favour of p, and define p(i) := N (i)RT/V
while also writing N =

'
iN

(i) and p =
'

i p
(i) we recover van Kampen’s (VK3) in the

following form:

S =
5

2
R

#
k(

i

N (i)

&
lnT −

#
k(

i

N (i)

&
R ln

$
k(

i

p(i)

%
+

#
k(

i

N (i)

&
K (VK3′)

At this point, we may compare our Equations (VK2′) and (VK3′) with van Kampen’s
(VK2) and (VK3) and notice an interesting and important feature of the interpretation
of the indices. Van Kampen uses A and B, which are supposed to label the gases, to
index the variables in both equations. But what is referred to with ‘the gases’? What
is the relation of A and B to the composite system in each case?

What we learn from the derivations carried out in this Section, is that use of the
indices A and B is ambiguous. It is at least clear that they are meant to be subsystems
of the composite in some sense, but in what sense, precisely? Here, I have shown that the
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gases can be subsystems of the composite in two different ways. In the next Section, we
will investigate to what extent these senses can be interpreted as difference and identity.
But at the very least we can note here that van Kampen’s use of the same indices in
each equation covers up the fact that the indices take on quite different interpretations.
Let us start with comparing Equation (VK2′) and van Kampen’s (VK2). In our (VK2′),
the subscript indices i run over the components in the mixture. However, while each
Ni is a proper thermodynamic variable in the sense that each is a coordinate of M , the
so-called ‘partial pressures’ pi are not thermodynamic variables in the sense that they
are not partial derivatives of f∗ with respect to any configuration variable.22 In (VK3′)
the indices run over subsystems. In this case, neither the N (i), the mole number of
subsystem (i), nor the p(i), the pressure of subsystem (i) is a proper thermodynamic
variable since the coordinates of M are U, V,N . Therefore, while van Kampen wrote his
entropies as functions of pA, pB, T,NA, NB for both (VK2) and (VK3) respectively, they
really should be written as functions of p, T,NA, NB and p, T,N respectively.

In this Section, we have given rigorous derivations of each of van Kampen’s equations.
This has clarified the status and interpretation of the indices A and B used by van
Kampen in his expression of the equations. We have learned that it is not as simple
as “letting A and B represent two gases” which may or may not be identical; we have
to specify the precise nature of the subsystem-composite system relationship before
interpreting the indices. The purpose of examining detailed derivations of these equations
is precisely so that we may examine whether any of the assumptions behind the equations
may be interpreted as saying that the systems (M (i), f (i)) are ‘different’ or ‘identical’ in
some sense. We now turn to this issue.

5.3 Criterion of Identity

Here I propose a criterion of identity for thermodynamic systems which does not rely on
the traditional and intuitive characterisation in terms of properties, but rather adheres
to our mantra by expressing identity in purely thermodynamic terms. Van Kampen’s
Equation (VK2) purports to be the entropy of a mixture of ‘different’ substances while
(VK3) purports to be the entropy when the substances are ‘the same’. With our deriva-
tions of Equations (VK2′) and (VK3′), we have uncovered the assumptions behind these
equations and in this section I will argue that these assumptions can be interpreted as
‘difference’ and ‘identity’ respectively.

In order to state the precise criterion of identity for thermodynamic systems, we
must introduce some formal machinery. Given a chart (U,ϕ) on M where U ⊆ M and
ϕ : U → Rk, let us adopt the notation (U,λϕ) to denote the chart that ‘scales’ each of the
coordinate components of ϕ(U) ∈ Rk by λ, i.e. λϕ is defined by xi ◦ λϕ(p) := λxi ◦ϕ(p)
for each coordinate component xi : Rk → R for i = 1, .., k and for all p ∈ U .

