
2 The Category of Sets

2.1 Introduction

In the previous chapter, we started to reason about theories (in propositional logic)
without explicitly saying anything about the rules of reasoning that we would be per-
mitted to use. Now we need to talk more explicitly about the theory we will use to talk
about theories, i.e., our metatheory. We want our metatheory M to be able to describe
theories, which we can take in the first instance to be “collections of sentences,” or better,
“structured collections of sentences.” What’s more, sentences themselves are structured
collections of symbols. Fortunately, we won’t need to press the inquiry further into
the question of the nature of symbols. It will suffice to assume that there are enough
symbols and that there is some primitive notion of identity of symbols. For example,
I assume that you understand that “p” is the same symbol as “p” and is different
from “q.”

Fortunately, there is a theory of collections of things lying close to hand, namely
“the theory of sets.” At the beginning of the twentieth century, much effort was given
to clarifying the theory of sets, since it was intended to serve as a foundation for all
of mathematics. Amazingly, the theory of sets can be formalized in first-order logic
with only one nonlogical symbol, viz. a binary relation symbol “∈.” In the resulting
first-order theory – usually called Zermelo–Frankel set theory – the quantifiers can
be thought of as ranging over sets, and the relation symbol ∈ can be used to define
further notions such as subset, Cartesian products of sets, functions from one set to
another, etc.

Set theory can be presented informally (sometimes called “naive set theory”) or
formally (“axiomatic set theory”). In both cases, the relation ∈ is primitive. However,
we’re going to approach things from a different angle. We’re not concerned as much with
what sets are, but with what we can do with them. Thus, I’ll present a version of ETCS,
the elementary theory of the category of sets. Here “elementary theory” indicates that
this theory can be formalized in elementary (i.e., first-order) logic. The phrase “category
of sets” indicates that this theory treats the collection of sets as a structured object – a
category consisting of sets and functions between them.

28
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Axiom 1: Sets Is a Category

Sets is a category, i.e., it consists of two kinds of things: objects, which we call
sets, and arrows, which we call functions. To say that Sets is a category means
that

1. Every function f has a domain set d0f and a codomain set d1f . We write
f : X→ Y to indicate that X = d0f and Y = d1f .

2. Compatible functions can be composed. For example, if f : X → Y and
g : Y → Z are functions, then g ◦f : X→ Z is a function. (We frequently
abbreviate g ◦ f as gf .)

3. Composition of functions is associative:

h ◦ (g ◦ f ) = (h ◦ g) ◦ f

when all these compositions are defined.
4. For each set X, there is a function 1X : X→ X that acts as a left and right

identity relative to composition.

discussion 2.1.1 If our goal was to formalize ETCS rigorously in first-order logic,
we might use two-sorted logic, with one sort for sets and one sort for functions. We will
introduce the apparatus of many-sorted logic in Chapter 5. The primitive vocabulary of
this theory would include symbols ◦,d0,d1,1, but it would not include the symbol ∈. In
other words, containment is not a primitive notion of ETCS.

Set theory makes frequent use of bracket notation, such as

{n ∈ N | n > 17}.

These symbols should be read as “the set of n in N such that n > 17.” Similarly,
{x,y} designates a set consisting of elements x and y. But so far, we have no rules for
reasoning about such sets. In the following sections, we will gradually add axioms until
it becomes clear which rules of inference are permitted vis-á-vis sets.

Suppose for a moment that we understand the bracket notation, and suppose that X

and Y are sets. Then, given an element x ∈ X and an element y ∈ Y , we can take the set
{x,{x,y}} as an “ordered pair” consisting of x and y. The pair is ordered because x and
y play asymmetric roles: the element x occurs by itself, as well as with the element y. If
we could then gather together these ordered pairs into a single set, we would designate
it by X × Y, which we call the Cartesian product of X and Y . The Cartesian product
construction should be familiar from high school mathematics. For example, the plane
(with x and y coordinates) is the Cartesian product of two copies of the real number line.

In typical presentations of set theory, the existence of product sets is derived from
other axioms. Here we will proceed in the opposite direction: we will take the notion of
a product set as primitive.
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Axiom 2: Cartesian Products

For any two sets X and Y , there is a set X × Y and functions π0 : X × Y → X

and π1 : X × Y → Y, such that for any other set Z and functions f : Z → X

and g : Z → Y, there is a unique function 〈f,g〉 : Z → X × Y, such that
π0〈f,g〉 = f and π1〈f,g〉 = g.

Here the angle brackets 〈f,g〉 are not intended to indicate anything about the internal
structure of the denoted function. This notation is chosen merely to indicate that 〈f,g〉
is uniquely determined by f and g.

The defining conditions of a product set can be visualized by means of an arrow
diagram.

Z

X × Y

X Y

f g〈f,g〉

π0 π1

Here each node represents a set, and arrows between nodes represent functions. The
dashed arrow is meant to indicate that the axiom asserts the existence of such an arrow
(dependent on the existence of the other arrows in the diagram).

discussion 2.1.2 There is a close analogy between the defining conditions of a
Cartesian product and the introduction and elimination rules for conjunction. If φ ∧ ψ
is a conjunction, then there are arrows (i.e., derivations) φ ∧ ψ→ φ and φ ∧ ψ→ ψ.
That’s the ∧ elimination rule. Moreover, for any sentence θ, if there are derivations
θ → φ and θ → ψ, then there is a unique derivation θ → φ ∧ ψ. That’s the ∧
introduction rule.

definition 2.1.3 Let γ and γ′ be paths of arrows in a diagram that begin and end
at the same node. We say that γ and γ′ commute just in case the composition of the
functions along γ is equal to the composition of the functions along γ′. We say that
the diagram as a whole commutes just in case any two paths between nodes are equal.
Thus, for example, the preceding product diagram commutes.

The functions π0 : X×Y → X and π1 : X×Y → Y are typically called projections
of the product. What features do these projections have? Before we say more on that
score, let’s pause to talk about features of functions.

You may have heard before of some properties of functions such as being one-to-one,
or onto, or continuous, etc. For bare sets, there is no notion of continuity of functions,
per se. And with only the first two axioms in place, we do not yet have the means
to define what it means for a function to be one-to-one or onto. Indeed, recall that a
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function f : X→ Y is typically said to be one-to-one just in case f (x) = f (y) implies
x = y for any two “points” x and y of X. But we don’t yet have a notion of points!

Nonetheless, there are point-free surrogates for the notions of being one-to-one and
onto.

definition 2.1.4 A function f : X→ Y is said to be a monomorphism just in case
for any two functions g,h : Z ⇒ X, if fg = f h, then g = h.

definition 2.1.5 A function f : X → Y is said to be a epimorphism just in case
for any two functions g,h : Y → Z, if gf = hf , then g = h.

We will frequently say, “. . . is monic” as shorthand for “. . . is a monomorphism,” and
“. . . is epi” for “. . . is an epimorphism.”

definition 2.1.6 A function f : X → Y is said to be an isomorphism just in
case there is a function g : Y → X such that gf = 1X and fg = 1Y . If there is an
isomorphism f : X→ Y, we say that X and Y are isomorphic, and we write X ∼= Y .

exercise 2.1.7 Show the following:

1. If gf is monic, then f is monic.
2. If fg is epi, then f is epi.
3. If f and g are monic, then gf is monic.
4. If f and g are epi, then gf is epi.
5. If f is an isomorphism, then f is epi and monic.

proposition 2.1.8 Suppose that both (W,π0,π1) and (W ′,π′0,π
′
1) are Cartesian

products of X and Y . Then there is an isomorphism f : W → W ′ such that π′0f = π0

and π′1f = π1.

