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Notes on symmetries

GORDON BELOT

These notes discuss some aspects of the sort of symmetry considerations that
arise in philosophy of physics. They describe and provide illustrations of: (i) one
common sort of symmetry argument; and (ii) a construction that allows one to
eliminate symmetries from a given structure.1 I hope that they suggest a unifying
perspective.

1 Symmetries

It is helpful to begin with an abstract characterization of symmetries.
A structure consists of: a set, D, of objects together with a set, R = {Ri }i∈I ,

of relations defined upon D (no restrictions are placed on the cardinality of D or
on that of the index set I ). If (D, {Ri }i∈I ) and (D′, {R′

i }i∈I ) are structures, then
we say that a map φ : D → D′ fixes the n-ary relation Ri if: Ri (x1, . . . , xn) iff
R′

i (φ(x1), . . . , φ(xn)) for every n-tuple of objects in D. The automorphisms of the
structure (D, {Ri }i∈I ) are bijections φ : D → D that fix each Ri ∈ R. The set of
automorphisms forms a group under composition of functions.

There are two approaches to talking about symmetries.2 Under the first, one
identifies the symmetries of a structure with its automorphisms – we will call
automorphisms symmetries in the first sense. Under the second, symmetries are
taken to be permutations of names of objects rather than of the objects themselves.
This works as follows. Suppose that we have a first-order language with a predicate
symbol, Ri , for each relation, Ri , of our structure, and enough constants, a, . . . , c,
to serve as names for each object in D. A nomenclature is a bijection from the
set of objects to the set of names. If we fix a nomenclature, then we can consider

1 Some of this material is developed more fully in Belot (2001; and ‘Dust, time, and symmetry’, unpublished
manuscript).

2 The distinction below is related to that between active and passive symmetries, and coincides with it in some
contexts.
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394 Gordon Belot

the set of atomic sentences true of our structure under that nomenclature – that
is, the set of formulae of the form Ri (a, . . . , c) true of our structure under our
convention of associating names with objects. Call this set the complete description
of our structure relative to the given nomenclature. Such a complete description
determines the associated structure up to isomorphism. If we now compose the
given nomenclature with a permutation of the set of names, we generate a new
nomenclature; the permutation is a symmetry in the second sense when the complete
description relative to the induced nomenclature is identical to that generated by
the original nomenclature. The symmetries in the second sense relative to a given
nomenclature again form a group under composition, and this group is isomorphic
to the group of symmetries in the first sense. Because the two senses are so closely
related, it is seldom necessary to decide which sense is in play in a given discussion.

Objects related by a symmetry occupy identical roles in the pattern of relations
described by their structure – think of the identity of role of points in Euclidean
geometry, or of congruent sides of an isosceles triangle. Below we will be interested
in structures whose objects correspond to possibilia – typically, possible objects
or worlds. We assume that only appropriately qualitative relations are represented
in our structures – so objects related by symmetries will be qualitatively indistin-
guishable.

2 Symmetry arguments

Symmetry arguments have played a central role in natural philosophical debates,
especially those concerning the nature of space, time, and motion. Many of them
fall under the following argument form (illustrative examples appear in section 3).! The point of departure is a given structure, held to provide a representation of

the features under investigation that is taken to be (more or less) adequate for
the purposes at hand. Very often this structure will be either a representation
of (aspects of) a certain spatiotemporal world (in which case it will encode, for
example, geometrical facts about the spatiotemporal relations between the parts
of the given world) or a space of physical possibilities (which will also typically
carry a geometrical structure – though, of course, a non-spatiotemporal one).! In order to solve some outstanding problem, it is proposed to extend the given
structure by supplementing its class of relations, yielding an enriched represen-
tation of the subject matter.! We ask whether every symmetry of the original structure is a symmetry of the
new structure.! If not, then we can find a symmetry " : D → D of the original structure, a new
relation R of the extension, and objects x1, . . . , xn ∈ D such that R(x1, . . . , xn)
but not R("(x1), . . . , "(xn)). In this case, the new relations make distinctions
between objects which are qualitatively indistinguishable in the original structure.
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To the extent that we are confident that the symmetries of the original structure are
the ‘correct’ symmetries at the level at which we are working, the failure of the
new relations to respect the symmetries of the original structure provides a reason
to reject the proposed new structure – and the problem solution that it serves. The
content and force of judgements of correctness will vary from case to case.! If, on the other hand, one can show that the proposed extension is invariant, in the
sense that it respects the symmetries of the original structure, then the proposed so-
lution has met a minimum standard. If the extension can be shown to be the unique
invariant extension of the sort under consideration, then one has reason to accept
the extended structure as a (more or less) adequate representation of the features
under investigation – to the extent that one is confident that the type of extension
under consideration is indeed the best way to approach the problem at hand.

3 Examples

This section contains five examples of the argument form discussed above, ranging
from the ancient to the modern. The first three provide examples in which the
structure under investigation is a representation of a single world. In the last two
examples the structures are more abstract: in the final example, the structure is the
space of worlds possible relative to classical mechanics; in the penultimate example,
the structure can be thought of as a coarse-graining of the space of two-particle
collision worlds. This selection gives an indication of the range of application of
the argument form within natural philosophy.

3.1 Platonic cosmology

The Timaeus includes a nice instance of our argument form.