22Callen (1960, p. 337) emphasised this point. He writes “The partial pressures are purely mathemat-
ical constructs with no direct physical meaning.” This is a little cryptic, but he may be taken to mean
that these pressures are not derivatives of the fundamental relation with respect to any configuration
variable.
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Identity of Thermodynamic Kinds. Thermodynamic systems (M, f) and (M ′, f ′)
are of ‘identical kinds’ iff:

• There exists a diffeomorphism ψ : M → M ′ and

• If, for any chart (U,ϕ) on M , (ψ(U),ϕ′) is a chart on M ′ such that ϕ′ = λϕ ◦ψ−1

(that is, ϕ′ is the scaled chart pushed forward to M ′) then:

(f ′ ◦ ϕ′−1)(X ′
1(ψ(p)), ..., X

′
k(ψ(p))) = λ(f ◦ ϕ−1)(X1(p), ..., Xk(p)) (ID)

for all p ∈ U , and where Xi := xi ◦ϕ and X ′
i := xi ◦ϕ′ are the coordinate maps on

M and M ′ respectively.

This criterion of identity for thermodynamic systems is fully general (it does not
just apply to ideal gases) and specifies a criterion for each element of the ordered pair.
The first criterion requires (at least) that the manifolds be of the same dimension. To
understand the second criterion we may abuse notion somewhat and say that for (M, f)
and (M ′, f ′) to be of ‘identical kinds’ means that if X ′

i = λXi for some positive real λ
then we have that f ′(X ′

1, ..., X
′
k) = λf(X1, ..., Xk). Essentially, this criterion of identity

says that two thermodynamic systems are identical if and only if, when the coordinates
on M are scaled versions of the coordinates on M ′, then the fundamental relation f
on M is a scaled version of the fundamental relation f ′ on M ′. We can see that this
criterion relies on f and f ′ being first-order homogeneous functions of their coordinates:
f ′(X ′

1, ..., X
′
k) = f ′(λX1, ...,λXk) = λf(X1, ..., Xk).

The basic idea that this criterion tries to capture is the following: k thermodynamic
systems are identical if and only if, when they are composed, the resulting composite
system is a scaled version of each of the subsystems. Thus, the criterion of identity is
based on the relation between a composite system and its subsystem and the assumption
of homogeneity. We will discuss the philosophical implications of this criterion after I
show that it does the job: to precisely draw a wedge between Equations (VK2) and
(VK3). This directly addresses the contradiction that is at the heart of van Kampen’s
puzzle. Using this criterion of identity, I will show that the subsystems of the system
(MVK2, fVK2) are all different, and the subsystems of the system (MVK3, fVK3) are all
identical.

We begin by showing that any subsystem (M (i), f (i)) of (MVK3, fVK3) is identi-
cal to (MVK3, fVK3). We note first that the manifolds M (i) and MVK3 are of the
same dimension and hence (given also standard smoothness conditions) there exists a
diffeomorphism between them. In defining the coordinates of the composite system,
we found the relation between them to be λiX = X(i) for X = U, V,N and where
λi := N (i)/

'
iN

(i). This is just to say that the coordinates of the systems are scaled
versions of each other. Therefore, since the fundamental relations are first-order homo-
geneous, we have f (i)(U (i), V (i), N (i)) = f(λiU,λiV,λiN) = λif(U, V,N). What we have
shown is that each of the subsystems (M (i), f (i)) is identical to the composite system
(MVK3, fVK3). In the case of VK2, the identity condition for the manifold fails: the
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dimension of MVK3 is not the same as the dimension M (i) so there can be no diffeo-
morphism between them. Thus, the composite system is not identical to any of the
subsystems. We may look at the difference between VK2 and VK3 a different way. For
VK2, the mole numbers N (i) of the subsystems were defined to be the mole numbers Ni

of the individual components of the composite system. It is essentially this which means
that the substances i whose quantities are denoted by the variables Ni are all different:
they are independently variable components and hence form a mixture when combined.
In contrast, the mole numbers N (i) of the subsystems of (MVK3, fVK3) were defined to
be part of the total mole number N =

'
iN

(i). It is in this sense that the composite
system is just “more of the same kind of stuff” as the subsystems (M (i), f (i)).