Proof Since (W ′,π′0,π
′
1) is a Cartesian product of X and Y, there is a unique function

f : W → W ′ such that π′0f = π0 and π′1f = π1. Since (W,π0,π1) is also a product
of X and Y, there is a unique function g : W ′ → W such that π0g = π′0 and π1g = π′1.
We claim that f and g are inverse to each other. Indeed,

π′i ◦ (f ◦ g) = πi ◦ g = π′i

for i = 0,1. Thus, by the uniqueness clause in the definition of Cartesian products,
f ◦ g = 1W ′ . A similar argument shows that g ◦ f = 1W .

definition 2.1.9 If X is a set, we let δ : X → X × X denote the unique arrow
〈1X,1X〉 given by the definition of X×X. We call δ the diagonal of X, or the equality
relation on X. Note that δ is monic, since π0δ = 1X is monic.

definition 2.1.10 Suppose that f : W → Y and g : X→ Z are functions. Consider
the following diagram:
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W W ×X X

Y Y × Z Z

f

q0 q1

f×g g

π0 π1

We let f × g = 〈f q0,gq1〉 be the unique function from W ×X to Y × Z such that

π0(f × g) = f q0, π1(f × g) = gq1.

Recall here that, by the definition of products, a function into Y ×Z is uniquely defined
by its compositions with the projections π0 and π1.

proposition 2.1.11 Suppose that f : A → B and g : B → C are functions. Then
1X × (g ◦ f ) = (1X × g) ◦ (1X × f ).

Proof Consider the following diagram

X X × A A

X X × B B

X X × C C

1X 1X×f f

1X 1X×g g

where 1X × f and 1X × g are constructed as in Definition 2.1.10. Since the top and
bottom squares both commute, the entire diagram commutes. But then the composite
arrow (1X × g) ◦ (1X × f ) satisfies the defining properties of 1X × (g ◦ f ).

exercise 2.1.12 Show that 1X × 1Y = 1X×Y .

definition 2.1.13 Let X be a fixed set. Then X induces two mappings, as follows:

1. A mapping Y �→ X × Y of sets to sets.
2. A mapping f �→ 1X × f of functions to functions. That is, if f : Y → Z is a

function, then 1X × f : X × Y → X × Z is a function.

By the previous results, the second mapping is compatible with the composition struc-
ture on arrows. In this case, we call the pair of mappings a functor from Sets to Sets.

exercise 2.1.14 Suppose that f : X → Y is a function. Show that the following
diagram commutes.

X Y

X ×X Y × Y

f

δX δY

f×f

We will now recover the idea that sets consist of points by requiring the existence of
a single-point set 1, which plays the privileged role of determining identity of functions.
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Axiom 3: Terminal Object

There is a set 1 with the following two features:

1. For any set X, there is a unique function

X 1.
βX

In this case, we say that 1 is a terminal object for Sets.
2. For any sets X and Y , and functions f,g : X ⇒ Y, if f ◦ x = g ◦ x for all

functions x : 1→ X, then f = g. In this case, we say that 1 is a separator
for Sets.

The reader may wish to note that for a general category, a terminal object is required
only to have the first of the two properties. So we are not merely requiring that Sets
has a terminal object; we are requiring that it has a terminal object that also serves as a
separator for functions.

exercise 2.1.15 Show that if X and Y are terminal objects in a category, then X ∼= Y .

definition 2.1.16 We write x ∈ X to indicate that x : 1→ X is a function, and we
say that x is an element of X. We say that X is nonempty just in case it has at least
one element. If f : X→ Y is a function, we sometimes write f (x) for f ◦ x. With this
notation, the statement that 1 is a separator says: f = g if and only if f (x) = g(x), for
all x ∈ X.

discussion 2.1.17 In ZF set theory, equality between functions is completely deter-
mined by equality between sets. Indeed, in ZF, functions f,g : X ⇒ Y are defined
to be certain subsets of X × Y ; and subsets of X × Y are defined to be equal just
in case they contain the same elements. In the ETCS approach to set theory, equality
between functions is primitive, and Axiom 3 stipulates that this equality can be detected
by checking elements.

Some might see this difference as arguing in favor of ZF; it is more parsimonious,
because it derives f = g from something more fundamental. However, the defender
of ETCS might claim in reply that her theory defines x ∈ y from something more
fundamental. Which is really more fundamental, equality between arrows (functions) or
containment of objects (sets)? We’ll leave that for other philosophers to think about.

exercise 2.1.18 Show that any function x : 1→ X is monic.

proposition 2.1.19 A set X has exactly one element if and only if X ∼= 1.

Proof The terminal object 1 has exactly one element, since there is a unique function
1→ 1.

Suppose now that X has exactly one element x : 1 → X. We will show that X is a
terminal object. First, for any set Y , there is a function x ◦βY from Y to X. Now suppose
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that f,g are functions from Y to X such that f �= g. By Axiom 3, there is an element
y ∈ Y such that fy �= gy. But then X has more than one element, a contradiction.
Therefore, there is a unique function from Y to X, and X is a terminal object.

proposition 2.1.20 In any category with a terminal object 1, any object X is itself a
Cartesian product of X and 1.

Proof We have the obvious projections π0 = 1X : X → X and π1 = βX : X → 1.
Now let Y be an object, and let f : Y → X and g : Y → 1 be arrows. We claim that
f : Y → X is the unique arrow such that 1Xf = f and βXf = g. To see that f satisfies
this condition, note that g : Y → 1 must be βY , the unique arrow from Y to the terminal
object. If h is another arrow that satisfies this condition, then h = 1Xh = f .

proposition 2.1.21 Let a and b be elements of X × Y . Then a = b if and only if
π0(a) = π0(b) and π1(a) = π1(b).

Proof Suppose that π0(a) = π0(b) and π1(a) = π1(b). By the uniqueness property
of the product, there is a unique function c : 1→ X × Y such that π0(c) = π0(a) and
π1(c) = π1(a). Since a and b both satisfy this property, a = b.

note 2.1.22 The previous proposition justifies the use of the notation

X × Y = {〈x,y〉 | x ∈ X,y ∈ Y }.
Here the identity condition for ordered pairs is given by

〈x,y〉 = 〈x′,y′〉 iff x = x′ and y = y′.

proposition 2.1.23 Let (X×Y,π0,π1) be the Cartesian product of X and Y . If Y is
nonempty, then π0 is an epimorphism.

Proof Suppose that Y is nonempty, and that y : 1→ Y is an element. Let βX : X →
1 be the unique map, and let f = y ◦ βX. Then 〈1X,f 〉 : X → X × Y such that
π0〈1X,f 〉 = 1X. Since 1X is epi, π0 is epi.

definition 2.1.24 We say that f : X→ Y is injective just in case: for any x,y ∈ X

if f (x) = f (y), then x = y. Written more formally:

∀x∀y[f (x) = f (y)→ x = y].

note 2.1.25 “Injective” is synonymous with “one-to-one.”

exercise 2.1.26 Let f : X → Y be a function. Show that if f is monic, then f is
injective.

proposition 2.1.27 Let f : X→ Y be a function. If f is injective, then f is monic.

