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How should we characterise the observable aspects of quantum theory? This paper argues that phi-
losophers and physicists should jettison a standard dogma: that observables must be represented by self-
adjoint or Hermitian operators. Four classes of non-standard observables are identified: normal opera-
tors, symmetric operators, real-spectrum operators, and none of these. The philosophical and physical
implications of each are explored.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

There is a disconnect between standard accounts of mathe-
matical representation and standard accounts of physical observ-
ables. From the perspective of the philosophy of representation, we
enjoy extraordinary freedom in choosing what mathematical ob-
jects can represent things. In contrast, most well-developed ac-
counts of observables insist on restricting to a tiny corner of
mathematics involving real numbers. Nowhere is this dogma more
stark than in quantum mechanics, where observables are generally
associated with the real-number eigenvalues of self-adjoint oper-
ators. My aim in this paper is to show how this restriction on
quantum observables can be given up, and to identify the impor-
tant new classes of observables that arise as a consequence.

The restriction to real numbers is sometimes motivated by ap-
peal to an old worry about complex numbers, which should be
immediately dispelled. Consider a bead that is constrained to move
on a ring. We could represent its position using pairs ðr; qÞ of real
numbers, or using the complex circle Reiq2ℂ with R2ℝþ and
q2½0;2pÞ. Of course, there was once considerable scepticism about
the status of complex numbers, which led to the use of the word
ion x2 � 10xþ 30 ¼ 0 in his
thmetic subtlety the end of
o, 1968, x37). Over 200 years
called imaginary quantities,
ugh he argued that “nothing
bers, and employing them in
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‘imaginary’ in describing them.1 But such misgivings should not
trouble us today: the complex numbers can be constructed
axiomatically in just the same sense as the real numbers. So, it is
difficult to see a sense in which the two representations are not
equally adequate. Viewing the real and the complex circles as
embedded in ℂ2, we even find the two are related by a rigid rota-
tion, shown in Fig. 1.

Nevertheless, textbook discussions of quantum theory almost
always insist that observables must involve real numbers and self-
adjoint operators, as in Sakurai's classic treatment: “[w]e expect on
physical grounds that an observable has real eigenvalues…. That is
why we talk about Hermitian observables in quantum mechanics”
(Sakurai, 1994, x1.3). Similarly, Griffiths writes, “the expectation
value of an observable quantity has got to be a real number (after
all, it corresponds to actual measurements in the laboratory, using
rulers and clocks and meters)” (Griffiths, 1995, x3.3). AndWeinberg
writes, “[w]e can now see why it is important for all operators
representing observable quantities to be Hermitian. … Hermitian
operators have real expectation values” (Weinberg, 2013, p.24).
Even when one encounters quantum field operators that are not
self-adjoint, such as the free Klein-Gordon field, this is quickly
explained away as equivalent to a commuting pair of operators that
are self-adjoint.

The philosophy of quantum mechanics has largely followed the
textbooks. For example, Hughes writes that self-adjoint operators
“represent physical quantities, and their eigenvalues will be the
possible values of those quantities; clearly it befits a measurable
quantity that its possible values should be real” (Hughes, 1992,
p.33). Similarly, Albert's book on the philosophy of quantum me-
chanics sets out what he calls ‘principle (B)’, that measurable
properties are to be represented by linear operators, and then
, Studies in History and Philosophy ofModern Physics (2018), https://
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Fig. 1. Real and complex descriptions of particle position related by a rotation in ℂ2.

2 Charmingly, their collaboration apparently began by chance, on a train to
Hannover soon after Born met Heisenberg in 1925. Born recalls confiding to a
colleague on the train that he had formulated Heisenberg's equations of motion
using matrix theory, but was stuck trying to derive the energy from this. Jordan,
who was sitting opposite and overheard the conversation, said, “Professor, I know
about matrices, can I help you?” Born suggested they give it a try, and a historic
collaboration ensued (from an interview with Born by Ewald, 1960).

3 Quoted from Jammer (1996, p.207) The impressive list of ‘learned mathema-
ticians’ at G€ottingen when Heisenberg arrived in 1925 includes Paul Bernays, Max
Born, Richard Courant, David Hilbert, Pascual Jordan, Emmy Noether, Lothar
Nordheim, B.L. Van der Waerden, and Hermann Weyl.

4 (Hilbert, von Neumann, & Nordheim, 1928). As Janssen and Duncan point out,
this article was submitted in April 1927, but “for whatever reason” not published
until 1928 (Duncan & Janssen, 2013, x3, p.221).

5 See Duncan and Janssen (2009, 2013) for a fascinating exposition of this episode
in the development of quantum mechanics.
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states, “it's clear from principle (B) (since, of course, the values of
physically measurable quantities are always real numbers) that the
operators associated with measurable properties must necessarily
be Hermitian operators” (Albert, 1992, p.40). Similar remarks are
found in many other places in physics and philosophy.

The thesis of this paper is that the orthodoxy should be given
up: there are many physically and philosophically interesting
ways to have a non-self-adjoint observable. In particular, the self-
adjointness property may be broken down into three ‘compo-
nent’ properties: being normal, being symmetric, and having a
real spectrum, each defined precisely below. Observables can be
represented by non-self-adjoint operators that have any one of
these properties while giving up the other two, or that give up all
three.

The unorthodox observables that I will advocate here have been
discussed before. Indeed, we will see that each has been advocated
by prominent physicists, and that two in particular are associated
with active research programmes: symmetric operators amount to
a positive operator-valued measure or ‘POVM’ approach to quan-
tum observables, while the real-spectrum condition forms the basis
for so-called ‘PT-symmetric’ quantum theory. The ‘normal opera-
tors’ approach is not as well-understood, and so I will develop it
beyond existing discussions. However, my aim here is not to
introduce new physics. Rather, I would like to reduce some of the
confusion that philosophical and textbook treatments of observ-
ables appear to have introduced. I also aim to clarify the connec-
tions between these unorthodox research programmes. It is
striking that few physicists advocating one of the non-standard
approaches appear to recognise any of the others. I hope this dis-
cussion might help improve their mutual recognition, by identi-
fying the role that each plays in the philosophical foundations of
observables.

The plan of the paper is as follows. The second section will
introduce the dogma of self-adjoint operators, and then propose
a way to classify the possible non-self-adjoint observables. The
third section considers non-self-adjoint operators that are
normal. Here I argue that existing proposals in favour of normal
operators must be restricted using the concept of what I call a
‘sharp set’. The fourth section explores the physics of non-normal
operators. First I consider non-normal operators that are sym-
metric but do not have a real spectrum; these turn out to amount
to a ‘POVM’ approach to observables, and also allow for the
introduction of ‘time observables’. Next, I consider operators that
have a real spectrum but are not symmetric; these include
PT-symmetric observables. Finally, I consider operators that do
not have any of these three properties: they are not normal, do
not have a real spectrum, and are not symmetric. The fifth section
is the conclusion.
Please cite this article in press as: Roberts, B.W., Observables, disassemble
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2. Self-adjointness disassembled

2.1. The history of self-adjointness

How did we come to require self-adjoint observables? It began
when Heisenberg arrived in G€ottingen in June of 1925 with a draft
of his celebrated paper on non-commutative mechanics. Max Born
famously recognised, upon seeing this draft, that the theory could
be represented in terms of matrices. Soon, Born and Jordan (1925)
had formulated the observables of quantum mechanics as self-
adjoint or ‘Hermitian’ operators.2 In a letter to Jordan in
September of that year, Heisenberg wrote, “Now the learned
G€ottingen mathematicians talk so much about Hermitian matrices,
but I do not even know what a matrix is”.3 As Heisenberg's letter
reveals, matrices were far from common tools among physicists at
the time, let alone Hermitian ones, despite the latter having been
introduced by Hermite (1855) seventy years earlier.

Physically significant non-Hermitian matrices appeared the
following May, when London (1926) derived the non-Hermitian
raising and lowering operators for the harmonic oscillator. By
December of 1926, Jordan (1927a) was actually toying with the idea
of treating non-Hermitian operators as observables. Remarkably,
Jordan's formalism allowed one to assign complex expectation
values to such non-Hermitian operators, as Duncan and Janssen
(2013, x2.4) have shown. But in April of 1927, Hilbert, von Neu-
mann and Nordheim had identified self-adjoint operators as
appropriate for ensuring that the values of energy are always
positive numbers.4 By the time Jordan (1927b) submitted a follow-
up paper in June, he had given up on the idea of non-Hermitian
observables in favour of the new dogma.5

Like many aspects of quantum theory as we know it, self-
adjointness was consolidated at the September 1927 Solvay con-
ference, where Born and Heisenberg's report argued that, “the
analogy with classical [Fourier] theory leads further to allowing as
representatives of real quantities only matrices that are Hermitian”
(Born & Heisenberg, 2009, p.327). Their idea is a familiar one: it is
often convenient to use a complex unit eiq ¼ cosqþ isinq to repre-
sent a harmonic phenomenon like a classical wave, on the under-
standing that a physical wavecrest is described by just the real part,
ReðeiqÞ ¼ cosq.