It is entirely wrong to suppose that there are by nature two opposite regions dividing the
universe between them, one ‘below,’ toward which all things sink that have bodily bulk,
the other ‘above,’ toward which everything is reluctant to rise. For since the whole heaven
is spherical in shape, all points which are extreme in virtue of being equally distant from
the center must be extremities in just the same manner; while the center, being distant
by the same measure from all extremes, must be regarded as the point ‘opposite’ to them
all. . . . When a thing is uniform in every direction, what pair of contrary terms can be applied
to it and in what sense could they be properly used? If we further suppose that there is a
solid body poised at the center of it all, this body will not move toward any of the points on
the extremity, because in every direction they are all alike . . . 3

Here our initial structure is a highly idealized representation of the Platonic
cosmos: a sphere whose distinguished central point represents the Earth.4 This

3 62c–63a. Translation from Cornford (1997, pp. 262–3).
4 More precisely: our structure is a spherical subset of Euclidean space, with the usual betweenness and congruence

relations defined on the set of points.
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structure is invariant under any reflection through a plane through the central point.
It follows that it is invariant under rotations (which arise as products of reflections),
and hence that any two points on the surface of the sphere are related by a symmetry –
and thus count as being qualitatively identical in this representation of the cosmos.
Plato supposes that any definition of down would have to involve the choice of a
distinguished inward-pointing normal to the cosmic sphere. But no such definition –
amounting to the supplementation of the original structure by a property possessed
only by the single distinguished point – would respect the original symmetries.

Plato moves immediately from this point about definition to a claim about dy-
namics. In both cases, the claim that the original representation is perspicuous is of
course crucial – if we are allowed to bring into play asymmetries in the cosmos or
in the central body then the problems Plato considers admit of easy solutions (up
points towards Polaris; a central shoe moves toe-wards).

Here Plato expects his readers to grant as a matter of course that in the sort
of investigation he is engaged in, it is only the largest-scale features of the world
that should be taken into account. Perhaps to deny this is to mistake the sort of
understanding he claims to offer.

3.2 Simultaneity in special relativity

One might run a similar argument to explain to a beginning student Minkowski’s
claim that with special relativity ‘space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind of union of the two will preserve an
independent reality’ (1952, p. 75).

In Newtonian spacetime, one has binary relations ‘at the same time as’ and ‘at
the same place as’ defined on the set of spacetime points. Suppose that we wanted
to introduce such structures in Minkowski spacetime.5 We should, at the very least,
require any candidate for ‘at the same time as’ to be an equivalence relation with
three-dimensional, connected, space-like equivalence classes, and require any can-
didate for ‘at the same place as’ to be an equivalence relation with one-dimensional,
connected, time-like equivalence classes. But there are no such equivalence re-
lations definable on Minkowski spacetime that are also invariant under the
symmetries of the spacetime.6 In this sense, the shift from Newtonian spacetime to
Minkowski spacetime deprives us of fully autonomous notions of time and space.

Now, while every student ought to be exposed to this observation, it does lit-
tle to settle the question of the nature of time in special relativity – for both

5 Here and below the objects of differential geometry are taken to be structures in which the points of the space
are the objects, and the topological and differential structures of the space, along with any tensors defined on it,
are taken to be encoded in some appropriate fashion in the relations of the structure.

6 The only invariant equivalence relations are the trivial ones: the one in which every point is related only to itself,
and the one in which every point is related to every other. See Giulini (2001, Theorem 4).
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reactionary metaphysicians and heretical philosophers of quantum mechanics deny
that Minkowski spacetime provides a complete representation of spatiotemporal
reality in the first place. This is quite typical: symmetry arguments are of little
polemical value in situations where fundamental questions are at stake, since those
are the cases in which there will be little agreement as to whether a given structure
provides an acceptable point of departure for such an argument.

But note: in this setting no one is interested in using contingent features of the mat-
ter distribution to introduce asymmetries which make it (all too) easy to generate in-
variant simultaneity relations. The question is about the structure of spacetime, and
in the context of special relativity it would be cheating to take matter into account.

3.3 Time in dust cosmology

The situation is quite different in general relativistic dust cosmology. There one
conceives of spacetime as filled everywhere by dust motes (representing galaxies),
which interact with one another only gravitationally – this provides a tractable (and
relatively honest) idealization of the large-scale dynamics of the universe for all
but the earliest (and, possibly, latest) times (at which other interactions must be
taken into account). A solution to the equations consists of a spacetime geometry
together with a congruence of time-like geodesics (the worldlines of the dust) and
a scalar function (the matter density). The stress-energy of the dust serves as the
source term in the Einstein equations.

Now, note that if one augments the structure of Minkowski spacetime by the
choice of a privileged congruence of inertial observers at rest relative to one
another – in effect imposing a relation ‘at the same place as’ – then there is a
unique candidate for ‘at the same time as’ invariant under the symmetries of the
augmented structure.7 The associated equivalence classes are just the hypersur-
faces everywhere orthogonal to the privileged congruence – and coincide with the
surfaces of Einstein simultaneity associated with the privileged inertial observers.

Let us now consider a solution of dust cosmology. The dust congruence gives
us an analogue of the congruence of freely falling observers in the augmented
version of Minkowski spacetime. So it is natural to wonder whether we can define
a decent relation ‘at the same time as’ in our dust cosmology. We look for invariant
equivalence relations with connected, three-dimensional equivalence classes each
of which intersects each dust worldline exactly once.8

7 Giulini (2001, Theorem 5). See Malament (1977) and Stein (1991) for related results departing from the causal
structure of Minkowski spacetime.

8 The dust congruence and matter density of a dust solution are definable from the metric alone. So in dust
cosmology, there is no difference between studying the symmetries of the structure ‘spacetime geometry’ and
studying the symmetries of the structure ‘spacetime geometry + material contents’. This equivalence fails for
some general relativistic systems, including the Einstein–Maxwell field; see Kramer et al. (1980, p. 114).
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Such equivalence relations exist in physically realistic dust cosmologies. Indeed,
in any dust cosmology with a trivial symmetry group, any partition by space-like
hypersurfaces will do – so there will be far too many candidates. But in highly sym-
metric models, like the Friedmann–Robertson–Walker solutions and the Einstein
static universe, there is a unique relation of the desired type – the one whose equiv-
alence classes are the hypersurfaces everywhere orthogonal to the dust congruence.