This criterion defines an identity relation between the subsystems and the composite.
One might object that these should not be the relata. Rather, the pertinent question is
whether identity holds, not between the subsystem and the composite, but between the
subsystems themselves. What we really want is a criterion of identity for thermodynamic
systems which will tell us, upon composing these systems, when we get a mixture and
when we just get more of the same stuff. This is a natural response and is motivated by
a traditional conception of identity where we can just pick up two systems and compare
them to determine whether identity holds or not. I respond to this by arguing that it is
this kind of thinking that we must avoid when considering identity in thermodynamics.
The considerations at the beginning of the Section helped us see this; only by dispensing
of this thinking and adopting the criterion of identity can we consider boxes of hydrogen
and helium, qua ideal gases, to be different. The question of identity between two
systems cannot even arise unless they standing in some subsystem-composite relation.

This is not to say that the traditional conception is wrong. Rather, it is the answer
to a different question. When we ask whether two things are identical, there are two
things we might mean: (1) Are the two physical objects identical? and (2) Are the two
representations of the two physical objects identical? The traditional conception in terms
of properties would naturally be applied when we are asking the question of physical
objects, but in fact we are not concerned with actual physical systems at all. The task
we have set ourselves is finding the criterion of identity for representations of our boxes
of hydrogen and oxygen qua thermodynamic systems. One may well wonder whether we
should apply the same criterion to the representations of the systems as to the systems
themselves but, as we saw earlier, this leads to some uncomfortable conclusions; if we
represent the boxes of hydrogen and oxygen as van der Waals gases, then the criterion
of identity as defined above does indeed amount to the same thing as the traditional
property view, since the values of the constants a, b and c in the fundamental equation
for the van der Waals gas reflect the physical and chemical properties of the gases. The
differing properties of hydrogen and oxygen manifest as different values of the constants
which results in different fundamental relations. But if we represent the gases as ideal,
and if we continue to insist on the traditional conception based on properties, then we
arrive at the conclusion that all ideal gases are identical by this criterion. There would
then be no such thing as an ideal gas mixture, since all we would get on combining
ideal gases is more ideal gas, regardless of the kind of gas the subsystems are meant
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to represent. This seems like an unnecessarily radical conclusion, since we want to
continue to talk of ideal gas mixtures as composite systems formed from subsystems
which themselves are ideal gases but still different from each other in some sense. The
criterion I defined provides such a sense, and the difference between van Kampen’s
equations amounts to the distinction between difference and identity in this sense.

6 Conclusion

In this paper, I have given new definitions of ‘identity’ and ‘mixture’ purely in the
concepts and formalism of thermodynamics, thereby adhering to the good practice stated
at the beginning of this paper. With these definitions, I provided a new perspective on
and solution to Gibbs’ paradox which arose because we lacked thermodynamic definitions
of those terms.

But this paper was about so much more than just Gibbs’ paradox. Just like other
paradoxes in the history of philosophy, it was worth thinking about, not just for the
pleasure of solving a (admittedly niche) problem in the foundations of physics, but be-
cause it points to deep, foundational issues which merit investigation. The foundational
items that have been highlighted and clarified on our journey to this solution are numer-
ous: the definitions of and distinction between extensive and intensive variables is crisp
and precise; a definition of a thermodynamic system was proposed in geometric terms
with the fundamental relation taking centre stage; the link between the homogeneity of
thermodynamic systems and the scaling symmetry of the fundamental relation played
a key role in the definition of identity; the notions of subsystem and composite system
received a precise and general analysis, and the role of the entropy extremum postulate
in the definition of equilibrium and equilibration was emphasised. Gibbs’ paradox has
turned out to be surprisingly fruitful.

The philosophical implications of the proposed criterion of identity for thermody-
namic systems are particularly interesting. A plausible criterion of identity in terms of
isomorphism of the systems’ formal structures turned out to lead to unwelcome conclu-
sions. The strategy I developed was to define the ‘difference’ between the systems as the
failure of an identity relation that holds between subsystems of a composite rather than
between systems themselves; if two thermodynamic systems are not subsystems of some
composite, then the question of their identity cannot even arise.