The dogma soon became encoded in the influential textbooks of
the field, including Dirac's famous Principles of Quantum Mechanics.
In the 1930 first edition, Dirac actually used the term ‘observables’
to refer to all linear operators. But he quickly revised this language
by the second edition of 1935, writing, “it is preferable to restrict
the word ‘observable’ to refer to real functions of dynamical vari-
ables and to introduce a corresponding restriction on the linear
operators that represent observables” (Dirac, 1935, p.29). The ‘cor-
responding restriction’ was that observables be self-adjoint (for a
d, Studies in History and Philosophy ofModern Physics (2018), https://
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more detailed discussion of Dirac's view on observables, see
Roberts, 2017).

Dirac's dictum has continued to be a pervasive dogma, with an
emphasis on the claim that observables have a real spectrum, as
indicated in the textbook comments of the previous section. I will
argue that it should be abandoned. To be precise about what I'm
advocating, let me begin by setting out what I take the interpretive
significance of an observable to be. I will then set out a few
mathematical definitions and prerequisites that discussions of ob-
servables are not always sensitive to.
6 An operator A is densely-defined iff its domain DA is dense; this ensures that the
operator is minimally well-defined on ‘most’ vector states. It is closed iff for any
sequence f4ng⊆DA such that 4n/4 and A4n/j, it follows that 42DA and j ¼ A4.
This ensures that the spectrum is allowed to be non-trivial; if a densely defined
operator is not closed then its spectrum is SpðAÞ ¼ ℂ.

7 The adjoint of A is defined by A�j :¼ ~j, where 〈~j;4〉 ¼ 〈j;A4〉 for all f in the
domain of A. The domain of A� consists of those vectors j for which such an
element ~j exists.

8 Every symmetric operator satisfies DA⊆DA� . So, the additional condition that
DA ¼ DA� is equivalent to the statement that DA�⊆DA . See Blank et al. (2008, x4).
2.2. What we mean by ‘observable’

The interpretive perspective on observables adopted in this
paper will be somewhat more general than existing accounts in
philosophy and physics. For example, Reichenbach (1944, x6) pro-
posed restricting observables to occurrences that can be directly
verified using human sense organs, such as the positions of the
spectral lines produced by a light source. He preferred the term
‘phenomena’ for occurrences that might be only indirectly
observed, like the emission of a photon from a Hydrogen atom, and
‘interphenomena’ for everything in between. Among physicists,
Reichenbach's perspective is most closely associated with the
‘operational quantum physics’ programme proposed by Ludwig
(1971, 1983), and developed by Busch, Grabowski, and Lahti
(1995a), among others, where observables are associated with sit-
uations for which there are probability measures over experimental
outcomes.

The approach to observables in this paper will borrow a few
essential elements from these ideas, but without the insistence on
operationalism or on the existence of a probability measure. Our
concernwill rather bewith Reichenbach's category of ‘phenomena’,
and how we assign symbols to represent such phenomena. In
particular, wewill take an observable tominimally be a relationship
between occurrences in the physical world on the one hand, and
linguistic or mathematical structures used to label those occur-
rences. More carefully, observables will be taken to involve at least
the following two components.

(1) A set of possible physical occurrences or outcomes associated
any initial setup of an experiment. For example, each
element of the set could represent the deflection of a particle
to a location on a detection screen. By allowing the set to
contain more than one element, we allow for the possibility
of indeterminism in physics.

(2) A mathematical or linguistic structure that serves to label each
occurrence. For example, to describe the possible locations of
a particle on a spatial axis, a subset of the real line may be
appropriate; similarly, a pair of spin outcomes may be
associated with the numbers ±Z=2. Such symbols may have
varying degrees of structure, such as ordering or algebraic
relations. In general, the structure we associate with a sym-
bol set will depend on the nature of the physical magnitudes
that we intend to represent.

I do not wish to identify sufficient conditions for an observable at
this stage, since the remainder of this paper will be devoted to
exploring the available possibilities towards this end. However, to
be clear about what we are trying to interpret, I would like to use
the two components above to propose a necessary condition on
observables:

An observable is (at least) an assignment of symbols in a
mathematical or linguistic structure to a set of physical occur-
rences associated with an experimental setup.
Please cite this article in press as: Roberts, B.W., Observables, disassembled
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This necessary condition on observables amounts to what phi-
losophers often call a representation. It plays an essential role in the
interpretation of quantum observables. For example, consider any
of the classic models of textbook quantum theory that refer to some
self-adjoint operator A as an ‘observable’. Such a statement satisfies
our minimal criterion so long as it implicitly assumes an association
between language and reality: for example, distinct experimental
outcomes may be associated with distinct eigenstates of A, while
registered values on a detector are associated with the corre-
sponding eigenvalues. Alternatively, experimental outcomes might
be associated with elements of a projection valued measure, or
more generally of a positive operator valued measure (to be dis-
cussed below). In general, a great deal of modelling and physical
experiment is required to establish such associations between
physical occurrences and mathematical language in an interesting
way. However, at this stage, our minimal requirement is only that
some such association exist.

Note that the perspective here is considerably more general
than Reichenbach's. His restriction to physical processes carried out
and observed by a human prohibits one from describing most
processes inside the sun, or in the Andromeda galaxy 2.5 million
light years away, since neither are accessible to direct human
experiment. For the sake of generality, our discussion of observ-
ables here will make no such prohibitions, although I am sympa-
thetic to the concerns of operationalism. I have also avoided saying
anything at the outset about the extent to which an observable is
associated with statistics, unlike the operational approach to
quantum theory (see Section 4.1). Further requirements on ob-
servables may of course be proposed. However, at this stage, I
would like to adopt a definition that is general enough to allow the
study of various additional conditions on what an observable may
be like. These conditions are the subject of the next subsection.
2.3. Mathematical prerequisites

The mathematics of our discussion will deal entirely with Hil-
bert spaces over the complex field that admit a countable (though
possibly infinite) basis. Some of the Hilbert space operators we
discuss will be unbounded, which implies that their domains are
not equal to the entire Hilbert space. When that is the case, I will
still presume that they are at least densely-defined and closed.6 I
will write A� to denote the adjoint7 of A; some authors denote this
with the dagger ‘y’. An operator A is called normal if and only if
AA� ¼ A�A, where we implicitly assume in this equation that AA�

and A�A have the same domain. It is symmetric if it has the property
that Aj ¼ A�j for all j in the common domain of A and A�. It is self-
adjoint if it is both symmetric and has the property that the A and A�

have the same domain.8 The term ‘Hermitian’ is sometimes used for
one or both of these last two properties; this is unambiguous if A is
bounded, in which case an operator is symmetric if and only if it is
self-adjoint. But since this equivalence fails for unbounded opera-
tors, I will try to reduce confusion by avoiding the term ‘Hermitian’.
, Studies in History and Philosophy ofModern Physics (2018), https://



Fig. 2. Venn diagram of normal, symmetric, and real-spectrum operators, any two of
which imply self-adjointness. For bounded operators, being symmetric is equivalent to
being self-adjoint, and so the right ‘petal’ vanishes.
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The spectrum of a linear operator A is the set of numbers l2ℂ
such that the operator ðA� lIÞ does not admit an inverse. The ei-
genvalues of A are the subset of the spectrum consisting of elements
l that satisfy Aj ¼ lj for some j. We say that an operator has a
discrete or pure point spectrumwhen its spectrum consists entirely
of eigenvalues. All operators on a finite-dimensional Hilbert space
have a discrete spectrum, but in the infinite-dimensional case the
spectrummay contain elements that are not eigenvalues. Finally, an
important fact for our discussion is that in general, if A is self-
adjoint, then its spectrum (and thus its set of eigenvalues) is
entirely composed of real numbers.

How do normal operators, symmetric operators, and operators
with a real spectrum underpin the property of self-adjointness?
One answer is given by following.