Proof Suppose that f is injective, and let g,h : A → X be functions such that f ◦
g = f ◦ h. Then for any a ∈ A, we have f (g(a)) = f (h(a)). Since f is injective,
g(a) = h(a). Since a was an arbitrary element of A, Axiom 3 entails that g = h.
Therefore, f is monic.
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definition 2.1.28 Let f : X→ Y be a function. We say that f is surjective just in
case: for each y ∈ Y , there is an x ∈ X such that f (x) = y. Written formally:

∀y∃x[f (x) = y].

And in diagrammatic form:

1

X Y

x y

f

note 2.1.29 “Surjective” is synonymous with “onto.”

exercise 2.1.30 Show that if f : X→ Y is surjective, then f is an epimorphism.

We will eventually establish that all epimorphisms are surjective. However, first we
need a couple more axioms. Given a set X, and some definable condition φ on X,
we would like to be able to construct a subset consisting of those elements in X that
satisfy φ. The usual notation here is {x ∈ X | φ(x)}, which we read as “the x in X

such that φ(x).” But the important question is: which features φ do we allow? As an
example of a definable condition φ, consider the condition of “having the same value
under the functions f and g,” – that is, φ(x) just in case f (x) = g(x). We call the subset
{x ∈ X | f (x) = g(x)} the equalizer of f and g.

Axiom 4: Equalizers

Suppose that f,g : X ⇒ Y are functions. Then there is a set E and a function
m : E → X with the following property: f m = gm, and for any other set F and
function h : F → X, if f h = gh, then there is a unique function k : F → E

such that mk = h.

E X Y

F

m
f

g

k
h

We call (E,m) an equalizer of f and g. If we don’t need to mention the object E,
we will call the arrow m the equalizer of f and g.

exercise 2.1.31 Suppose that (E,m) and (E′,m′) are both equalizers of f and g.
Show that there is an isomorphism k : E→ E′.

definition 2.1.32 Let A,B,C be sets, and let f : A → C and g : B → C be
functions. We say that g factors through f just in case there is a function h : B → A

such that f h = g.
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exercise 2.1.33 Let f,g : X ⇒ Y , and let m : E → X be the equalizer of f and g.
Let x ∈ X. Show that x factors through m if and only if f (x) = g(x).

proposition 2.1.34 In any category, if (E,m) is the equalizer of f and g, then m is
a monomorphism.

Proof Let x,y : Z → E such that mx = my. Since f mx = gmx, there is a unique
arrow z : Z → E such that mz = mx. Since both mx = mx and my = mx, it follows
that x = y. Therefore, m is monic.

definition 2.1.35 Let f : X → Y be a function. We say that f is a regular
monomorphism just in case f is the equalizer (up to isomorphism) of a pair of arrows
g,h : Y ⇒ Z.

exercise 2.1.36 Show that if f is an epimorphism and a regular monomorphism,
then f is an isomorphism.

In other approaches to set theory, one uses ∈ to define a relation of inclusion between
sets:

X ⊆ Y ⇐⇒ ∀x(x ∈ X→ x ∈ Y ).

We cannot define this exact notion in our approach since, for us, elements are attached
to some particular set. However, for typical applications, every set under consideration
will come equipped with a canonical monomorphism m : X → U , where U is some
fixed set. Thus, it will suffice to consider a relativized notion.

definition 2.1.37 A subobject or subset of a set X is a set B and a monomorphism
m : B → X, called the inclusion of B in X. Given two subsets m : B → X and
n : A→ X, we say that B is a subset of A (relative to X), written B ⊆X A just in case
there is a function k : B → A such that nk = m. When no confusion can result, we
omit X and write B ⊆ A.

Let m : B → Y be monic, and let f : X→ Y . Consider the diagram

f−1(B) X × B Y,
k

fp0

mp1

where f−1(B) is defined as the equalizer of f π0 and mp1. Intuitively, we have

f−1(B) = {〈x,y〉 ∈ X × B | f (x) = y}
= {〈x,y〉 ∈ X × Y | f (x) = y and y ∈ B}
= {x ∈ X | f (x) ∈ B}.

Now we verify that f−1(B) is a subset of X.

proposition 2.1.38 The function p0k : f−1(B)→ X is monic.

Proof To simplify notation, let E = f−1(B). Let x,y : Z → E such that
p0kx = p0ky. Then fp0kx = fp0ky, and, hence, mp1kx = mp1ky. Since m is monic,
p1kx = p1ky. Thus, kx = ky. (The identity of a function into X × B is determined
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by the identity of its projections onto X and B.) Since k is monic, x = y. Therefore,
p0k is monic.

definition 2.1.39 Let m : B → X be a subobject, and let x : 1 → X. We say that
x ∈ B just in case x factors through m as follows:

B

1 X

m

x

proposition 2.1.40 Let A ⊆ B ⊆ X. If x ∈ A then x ∈ B.

Proof

A B

1 X X

k

x 1X

Recall that x ∈ f−1(B) means: x : 1 → X factors through the inclusion of f−1(B)
in X. Consider the following diagram:

1

f−1(B) B

X Y

x
p

m∗ m

f

First look just at the lower-right square. This square commutes, in the sense that follow-
ing the arrows from f−1(B) clockwise gives the same answer as following the arrows
from f−1(B) counterclockwise. The square has another property: for any set Z, and
functions g : Z→ X and h : Z→ B, there is a unique function k : Z→ f−1(B) such
that m∗k = g and pk = h. When a commuting square has this property, then it’s said to
be a pullback.

proposition 2.1.41 Let f : X→ Y , and let B ⊆ Y . Then x ∈ f−1(B) if and only if
f (x) ∈ B.

Proof If x ∈ f−1(B), then there is an arrow x̂ : 1 → f−1(B) such that m∗x̂ = x.
Thus, f x = mpx̂, which entails that the element f (x) ∈ Y factors through B, i.e.,
f (x) ∈ B. Conversely, if f (x) ∈ B, then, since the square is a pullback, x : 1 → X

factors through f−1(B), i.e., x ∈ f−1(B).
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definition 2.1.42 Given functions f : X→ Z and g : Y → Z, we define

X ×Z Y = {〈x,y〉 ∈ X × Y | f (x) = g(y)}.
In other words, X×Z Y is the equalizer of f π0 and gπ1. The set X×Z Y , together with
the functions π0 : X×Z Y → X and π1 : X×Z Y → Y is called the pullback of f and
g, alternatively, the fibered product of f and g.

The pullback of f and g has the following distinguishing property: for any set A, and
functions h : A → X and k : A → Y such that f h = gk, there is a unique function
j : A→ X ×Z Y such that π0j = h and π1j = k.

A

X ×Z Y Y

X Z

h

k

π0

π1

g

f

The following is an interesting special case of a pullback.

definition 2.1.43 Let f : X → Y be a function. Then the kernel pair of f is
the pullback X ×Y X, with projections p0 : X ×Y X → X and p1 : X ×Y X → X.
Intuitively, X ×Y X is the relation, “having the same image under f .” Written in terms
of braces,

X ×Y X = {〈x,x′〉 ∈ X ×X | f (x) = f (x′)}.
In particular, f is injective if and only if “having the same image under f ” is coextensive
with the equality relation on X. That is, X ×Y X = {〈x,x〉 | x ∈ X}, which is the
diagonal of X.

exercise 2.1.44 Let f : X→ Y be a function, and let p0,p1 : X ×Y X ⇒ X be the
kernel pair of f . Show that the following are equivalent:

1. f is a monomorphism.
2. p0 and p1 are isomorphisms.
3. p0 = p1.