The traditional conception of identity which appeals to the intrinsic physical and
chemical properties of the atomic constituents of the thermodynamic systems is purely
heuristic since the properties of atoms are manifestly not in the realm of macroscopic
thermodynamics. But there is a stronger reason we should not appeal to such concepts:
thermodynamics is an extremely powerful and general theory for when we do not have
access to the underlying microphysics of physical systems. As it happens, in the case of
gases, we do know about the physics of the micro-constituents and this may be why we are
naturally attracted to expressing identity in terms of the properties of those constituents.
But, in general, we should not assume that we have access to the microphysics and so
we should not let definitions of concepts such as identity to be tied to it. This is why we
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strived to explicate identity of thermodynamic systems in purely thermodynamic terms.
Thermodynamics, expressed in the geometric formulation presented here, is an ex-

tremely powerful and general theory for modelling and predicting the behaviour of phys-
ical systems when the underlying microphysics is unknown, ignored or inaccessible. The
full philosophical implications of this formulation have yet to be fully explored but, if
this analysis is anything to go by, is sure to be fruitful.

A Extensive and Intensive Variables

Extensive variables are often described as those thermodynamic variables which scale
with the ‘size’ of the system. While this characterisation does capture an aspect of
Equation (3.4), it does not capture its full significance, and is not stated with full math-
ematical rigour: what does it mean to ‘scale’? What is meant by ‘size’? Is it the volume?
Mole number? Both?

A better way to interpret this property is as expressing that a thermodynamic system
is homogeneous23. Roughly, this means that the system has a symmetry, that it ‘looks
the same’ on all scales. But this is too rough to be able to tell what it is we should
scale and what remains invariant under such a symmetry. Here is how to make it more
precise.

Use the configuration variables {X0, X1, ..., Xk} to define a new set obtained by
multiplying each by some positive real number λ:

{λX0,λX1, ...,λXk}. (A.1)

If we interpret the variables {X0, X1, ..., Xk} to be necessary and sufficient for character-
ising the ‘quantity’ of a substance, then there is a sense in which the state of the system
defined by the variables {λX0,λX1, ...,λXk} is ‘like’ the system defined by variables
{X0, X1, ..., Xk} and yet also ‘different.’ The variables correspond to a different quan-
tity of the same substance, related to the previous quantity by the scaling parameter
λ. The precise sense in which this new system is ‘like’ the old one is if the fundamental
relation is invariant under the transformation Xi → λXi. Applying this transformation,
Equation (3.1) becomes

λX0 = f(λX1, ...,λXk). (A.2)

If f is a first-order homogeneous function of the variables X1, ..., Xk, i.e. if it satisfies
the homogeneity assumption of Equation (3.2), then we have

λX0 = f(λX1, ...,λXk) = λf(X1, ..., Xk) =⇒ X0 = f(X1, ..., Xk). (A.3)

That is, if f is a first-order homogeneous function of the variablesX1, ..., Xk, the transfor-
mation Xi → λXi is a symmetry of the fundamental relation. It is in this mathematical
sense that thermodynamic systems are homogeneous.

23This link between the mathematical sense of homogeneity and the physical sense has been made by
Tisza (1966).
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This leads us to a precise way to understand what it means for a variable to be
extensive. Extensive variables are the configuration variables in terms of which the
fundamental relation is defined and whose scaling preserves the functional form of the
fundamental relation. This way, we avoid ambiguity in the word ‘size’ and we also avoid
‘brute fact’ claims often seen in the discussion of extensivity that volume and mole
number are ‘obviously’ extensive. Extensivity, as characterised here, is a formal notion,
independent of what physical interpretation the configuration variables have.

B Deriving Equations (VK1), (VK2) and (VK3)

B.1 Equation (VK1)

Throughout van Kampen’s derivation of Equation (2.3) (which provides the base block
for deriving Equations (VK1)–(VK3)), he treats N as a constant. We can see this
explicitly in his statement of the First Law, Equation (2.1), in which the only variables
are U, S, V, T and p. It is also implicit in his derivation since, although he does not
write it down explicitly, it is necessary to assume that dU = (3/2)NRdT follows from
U = (3/2)NRT in order to derive Equation (2.3). It is again implicit in the derivation
of Equation (2.3) where C absorbs terms containing N (this happens in the step from
Equation (3.7) to Equation (2.3)).