Fact. A closed, densely-defined linear operator A is self-adjoint if
it satisfies any two of the following properties.

(1) Normal. AA� ¼ A�A.
(2) Symmetric. Aj ¼ A�j for all j2DA.
(3) Real spectrum. SpðAÞ⊆ℝ.

Conversely, every self-adjoint operator satisfies all three of the
properties above.

This conveniently summarises several standard results.9 Self-
adjoint operators are widely known to satisfy all three of the
properties above. However, no single one of them is in general
sufficient to guarantee that A is self-adjoint: A normal operator can
fail to be symmetric; a unitary operator is an example. A symmetric
operator that is unbounded can fail to be normal; the so-called
‘maximal symmetric’ operators (operators with no self-adjoint
extension) are an example. And an operator with a real spectrum
can fail to be symmetric.Wewill discussmore concrete examples of
such operators over the course of this paper. But to keep the facts in
one's head, it is helpful to refer to the Venn diagram of Fig. 2.

Since many find the last property particularly surprising, that a
non-self-adjoint operator may have a real spectrum, let me give a
concrete example. A particularly simple one is the 2� 2 matrix,

A ¼
�
1 1
0 2

�
:

It is obviously not symmetric (and thus not self-adjoint), since

the conjugate-transpose is given by A� ¼
�
1 0
1 2

�
sA. But one can

easily check that it has exactly two eigenvalues, both of which are

real: l ¼ 1with eigenvector
�
1
0

�
, and l ¼ 2with eigenvector

�
1
1

�
.

As expected, this operator fails to be normal, as one can verify by
checking AA�sA�A. It also has the property that its eigenvectors
span the Hilbert space, but are not orthogonal.
2.4. A classification of non-self-adjoint observables

This mathematical discussion suggests a classification scheme
for non-self-adjoint observables. A consequence of the fact above is
that all of the non-self-adjoint operators (that are closed and
densely defined, as will be assumed throughout) fall into exactly
one of the following four categories.
9 A normal operator is symmetric if and only if it is self-adjoint (Blank et al.,
2008, Thm. 4.3.1); a symmetric operator has a real spectrum if and only if it is
self-adjoint (Reed & Simon, 1975, p.136, Thm. X.1(3)); and a normal operator has a
real spectrum if and only if it is self-adjoint (this follows immediately from the
spectral theorem for normal operators; see Rudin, 1991, Thm. 12.26).

Please cite this article in press as: Roberts, B.W., Observables, disassemble
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(1) Normal operators that are non-symmetric and have non-real
spectra;

(2) Symmetric operators that are not normal and have non-real
spectra;

(3) Real-spectrum operators that are not normal and not
symmetric;

(4) None of the above: operators that fail to have all three of these
properties.

That is, one can allow non-self-adjoint observables to include
operators from exactly one of the three ‘petals’ in the flower of
Fig. 2, or none of them. Note that if one asserts that an observable is
represented by a single operator that is bounded, then the sym-
metric petal vanishes, since for bounded operators being sym-
metric is equivalent to being self-adjoint.10

I will discuss each of these four classes of non-self-adjoint ob-
servables in turn. They introduce varying degrees of conceptual
difficulties, but I will identify circumstances in which each of them
are reasonable.
3. Normal operators as observables

A simple example of a normal operator with a pure imaginary
spectrum is iQ , where Q is the position operator (for one spatial
dimension) in the Schr€odinger representation. It obviously com-
mutes with its adjoint ðiQÞ� ¼ �iQ and shares the same domain, so
it is normal. Its spectrum is a line in the complex plane (namely, the
pure imaginary axis) and so it can be used to represent the position
of a bead in one dimension of space. It even satisfies a natural
commutation relation: if we represent momentum by iP, then
½iQ ; iP�j ¼ �½Q ; P�j ¼ �ij (working in units of Z ¼ 1). Another
example is the unitary operator eiQ : it also commutes with its
adjoint, and has a spectrum equal to the complex unit circle. It can
10 It is perhaps worth emphasising that we make no such assumption at this
stage: on this account, an observable may be represented by an unbounded oper-
ator, or by a multiplicity of operators like a POVM. As we discuss in Section 4.1, each
of these cases introduces observables that are symmetric but not self-adjoint.

d, Studies in History and Philosophy ofModern Physics (2018), https://
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be used to represent the position of a bead on the loop depicted in
Fig. 1. And it too can be given a natural commutation relation.11

My main argument in this section is that a normal operator can
be adopted as an observable in just the same sense that a self-
adjoint operator can. Others have suggested this as well,12 but I
will try to give a systematic argument. I begin by identifying how
one can still apply the statistical rules of quantum theory to an
individual normal operator, but note that a collection of normal
operator observables must be restricted using the concept of a
‘sharp set’. I finally discuss how symmetries and unitary evolution
appear when normal operators are observables.

3.1. Eigenvectors and eigenvalues

As discussed in Section 2.2, observables capture the represen-
tation of physical facts using symbols. However, nothing about this
practice requires the symbols to be real numbers; quantitative in-
formation can be conveyed by complex numbers as well, and by
many other structures. For example, consider a Stern-Gerlach
experiment, in which a fermion may deflect up or down as it
passes through an asymmetric magnetic field. We typically label
the ‘deflect up’ outcome with þ1 and ‘deflect down’ with � 1,
corresponding to the eigenvalues of a Pauli matrix like sz :¼�

1
�1

�
. But we could just as well label these outcomes using

the pure imaginary numbers þi and � i, which are eigenvalues of
the ‘anti-hermitian’ matrix isz, illustrated in Fig. 3.

The statistics for such an experiment can be defined just as they
are in orthodox quantum mechanics: let A be an operator on a
Hilbert space of finite dimension, with a complex eigenvalue l

corresponding to the eigenstate 4. Then the transition probability
from an arbitrary vector state j to 4 is still given by the usual Born
rule, jhf;jij2. If the eigenvectors of A form a complete basis, then its
expectation value when the state j is prepared can still be defined
by hj;Aji ¼Pn

i¼1lijhfi;jij2, or more generally by TrðrAÞ when the
state is a density matrix r. For a normal operator A, such an
expectation value may be a complex number, but this makes good
conceptual sense: a complex expectation value is just a weighted
average of the complex numbers representing these states.

3.2. Spectral resolution

To confirm that the practice I am proposing has the same sta-
tistical interpretation as orthodox quantum theory, we make use of
Fig. 3. The outcomes of a Stern-Gerlach experiment represented by ±i.

11 One could simply take it to be given by the canonical commutation relations in
Weyl form, eiaPeibQ ¼ eiabeibQ eiaP . L�evy-Leblond (1976) suggests an alternative
expressed in terms of angular momentum.
12 See especially L�evy-Leblond (1976), Penrose (2004, p.539), and Duncan and
Janssen (2013, x2.4); this latter paper shows that normal operators can be used
to formalise Jordan's early theory of non-self-adjoint observables.
13 A projection valued measure on Borel subsets of a topological field F is a map
D1EðDÞ, which associates each Borel subset D of F with a projection operator EðDÞ,
where EðFÞ ¼ I and Eð∪iDiÞ ¼

P
i
EðDiÞ weakly converges for any countable disjoint

collection fD1; D2;…g. It follows from this that Eð∅Þ ¼ 0, and EðD1ÞEðD2Þ ¼ 0 for
disjoint D1, D2.
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the spectral theorem. This is expressed in terms of a projection
valued measure (or ‘spectral’ measure) on Borel sets,13 called the
spectral resolution of the observable. In its statement for (possibly
unbounded) self-adjoint operators, it says that every self-adjoint
operator A admits a unique projection valued measure D1ED on
Borel sets of the reals such that A ¼ R

ℝ
ldEl, where a bounded

operator B commutes with A if and only if B commutes with each
projection ED (Blank, Exner, & Havlí�cek, 2008, Theorem 5.3.1). In
finite dimensions, the integral gets expressed as the sum,

A ¼
Xn
i¼1

liEi;

where each li is a real-number eigenvalue of A, and the projections
Ei satisfy

Pn
i¼1Ei ¼ 1, and also EiEj ¼ 0 when isj. One of the

conceptually important consequences of this theorem for quantum
theory is that it allows us to view each state as defining a proba-
bility distribution on definite experimental outcomes associated
with A. For example, in the finite-dimensional case, the spectral
theorem implies there is a set of orthogonal, unit-norm eigenvec-
tors f1;f2;…;fn of A that form a basis for the Hilbert space. That
fact is what allowed Born to view a vector j as defining a proba-
bility distribution pjðfiÞ :¼

���hfi; jij2, since it impliesPn
i¼1pjð4iÞ ¼ 1. Messiah thus writes in his classic textbook that,

“[a]ll… operators do not possess a complete, orthonormal set of
eigenfunctions. However, the Hermitian operators capable of
representing physical quantities possess such a set. For this
reason we give the name ‘observable’ to such operators”
(Messiah, 1999, xV.9).