2.2 Truth Values and Subsets

Axiom 5: Truth-Value Object

There is a set � with the following features:

1. � has exactly two elements, which we denote by t : 1→ � and f : 1→ �.
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2. For any set X, and subobject m : B → X, there is a unique function
χ

B : X→ � such that the following diagram is a pullback:

B 1

X �

m t

χ
B

In other words, B = {x ∈ X | χB (x) = t}.

Intuitively speaking, the first part of Axiom 5 says that � is a two-element set, say
� = {f,t}. The second part of Axiom 5 says that � classifies the subobjects of a set X.
That is, each subobject m : B → X corresponds to a unique characteristic function
χ

B : X→ {f,t} such that χB (x) = t if and only if x ∈ B.
The terminal object 1 is a set with one element. Thus, it should be the case that 1 has

two subsets, the empty set and 1 itself.

proposition 2.2.1 The terminal object 1 has exactly two subobjects.

Proof By Axiom 5, subobjects of 1 correspond to functions 1→ �, that is, to elements
of �. By Axiom 5, � has exactly two elements. Therefore, 1 has exactly two subobjects.

Obviously the function t : 1→ � corresponds to the subobject id1 : 1→ 1. Can we
say more about the subobject m : A → 1 corresponding to the function f : 1 → �?
Intuitively, we should have A = {x ∈ 1 | t = f} – in other words, the empty set. To
confirm this intuition, consider the pullback diagram:

1

A 1

1 �

x

m

k

t

f

Note that m and k must both be the unique function from A to 1 – that is, m = k = βA.
Suppose that A is nonempty – i.e., there is a function x : 1 → A. Then βA ◦ x is the
identity 1→ 1 and, since the square commutes, t = f, a contradiction. Therefore, A has
no elements.

exercise 2.2.2 Show that �×� has exactly four elements.

We now use the existence of a truth-value object in Sets to demonstrate further
properties of functions.

exercise 2.2.3 Show that, in any category, if f : X→ Y is a regular monomorphism,
then f is monic.
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proposition 2.2.4 Every monomorphism between sets is regular – i.e., an equalizer
of a pair of parallel arrows.

Proof Let m : B → X be monic. By Axiom 5, the following is a pullback diagram:

B 1

X �

m t

χ
B

A straightforward verification shows that m is the equalizer of X
βX→ 1

t→ � and
χ

B : X→ �. Therefore, m is regular monic.

Students with some background in mathematics might assume that if a function f :
X → Y is both a monomorphism and an epimorphism, then it is an isomorphism.
However, that isn’t true in all categories! (For example, in the category of monoids, the
inclusion i : N→ Z is epi and monic, but not an isomorphism.) Nonetheless, Sets is a
special category, and in this case we have the result:

proposition 2.2.5 In Sets, if a function is both a monomorphism and an epimor-
phism, then it is an isomorphism.

Proof In any category, if m is regular monic and epi, then m is an isomorphism
(Exercise 2.1.36).

definition 2.2.6 Let f : X → Y be a function, and let y ∈ Y . The fiber over y is
the subset f−1{y} of X given by the following pullback:

f−1{y} 1

X Y

y

f

proposition 2.2.7 Let p : X → Y . If p is not a surjection, then there is a y0 ∈ Y

such that the fiber p−1{y0} is empty.

Proof Since p is not a surjection, there is a y0 ∈ Y such that for all x ∈ X, p(x) �= y0.
Now consider the pullback:

1

p−1{y0} 1

X Y

z

m y0

p

If there were a morphism z : 1 → p−1{y0}, then we would have p(m(z)) = y0, a
contradiction. Therefore, p−1{y0} is empty.

proposition 2.2.8 In Sets, epimorphisms are surjective.
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Proof Suppose that p : X→ Y is not a surjection. Then there is a y0 ∈ Y such that for
all x ∈ X, p(x) �= y0. Since 1 is terminal, the morphism y0 : 1→ Y is monic. Consider
the following diagram:

1

p−1{y0} 1 1

X Y �

x

y0 t

p g

Here g is the characteristic function of {y0}; by Axiom 5, g is the unique function that
makes the right-hand square a pullback. Let x ∈ X be arbitrary. If we had g(p(x)) = t,
then there would be an element x′ ∈ p−1{y0}, in contradiction with the fact that the latter
is empty (Proposition 2.2.7). By Axiom 5, either g(p(x)) = t or g(p(x)) = f; therefore,

g(p(x)) = f. Now let h be the composite Y → 1
f→ �. Then, for any x ∈ X, we have

h(p(x)) = f. Since g ◦ p and h ◦ p agree on arbitrary x ∈ X, we have g ◦ p = h ◦ p.
Since g �= h, it follows that p is not an epimorphism.

In a general category, there is no guarantee that an epimorphism pulls back to an
epimorphism. However, in Sets, we have the following:

proposition 2.2.9 In Sets, the pullback of an epimorphism is an epimorphism.

Proof Suppose that f : Y → Z is epi, and let x ∈ X. Consider the pullback diagram:

1

∗ Y

X Z

x

y

q0

q1

f

g

By Proposition 2.2.8, f is surjective. In particular, there is a y ∈ Y such that f (y) =
g(x). Since the diagram is a pullback, there is a unique 〈x,y〉 : 1 → ∗ such that
q0〈x,y〉 = x and q1〈x,y〉 = y. Therefore, q0 is surjective and, hence, epi.

proposition 2.2.10 If f : X → Y and g : W → Z are epimorphisms, then so is
f × g : X ×W → Y × Z.

Proof Since f × g = (f × 1) ◦ (1× g), it will suffice to show that f × 1 is epi when
f is epi. Now, the following diagram is a pullback:

X ×W X

Y ×W Y

p0

f×1 f

p0

By Proposition 2.2.9, if f is epi, then f × 1 is epi.
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Suppose that f : X → Y is a function and that p0,p1 : X ×Y X ⇒ X is the kernel
pair of f . Suppose also that h : E → Y is a function, that q0,q1 : E ×Y E ⇒ E is the
kernel pair of h, and that g : X � E is an epimorphism. Then there is a unique function
b : X ×Y X→ E ×Y E, such that q0b = gp0 and q1b = gp1.

X ×Y X X Y

E ×Y E E

b

p0

p1
g

f

q0

q1

h

An argument similar to the preceding argument shows that b is an epimorphism. We
will use this fact to describe the properties of epimorphisms in Sets.

2.3 Relations

Equivalence Relations and Equivalence Classes

A relation R on a set X is a subset of X × X – i.e., a set of ordered-pairs. A relation is
said to be an equivalence relation just in case it is reflexive, symmetric, and transitive.
One particular way that equivalence relations on X arise is from functions with X as
domain: given a function f : X→ Y , let’s say that 〈x,y〉 ∈ R just in case f (x) = f (y).
(Sometimes we say that “x and y lie in the same fiber over Y .”) Then R is an equivalence
relation on X.

Given an equivalence relation R on X, and some element x ∈ X, let [x] = {y ∈ X |
〈x,y〉 ∈ R} denote the set of all elements of X that are equivalent to X. We say that [x]
is the equivalence class of x. It’s straightforward to show that for any x,y ∈ X, either
[x] = [y] or [x] ∩ [y] = ∅. Moreover, for any x ∈ X, we have x ∈ [x]. Thus, the
equivalence classes form a partition of X into disjoint subsets.