But he also seems to want to treat N as a variable, for, towards the beginning of
his article, he claims that the Gibbs paradox “is a consequence of the way in which the
entropy depends on the number of molecules, and I therefore start out in section 2 by
sketching how this dependence is established in thermodynamics.” (van Kampen, 1984,
p. 304). He is therefore clearly engaged in the business of finding entropy as a function
of N which is clearly treating N as a variable.

Therefore we can see that he begins his analysis apparently stating forcefully that it is
a variable and, indeed, that the whole Gibbs paradox rests on this functional dependence,
and yet he carries out his derivation of Equation (2.3) assuming it is a constant, before
using his conventions to turn it back into a variable again. Flipping between these
interpretations of N is clearly being inconsistent; it cannot be both a constant and a
variable. So, which is it? From the point of view of giving a rigorous mathematical
derivation of the thermodynamic entropy for the ideal gas, this is a problem.

In this Section, I derive (VK1) by assuming that N is a variable. We begin by
assuming that the fundamental relation of the ideal gas takes the form

S = f(U, V,N) (B.1)

Taking the derivative, we see that this takes on the familiar form of the first law of
thermodynamics:

TdS = dU + pdV − µdN (B.2)

This fundamental relation is assumed to be first-order homogeneous and so it follows
from Euler’s theorem on homogeneous functions that

S =
1

T
U +

p

T
V − µ

T
N (B.3)
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We know the following two equations of state from experiment:

1/T = 3NR/2U ; p/T = NRV. (B.4)

We may derive an expression for µ/T from these two because the intensive parameters
of a first-order homogeneous relation are not independent. We may show this as follows.

Taking the derivative of Equation (B.3), we have:

dS = Ud

!
1

T

"
+

1

T
dU + V d

, p

T

-
+

p

T
dV −Nd

,µ

T

-
− µ

T
dN (B.5)

Subtracting from this Equation (B.2) we get what is known as the Gibbs-Duhem relation:

0 = Ud

!
1

T

"
+ V d

, p

T

-
−Nd

,µ

T

-
(B.6)

This equation shows that the intensive parameters are not independent, since it may be
integrated to find the third equation of state from the other two. Taking the derivative
of Equations (B.4) and substituting into Equation (B.5) we get

Nd
,µ

T

-
= U

!
3R

2U
dN − 3NR

2U2
dU

"
+ V

!
R

V
dN − NR

V 2
dV

"
(B.7)

from which it follows that

d
,µ

T

-
=

5R

2N
dN − 3R

2U
dU − R

V
dU. (B.8)

We may now integrate this to get

µ

T
=

5

2
R lnN − 3

2
R lnU −R lnV +K = R ln

$
N5/2

U3/2V

%
+K (B.9)

where K is the constant of integration.
Substituting the equations of state (B.4) and (B.9) into (B.3) we get the fundamental

relation of the ideal gas as a function of U, V,N . It is easy to check that simplifying this
equation and eliminating V and U in favour of p and T using the equations of state, we
arrive at Equation (VK1).

B.2 Equation (VK2)

In this Appendix, I give detailed physical justifications for the definitions of the variables
for (M∗, f∗) which I claim represents the ideal gas mixture.

• S is defined by the additivity postulate to be:

S :=

k(

i

S(i) =

k(

i=1

f (i)(U (i), V (i), N (i)) (B.10)

where each of the f (i) is the fundamental relation of a single ideal gas as given in
Equation (3.11).
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• U is defined to be:

U :=

k(

i=1

U (i). (B.11)

This definition expresses the physical assumption that the energy of the composite
system is the sum of the energies of the individual subsystems. This is a typical
physical assumption for the ideal gas mixture which is often motivated by a ‘billiard
ball’ model of an ideal gas in which there are no interactions between the individual
molecules. We also impose the condition

∂f (1)/∂U (1) = ... = ∂f (k)/∂U (k) (B.12)

which expresses the assumption for the simple ideal gas mixture that the tem-
peratures of all the subsystems are the same. This long series of equalities is
U (1)/N (1) = ... = U (k)/N (k) where it can be shown that U (i)/N (i) = U/

'
iN

(i)

for all i. This assumption does not form part of the definition of the variable U ;
it is an additional assumption made to incorporate a physical fact about the type
of system we are dealing with.