But in fact, by Messiah's reasoning, we should give the name
‘observable’ to normal operators, too! The more general form of the
spectral theorem turns out to hold for normal operators, so that all
normal operators possess a ‘complete, orthonormal set of eigen-
functions’ of the kind Messiah demands.

The generalisation of the spectral theorem to normal operators
holds in both bounded and unbounded cases (Conway, 1990, The-
oremX.4.11). The proof is particularly simple in the bounded case: a
bounded linear operator A can always be written A ¼ Bþ iC with B
and C self-adjoint, by defining B :¼ A�þA

2 and C :¼ iðA��AÞ
2 . It follows

that AA� � A�A ¼ 2iðCB� BCÞ, which implies that A is normal if and
only if BC ¼ CB. The operators B and C can thus be viewed as
simultaneouslymeasurable, andwe can derive a spectral resolution
for the normal operator A by applying the ordinary spectral theo-
rem to B and C individually.14 In finite dimensions, this gets
expressed as,

A ¼
Xn
i

ziGi;

where each zi is a complex-number eigenvalue of A, and where the
properties of the projections Gi carry over exactly as in the self-
adjoint case.

This means that, just as with self-adjoint operators, every state
defines a probability distribution on the experimental outcomes
associated with a normal operator A. And just as with self-adjoint
14 Let the projection-valued measures for B and C be D1ED and D1FD , respec-
tively. Since B and C commute, their projections all commute as well. This allows
one to define a projection-valued measure on ℝ2 in terms of the direct product D�
D01GðD� D0Þ :¼ ED � FD0 . The Borel sets of ℝ2 ¼ ℝ� ℝ are naturally identified
with those of ℂ ¼ ℝ� iℝ, which finally provides the spectral resolution A ¼ Bþ
iC ¼ R

ℂ
zdGz .
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operators, a normal operator A in finite dimensions has a set of
orthonormal eigenvectors that form a basis for the Hilbert space,
with pjðfiÞ :¼

���hfi;jij2 defining a probability distribution over
those eigenvectors.

This sort of thinking led Roger Penrose to suggested that wemay
relax the ordinary dogma about self-adjoint (Hermitian) observ-
ables, and adopt normal operators as well:

“In my opinion, this Hermitian requirement on an observable Q
is an unreasonably strong requirement, since complex numbers
are frequently used in classical physics …. Since I am happy for
the results of measurements (eigenvalues) to be complex
numbers, while insisting on the standard requirement of
orthogonality between the alternative states that can result
from a measurement, I shall demand only that my quantum
‘observables’ be normal linear operators, rather than the
stronger conventional requirement that they be Hermitian.”
(Penrose, 2004, p.539, p.539).

L�evy-Leblond (1976) gave a similar proposal, pointing out that
since a self-adjoint operator has spectral decomposition A ¼P

i
liEi,

every Borel function f of a self-adjoint operator does too. A slightly
different argument for normal operators originates with Dirac
(1947, p.34e35), who argued that an operator in form A ¼ Bþ iC
with B;C self-adjoint is an observable only if B and C commute; as
we have seen, this also amounts to the assertion that an observable
must be represented by a normal operator.15

However, there is an important caveat to the proposal to treat
normal operators as observables, to which we will now turn.

3.3. Not all normal operators: sharp sets

The discussion above shows that any individual normal operator
can be treated as an observable. However, there is also a sense in
which we cannot interpret all the normal operators as observables
at once, if we wish to accurately capture what is ‘unobservable’ in
quantum theory. Let's begin with a concrete example of the
problem.

Follow the proposal above: instead of using the real numbers ±1
to represent the z-spin up and down outcomes of a Stern-Gerlach
experiment, let's use ±i, thus adopting the ‘anti-Hermitian’ oper-
ator isz as an observable. It has the same eigenvectors as sz, but
with eigenvalues ±i, and is therefore not self-adjoint. This by itself
amounts to little more than a relabelling of outcomes.

But the Stern-Gerlach experiments showed considerably more
than this: in particular, they found it is impossible to observe spin
jointly in two orthogonal directions (such as x and y). This fact, now
known to be one of the defining features of a quantum system,
should certainly appear in our formalism. And indeed, it can be
reasonably captured by asserting that, if sx and sy are observables,
then the product sxsy is unobservable. This follows immediately on
the orthodox perspective, since the product sxsy is not self-adjoint.
The problem is: the Pauli operators satisfy the relations,

sysz ¼ isx szsx ¼ isy sxsy ¼ isz:

So, by excluding sxsy from our set of observables, we also exclude
isz ¼ sxsy.

Of course, there is no a priori requirement that the product AB
represent a joint measurement of A and B.16 Then it simply isn't
15 Curiously, Dirac nevertheless concludes that observables must be self-adjoint
operators; the details of this episode are discussed by Roberts (2017).
16 I thank an anonymous referee for emphasising this point.
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clear what AB represents, in which case it fails to satisfy our min-
imal requirement of Section 2.2. But for present purposes, I would
like to embrace the discoveries of Stern and Gerlach: certain ob-
servations are impossible in quantum theory, such as the joint
observation of spin in orthogonal directions, and this should be
represented explicitly in our formalism. In particular, let us say that
if A and B are non-commuting observables, then AB is an unob-
servable. This is really just a generalisation of orthodoxy: adopting
only self-adjoint observables, it follows automatically that the
product of two non-commuting self-adjoints is not self-adjoint:
ðABÞ� ¼ B�A� ¼ BAsAB. However, when we open up observables
to include normal operators, this separate definition is needed to
represent such unobservables explicitly.

One might think that this last point is an argument in favour of
orthodoxy. But that would be too quick: the same situation can be
described from the perspective of other observables as well. Sup-
pose that we interpret the operators fisx; isy; szg as observables,
only one of which is self-adjoint. No one of these operators is the
product of the other two, and so there is no problem of the kind we
have just seen. However, by taking pairwise products of each, we do
find that,

�
isy
�ðisxÞ ¼ isz sz

�
isy
� ¼ sx ðisxÞsz ¼ sy:

Since each of these is a product of non-commuting observables,
it follows from the discussion above that each can be associated
with an unobservable. Thus, although we may freely choose to
interpret sets of normal operators like fsx; sy; szg and fisx; isy; szg
as observables, we are not free to interpret both to be observables at
once.

To make this restriction more systematic, let us formulate a new
Definition.When a set of normal operators has the special character
that each element can represent an observable in the same inter-
pretation, without introducing any unobservables, I will call it a
‘sharp set’. More precisely:

Definition. A sharp set S of linear operators is one such that, for
any A;B2S , if AB2S , then AB ¼ BA. A maximal sharp set S with
respect to a set of operators A is one such that ℛ⊆A is a sharp set
with S ⊆ℛ only if ℛ ¼ S .

A more careful proposal for treating normal operators as ob-
servables is then to say: a set of normal operators consists of ob-
servables only if it is a sharp set. This set is ‘as big as it can be’ if only
if it is maximal. We may immediately identify a few easy implica-
tions of this proposal.

Proposition 1. The following properties hold of sharp sets on a
Hilbert space H .

(1) A set that is closed under multiplication is sharp iff it is
commutative.

(2) The set of all normal operators is not in general a sharp set.
(3) Every set of self-adjoint operators is a sharp set.
(4) The sharp set of self-adjoint operators in B ðH Þ is not maximal

in B ðH Þ.
Proof. (1) is immediate from our Definition, and (2) follows from

the discussion above. (3) If S is a set of self-adjoint operators and B;
C2S , then BC2S only if BC ¼ ðBCÞ� ¼ CB, whichmeans that S is
sharp. (4) For any set S of self-adjoint operators, let ℛ ¼ S ∪fiIg
with I the identity operator. Let A;B;AB2ℛ. If either A ¼ iI or B ¼ iI,
then clearly AB ¼ BA. It thus remains to show that AB ¼ BAwhen A;
B2S . But no pair of self-adjoint operators A;B2S can satisfy AB ¼
iI, since AB and ðABÞ� ¼ BA have the same non-zero spectral ele-
ments, whereas iI and ðiIÞ� do not. In this case we thus have A; B;
AB2S , which implies that AB ¼ BA by the previous argument.
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This last property suggests in particular that, by associating
observables with the concept of a maximal sharp set in place of the
standard set of self-adjoint operators, it is possible to meaningfully
enrich the standard observables beyond what is usually available.
In this sense, the self-adjoint operators are not as ‘large as they
could be’. Not all normal operators can be treated as observables at
once, but we can certainly include more than just the self-adjoint
ones. On the other hand, whether or not there is a non-trivial
sharp set that extends the self-adjoint operators remains an open
question.