In the early decades of relativistic cosmology, this was taken to suggest that
attention to astronomy restored what the local physics of special relativity had
dissolved – an objective separation of spacetime into space and time.9 Gödel was
able, however, to construct a dust solution in which there is no invariant equivalence
relation possessing the desired features.10

On its surface, this shows only that the Minkowski-style argument carries over
to Gödel’s solutions – a result of some interest, given that a dust congruence is
a natural generalization of a structure sufficient to generate an invariant temporal
slicing when added to Minkowski spacetime. Gödel himself thought the result had
much greater significance.11

3.4 Huygens on collision

Here is a bloodless paraphrase of the opening moves in Huygens’s analysis of
collision (1977, pp. 574–8):

! We consider two bodies A and B. We assume that these bodies are perfectly
elastic, of equal mass, and moving along the same line. We assign this line a
sense – we call one end ‘left’ and the other end ‘right’. The space of ordered pairs
of real numbers is our space of states: the ordered pair (a, b) corresponds to a
state where A has velocity a along the line while B has velocity b, employing the
convention that positive velocities correspond to motion towards the right. This is
an impoverished notion of state: we ignore the positions of the bodies on the line.! We are interested in the dynamics of collision. We seek to define an irreflexive
binary relation, →, on the space of states, where (a, b) → (a′, b′) iff a system
initially in state (a, b) eventually evolves into a distinct (a′, b′).! We introduce three hypotheses.! Hypothesis I. The system remains in the initial state unless a collision occurs. So

states of the form (a, b) with a ≤ b are dead-ends – they do not arrow anything.! Hypothesis II. For a > 0, (a, −a) → (−a, a).

9 See Eddington (1920, p. 163) and Jeans (1936, p. 21ff.).
10 Gödel (1949a, p. 447); (1949b, p. 560). It is possible to construct hypersurfaces of orthogonality only when the

solution is non-rotating. But rotation alone does not suffice to rule out a relation of the desired sort – in Gödel’s
later, somewhat more realistic, expanding rotating solutions the surfaces of constant matter density have the
properties required above of instants; see Gödel (1952).

11 See Belot, ‘Dust, time, and symmetry’, unpublished manuscript.
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! Hypothesis III. For any real number x , if (a, b) → (a′, b′) then
(a + x, b + x) → (a′ + x, b′ + x).! These hypotheses suffice to determine → . In light of Hypothesis I, we need

only investigate states (a, b) with a > b.! Proposition I. For a > 0, (a, 0) → (0, a) , while for b < 0, (0, b) → (b, 0).
Proof. Consider the first case. Let x = −a/2. Then (a + x, 0 + x) = (a/2, −
a/2). By Hypothesis II, (a/2, −a/2) → (−a/2, a/2). So by Hypothesis III,
(a/2 − x, −a/2 − x) → (−a/2 − x, a/2 − x). That is, (a, 0) → (0, a).! Proposition II. For a > b, (a, b) → (b, a).
Proof. As above, choosing this time x = − 1

2 (a + b).

This analysis can be recast in our canonical form. Take as the set of objects our
space of states and equip it with a binary relation, ∼, such that (a, b) ∼ (c, d) iff
there is a real number x such that (c, d) = (a + x, b + x).12 Take as our problem
the construction of a dynamics, to be encoded in an arrow relation satisfying Hy-
potheses I and II. Huygens shows that there is unique such relation that respects
the symmetries of the original structure.

Hypothesis III, the principle of relativity of inertial motion, is the lynchpin of
the analysis – and the element most likely to be challenged by Huygens’ Cartesian
contemporaries.13 The success of this principle in solving the problem of collision,
and others, ought to be the chief reason given for its acceptance.

In Huygens’ proofs, the colliding objects are passed at the moment of collision
from the hands of a sailor on a boat gliding down a river to the hands of a confederate
at rest on the bank; the situation is arranged so that the solution of the problem for one
party follows from Hypothesis II; the other party is then able to solve the problem
by appeal to Hypothesis III. This suggests that Huygens viewed each dynamical
state as representing the velocities of the colliding bodies relative to some observer,
and viewed states related by boosts as descriptions of the same system from the
point of view of different observers. From this perspective, the principle of relativity
says that there is a single set of rules for predicting the outcome of collisions given
the initial states, and that observers obtain the correct result by applying this rule
to their own description of the initial state.

But there is a second way of interpreting this little theory – one more appealing,
probably, to modern eyes than it would have been to Huygens.14 We can interpret the

12 This enforces Hypothesis III by ensuring that the symmetries of the original structure are the maps of the form
(a, b) '→ (a + x, b + x).

13 Descartes employs the same basic framework in his laws of motion and collision (1991, Part II, sections 36–
53) – but Huygens’ Propositions I and II directly contradict Descartes’ third and sixth rules of impact, while
Huygens’ Hypothesis I follows from Descartes’ first and second laws of motion, and Huygens’ Hypothesis II
appears as Descartes’ first rule of impact. So a Cartesian interested in upholding Descartes’ analysis of impact
against that of Huygens must locate the error of the latter in the principle of relativity (a principle that plays no
role in Cartesian physics).

14 Of course, some contemporary commentators prefer the original approach; see for example Brown and Sypel
(1995). See also note 19, below.
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states of the theory as encoding instantaneous absolute velocities of the particles
existing in two-particle worlds. States related by boosts now represent distinct
possibilities rather than distinct descriptions; and the principle of relativity tells us
about the relation between the dynamics of collisions at sets of worlds related by
boosts. Note that states represent sets of worlds rather than individual worlds, since
they encode no information about the location of the particles – there will be many
worlds corresponding to a state of the form (a, a).