We’d like now to be able to talk about the set of these equivalence classes – i.e.,
something that might intuitively be written as {[x] | x ∈ X}. The following axiom
guarantees the existence of such a set, called X/R, and a canonical mapping q : X →
X/R that takes each element x ∈ X to its equivalence class [x] ∈ X/R.

Axiom 6: Equivalence Classes

Let R be an equivalence relation on X. Then there is a set X/R and a function
q : X→ X/R with the properties:

1. 〈x,y〉 ∈ R if and only if q(x) = q(y).
2. For any set Y and function f : X → Y that is constant on equivalence

classes, there is a unique function f : X/R→ Y such that f ◦ q = f .
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X Y

X/R

f

q
f

Here f is constant on equivalence classes just in case f (x) = f (y) whenever
〈x,y〉 ∈ R.

An equivalence relation R can be thought of as a subobject of X × X, i.e., a subset
of ordered pairs. Accordingly, there are two functions p0 : R → X and p1 : R → X,
given by p0〈x,y〉 = x and p1〈x,y〉 = y. Then condition (1) in Axiom 6 says that
q ◦ p0 = q ◦ p1. And condition (2) says that for any function f : X → Y such that
f ◦ p0 = f ◦ p1, there is a unique function f : X/R→ Y such that f ◦ q = f . In this
case, we say that q is a coequalizer of p0 and p1.

exercise 2.3.1 Show that in any category, coequalizers are unique up to isomor-
phism.

exercise 2.3.2 Show that in any category, a coequalizer is an epimorphism.

exercise 2.3.3 For a function f : X→ Y , let R = {〈x,y〉 ∈ X×X | f (x) = f (y)}.
That is, R is the kernel pair of f . Show that R is an equivalence relation.

definition 2.3.4 A function f : X → Y is said to be a regular epimorphism just
in case f is a coequalizer.

exercise 2.3.5 Show that in any category, if f : X → Y is both a monomorphism
and a regular epimorphism, then f is an isomorphism.

proposition 2.3.6 Every epimorphism in Sets is regular. In particular, every epimor-
phism is the coequalizer of its kernel pair.

Proof Let f : X → Y be an epimorphism. Let p0,p1 : X ×Y X ⇒ X be the kernel
pair of f . By Axiom 6, the coequalizer g : X → E of p0 and p1 exists; and since f

also coequalizes p0 and p1, there is a unique function m : E→ Y such that f = mg.

X ×Y X X Y

E ×Y E E

p0

p1

b

f

g

q0

q1

m

Here E ×Y E is the kernel pair of m. Since mgp0 = fp0 = fp1 = mgp1, there is a
unique function b : X ×Y X → E ×Y E such that gp0 = q0b and gp1 = q1b. By the
considerations at the end of the previous section, b is an epimorphism. Furthermore,

q0b = gp0 = gp1 = q1b
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and, therefore, q0 = q1. By Exercise 2.1.44, m is a monomorphism. Since f = mg, and
f is epi, m is also epi. Therefore, by Proposition 2.2.5, m is an isomorphism.

This last proposition actually shows that Sets is what is known as a regular category.
In general, a category C is said to be regular just in case it has all finite limits and all
coequalizers of kernel pairs and regular epimorphisms are stable under pullback. Now,
it’s known that if a category has products and equalizers, then it has all finite limits (Mac
Lane, 1971, p. 113). Thus, Sets has all finite limits. Our most recent axiom says that Sets
has coequalizers of kernel pairs. And, finally, all epimorphisms in Sets are regular, and
epimorphisms in Sets are stable under pullback; therefore, regular epimorphisms are
stable under pullback.

Regular categories have several nice features that will prove quite useful. In the
remainder of this section, we will discuss one such feature: factorization of functions
into a regular epimorphism followed by a monomorphism.

The Epi–Monic Factorization

Let f : X → Y be a function, and let p0,p1 : X ×Y X ⇒ X be the kernel pair of f .
By Axiom 6, the kernel pair has a coequalizer g : X � E. Since f also coequalizes p0

and p1, there is a unique function m : E→ Y such that f = mg.

X ×Y X X Y

E

p0

p1

f

g m

An argument similar to the one in Proposition 2.3.6 shows that m is a monomorphism.
Thus, (E,m) is a subobject of Y , which we call the image of X under f , and we write
E = f (X). The pair (g,m) is called the epi–monic factorization of f . Since epis are
surjections, and monics are injections, (g,m) can also be called the surjective–injective
factorization.

definition 2.3.7 Suppose that A is a subset of X, in particular, n : A→ X is monic.
Then f ◦ n : A→ Y , and we let f (A) denote the image of A under f ◦ n.

A f (A)

X Y

n

f

We also use the suggestive notation

f (A) = ∃f (A) = {y ∈ Y | ∃x ∈ A.f (x) = y}.
proposition 2.3.8 Let f : X→ Y be a function, and let A be a subobject of X. The
image f (A) is the smallest subobject of Y through which f factors.

Proof Let e : X → Q and m : Q→ Y be the epi–monic factorization of f . Suppose
that n : B → Y is a subobject, and that f factors through n, say f = ng. Consider the
following diagram.
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E X Y

Q B

p0

p1

f

e
g

k

n

Then ngp0 = fp0 = fp1 = ngp1, since p0,p1 is the kernel pair of f . Since n is monic,
gp0 = gp1 – i.e., g coequalizes p0 and p1. Since e : X → Q is the coequalizer of p0

and p1, there is a unique function k : Q → B such that ke = g. By uniqueness of the
epi–monic factorization, nk = m. Therefore, Q ⊆ B.

proposition 2.3.9 For any A ⊆ X and B ⊆ Y , we have

A ⊆ f−1(B) if and only if ∃f (A) ⊆ B.

Proof Suppose first that A ⊆ f−1(B), in particular that k : A → f−1(B). Consider
the following diagram:

A ∃f (A)

f−1(B) B

X Y

k

e

j

m∗ m

By definition, je is the epi–monic factorization of f m∗k. Since f m∗k also factors
through m : B → Y , we have ∃f (A) ⊆ B, by Proposition 2.3.8.

Suppose now that ∃f (A) ⊆ B. Using the fact that the lower square in the diagram is
a pullback, we see that there is an arrow k : A→ f−1(B) such that m∗k is the inclusion
of A in X. That is, A ⊆ f−1(B).

exercise 2.3.10 Use the previous result to show that A ⊆ f−1(∃f (A)), for any subset
A of X.

Functional Relations

definition 2.3.11 A relation R ⊆ X × Y is said to be functional just in case for
each x ∈ X there is a unique y ∈ Y such that 〈x,y〉 ∈ R.

definition 2.3.12 Suppose that f : X → Y is a function. We let graph(f ) =
{〈x,y〉 | f (x) = y}.

exercise 2.3.13 Show that graph(f ) is a functional relation.

The following result is helpful for establishing the existence of arrows f : X→ Y .

proposition 2.3.14 Let R ⊆ X × Y be a functional relation. Then there is a unique
function f : X→ Y such that R = graph(f ).

The proof of this result is somewhat complicated, and we omit it (for the time being).
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2.4 Colimits

Axiom 7: Coproducts

For any two sets X,Y , there is a set X � Y and functions i0 : X → X � Y and
i1 : Y → X � Y with the feature that for any set Z and functions f : X → Z

and g : Y → Z, there is a unique function f � g : X � Y → Z such that
(f � g) ◦ i0 = f and (f � g) ◦ i1 = g.

Z

X � Y

X Y

f�gf

i0

g

i1

We call X � Y the coproduct of X and Y . We call i0 and i1 the coprojections of
the coproduct.