• Variable V is defined to be:

V := V (1) = ... = V (k) (B.13)

This definition states that the volumes of the subsystems are all equal and that
the volume of the mixture V is equal to any one of those. This incorporates part
of the definition of mixture which says that the components all occupy the very
same volume and, therefore, that the volumes of the components are identical. We
also impose the condition

∂f/∂V :=

k(

i=1

∂f (i)/∂V (i) (B.14)

which, together with Equation (B.12), expresses the assumption that the pressure
of the mixture is equal to the sum of the pressures of the individual components.
This is more familiarly known as Dalton’s Law, and is identical to the assumption
used by Gibbs in his derivation expressed in Equation (C.3).

• The variables Ni are defined to be:

Ni := N (i) for i = 1, ..., k (B.15)

This definition states that the mole number of component i in the mixture is equal
to the mole number of subsystem (i). It also captures precisely the intuition that
components of a mixture are subsystems of the mixture.
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With these definitions and assumptions the fundamental relation of the ideal gas
mixture becomes

S = f∗(U, V,N1, ..., Nk) =
1

T
U +

p

T
V −

(

i

µi

T
Ni (B.16)

where

1

T
=

(

i

3

2
R
Ni

U
(B.17)

p

T
=

(

i

R
Ni

V
(B.18)

µi

T
= R ln

)

*+
Ni

,'
j Nj

-3/2

V U3/2

.

/0+Ki for i = 1, ..., k (B.19)

From this explicit fundamental equation, it is easy to see that the pair (M∗, f∗) is a
thermodynamic system.

By eliminating U in favour of T , defining the ‘partial pressures’ pi := Ni/V =
pNi/(

'
iNi), and absorbing all constants into theKi, we recover van Kampen’s Equation

(VK2) for k components in the following form:

S =
5

2

#
k(

i=1

Ni

&
R lnT −

k(

i=1

(NiR ln pi) +

#
k(

i=1

NiKi

&
(VK2′)

where the summation indices run over the number of components in the mixture.

B.3 Equation (VK3)

The variables for (MVK3, fVK3) are defined as follows.

• S is defined, as before, by the additivity postulate:

S :=

k(

i

S(i) =

k(

i=1

f (i)(U (i), V (i), N (i)). (B.10)

• As before, U is defined to be:

U :=

k(

i=1

U (i). (B.11)

with
∂f (1)/∂U (1) = ... = ∂f (k)/∂U (k) (B.12)

which corresponds to equality of temperatures. Again, this long series of equalities
is U (1)/N (1) = ... = U (k)/N (k) where it can be shown that U (i)/N (i) = U/

'
iN

(i)

for all i. It follows that U (i) = UN (i)/
'

iN
(i).

34



• V is defined to be:

V :=

k(

i

V (i) (B.20)

This definition states that the volume of the whole is the sum of the volumes of
the subsystems and is thus quite different from the definition expressed in (B.13).
We further impose the condition

∂f (1)/∂V (1) = ... = ∂f (k)/∂V (k) (B.21)

which, together with (B.12), is the assumption of mechanical equilibrium, i.e.
that the pressures of the subsystems are equal. The long series of equalities is
N (1)/V (1) = ... = N (k)/V (k) where it can be shown that V (i) = V N (i)/

'
iN

(i).

• N is defined to be:

N :=

k(

i=1

N (i). (B.22)

This assumption states that the mole number of the composite system is the sum
of the mole numbers of the subsystems. With this definition, we are no longer con-
sidering simple mixtures, which always have more than one configuration variable
interpreted as mole number. Here, the composite system has one configuration
variable interpreted as mole number and so it is not a mixture.