3.5 Symmetries in classical mechanics

Suppose that we have n particles of equal mass moving in Euclidean space, subject
to (inter-particle and/or external) forces that depend on the location of the particles
in space. Then we can cast our dynamics in Hamiltonian form, writing a state
of the system as (q, p) where the 3n-vector q encodes the position coordinates
of the particles while the 3n-vector p encodes their momentum coordinates. We
equip the phase space T ∗Q := {(q, p)} with a tensor, the symplectic form, ω :=∑

dqi ∧ dpi , and a scalar function, the Hamiltonian, H := 1
2 |p|2 + V (q).15 The

first term in the Hamiltonian is the kinetic energy, the second is the potential energy;
the components of the forces on the particles are given by − ∂V

∂qi . There is a unique
vector field, X H , on T ∗Q such that ω(X H , ·) = dH.16 The flow generated by this
vector field gives the dynamics of the theory. We write (q, p) →t (q ′, p′) when the
state (q, p) evolves into the state (q ′, p′) after t units of time.

We can study the symmetries of the structure ‘phase space + symplectic form
+ Hamiltonian’. Because we employ smooth objects, a symmetry will be a dif-
feomorphism from the phase space to itself that preserves the symplectic form
and the Hamiltonian.17 Because a symmetry preserves the structures that deter-
mine the dynamics, the dynamics is also invariant under symmetries – that is, if
φ : T ∗Q → T ∗Q is a symmetry and (q, p) →t (q ′, p′), then φ(q, p) →t φ(q ′, p′).

If we restrict attention to forces, such as gravity, that depend only on the
inter-particle distances (and not on the location of particles in absolute space)
then transformations that correspond to shifting the system in Euclidean space,

15 The symplectic form is a closed non-degenerate 2-form. The variety of dynamics defined below can be con-
structed whenever one has a manifold equipped with such a form.

16 Note that the symplectic form on T ∗ Q induces the Poisson bracket – a Lie bracket satisfying Leibniz’s rule – on
the space of smooth function on T ∗ Q via the rule: { f, g} := ω(X f , Xg). We can write the dynamics in terms of
this bracket as ḟ = { f, H}. The advantage of this form is that it applies whenever we have a Poisson manifold –
a manifold whose space of functions is equipped with a Lie bracket satisfying Leibniz’s rule. The notion of a
Poisson manifold is more general than that of a symplectic manifold – indeed, every Poisson manifold can be
decomposed as a disjoint union of symplectic manifolds.

17 The group of diffeomorphisms which preserve the symplectic form is immense – it is infinite-dimensional. But
the symmetry group of the full structure will be much smaller – at most, of dimension 3n (in the case of an
integrable system).



Notes on symmetries 401

or reorienting it by a rotation, will be symmetries.18 The fact that the operation
of shifting the entire system in Euclidean space is a symmetry shows that there
is no dynamically preferred origin in the Euclidean space the system inhabits –
for the dynamical behaviour of a system whose centre of mass was at the hy-
pothetical origin would be indistinguishable from that of an otherwise similar
system that had been shifted (i.e. there is no invariant way to privilege a set of
points in the phase space as representing the system as being located at the spatial
origin).

So far we have been thinking of the points in our structure as representing
possible complete dynamical instantaneous states of a system of particles. But
given the determinism (modulo certain technicalities that we can ignore here) of
classical mechanics, we might just as well think of them as representing com-
plete possible physical histories of the particles – the specification of a state at
a given time is enough to determine the entire history of the system. Thus we
can take our phase space to be a space of physically possible worlds, carrying a
geometrical structure and scalar which determine the dynamics – where now if
(q, p) →t (q ′, p′) then the worlds (q ′, p′) and (q, p) have the same sequence of
instantaneous states, with these states occurring t units of time later in one world
than in the other.19

4 Symmetries of solutions and symmetries of laws

These examples are pretty typical of those one comes across in philosophy of
physics – most of the structures that arise in the course of symmetry arguments
are either representations (generally, highly idealized ones) of a given spatiotem-
poral world, or spaces of such representations carrying a structure that encodes the
dynamics of a physical theory.

Let’s put it this way: suppose that we are interested in philosophical aspects of
some physical theory; then we will spend some time contemplating the physics of
individual solutions of the equations of the theory, and some time contemplating the
content of the laws of the theory by studying (what physicists and mathematicians
have to say about) the space of solutions to the equations.

I will make a few remarks about these two occupations and the relation between
them.

18 Galileian boosts are not symmetries in the present sense – they preserve the dynamical trajectories, but not the
Hamiltonian.

19 The statement in the text is tendentious – it is a matter of controversy whether two worlds can differ in this way.
My view is that if one denies that the application of time translation (or any other symmetry) generates distinct
physical possibilities, then one ought to prefer to the standard formulations of classical mechanics those in
which the offending symmetry has been factored out. See section 5 below and Belot (2001).
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4.1 Structuring the space of solutions

In the previous section we saw a couple of examples where we were handed struc-
tures whose objects represented (complete or partial) characterizations of possible
worlds, and which came equipped with enough structure to single out a physi-
cally interesting group of symmetries. The case of classical particle mechanics,
section 3.5, is entirely typical: the symmetries of classical physical theories are
studied by studying the symmetries of joint structure composed of the space of
states/solutions of the theory and the dynamics-determining structures defined on
that space.20

Where do these latter structures come from?
This isn’t a frivolous question – for if we just look at the differential equations of a

theory or at the corresponding space of solutions, we will not have enough structure
to pick out the physically interesting symmetries. If we take the latter route, and
study the set of solutions as an unstructured set, then arbitrary permutations of
the set will count as symmetries. If we base our analysis instead on the differential
equations of the theory, we will get a bit further: the space of solutions will plausibly
be equipped with a topological and a differential structure, arising out of the use
of continuous variables; so the symmetries will at least be diffeomorphisms on the
space of states. In either case, it will be possible to relate any pair of solutions by a
symmetry – a solution of Newton’s gravitational equations in which the planets are
all falling into the Sun will count as ‘equivalent’ to one in which they are in stable
orbits. This is a disaster.