I have argued the ‘normal operator’ approach to observables
advocated by Penrose and others is improved by a restriction to
sharp sets. However, the appropriate reaction to sharp sets remains
up for debate. One may decide that the complexity of the whole
matter indicates that normal operators are more trouble than
they're worth.17 Alternatively, one may conclude that the trans-
formations between sharp sets introduce an interesting new
symmetry into quantum theory, or that the set of all observables
must include more than just self-adjoint operators. Although I am
optimistic about this second perspective, its success may depend
on further exploration of the structure of sharp sets in quantum
theory. For the moment, much remains to be learned about that
structure.
18 That Ut is unitary or antiunitary for each t2ℝ follows from Wigner's theorem
(Bargmann, 1954; Uhlhorn, 1963); that it is unitary in particular follows from the
fact Ut can always be written Ut ¼ ðUt=2Þ2, since the square of a unitary (or an
antiunitary) is always unitary.
19 More formally: A smooth function h : M/ℝ on a symplectic manifold generates
a Hamiltonian vector field, for which one can find a unique set of integral curves in
3.4. Symmetries and dynamics

A final question about normal operators as observables is how
one ought to understand symmetries in this context. In orthodox
quantum theory, there is a tight connection between symmetries
and self-adjoint operators, which is reminiscent of Noether's the-
orem for variational symmetries. Namely, Stone's theorem gua-
rantees a continuous group of symmetries is always generated by a
unique self-adjoint operator. More precisely, if s1Us is a strongly
continuous, one-parameter set of unitary operators satisfying
UrUs ¼ Urþs for all r; s2ℝ, then there exists a unique self-adjoint
operator A such that Us ¼ eisA for all s2ℝ (Blank et al., 2008, Thm.
5.9.2). Conversely, every self-adjoint operator generates a strongly
continuous one parameter unitary representation of this kind. Ex-
amples: the spatial translation group s1Us is generated by the
momentum operator P, in that Us ¼ eisP . Similarly, the spatial
rotation group q1Rq is generated by the angular momentum
operator J, in that Rq ¼ eiqJ .

Can Stone's theorem be converted into an argument that ob-
servables must be self-adjoint operators? One might try to argue
that continuous symmetries are generally associated with a
conserved quantity, which we should think of as an observable.
This does allow one to identify certain self-adjoint operators as
observables. For example, the expectation value of momentum P
does not change under spatial translations, since the fact that P and
Us commute implies that for any (pure or mixed) state represented
by a density operator r, we have TrðUsPU�

s rÞ ¼ TrðUsU�
s PrÞ ¼ TrðPrÞ.

However, this thinking works for normal operators, too: a whole
host of normal operators are conserved along continuous unitary
symmetries. Indeed, if Us is generated by the self-adjoint operator
A, then every Borel function f ðAÞ is also similarly conserved, since
such a function f ðAÞ always commutes with eisA. As a result, non-
self-adjoint normal operators like iP and eiaP are conserved along
spatial translations just as much as the momentum operator P is.
So, conservation is no argument that observables must always be
self-adjoint operators. And after all, strictly speaking, the generator
of a unitary group Us ¼ eisA is not really a self-adjoint operator, but
17 Thanks to an anonymous referee for this point.
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rather the ‘pure imaginary’ operator iA, which has only imaginary
numbers in its spectrum.

Still: even if there are non-self-adjoint normal observables,
one might insist on an ordinary unitary dynamics, which requires
a self-adjoint generator H (the ‘Hamiltonian’). The reasoning can
be made precise as follows. We might begin by assuming that,
like most representations of change over time, our dynamics t1
Ut is strongly continuous. Moreover, isolated systems seem to
allow the same experiment to be repeated at later moments in
time with the same probabilistic outcomes, which is to say that
the dynamics seems to satisfy time-translation invariance as
well, Ut1þt2 ¼ Ut1Ut2 , with Ut unitary so as to preserve probabil-
ities.18 Finally, suppose we presume that dynamical evolution
holds (or could in principle hold) infinitely to the future and to
the past, i.e. it can be described for all t1; t22ℝ. If one believes
these things about the evolution of a quantum system, then
Stone's theorem guarantees that the generator d the Hamilto-
nian H d is self-adjoint.

This perspective is certainly compatible with non-self-adjoint
observables that are not the Hamiltonian. However, there may
also be physical circumstances in which one or more of these
assumptions fails. This can lead to the failure of unitarity and a
failure of the Hamiltonian to be self-adjoint. For example, a non-
isolated system does not satisfy the requirement of time trans-
lation invariance; we will see this example again in the discus-
sion of radioactive decay in Section 4.3. The dynamics of such
systems are not generally generated by a single self-adjoint
Hamiltonian.

It may also be unreasonable to assume that dynamical evolution
holds forever to the future and to the past. Such an assumption is
much stronger than what is normally required of classical Hamil-
tonian mechanics, where only local time evolution is guaranteed.19

One might similarly expect that for some quantum systems, time
translation might be defined only locally, perhaps because the
system has a finite past, a finite future, or for some other reason
altogether. This dynamical evolution will be generated by a
Hamiltonian that is not-self-adjoint. Indeed, we will see explicit
examples of this kind of evolution among the non-normal opera-
tors of the next section.
4. Non-normal operators as observables

Let us now turn to another class of non-self-adjoint observable,
which involves operators that are not even normal. Treating non-
normal operators as observables is a more dramatic extension of
quantum theory, far from a mere adjustment of convention.
Following the mathematical discussion of Section 2.4, there are
three kinds of non-self-adjoint operators in this class: those that
are symmetric but do not have a real spectrum; those that have a
real spectrum but are not symmetric; and those that satisfy neither
condition. One may therefore choose exactly one of these condi-
tions, or else reject them both. There are circumstances in which
each is reasonable, which I will discuss in turn.
a neighbourhood of each point. But it is perfectly possible for this Hamiltonian
vector field to be incomplete, which is to say that its set of integral curves fðtÞ
cannot be defined for all parameter times t2ℝ.
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Fig. 4. P ¼ i d
dx is not self-adjoint on differentiable wavefunctions that vanish at the

sides of a box, jðaÞ ¼ jðbÞ ¼ 0.

20 Earman (2009, p.36) still supports the practice of treating some symmetric
operators that are not self-adjoint as observables, calling its rejection “high hand-
edness”; Wüthrich (2011, p.373) agrees for this reason that “the question of
whether the Schr€odinger evolution is deterministic does not afford a simple and
unqualified answer”.
21 This result follows naturally from the work of Naimark (1940, 1968) on the
theory of self-adjoint extensions, although it was proved independently by Cooper
(1947, 1948). The same technique turns out to allow for a notion of ‘weak localiz-
ability’ for relativistic photons (Jauch & Piron, 1976).
22 Let E ðH Þ be a set of effects or positive (self-adjoint) operators A on H with
spectrum in the interval ½0;1�. A Positive Operator-Valued Measure (POVM) for E ðH Þ
is a triple ðX;S;EÞ, where X is a set, S is a s-algebra of subsets of X, and E : S/E ðH Þ
is a function that satisfies: (1) EðDÞ is positive for each D2S; (2) Eð∪iDiÞ ¼

P
i
EðDiÞ

for all disjoint sequences Di; and (3) EðXÞ ¼ 1.
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4.1. Symmetric operators and POVMs

Let me begin by recalling a case inwhich one commonly treats a
non-self-adjoint operator like an observable, but only because it
can be extended to a self-adjoint operator. I will then turn to the
case that is more important for my purposes: non-self-adjoint
operators that cannot be extended in this way.