It follows from the Gibbs-Duhem relation that the intensive variables temperature,
pressure and chemical potential are not independent. Therefore, from the previous
requirements of equality of temperatures and pressures, it follows that the chemical
potentials will be equal. Hence, we have that

∂f (1)/∂N (1) = ... = ∂f (k)/∂N (k) (B.23)

which, together with (B.12), is the assumption of chemical equilibrium, meaning
that there is no transfer of matter from one subsystem to another.

Applying these definitions, we arrive at the fundamental relation

S =
1

T
U +

p

T
V − µ

T
N (B.24)

with the equations of state

1

T
=

3

2
R
N

U
; (B.25)

p

T
= R

N

V
; (B.26)

µ

T
= R ln

$
N5/2

V U3/2

%
+K. (B.27)
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If we eliminate U in favour of T and V in favour of p, and define p(i) := N (i)RT/V
while also writing N =

'
iN

(i) and p =
'

i p
(i) we recover van Kampen’s (VK3) in the

following form:

S =
5

2
R

#
k(

i

N (i)

&
lnT −

#
k(

i

N (i)

&
R ln

$
k(

i

p(i)

%
+

#
k(

i

N (i)

&
K. (VK3′)

C Gibbs’ Derivation of the Fundamental Relation of an
Ideal Gas Mixture

In this Section, I reconstruct Gibbs’ derivation of the fundamental relation of an ideal
gas mixture. While he does not explicitly adopt the definition of thermodynamic system
I propose, it is clear that he takes (M∗, f∗) to be the definition of an ideal gas mixture.
That is, he takes the extensive variables which describe the thermodynamic state of a
mixture to be S,U, V,N1, ..., Nk for a mixture of k components. This may be deduced
from the following comment:

“[I]f we consider the matter in the mass as variable, and write N1, ..., Nk for
the quantities of the various substances 1, ..., k of which the mass is composed,
U will evidently be a function of S, V , N1, ..., Nk and we shall have for the
complete value of the differential of U

dU = TdS − pdV + µ1dN1 + ...+ µkdNk

µ1, ..., µk denoting the differential coefficients of U taken with respect to
N1, ..., Nk.” (Gibbs, 1878, p. 116)

Here, I think it is reasonable to reconstruct Gibbs as stating that the variables for
a thermodynamic system of a homogeneous mass consisting of various substances are
S,U, V,N1, ..., Nk. It differs from the variables for a pure substance only in the number
of variables denoting the quantities of the substances.

Having settled on his choice of variables, he begins his discussion of the ideal gas
mixture with the following principle:

“The pressure in a mixture of different gases is equal to the sum of the pres-
sures of the different gases as existing each by itself at the same temperature
and with the same value of its [chemical] potential.” (Gibbs, 1878, p. 215)

He goes on to express this principle in the formalism of thermodynamics as follows. We
take the expression for µ/T in Equation (B.9) and write it as a function of pressure and
temperature by judicious substitution of the equations of state for the ideal gas. This
yields:
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µ

T
= R ln p− 5

2
R lnT +K (C.1)

where K is a constant. We may rearrange this for p to give

p = Ceµ/TT 5/2 (C.2)

where C is a constant absorbing all the constant terms that appear in the course of the
substitutions. This equation allows us to express the principle Gibbs described. The
pressure of an ideal mixture of n components

p =

n(

i

Cie
µi/TT 5/2. (C.3)

That is, the pressure of the mixture is the sum of the individual pressures each of the
gases would have if they were at temperature T and chemical potential µi. Gibbs writes:

“It will be legitimate to assume this equation provisionally as the funda-
mental equation defining the ideal gas mixture, and afterwards to justify the
suitableness of such a definition by the properties which may be deduced
from it.” (Gibbs, 1878, p. 216)

It is interesting to note Gibbs’ claim that Equation (C.3) is a fundamental relation.
We have to do a bit more work to understand why, since it does not take the form of
the fundamental relation given in Equation (3.1), i.e. it is not expressing a relation
between the extensive variables. In fact, all the variables appearing in Equation (C.3)
are intensive. Therefore, before we examine Gibbs’ conclusions from Equation (C.3), we
need to understand why it is a fundamental relation. a’;aAA