Furthermore, the interesting connection between symmetries and conservation
laws will be absent under such approaches. This connection can be established
when the differential equations of the theory arise as the equations of motion for
a Lagrangian or Hamiltonian formulation. In this case, the space of solutions is
equipped with a natural geometric structure, the symmetries of the joint structure
‘space of states + geometric structure + Lagrangian or Hamiltonian’ has as its
symmetries the intuitively correct symmetries of the theory, and each (continuous)
symmetry of this structure is associated with a conservation law for the original
equation(s) of the theory.21

20 The spaces of states of quantum theories also come equipped with familiar structures defining the corresponding
dynamics. For reasons of convenience I discuss only the classical case here. But it is interesting (and perhaps
important) to note that there is a sense in which quantum theories are special cases of classical theories, as
dynamical structures. (i) The space of rays of a Hilbert space carries a symplectic structure; the Schrödinger
dynamics are given by solving for the vector field associated with the function on this symplectic manifold
given by the expectation value of the Hamiltonian operator; see Landsman (1998, section I.2.5) or Ashtekar
and Schilling (1999). (ii) More generally, the space of states of a C∗-algebra carries a dynamically relevant
Poisson structure; see Landsman (1998, Proposition I.2.6.8 and Theorem I.3.8.1).

21 If we set out from a Lagrangian formalism, then there is a natural way to equip the space of solutions of
the associated Euler–Lagrange equations with a closed 2-form; this form will be non-degenerate (and hence
symplectic) if the Euler–Lagrange equations have a well-posed initial value problem. See Deligne and Freed
(1999, section 2).
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That the setting of the theories of classical physics within the unifying frame-
work of geometrical mechanics has proved so immensely fruitful suggests that we
ought to take as basic, not the equations of motion of classical physics, but rather
the Lagrangian or Hamiltonian formulations that give rise to them.22 This is the
implicit or explicit practice of most mathematicians and physicists. But what ex-
actly this ‘taking as basic’ commits us to is a philosophical question that remains
largely unexplored.23 At first blush it is tempting to think that we are being told
to take the set of worlds physically possible relative to some theory as carrying a
structure determined by the physics itself, and that this ought to have some conse-
quences for philosophical debates about, for example, the nature of laws, or for the
nature of physical possibility more generally. But making out these claims is not a
straightforward matter.

4.2 Symmetries of equations vs. symmetries of solutions! In the case of Newtonian gravitating point particles we find, of course, that the
symmetries of the laws – translation in time and the Euclidean symmetries –
are not symmetries of typical solutions: only zero-particle solutions are invariant
under translations in Euclidean space, and only static solutions are invariant
under time translation. This is, in fact, a general feature of differential equations:
generic solutions have less symmetry than do the equations that determine them.
See Olver (1993, chapter 3).! Some questions, like that of the existence of a preferred parity, admit of two
construals – one focusing on properties of solutions, the other on properties of
the laws. Thus we can ask whether there are types of objects or properties such that
nature prefers one parity over the other (a question we can reconstrue as whether an
imbalance between parities appears in solutions which are good representations of
our world); or we can ask whether the laws are invariant under reversal of parity.
And, of course, the latter question can be given an affirmative answer even if
there are systematic preferences for one parity over the other in nature – although
preferences in certain fundamental cases will suggest asymmetries in the laws.

If we set out from a strictly Hamiltonian formalism, then we begin with a space of states/space of initial data
equipped with a symplectic form, which we can as usual pull back to the space of solutions by the isomorphism
between the spaces induced by fixing a time at which the initial data are posed. More generally, we might work
with a space of states equipped with a presymplectic form (a closed but possibly degenerate 2-form whose
foliation by null manifolds has a well-behaved leaf-space) – in which case the usual construction equips the
space of solutions with a similar form.

22 The structures on the space of solutions discussed in the previous paragraph need not be the end of the story –
for example, often we will want to view this space as a cotangent bundle over a configuration space, and view
the kinetic term in the Lagrangian or Hamiltonian as arising from a Riemannian metric on the configuration
space.

23 See, however, J. Butterfield, ‘Solving all problems, postulating all states: some philosophical morals of analytic
mechanics’, unpublished manuscript.
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Now, in the case of parity, the laws version of the question is taken to be much
deeper than the particular-solution version of the question. Why should that be?
These days, physicists are acutely aware that their present theories are, strictly
speaking, false – and much of the most creative and influential work in physics
is directed towards creating new theories. The result is that the question ‘What
do present theories tell us about the world?’ becomes ‘What hints do present
theories contain about future physics?’ And while the physics of particular
solutions undoubtedly looms large in answers to the first question, it is swamped
by considerations relating to structural features of the laws in approaches to the
second question. (For further discussion of parity, see Pooley, this volume.)! Curie’s principle is often taken to forbid the evolution of a system from a
symmetric state into an asymmetric state. (For the original formulation, see
Curie, this volume.)

The principle is true for a large class of theories.24 Suppose that we are given a
space, X , of dynamical states, along with a deterministic dynamics – i.e. for each
x ∈ X and t ∈ R, there is a unique x ′ that x evolves into after t units of time;
we write x →t x ′. Suppose, further, that if a state counts as symmetric, it is in
virtue of being left invariant by a non-trivial, physically relevant transformation
" : X → X. Finally, suppose that every " arising in this way is a symmetry
of the dynamics, in the sense that x →t x ′ implies "(x) →t "(x ′). Then if x
is a symmetric state, so is each x ′ such that x →t x ′: by the symmetry of the
dynamics, "(x) →t "(x ′); and by the symmetry of x , "(x) = x ; so x →t x ′

and x →t "(x ′); so by the determinism of the dynamics, x ′ = "(x ′).
So in the classical realm, Curie’s principle holds so long as the symmetry

operations performable on states are also symmetries of the dynamics. This
appears to hold true for realistic systems. But it is easy enough to violate for
artificial examples.