Case 1: Self-adjoint extensions. Suppose we wish to describe a
particle in a box of finite width b� a in some spatial dimension. We
adopt the Hilbert space j2L2ð½a; b�Þ with hj;4i :¼ R ba j�ðxÞ4ðxÞdx.
As experienced students of quantum mechanics, we wish to see a
momentum observable for this particle that looks like the standard
momentum operator P ¼ id=dx. Such an unbounded operator
cannot act on the entire Hilbert space. The art of unbounded op-
erators is thus to answer the question: which wavefunctions does
the operator it act on? Since the operator will have different
properties depending on the domain it is defined on, let me for the
moment describe momentum as an operator-domain pair ðP; DÞ.
Suppose we identify the domain D as the subset of L2ð½a;b�Þ con-
sisting of at least once-differentiable functions that vanish at the
edges of the box, jðaÞ ¼ jðbÞ ¼ 0, as shown in Fig. 4. Let P ¼ id=dx,
and call this domain D0. Then ðP;D0Þ can be shown to be closed,
densely-defined and symmetric; however, it is not self-adjoint
(Blank et al., 2008, Example 4.2.5). It is also not normal and fails
to have a purely real spectrum, as a consequence of our mathe-
matical discussion above.

Nevertheless, it is common practice to view non-self-adjoint
operators like this one as observables. This is because one can turn
ðP;D0Þ into a self-adjoint operator by extending its domain, this
time to include all the wavefunctions that satisfy jðaÞ ¼ eiqjðbÞ for
some fixed real q, which includes those that vanish at the edges of
the box as a subset. Call this extended domain DqID0. Then for
each real number q, the pair ðP;DqÞ is self-adjoint (Blank et al., 2008,
Example 4.2.5). This procedure is common practice: construct a
symmetric observable that is physically motivated but not self-
adjoint, with the aim of extending to a self-adjoint operator as
needed.

Earman has pointed out that this practice can lead to a “new
form of quantum indeterminism (distinct from state vector
collapse)” when the observable is interpreted as generating the
dynamics (Earman, 2009, p.28). As in the case of the particle in a
box, a symmetric operator may admit multiple distinct self-adjoint
extensions. Since each such self-adjoint extension H generates a
distinct unitary group Ut :¼ e�itH , a description of this kind fails to
determine the future (or past) on the basis of initial conditions.

This failure of determinism might lead one to be sceptical of
treating such operators as observables. Often a symmetric operator
does admit a unique self-adjoint extension, inwhich case it is called
essentially self-adjoint. To avoid indeterminism, one might then
postulate that only essentially self-adjoint operators are good
candidate observables. This is not so convincing if one takes the
Please cite this article in press as: Roberts, B.W., Observables, disassemble
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question of determinism to be an open one, which should be
addressed by physics rather than by fiat.20 But another class of non-
self-adjoint symmetric operators is even more convincing. That
class is the following.

Case 2: Maximal symmetric operators and POVMs. Let me turn to
cases that may appear ‘worse’, but are in fact better: symmetric
operators that do not admit any symmetric (or self-adjoint) ex-
tensions at all. Such operators are called maximal symmetric. If we
wish to treat a maximal symmetric operator like an observable,
then it cannot stand proxy for a self-adjoint extension; it must be
treated like an observable in its own right.

The assumptions of Stone's theorem fail for maximal symmetric
operators, so they do not generate a unitary group in the usual
sense. However, they do satisfy a closely related result. Stating this
result uses the concept of an isometry, that is, a Hilbert space
operator U for which U�U ¼ E is a projection operator (a unitary
operator is thus a particular isometry for whichU�U ¼UU� ¼ I). An
isometry is a symmetry transformation inmuch the same sense as a
unitary operator, but in a more restricted domain, in that j〈Uj;U4〉
j ¼ j〈j;4〉j for all j; 42EH . Isometries also allow one to state the
following generalisation of Stone's theorem.21

Generalised Stone Theorem. If s1Us is a strongly continuous,
one-parameter set of isometries satisfyingUrUs ¼ Urþs for all r; s � 0
(or for all r;s � 0, but not both), then there exists a unique maximal
symmetric operator A such thatUs ¼ eisA. Conversely, everymaximal
symmetric operator A generates a strongly continuous one param-
eter set of isometries s1Us ¼ eisA satisfying UrUs ¼ Urþs, for all
r; s � 0 (or for all r; s � 0, but not both) (Cooper, 1947, 1948).

This means that maximal symmetric operators are associated
with a set of symmetries after all, in much the same way as self-
adjoint operators. These symmetries are simply limited to a
restricted subspace, in addition to being limited by the parameter
values of the set.

When a maximal symmetric observable is a Hamiltonian, the
Generalised Stone Theorem says that a unique solution to the
Schr€odinger equation exists, although it is only defined for non-
negative times or non-positive times (but not both). As far as
determinism is concerned, this situation is an improvement on the
failure of essential self-adjointness considered by Earman (2009).
The generalised Stone theorem says that the dynamical evolution
generated by a maximal symmetric Hamiltonian is unique, much
like the dynamics of an essentially self-adjoint Hamiltonian. The
dynamics is time-translation invariant, in the restricted sense of an
isometry. The limitation is merely that this dynamics is not defined
for all times t2ℝ. But as discussed above, having a dynamics for all
times is a very strong requirement, which we may have good
reason to relax.

Maximal symmetric operators also fail to satisfy the conditions
of the ordinary spectral theorem. But there is an interesting
generalisation of this too, which makes use of Positive Operator-
Valued Measures (POVMs).22 A POVM generalises our earlier
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notion of a projection-valued measure, by carrying over its prop-
erties to positive operators, and in particular those self-adjoint
operators with spectrum in the interval ½0;1�. Such measures
allow us to state the following.

Naimark Spectral Theorem. Let A be a closed, densely defined
symmetric operator. Then there exists a POVM D1FD such that A ¼R
ℝ
ldFl, which is unique (up to unitary equivalence) if and only if A is

maximal symmetric, and which is a Projection Valued Measure if and
only if A is self-adjoint (Dubin & Hennings, 1990, Thm. 5.16, pg.135).

Thus, just like self-adjoint operators, maximal symmetric op-
erators have a unique spectral decomposition. It is just not in terms
of a projection valued measure, but rather a POVM. Conversely,
every POVM D1FD gives rise to a symmetric operator of the form
A :¼ R

ℝ
ldFl,. And, just as with projection-valued measures, we can

more generally define the analogue of ‘normal’ operators by
considering, for any Borel function f : ℝ/ℂ, an operator of the form
f ðAÞ :¼ R

ℝ
f ðlÞdFl.

Although we have arrived at POVMs by beginning with maximal
symmetric operators, they can also be treated as a basis for un-
derstanding observables in their own right, following the proposals
of Ludwig (1983) and of Busch et al. (1995a), among others. Sup-
pose that we represent a set of experimental outcomes using a set
of positive operators on a Hilbert space, for example by associating
each Borel set D3ℝ with a positive operator FD. This is an observ-
able in the general sense described in Section 2.2, and has been
interpreted in this way at least since the work of Jauch and Piron
(1976). One particularly elegant motivation for this perspective is
the following. Given a set X and a s-algebra S of its subsets, let mj :

S/ℝ be defined for each j in a Hilbert space H by,

mjðDÞ :¼
D
j; FDj

E
It is straightforward to verify that the function mj is a (real-

valued) measure for every j2H if and only if the function D1FD is
a POVM (Berberian, 1966).23 This provides one interesting way to
motivate a POVM: it is necessary and sufficient for viewing the Born
rule of ordinary quantum theory as a measure associated with
positive operators.

Further support for the POVM approach comes from a neat
variation of Gleason's theorem. A positive operator A on a Hilbert
space is called an effect whenever its spectrum is in the interval
½0;1�. This is a considerable extension of the lattice of projections.
Now, Gleason's theorem shows that the probability measures on
projections are completely characterised by the Born rule, so long
as dimH � 3. But by expanding attention from projections to the
larger space of effects E ðH Þ on a Hilbert space, Busch (2003) found
a similar (and much simpler) result that holds for Hilbert spaces of
arbitrary dimension.

Generalised Gleason Theorem (Busch). Given a generalised
probability measure24 p : E ðH Þ/½0;1�, there exists a density
operator r on H such that pðEÞ ¼ TrðrEÞ for all E2E ðH Þ.

Busch's theorem shows that probabilities on effects are
completely characterised by the Born rule, in a manner very similar
to Gleason's theorem. This provides yet more evidence that effects
and POVMs provide an appropriate and general way to describe
probabilistic experiments in quantum theory.25
23 I thank an anonymous referee for pointing this out.
24 A generalised probability measure on a set of effects E ðH Þ is a function
p : E ðH Þ/½0;1� such that pðIÞ ¼ 1 and p

 P
i
Ei

!
�P

i
pðEiÞ whenever the countable

sequence Ei satisfies
P
i
Ei � I.