Intuitively speaking, the coproduct X � Y is the disjoint union of the sets X and Y .
What we mean by “disjoint” here is that if X and Y share elements in common (which
doesn’t make sense in our framework but does in some frameworks), then these elements
are disidentified before the union is taken. For example, in terms of elements, we could
think of X � Y as consisting of elements of the form 〈x,0〉, with x ∈ X, and elements
of the form 〈y,1〉, with y ∈ Y . Thus, if x is contained in both X and Y , then X � Y

contains two separate copies of x, namely 〈x,0〉 and 〈x,1〉.
We now show that that the inclusions i0 : X → X � Y and i1 : Y → X � Y do, in

fact, have disjoint images.

proposition 2.4.1 Coproducts in Sets are disjoint. In other words, if i0 : X→ X�Y

and i1 : Y → X�Y are the coprojections, then i0(x) �= i1(y) for all x ∈ X and y ∈ Y .

Proof Suppose for reductio ad absurdum that i0(x) = i1(y). Let g : X → � be the
unique map that factors through t : 1 → �. Let h : Y → � be the unique map that
factors through f : 1→ �. By the universal property of the coproduct, there is a unique
function g�h : X� Y → � such that (g�h)i0 = g and (g�h)i1 = h. Thus, we have

t = g(x) = (g � h)i0x = (g � h)i1y = h(y) = f,

a contradiction. Therefore, i0(x) �= i1(y), and the ranges of i0 and i1 are disjoint.

proposition 2.4.2 The coprojections i0 : X → X � Y and i1 : Y → X � Y are
monomorphisms.

Proof We will show that i0 is monic; the result then follows by symmetry. Suppose first
that X has no elements. Then i0 is trivially injective, hence monic by Proposition 2.1.27.
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Suppose now that X has an element x : 1 → X. Let g = x ◦ βY , where βY : Y → 1.
Then (1X � g)i0 = 1X, and Exercise 2.1.7 entails that i0 is monic.

proposition 2.4.3 The coprojections are jointly surjective. That is, for each z ∈
X � Y , either there is an x ∈ X such that z = i0(x), or there is a y ∈ Y such that
z = i1(y).

Proof Suppose for reductio ad absurdum that z is neither in the image of i0 nor in the
image of i1. Let g : (X � Y ) → � be the characteristic function of {z0}. Then for all
x ∈ X, g(i0(x)) = f . And for all y ∈ Y , g(i1(y)) = f . Now let h : (X � Y )→ �

be the constant f function, i.e., h(z) = f for all z ∈ X � Y . Then gi0 = hi0

and gi1 = hi1. Since functions from X � Y are determined by their coprojections,
g = h, a contradiction. Therefore, all z ∈ X � Y are either in the range of i0 or in the
range of i1.

proposition 2.4.4 The function t� f : 1� 1→ � is an isomorphism.

Proof Consider the diagram:

�

1� 1

1 1

t�ft

i0

f

i1

Then t� f is monic, since every element of 1� 1 factors through either i0 or i1 (Propo-
sition 2.4.3), and since t �= f. Furthermore, t� f is epi since t and f are the only elements
of �. By Proposition 2.2.5, t� f is an isomorphism.

proposition 2.4.5 Let X be a set, and let B be a subset of X. Then the inclusion
B �X\B → X is an isomorphism.

Proof Using the fact that � is Boolean, for every x ∈ X, either x ∈ B or x ∈ X\B.
Thus the inclusion B �X\B → X is a bijection, hence an isomorphism.

Axiom 8: Empty Set

There is a set ∅ with the following properties:

1. For any set X, there is a unique function

∅ X.
αX

In this case, we say that ∅ is an initial object in Sets.
2. ∅ is empty – i.e., there is no function x : 1→ ∅.
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exercise 2.4.6 Show that in any category with coproducts, if A is an initial object,
then X � A ∼= X, for any object X.

proposition 2.4.7 Any function f : X→ ∅ is an isomorphism.

Proof Since ∅ has no elements, f is trivially surjective. We now claim that X has no
elements. Indeed, if x : 1→ X is an element of X, then f (x) is an element of ∅. Since X

has no elements, f is trivially injective. By Proposition 2.2.5, f is an isomorphism.

proposition 2.4.8 A set X has no elements if and only if X ∼= ∅.
Proof By Axiom 8, the set ∅ has no elements. Thus, if X ∼= ∅, then X has no elements.

Suppose now that X has no elements. Since ∅ is an initial object, there is a unique
arrow αX : ∅ → X. Since X has no elements, αX is trivially surjective. Since ∅ has no
elements, αX is trivially injective. By Proposition 2.2.5, f is an isomorphism.

2.5 Sets of Functions and Sets of Subsets

(Note: The following section is highly technical and can be skipped on a first reading.)
One distinctive feature of the category of sets is its ability to model almost any

mathematical construction. One such construction is gathering together old things into
a new set. For example, given two sets A and X, can we form a set XA of all functions
from A to X? Similarly, given a set X, can we form a set PX of all subsets of X?

As usual, we won’t be interested in hard questions about what it takes to be a set.
Rather, we’re interested in hypothetical questions: if such a set existed, what would it
be like? The crucial features of XA seem to be captured by the following axiom:

Axiom 9: Exponential Objects

Suppose that A and X are sets. Then there is a set XA, and a function eX : A ×
XA → X such that for any set Z and function f : A× Z→ X, there is a unique
function f � : Z→ XA such that eX ◦ (1A × f �) = f .

A×XA X

A× Z

eX

1A×f �

f

The set XA is called an exponential object, and the function f � : Z → XA is
called the transpose of f : A× Z→ X.

The way to remember this axiom is to think of YX as the set of functions from X to Y ,
and to think of e : X×YX → Y as a metafunction that takes an element f ∈ YX and an
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element x ∈ X and returns the value e(f,x) = f (x). For this reason, e : X × YX → Y

is sometimes called the evaluation function.
Note further that if f : X × Z → Y is a function, then for each z ∈ Z, f (−,z) is a

function from X→ Y . In other words, f corresponds uniquely to a function from Z to
functions from Y to X. This latter function is the transpose f � : Z→ YX of f .

We have written Axiom 9 in first-order fashion, but it might help to think of it as
stating that there is a one-to-one correspondence between two sets:

hom(X × Z,Y ) ∼= hom(Z,YX),

where hom(A,B) is thought of as the set of functions from A to B. As a particular case,
when Z = 1, the terminal object, we have

hom(X,Y ) ∼= hom(1,YX).

In other words, elements of YX in the “internal sense” correspond to elements of
hom(X,Y ) in the “external sense.”

Consider now the following special case of the construction:

A×XA XA

A×XA

eX

1×e�
eX

Thus, e
�
X = 1XA .

definition 2.5.1 Suppose that g : Y → Z is a function. We let gA : XA → YA

denote the transpose of the function:

A× YA Y Z.
eY g

That is, gA = (g ◦ eY )�, and the following diagram commutes:

A× ZA Z

A× YA Y

eZ

1×gA

eY

g

proposition 2.5.2 Let f : A×X→ Y and g : Y → Z be functions. Then (g◦f )� =
gA ◦ f �.

Proof Consider the following diagram:

A× ZA Z

A× YA

A×X Y

eZ

1×gA

eY

1×(g◦f )�

1×f �

f

g
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The bottom triangle commutes by the definition of f �. The upper-right triangle com-
mutes by the definition of gA. And the outer square commutes by the definition of
(g ◦ f )�. It follows that

eZ ◦ (1× (gA ◦ f �)) = g ◦ f,

and hence gA ◦ f � = (g ◦ f )�.