Consider a Hamiltonian theory of three point particles. Let us say that a state
is equilateral if it represents the particles as forming an equilateral triangle, with
momenta of equal magnitude directed in the same sense along the angle bisectors.
Let us say that a state is scalene if it represents the particles as forming a scalene
triangle. Let (q, p) be some equilateral state; and let " be a transformation on
the phase space corresponding to the action of reflection in Euclidean space
through one of the angle bisectors. " permutes the states of our theory, but
leaves (q, p) invariant – and it is in virtue of being invariant under such " that
an equilateral state counts as symmetric. If gravity is the only force acting on
our particles, then each such ", being a Euclidean symmetry, is a symmetry
of our dynamics – and hence leaves (q ′, p′) invariant if (q, p) →t (q ′, p′), so
that Curie’s principle is satisfied. But we can also consider deviant theories,

24 See Ismael (1997); J. Earman, ‘Spontaneous symmetry breaking for philosopers’, unpublished manuscript, and
the references therein.
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constructed by messily altering the expression for the gravitational potential
energy outside of some open neighbourhood of (q, p), so that " is no longer a
symmetry of the dynamics. In such a theory we have (q, p) →t (q ′′, p′′) with, in
general, (q ′′, p′′) ̸= (q ′, p′) and (q ′′, p′′) a scalene state. So we have a violation of
Curie’s principle – the initial state is symmetric with respect to the configuration
variables, momenta, and forces, but it evolves into an asymmetric configuration.

Enthusiasts of the principle may be tempted to dismiss such counter-examples.
After all, our equilateral state evolves into a scalene state – so one of the three
originally congruent sides of the triangle ends up being the longest. In the simplest
cases, this will be because the potential of the new theory encodes forces which
differentiate between directions in Euclidean space, or treat, say, the first particle
differently from the second and the third. It is tempting, perhaps, to think that
more complex cases are just variants on these two options. And if this is so, then
the example under consideration ought not to be viewed as a counter-example
to Curie’s principle, for the initial equilateral state is not genuinely symmetric –
reflection or interchange of particles is not a real symmetry of the initial state,
given the sort of information that the potential function takes into account.

Now there is something funny about this objection, since by construction
the potential is identical to the Newtonian gravitational potential on an open
neighbourhood of the initial equilateral state. So, in effect, we are told the initial
state is not symmetric because . . . it later evolves to an asymmetric state.

In any case, the presupposition of the objection – that asymmetries in our final
state must be grounded in the potential’s caring about directions in space or the
identity of the particles – is mistaken. We could have first eliminated Euclidean
and permutation symmetries from the Newtonian theory (see section 5.2 below)
before perturbing the potential. The result would have been a theory in which
the particle states are characterized by relative distances and velocities (so the
particles live in a relational space, without absolute directions), and in which
the state of the system is characterized by a set of three-particle states rather
than by an ordered triple of particle states (so that there is no longer a question
of which particle is which). Nonetheless, it is possible to rig the potential so
that an initial state in which the three relative distances are equal and the three
relative velocities are equal evolves into a state in which the particles form a
scalene triangle. Only great stubbornness could lead someone to insist that such
an initial state should not count as symmetric.

5 Quotienting out symmetries

For every structure S = (D, {Ri }i∈I ), we can define the associated quotient struc-
ture S̄, which arises by factoring out the symmetries of S. We define an equiva-
lence relation, ∼, on D by declaring x ∼ y whenever there exists a symmetry of S,
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φ : D → D with y = φ(x). The equivalence class of x under this relation is denoted
[x] := {y ∈ D : x ∼ y}. S̄ has as its set of objects the set [D] := {[x] : x ∈ D}, of
equivalence classes of ∼ . For each n-ary relation Ri of S, S̄ has an n-ary relation
[Ri ] := {([x1], . . . , [xn]) : (x1, . . . , xn) ∈ Ri }.
! If S admits no non-trivial symmetries, then S̄ and S are isomorphic. If S is

homogeneous – if every pair of its objects are related by a symmetry, as in the
case of the order structure of the integers or the rationals – then the quotient has a
single object, related to itself by the counterparts of all the non-vacuous relations
of S. The interesting cases lie in the intermediate region.! We can use the same language to describe both structures (using the same predicate
symbol, ‘Ri ’, as a name for both Ri and [Ri ]). Choosing names for our new objects
generates a complete description of the quotient structure.

The complete descriptions of the two structures will be closely related. A
complete description of the original structure can be transformed into a com-
plete description of the quotient structure by taking names of objects related by
symmetries to name identical objects.

We can also consider the relations between theories describing the two struc-
tures. For instance, any constant-free sentence that employs only one-place pred-
icates or that is free of negation symbols will be true of the quotient if it is true
of the original structure.25 But sentences combining multi-place predicates and
negation symbols need not be true: let S be the countable structure whose sole
relation, R, gives it the order structure of the integers; then S̄ has a single object,
[x], with [R] ([x], [x]). So the sentence ∀x ∼ R(x, x) is true in S but false in S̄.! More generally, we can quotient out by the action of a subgroup of the full
symmetry group – declare two objects to be equivalent if related by an element
of the chosen subgroup, go on to take equivalence classes, etc.

5.1 Quotienting solutions

If one has a description of a possible world – in the form of a solution of a differential
equation, for instance – one can ask whether it admits any symmetries. If it does, then
one can consider the distinct description that arises as the quotient of the original.