Let (M, f) be a thermodynamic system with variables X0, ..., Xk and first-order
homogeneous fundamental relation between the extensive variables

X0 = f(X1, ..., Xk). (C.4)

Let us assume that we have an explicit form for this relation. Then we can derive explicit
expressions for the intensive parameters, which we denote

Fi := ∂f/∂Xi for i = 1, .., k (C.5)

as functions of X1, ..., Xk. Let us also consider the expression

g(F1, ..., Fk) := X0 −
k(

i=1

FiXi (C.6)

which is the full Legendre transform of the fundamental relation f . Eliminating X0

from this expression using Equation (C.4) and then eliminating the Xi from that using
Equation (C.5), we arrive at a relation between all the intensive parameters. In fact,
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because Equation (C.4) is first-order homogeneous, by Euler’s theorem it can be written
as

X0 =

k(

i=1

XiFi. (C.7)

Substituting Equation (C.7) into (C.6) it follows that

g(F1, ..., Fk) = 0 (C.8)

which is the desired explicit relation between the intensive parameters we have been
seeking.

The converse is also true: we can find the explicit relation between the extensive
parameters assuming we have an explicit relation between the intensive parameters.
Therefore, let us assume we have such an explicit relation g(F1, ..., Fk) = 0. X0 is
given by Equation (C.7), so to find X0 as a function of X1, ..., Xk, we must find each
Fi as a function of X1, ..., Xk. To do this, note that the derivative of Equation (C.6) is
dg = dX0 −

'k
i=1 (XidFi + FidXi), and note that it follows from Equation (C.4) that

dX0 =
'k

i=1 FidXi which means that dg = −
'

iXidFi. From this we deduce

−Xi =
∂g

∂Fi
for i = 1, ..., k (C.9)

which we can then use to eliminate F1, ..., Fk in favour of X1, ..., Xk in Equation (C.7),
yielding an explicit relation X0 = f(X1, ..., Xk) between the extensive variables.

With this clarification, we can better understand and reconstruct Gibbs’ reasoning
in which he derives certain thermodynamic properties from Equation (C.3) and, even
though he does not explicitly do it, I will show how to derive the extensive variable
fundamental relation of the ideal gas mixture from Equation (C.3).

The differential of Equation (C.3) is

dp =
∂p

∂T
dT +

n(

i

∂p

∂µi
dµi (C.10)

The Gibbs-Duhem relation derived from the fundamental relation in the energy repre-
sentation for the thermodynamic system (M∗, f∗) is

0 = SdT − V dp+

n(

i

Nidµi (C.11)

which rearranges to

dp =
S

V
dT +

n(

i

Ni

V
dµi (C.12)
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Comparing (C.12) and (C.10) we derive that

S/V =

n(

i

!
CiT

3/2eµi/T

!
5

2
− µi

T

""
(C.13)

Ni/V = CiT
3/2eµi/T (C.14)

Substituting (C.14) into (C.3) and (C.14) into (C.13) Gibbs obtains, respectively:

p =
(

i

NiT

V
; (C.15)

S =
(

i

!
3

2
NiR lnT −NiR ln

Ni

V
+NiCi

"
. (C.16)

None of these preceding equations are fundamental relations between the extensive
variables, however. In order to derive the expression for the fundamental relation, we
must find an expression for U . This can be done by substituting the expressions for S/V ,
Ni/V and p into the fundamental relation S = f(U, V,N1, .., Nk) expressed, according
to Euler’s theorem, as

U = TS − pV +

k(

i=1

µiNi (C.17)

which yields U = (3/2)R (
'

iNi)T . In sum, we have worked out the following equations
of state:

1

T
=

(

i

3

2
R
Ni

U

p

T
=

(

i

R
Ni

V

µi

T
= R ln

)

+
Ni

,'
j Nj

-

V U3/2

.

0+Ki. (C.18)

The fundamental relation of the ideal gas mixture may then be derived by substituting
these equations of state into:

S = f(U, V,Ni, ..., Nk) =
1

T
U +

p

T
V −

(

i

µi

T
Ni. (C.19)
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