Consider now the following particular case:

A× (A×X)A A×X

A×X

e

1×p
1

Here p = 1� is the unique function such that e(1A × p) = 1A×X. Intuitively, we
can think of p as the function that takes an element x ∈ X and returns the function
px : A → A × X such that px(a) = 〈a,x〉. Thus, (1 × p)〈a,x〉 = 〈a,px〉, and e(1 ×
p)〈a,x〉 = px(a) = 〈a,x〉.
definition 2.5.3 Suppose that f : Z→ XA is a function. We define f � : Z×A→
X to be the following composite function:

A× Z A×XA X.
1×f eX

proposition 2.5.4 Let f : X → Y and g : Y → ZA be functions. Then (g ◦ f )� =
g� ◦ (1A × f ).

Proof By definition,

(g ◦ f )� = eX ◦ (1× (g ◦ f )) = eX ◦ (1× g) ◦ (1× f ) = g� ◦ (1× f ).

proposition 2.5.5 For any function f : A× Z→ X, we have (f �)� = f .

Proof By the definitions, we have

(f �)� = eX ◦ (1× f �) = f .

proposition 2.5.6 For any function f : Z→ XA, we have (f �)� = f .

Proof By definition, (f �)� is the unique function such that eX ◦ (1× (f �)�) = f �. But
also eX ◦ (1× f ) = f �. Therefore, (f �)� = f .

proposition 2.5.7 For any set X, we have X1 ∼= X.

Proof Let e : 1 × X1 → X be the evaluation function from Axiom 9. We claim that
e is a bijection. Recall that there is a natural isomorphism i : 1 × 1 → 1. Consider the
following diagram:
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1×X1 X

1× 1 1

e

1×x�

i

x

That is, for any element x : 1 → X, there is a unique element x� of X1 such that
e(1× x�) = x. Thus, e is a bijection, and X ∼= 1×X1 is isomorphic to X.

proposition 2.5.8 For any set X, we have X∅ ∼= 1.

Proof Elements of X∅ correspond to functions ∅ → X. There is exactly one such
function, hence X∅ has exactly one element x : 1 → X∅. Thus, x is a bijection, and
X∅ ∼= 1.

proposition 2.5.9 For any sets A,X,Y , we have (X × Y )A ∼= XA × YA.

Proof An elegant proof of this proposition would note that (−)A is a functor, and is
right adjoint to the functor A× (−). Since right adjoints preserve products, (X×Y )A ∼=
XA × YA. Nonetheless, we will go into further detail.

By uniqueness of Cartesian products, it will suffice to show that (X × Y )A is a
Cartesian product of XA and YA, with projections πA

0 and πA
1 . Let Z be an arbitrary

set, and let f : Z→ XA and g : Z→ YA be functions. Now take γ = 〈f �,g�〉�, where
f � : A× Z→ X and g� : A× Z→ Y .

Z

(X × Y )A

XA YA

f g
γ

πA
0 πA

1

We claim that πA
0 γ = f and πA

1 γ = g. Indeed,

πA
0 ◦ γ = πA

0 ◦ 〈f �,g�〉� = (π0 ◦ 〈f �,g�〉)� = (f �)� = f .

Thus, πA
0 γ = f , and, similarly, πA

1 γ = g.
Suppose now that h : Z→ (X × Y )A such that πA

0 h = f and πA
1 h = g. Then

f = πA
0 ◦ (h�)� = (π0 ◦ h�)�.

Hence, π0 ◦ h� = f �, and, similarly, π1 ◦ h� = g�. That is, h� = 〈f �,g�〉, and
h = 〈f �,g�〉� = γ.

proposition 2.5.10 For any sets A,X,Y , we have A× (X�Y ) ∼= (A×X)� (A×Y ).

Proof Even without Axiom 9, there is always a canonical function from (A × X) �
(A × Y ) to A × (X � Y ), namely φ := (1A × i0) � (1A × i1), where i0 and i1 are the
coproduct inclusions of X � Y . That is,

φ ◦ j0 = 1A × i0, and φ ◦ j1 = 1A × i1,
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where j0 and j1 are the coproduct inclusions of (A×X)� (A× Y ).

X � Y

X A× (X � Y ) Y

A×X (A×X)� (A× Y ) A× Y

i0 p1
i1

1A×i0

j0

q1 φ

j1

1A×i1 r1

We will show that Axiom 9 entails that φ is invertible.
Let g : A × (X � Y ) → A × (X � Y ) be the identity, i.e., g = 1A×(X�Y ). Then

g� : X � Y → (A × (X � Y ))A is the unique function such that e(1A × g�) = g. By
Proposition 2.5.4,

(g� ◦ i0)� = g ◦ (1A × i0) = 1A × i0.

Similarly, (g� ◦ i1)� = 1A × i1. Thus,

g� = (1A × i0)� � (1A × i1)�.

We also have (1A × i0)� = (φ ◦ j0)� = φA ◦ j
�
0 , and (1A × i1)� = φA ◦ j

�
1 . Hence

g� = (φA ◦ j
�
0 )� (φA ◦ j

�
1 ) = φA ◦ (j�

0 � j
�
1 ).

Now, for the inverse of φ, we take ψ = (j�
0 � j

�
1 )�.

((A×X)� (A× Y ))A

X � Y

X Y

j
�
0�j

�
1

i0

j
�
0 j

�
1

i1

It then follows that

(φ ◦ ψ)� = φA ◦ (j�
0 � j

�
1 ) = g�,

and, therefore, φ ◦ ψ = 1A×(X�Y ). Similarly,

(ψ ◦ φ ◦ j0)� = ψA ◦ (φ ◦ j0)� = ψA ◦ g� ◦ i0 = ψ� ◦ i0 = j
�
0 .

Thus, ψ ◦ φ ◦ j0 = j0, and a similar calculation shows that ψ ◦ φ ◦ j1 = j1. It follows
that ψ ◦ φ = 1(A×X)�(A×Y ). Thus, ψ is a two-sided inverse for φ, and A× (X � Y ) is
isomorphic to (A×X)� (A× Y ).

definition 2.5.11 (Powerset) If X is a set, we let PX = �X.

Intuitively speaking, PX is the set of all subsets of X. For example, if X = {a,b},
then PX = {∅,{a},{b},{a,b}}. More rigorously, each element of �X corresponds to
a function 1 → �X, which in turn corresponds to a function X ∼= 1 × X → �,
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which corresponds to a subobject of X. Thus, we can think of PX as another name for
Sub(X), although Sub(X) is not really an object in Sets.

2.6 Cardinality

When mathematics was rigorized in the nineteenth century, one of the important
advances was a rigorous definition of “infinite set.” It came as something of a surprise
that there are different sizes of infinity and that some infinite sets (e.g., the real numbers)
are strictly larger than the natural numbers. In this section, we define “finite” and
“infinite.” We then add an axiom that says there is a specific set N that behaves like the
natural numbers; in particular, N is infinite. Finally, we show that the powerset PX of
a set X is always larger than X.

definition 2.6.1 A set X is said to be finite if and only if for any function m : X→
X, if m is monic, then m is an isomorphism. A set X is said to be infinite if and only if
there is a function m : X→ X that is monic and not surjective.