Advocates of the Principle of the Identity of Indiscernibles will want to deny
that any description admitting symmetries corresponds directly to a possible world,
while granting that the related quotient (ceteris paribus) does so.26 Indeed, they can
go on to insist that a description admitting symmetries is merely a misdescription

25 Indeed, something stronger is true: if a constant-free sentence is in negation normal form (so that any negation
symbols apply to atomic formulae) and each of its negation symbols applies to a one-place predicate, then
its truth in the original structure implies its truth in the quotient structure. This follows from Hodges (1997),
Theorem 8.3.3(a), since the map x '→ [x] is a surjective homomorphism that fixes one-place relations.

26 For this attitude, see Hacking (1975) and L. Smolin, ‘The present moment in quantum cosmology: challenges
to the arguments for the elimination of time’, PITT-PHIL-SCI 00000153.



Notes on symmetries 407

of the corresponding quotient, under the strange convention according to which
some objects are given multiple names.

To most, this will appear unmotivated at best.27 Like Black (this volume), many
suppose that there could be a Euclidean world, otherwise empty except for two
identically constituted iron spheres. What motivation is there for saying that the
only possibility in the neighbourhood is the uglier world, containing a single such
sphere, related geometrically to itself in its strange non-Euclidean space? Even
in cases where there is no gain in awkwardness in passing from the symmetric
description to its quotient – as in passing from the covering spacetime of a non-
simply connected spacetime to the non-simply connected spacetime itself – many
will still feel that there are two genuine possibilities in the neighbourhood.

5.2 Quotienting the space of solutions

If we take the space of solutions of a classical physical theory to be equipped with
the sort of rich structure discussed in section 4.1 above, then taking the quotient by
the action of a group of symmetries often leads to an interesting result – sometimes
with interpretative implications. There exists a large mathematical literature on
this technique.28 I think that the techniques and results of this literature promise
to offer a unifying perspective on a number of classic problems in philosophy
of physics (the relation between the nature of space and the nature of motion in
Newtonian physics, identical particles, the nature and significance of gauge freedom
and general covariance).

Let us return to our example of n gravitating point particles.

! Example: Euclidean symmetries. Consider the theory of n gravitating Newtonian
point particles. The symmetries of Euclidean space – translation, rotations, re-
flections, and their products – are symmetries of this theory (action on initial data
by one of these symmetries transforms the dynamical trajectory by the action of
same symmetry). Call this group E(3). Translations and rotations are generators
of the continuous symmetries of the theory, and the corresponding conserved
quantities are the total linear and (centre of mass) angular momentum.

Let δ be the set of points which represent the particles as forming symmetric
configurations in Euclidean space. Let & be the set of collision points of the
phase space, representing states in which two or more particles occupy the same
point of Euclidean space. These are sets of measure zero which we excise from
the phase space.29 Call the resulting phase space M. We are also interested in

27 Hacking’s motivation, I take it, stems from his views on the nature of logic; see Hacking (1978; 1979).
28 For introductions to the mathematics, see Marsden (1992), Marsden and Ratiu (1994), and Singer (2001).
29 The excision of δ is a convenience that allows us to sidestep complications in the construction of the quotient

theory; see Belot (2003, section 10) for discussion and references. The excision of & is more essential, since
certain types of collision singularity are intractable.
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a second space, M0, the subspace of M corresponding to states in which the
system has vanishing linear and angular momentum. Since M0 is a dynamically
closed subspace (being defined by the vanishing of conserved quantities), we
can consider the dynamical theory defined upon it by structure inherited from
M. We are interested in the quotient structures, M and M0, that arise when we
take the quotient of these spaces by the action of E(3). Each of these encodes a
mathematically well-behaved physical theory.30

M0 gives a theory closely related to the Barbour–Bertotti form of relational
dynamics (Barbour and Bertotti, 1982). The points of the quotient space are
parameterized by the relative distances and relative velocities of the particles.
The dynamics is such that specifying an initial point determines a dynamical
trajectory – which gives the same evolution of the relative distances and relative
velocities as one gets if one chooses an initial point in the full Newtonian theory
with the same pattern of relative distances and relative velocities for the particles
and with vanishing angular momentum, then reads off the subsequent values
of the relative distances and relative velocities from the Newtonian evolution.
Thus M0 is an attractive relational theory of motion: it is, mathematically, of the
same form as the Newtonian theory (one does not, for instance, have to specify
higher derivatives in order to get a well-posed initial value problem); and the
relative distances and relative velocities between the particles form a dynamically
closed set, whose evolution is deterministic; furthermore the predictions for the
empirically accessible variables match those of the Newtonian theory on the
cosmologically relevant non-rotating sector. It is also a theory which is naturally
set in the space of a classical relationalist about Euclidean space: the theory
recognizes no difference between the state of a system located here, and one
differing only by being shifted over there.

The story with M is a bit more complicated. We started in M with 6n vari-
ables (corresponding to the components of the position and momentum of each
particle), then we eliminated six of these by identifying points related by the six-
dimensional group of Euclidean symmetries. 3n − 6 of the remaining variables
fix the relative distances of the particles and 3n − 6 of them fix the relative veloci-
ties between the particles. Three further variables correspond to the velocity of the
centre of mass of the system – and can simply be dropped from the theory, since
they are dynamically inert. Informally speaking, the final three variables encode
information about the angular momentum of the system – these variables stand in
the way of the most straightforward sort of relativist/relationalist interpretation.31

30 Each inherits a Hamiltonian from M , and carries a geometric structure adequate to determine a dynamics – M̄
is a Poisson manifold while M̄0 is a symplectic manifold.