25 For a detailed discussion of Gleason's theorem, Busch's variation, and their
proof and philosophical implications, see Landsman (2017, x2).
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POVMs also have a number of practical applications, including a
more accurate description of Stern and Gerlach's famous experi-
ment (Busch et al., 1995a, pp. 7e9). However, the interpretation of
an arbitrary POVM can be subtle. A curiosity about POVMs is that
two elements EðDÞ and EðD0Þ with D∩D0 ¼ ∅ are not necessarily
orthogonal, or even commutative. For this reason, a POVM is
sometimes interpreted as describing measurements in which the
experimental outcomes may be ‘fuzzy’, ‘unsharp’ or ‘overlapping’,
in that they are not mutually exclusive.

In spite of these interpretive subtleties, the great advantage of
symmetric operators, POVMs, and effects is that they allow for the
description of novel physical phenomena, which are not otherwise
describable using orthodox observables. I will just mention one
such description to illustrate, which is the case of ‘time observables’
(more examples can be found in Busch et al., 1995a).

A time observable is a natural object of study when one is
interested in durations of some process, or in the time at which
something occurs. For example, one might wish to use an observ-
able to describe the moment that a particle in flight arrives at its
target, or the time that a jet or particle decay occurs in a detector.
However, their interpretation demands some care: suppose that
two intervals of time D and D0 do not overlap, in that D∩D0 ¼∅, and
that FD and FD0 are operators that (respectively) represent an
occurrence in each of those intervals. Then one would not in gen-
eral expect FD and FD0 to be orthogonal. On the contrary, an
occurrence in D is generally compatible with an occurrence in D0,
since the two happen at different times. Thus, time observables are
a natural candidate for description in terms of a POVM D1FD.

There is a literature that has come to this same conclusion
through another route. Let H be a Hilbert space, together with an
ordinary unitary dynamics defined by t1Ut. We call a linear oper-
ator T a time operator if and only if it satisfies UtTU�

t ¼ T þ tI for all
t2ℝ. Equivalently, for any j2DT with jjj ¼ 1 and jðtÞ :¼ Utj, a
time operator T is one that satisfies 〈jðtÞ;TjðtÞ〉 ¼ 〈j;Tj〉þ t, for all
t2ℝ. These properties can be informally summarised as requiring
that a time observable ‘tracks’ the passing of time in the sameway as
the unitary dynamics. An operator T with this property is in general
unbounded, and also satisfies the time-energy commutation relation
½H;T � ¼ i, which is the ‘local’ expression of UtTU�

t ¼ T þ tI.
The central no-go result for time operators, known as Pauli's the-

orem, is that if Ut ¼ e�itH is generated by a Hamiltonian H that is
bounded from below (as almost all known Hamiltonians are), then
every time operator fails to be self-adjoint.26 This fact was originally
interpreted as an impossibility result for time observables, and is
sometimes referred to as the ‘problem of time’ in quantummechanics
(Butterfield, 2013). However, if we relax our requirements on what
counts as an observable, then it can equally be viewed as simply
saying that time operators are non-self-adjoint observables. Then
there turn out to be a plethora of possible time observables, most
known examples of which are maximal symmetric.

One simple time observable27 is well known for the Schr€odinger
representation on L2ðℝÞ, with the dynamics defined by the free
Hamiltonian H ¼ 1

2mP
2. This dynamical system admits a time

operator given by,

T ¼ m
2

�
QP�1 þ P�1Q

�
;

26 This result is inspired by a famous remark of Pauli (1980, pg.63, fn.2), which was
made more rigorous e.g. by Ludwig (1983, xVII.6) and Srinivas and Vijayalakshmi
(1981), among others.
27 This example was identified by Aharonov and Bohm (1961). For further dis-
cussion, see also Holevo (1982); Busch et al. (1994); Galapon (2009); Pashby (2014).
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where P�1 is defined using the functional calculus and is self-
adjoint on an appropriate domain. This T is a time operator
because the free particle satisfies e�itHQeitH ¼ Q þ t

m P and
e�itHPeitH ¼ P, from which it easily follows that e�itHTeitH ¼ T þ tI.
It is also symmetric by construction.

However, we can immediately infer from Pauli's theorem that
this time operator is not self-adjoint; and with a little more work
we can show that it does not have any self-adjoint extensions
(Holevo, 1982, x3.8). It follows that T is maximal symmetric. A large
class of dynamical systems with such time operators has been
constructed by Busch, Grabowski, and Lahti (1994) and by
Hegerfeldt and Muga (2010), and these observables have been put
to many interesting uses (Muga, Sala Mayato, & Equisquiza, 2008).
A closely-related discussion also exists for ‘phase observables’
(Busch, Grabowski, & Lahti, 1995b).

Let me summarise the discussion of this section. The addition of
maximal symmetric operators or POVMs as observables is a non-
trivial extension of quantum theory. However, it is a mathemati-
cally controlled extension, thanks to a collection of generalisations
of Stone's theorem, the spectral theorem, and Gleason's theorem.
These generalisations introduce features that are unfamiliar from
the perspective of more traditional observables. However, even
these unfamiliar features can be made sense of in concrete physical
descriptions in which we can put maximal symmetric operators to
use. Little reason remains to deny their status as bona fide
observables.
28 Apply the commutation relations to see that it is not symmetric: ðQ�1PQÞ� ¼
QPQ�1 ¼ iQ�1 þ P, whereas Q�1PQ ¼ iQ�1 � P. One can use these facts to check
that Q�1PQ is also not normal.
4.2. Real spectrum operators and PT symmetry

Among the most commonly demanded requirements on a
quantum observable is that it should have a real spectrum. Non-
self-adjoint operators with a real spectrum, which from the dis-
cussion of Section 2.3 we know are neither normal nor symmetric,
thus provide another natural route to extending observables in
quantum mechanics. However, as we shall see, this class of oper-
ators is much more unwieldy than the previous ones, with no
analogue of the spectral theorem nor of Stone's theorem without
adding extra structure to the theory.

We have discussed the matrix A ¼
�
1 1
0 2

�
as an example of a

non-self-adjoint operator with a real spectrum. A much more
interesting example from the perspective of physical applications is
the operator,

H ¼ 1
2m

P2 þmu2

2
Q2 þ iQ3; (1)

where Q and P are the position and momentum operators in some
representation of the canonical commutation relations, and m;

u2ℝþ. This operator is obviously not symmetric, and therefore fails
to be self-adjoint or even normal. However, it has been studied
extensively following the work of Bender and Boettcher (1998) as a
possible interaction Hamiltonian, and was proven by Dorey,
Dunning, and Tateo (2001a, b) to have an entirely real spectrum
(in spite of the iQ3 term!), with interesting connections to
supersymmetry.

This research is part of a more general programme known as
PT -symmetric quantummechanics, which aims to construct non-
self-adjoint energy observables with an entirely real spectrum
(Bender, Brody, & Jones, 2002, 2003). Restricting to a real spectrum
is plausible in this context, since energy is thought to be a linearly
ordered quantity that is bounded from below. To aid with the
construction of these operators, a symmetry principle is used. One
generally adopts the Schr€odinger representation on L2ðℝÞ, defining
the parity or ‘mirror symmetry’ operator P by P :¼ eðip=2ÞðQ2þP2Þ
Please cite this article in press as: Roberts, B.W., Observables, disassemble
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and the time reversal operator T by T j :¼ j� for all j2L2ðℝÞ. As
expected, these operators satisfy P QP �1 ¼ �Q ¼ �T QT �1 and
P PP �1 ¼ T PT �1 ¼ � P. It turns out that, if the eigenvectors of a
discrete-spectrum operator H are preserved by the combined
transformationPT , and if thisH is also invariant underPT in that,

½PT ;H� ¼ 0;

then H is guaranteed to have a real spectrum (Weigert, 2003).
However, although the criterion of PT -symmetry is sometimes
presented as a requirement on physically reasonable energy ob-
servables, it is not required in order to have an observable with a
real spectrum (L�evai & Znojil, 2001).

Streater (2007) has discussed another general class of non-self-
adjoint operators that have a real spectrum. Call a linear operator A
a diagon if and only if there exists an operator B with densely-
defined inverse such that BAB�1 is self-adjoint. Since the similar-
ity transformation ð,Þ1B�1ð,ÞB is spectrum-preserving, it follows
that every diagon has a real spectrum. In particular, a self-adjoint
operator is a diagon with B ¼ I, i.e. the identity. However, diagons
are certainly not always self-adjoint. For example, if Q and P are the
position and momentum operators in the Schr€odinger represen-
tation, then Q�1PQ is a non-self-adjoint diagon. It can be trans-
formed to the self-adjoint operator P by the similarity
transformation ð,Þ1Qð,ÞQ�1, and thus has a real spectrum. But it
is easy to check that it is neither symmetric nor normal: therefore it
is not self-adjoint.28

One strange feature of non-self-adjoint diagons is that their
expectation values may not be real, even though the spectrum of
the operator is. In the example above, this is easy to check: for an
arbitrary vector j in the common domain of Q, P and Q�1, we have
by application of the commutation relations that,

D
j;
�
QPQ�1

�
j
E
¼
D
j;
�
iQ�1 þ P

�
j
E
¼ i
D
j;Q�1j

E
þ
D
j; Pj

E

This implies that QPQ�1 has expectation values with a pure-
imaginary component. Streater (2007, x12.5) has pointed out that
such complex expectation values are quite general features of non-
self-adjoint diagons. Thus, even though these operators retainwhat
many have taken to be the ‘gold standard’ of observables, a real
spectrum, their expectation values may not satisfy this standard,
which is difficult to interpret.

A non-self-adjoint operator with a real spectrum is never
‘diagonalizable’ in the usual sense: it does not have a spectral
decomposition in the sense of a projection valued measure, since
the ordinary spectral theorem applies only to normal operators. It is
not knownwhether amore general spectral theorem exists for such
operators, analogous to the Naimark spectral theorem for sym-
metric operators. The application of Stone's theorem suffers from
similar difficulties.

However, the spectral structure of a large class of real-spectrum
operators has been studied using other kinds of decompositions,
introduced by Bender, Boettcher, and Savage (2000) and developed
byWeigert (2003) and others. The usual statistical interpretation of
quantum theory is not possible for these operators, since they do
not admit a projection-valued measure. However, an interpretation
is still possible if one introduces a new inner product, and then
defines the statistics and the dynamics with respect to that. For
example, if H is a non-self-adjoint diagon on a Hilbert space with
d, Studies in History and Philosophy ofModern Physics (2018), https://



Fig. 5. Gamow’s (1928) model of quantum tunnelling used a non-self-adjoint Hamil-
tonian with eigenvalue E ¼ E0 þ iG.
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inner product 〈,; ,〉, then one can always construct a new inner
product 〈,; ,〉H with respect towhich H is self-adjoint. One can then
take spectral decompositions and define a unitary dynamics in the
new resulting Hilbert space. This strategy, proposed by Bender et al.
(2002), has been the subject of a great deal of fruitful research.29

We thus have an interesting extension of quantum theory, in
which we only require the spectrum of each observable to be real,
and each non-self-adjoint observable requires its own inner prod-
uct. However, a central requirement of this programme, that one
must insist on having a real spectrum, is perhaps not as well-
motivated as it is sometimes made out to be. Although it is often
a calculational convenience to represent linearly-ordered magni-
tudes using real numbers, it is also possible to have complex linear
orderings, as well as physical magnitudes (like position on a plane)
that do not exhibit a natural linear ordering at all. The previous
sections have reviewed many scenarios inwhich non-real numbers
can be used to represent physical experiments. If one is willing to
relax the requirement of self-adjointness at all, then one should
minimally allow for complex eigenvalues, too. This is the topic of
the last section.
4.3. None of the above: the wilderness beyond

For each of the properties of being normal, being symmetric,
and having a real spectrum, there is a literature on retaining that
property while giving up other two. In this section, we discuss the
possibility of giving up all three. Then there is no single mathe-
matical idea controlling the concept of an observable, which leads
of course to losing the usual mathematical results that more
traditional observables enjoy. However, the result is not necessarily
a complete free-for-all. There are physical ideas that allow even
these operators to be interpreted as observables, and mathematical
results that allow us to control their behaviour.

An early example of such an observable was proposed by
Gamow (1928), in a famous paper written on a visit to G€ottingen
that introduced the world to quantum tunnelling. Adopting
Schr€odinger's wavefunction formalism, Gamow proposed that the
energy value of a radioactive particle could be described by a
complex number,

E ¼ E0 þ iG:

He gave an immediate physical interpretation of this value,
identifying E02ℝþ the ‘ordinary energy’ and G ¼ Zl=2 with l

describing a ‘damping term’. One then finds that a corresponding
energy eigenstate f would evolve according to the rule,

4ðtÞ ¼ e�itE4 ¼ e�itðE0þiGÞ4 ¼ etGe�itE04:

This state is nearly stationary 4ðtÞze�itE04 when tz0. Gamow
takes this to indicate a damping effect on the wave amplitude soon
after the wave is emitted from the atom, with the amplitude then
increasing exponentially with time as the wave gets farther away,
illustrated in Fig. 5.

What sort of observable generates the dynamics t1e�itH for this
system? It is a non-self-adjoint Hamiltonian,

H ¼ Aþ iB;

where A and B are self-adjoint operators each with a positive
spectrum. The dynamics fails to be unitary because it is a non-
isolated system that subtly interacts with its environment. The
operators A and B do not necessarily commute, and so the
29 For overviews, see Bender (2007); Moiseyev (2011); Znojil (2015).
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Hamiltonian H is not generally normal. It is also non-symmetric,
and has a non-real eigenvalue E ¼ E0 þ iG by construction. So, the
Hamiltonian for Gamow's quantum tunnelling system is one that
fails all the criteria for observables that we have discussed so far.
This example was discussed in the famous textbook by Landau and
Lifshitz (1977, pgs. 555e556); and it has given rise to literatures
that use non-self-adjoint Hamiltonians to describe quantum reso-
nance and quantum optics (see e.g. Moiseyev, 2011).

Although there are many other operators that are non-
symmetric, non-normal, and have a non-real spectrum, it is not
always easy to assign them a physical interpretation. In particular, if
A ¼ Bþ iC and B and C do not commute, then there is no way to
view B and C as jointly measurable observables. As an example of
this, if sx, sy, sz are the standard Pauli spin matrices, then we can
formally write down the operator,

R ¼ sx þ i
�
sy þ sz

�
:

This operator has complex eigenvalues ±i, associated with ei-

genvectors
�

i
1

�
and

�
0
1

�
, respectively. It is also non-symmetric

and non-normal. Unfortunately, the physical significance of such
an operator is also far from clear. It certainly does not admit an
obvious interpretation as the generator of a dynamics.

These are just a few examples from the wilderness of non-self-
adjoint operators. Much remains to be learned about the structural
properties of such operators, such as their spectral theory and
physical applications, and research in this area is ongoing. But this
should not prevent us from exploring their possible use as
observables.

5. Conclusion

In this paper we have sorted non-self-adjoint operators into four
classes: those that are normal, those that are symmetric or POVMs,
those that have a real spectrum, and those that admit none of these
properties. In spite of a pervasive dogma, non-self-adjoint opera-
tors may provide conceptual clarity or calculational convenience in
modelling quantum systems. We have seen that the first class, that
of normal operators, can individually be treated like standard
quantum observables, although a set of them must in general be
restricted to be a sharp set. In contrast, the second and third classes
introduce varying amounts of new physics into the discussion, from
time observables to new interaction Hamiltonians. The fourth class
is a wilderness, with many unknowns. But some of them can be
used to fruitfully model quantum systems.

In his textbook on linear operators, E. Brian Davies gave an apt
characterisation of the state of non-self-adjoint operators from a
mathematical perspective:

Studying non-self-adjoint operators is like being a vet rather
than a doctor: one has to acquire a much wider range of
knowledge, and to accept that one cannot expect to have as high
a rate of success when confronted with particular cases (Davies,
2007, p.x).
, Studies in History and Philosophy ofModern Physics (2018), https://
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So too is the proposal to allow observables that are not self-
adjoint. When an arbitrary non-self-adjoint operator from the
great wilderness of possibilities is proposed as an observable, there
may well be little that we can say about how to associate it with
real-world observations. However, a number of interesting cases
are well-understood, philosophically well-motivated, and lead to
physically relevant models of quantum theory. It would be a pity if
mere dogma prevented us from enjoying them.
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