31 These variables correspond to the components of the angular momentum in a frame rotating with the system
(rather than in the usual spatially fixed frame). The magnitude of the corresponding vector is preserved, but its
direction evolves in time.
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! Example: permutation symmetries. Let’s alter the notation slightly: now we write
the states as ((q⃗1, p⃗1), . . . , (q⃗n, p⃗n)) where q⃗i is the position vector of the i th
particle and p⃗i is the corresponding momentum. Now consider the transforma-
tion π(12) : ((q⃗1, p⃗1), . . . , (q⃗n, p⃗n)) '→ ((q⃗2, p⃗2), (q⃗1, p⃗1), (q⃗3, p⃗3), . . . , (q⃗n, p⃗n)),
and the corresponding transformations {π(i j)} for 1 ≤ i < j ≤ n. Each of these is
a symmetry of our theory, so the group that they generate, Sn , is a symmetry group
of the theory.32 This group permutes the identity of the particles (see French and
Rickles, this volume, for further discussion). Let us denote by M̂ the quotient of
M by the action of Sn. This is again a well-behaved physical theory.33 We can
think of its states as consisting of sets {(q⃗1, p⃗1), . . . , (q⃗n, p⃗n)} of particle states
rather than ordered tuples of particle states – the theory keeps track of how many
particles are in each state, rather than which particle is in which state. It is an
interesting fact that M and M̂ underwrite the same statistical theories (see ter
Haar, 1995, section 5.9; Huggett, 1999). The reason is as follows. In classical
statistical mechanics, one is interested in the ratio of phase space volumes. Now
the volume measures in play in M and its subspaces are Sn-invariant, deriving
ultimately from the Sn-invariant symplectic form. And the physically interesting
subsets of M are also Sn-invariant. The volume of the image of such a subset in
M̂ will just be 1

n! of its volume in M (n! counts the number of elements in Sn). So
we will get the same answer whether we measure the ratio of two such regions
in M , or measure the ratio of their images in M̂ .

Now, the difference between Maxwell–Boltzmann statistics and Bose–Einstein
statistics is often informally cashed out in terms of ways of counting possi-
ble outcomes of double coin-flips: under the first set of statistics, there are two
ways to get {H,T}, under the second, only one. Does the argument above show
that classical particles obey Bose–Einstein statistics after all? No (see Huggett,
1999, pp. 16–17). A better way of describing the difference between the two
sorts of statistics is to say that under one {H,T} is twice as likely as either
{H,H} or {T,T}, while under the other these three alternatives are equiprobable.
But recall that in constructing M we eliminated all points in which there were
particle collisions, including all states in which distinct particles share the same
position and momentum – so we cannot make the comparison of the likelihood
of classes of states fixed by permutations with classes of states not fixed by
permutations in M , or the corresponding comparisons in M . 34

32 Note that while it was a mere notational convenience to take the particles to be of equal mass in previous
examples, it is here a necessity.

33 It is a symplectic manifold, equipped with the projected Hamiltonian.
34 What happens if we restore to our phase space the subset of & consisting of the physically bizarre states fixed

by elements of Sn , in which two or more particles share the same position and momentum? On the one hand,
not much: this set and its image under the projection to M̂ are of measure zero in their respective spaces – so
we don’t get any difference between the relative weight assigned to these two sets in their respective spaces.
On the other hand, there is the following suggestive fact: for a generic (permutation symmetry-free) state there
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Whenever we compare two spaces of possible worlds, one the quotient of the
other, we are contrasting two ways of counting possibilities. In the two examples
discussed above, and in other examples that arise naturally in philosophy of physics,
we are in essence faced with the difference between a relatively haecceitistic means
of counting possibilities and a relatively anti-haecceitistic means of counting pos-
sibilities.35 In M , but not in M , if it is possible for the particles to be thus and so
and to be here, then it is also possible for them to be thus and so and to be there –
with the two states qualitatively identical, and differing only as to which spacetime
points are occupied. In M , but not in M̂ , if it is possible for the particles to be thus
and so with this particle playing a certain role, then it is also possible for them
to be thus and so with that particle playing the given role – with the two states
qualitatively identical, and differing only in their distribution of roles to particles.

Note that while in the case of the Euclidean symmetries, it was natural to think
of (some versions of) the quotienting procedure as leading to the elimination of
spacetime points, there is no such straightforward ontological purge in the identical-
particles case. For even after the quotient has been taken, the space of states is rich
enough to associate with each dynamically possible history a set of continuous
spacetime trajectories, labelled by features such as mass, etc. – so there is little
impetus to say that anything has been eliminated from the ontology of the worlds
described by the theory. Why the difference? Well, the existence of spacetime
points is closely tied up with questions of counting of possibilities – so they are
vulnerable to elimination in the transition from a haecceitistic means of counting
to an anti-haecceitistic one. But in the case of particles we have much more to hang
on to.

There is also a crucial technical distinction between the two cases. Taking the
quotient of a phase space by the action a discrete group of symmetries yields a
phase space that is almost everywhere locally equivalent to the original. This is not
so if one works with a continuous group: the presence of continuous symmetries
indicates the inclusion of dynamically irrelevant variables in the space of states;
the elimination of such variables results in an interestingly distinct theory (the new
phase space will be of smaller dimension than the original, and (unless one restricts
attention to a subspace) will be a Poisson space even when the original phase space
is symplectic).36

are n! states upstairs for every state downstairs; but if we look at states in which exactly two particles share the
same position and momentum, this factor goes down to n!

2 .
35 Hence while there may perhaps be more temptation to apply the quotienting procedure across the board in the

case of spaces of solutions than in the case of individual solutions, familiar haecceitistic modal intuitions – see
Adams (1979) and Lewis (1986, section 4.4) – provide a countervailing force.

36 Gauge theories provide an especially vivid example. One starts with a theory in many ways analogous to that of
M0 above, then quotients out the action of the infinite dimensional group of gauge transformations. For details,
see Belot (2003), and Earman (this volume, Part I), and Redhead (this volume).
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