We are already guaranteed the existence of finite sets: for example, the terminal object
1 is finite, as is the subobject classifier �. But the axioms we have stated thus far do not
guarantee the existence of any infinite sets. We won’t know that there are infinite sets
until we add the natural number object (NNO) axiom (Axiom 10).

definition 2.6.2 We say that Y is at least as large as X, written |X| ≤ |Y |, just in
case there is a monomorphism m : X→ Y .

proposition 2.6.3 |X| ≤ |X � Y |.
Proof Proposition 2.4.2 shows that i0 : X→ X � Y is monic.

proposition 2.6.4 If Y is nonempty, then |X| ≤ |X × Y |.
Proof Consider the function 〈1X,f 〉 : X→ X × Y , where f : X→ 1→ Y .

Axiom 10: Natural Number Object

There is an object N , and functions z : 1→ N and s : N → N such that for any
other set X with functions q : 1→ X and f : X→ X, there is a unique function
u : N → X such that the following diagram commutes:

1 N N

X X

z

q

s

u u

f

The set N is called a natural number object.
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exercise 2.6.5 Let N ′ be a set, and let z′ : 1 → N ′ and s′ : N ′ → N ′ be functions
that satisfy the conditions in Axiom 10. Show that N ′ is isomorphic to N .

proposition 2.6.6 z� s : 1�N → N is an isomorphism.

Proof Let i0 : 1→ 1�N and i1 : N → 1�N be the coproduct inclusions. Using the
NNO axiom, there is a unique function g : N → 1�N such that the following diagram
commutes:

1 N N

1�N 1�N

z

i0

s

g g

i1z�i1s

We will show that g is a two-sided inverse of z � s. To this end, we first establish that
g ◦ s = i1. Consider the following diagram:

N N

1 N N

1�N 1�N

s

s s
z

sz

i1z
g

s

g

i1z�i1s

The lower triangle commutes because of the commutativity of the previous diagram.
Thus, the entire diagram commutes. The outer triangle and square would also commute
with i1 in place of g◦s. By the NNO axiom, g◦s = i1. Now, to see that (z�s)◦g = 1N ,
note first that

(z� s) ◦ g ◦ z = (z� s) ◦ i0 = z.

Furthermore,

(z� s) ◦ g ◦ s = (z� s) ◦ i1 = s.

Thus, the NNO axiom entails that (z�s)◦g = idN . Finally, to see that g◦(z�s) = id1�N ,
we calculate

g ◦ (z� s) ◦ i0 = g ◦ z = i0.

Furthermore,

g ◦ (z� s) ◦ i1 = g ◦ s = i1.

Therefore, g ◦ (z � s) = id1�N . This establishes that g is a two-sided inverse of z � s,
and 1�N is isomorphic to N .

proposition 2.6.7 The function s : N → N is injective but not surjective. Thus, N

is infinite.

Proof By Proposition 2.4.2, the function i1 : N → 1� N is monic. Since the images
of i0 and i1 are disjoint, i0 is not surjective. Since z�s is an isomorphism, (z�s)◦i1 = s

is monic but not surjective. Therefore, N is infinite.
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proposition 2.6.8 If m : B → X is a nonempty subobject, then there is an epimor-
phism f : X→ B.

Proof Since B is nonempty, there is a function g : X\B → B. By Proposition 2.4.5,
B ∼= B � X\B. Finally, 1B � g : B � X\B → B is an epimorphism, since 1B is an
epimorphism.

definition 2.6.9 We say that a set X is countable just in case there is an epimor-
phism f : N → X, where N is the natural numbers.

proposition 2.6.10 N ×N is countably infinite.

Sketch of proof We will give two arguments: one quick and one slow (but hopefully
more illuminating). For the quick argument, define a function g : N × N → N by
g(x,y) = 2x3y . If 〈x,y〉 �= 〈x′,y′〉, then either x �= x′ or y �= y′. In either case,
unique factorizability of integers gives 2x3y �= 2x′3y′ . Therefore, g : N × N → N is
monic. Since N×N is nonempty, Proposition 2.6.8 entails that there is an epimorphism
f : N � N ×N . Therefore, N ×N is countable.

Now for the slow argument. Imagine writing down all elements in N×N in an infinite
table, whose first few elements look like this:⎛⎜⎜⎜⎝

〈0,0〉 〈1,0〉 〈2,0〉 · · ·
〈0,1〉 〈1,1〉 〈2,1〉 · · ·
〈0,2〉 〈1,2〉 〈2,2〉 · · ·

...
...

...
...

Now imagine running a thread diagonally through the numbers: begin with 〈0,0〉, then
move down to 〈0,1〉 and up to 〈1,0〉, then over to 〈2,0〉 and down its diagonal, etc. This
process defines a function f : N → N ×N whose first few values are

f (0) = 〈0,0〉
f (1) = 〈0,1〉
f (2) = 〈1,0〉
...

It is not difficult to show that f is surjective, and so N ×N is countable.

exercise 2.6.11 Show that if A and B are countable, then A ∪ B is countable.

We’re now going to show that exponentiation creates sets of larger and larger size. In
the case of finite sets A and X, it’s easy to see that the following equation holds:

|AX| = |A||X|,
where |X| denotes the number of elements in X. In particular, �X can be thought of as
the set of binary sequences indexed by X. We’re now going to show that for any set X,
the set �X is larger than X.
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definition 2.6.12 Let g : A→ A be a function. We say that a ∈ A is a fixed point
of g just in case g(a) = a. We say that A has the fixed-point property just in case any
function g : A→ A has a fixed point.

theorem 2.6.13 (Lawvere’s fixed-point theorem) Let A and X be sets. If there is a
surjective function p : X→ AX, then A has the fixed point property.

Proof Suppose that p : X → AX is surjective. That is, for any function f : X → A,
there is an xf ∈ X such that f = p(xf ). Let φ = p�, so that f = φ(xf ,−). Now let
g : A → A be any function. We need to show that g has a fixed point. Consider the
function f : X → A defined by f = g ◦ φ ◦ δX, where δX : X → X × X is the
diagonal map. Then we have

gφ(x,x) = f (x) = φ(xf ,x),

for all x ∈ X. In particular, gφ(xf ,xf ) = φ(xf ,xf ), which means that a = φ(xf ,xf )
is a fixed point of g. Since g : A→ A was arbitrary, it follows that A has the fixed point
property.

theorem 2.6.14 (Cantor’s theorem) There is no surjective function X→ �X.

Proof The function �→ � that permutes t and f has no fixed points. The result then
follows from Lawvere’s fixed-point theorem.

exercise 2.6.15 Show that there is an injective function X→ �X. (The proof is easy
if you simply think of �X as functions from X to {t,f}. For a bigger challenge, try to
prove that it’s true using the definition of the exponential set �X.)

corollary 2.6.16 For any set X, the set PX of its subsets is strictly larger than X.

There are several other facts about cardinality that are important for certain parts
of mathematics – in our case, they will be important for the study of topology. For
example, if X is an infinite set, then the set FX of all finite subsets of a set X has the
same cardinality as X. Similarly, a countable coproduct of countable sets is countable.
However, these facts – well known from ZF set theory – are not obviously provable in
ETCS.

discussion 2.6.17 Intuitively speaking, XN is the set of all sequences with values
in X. Thus, we should have something like

XN ∼= X ×X × . . .

However, we don’t have any axiom telling us that Sets has infinite products such as the
one on the right-hand side. Can it be proven that XN satisfies the definition of an infinite
product? In other words, are there projections πi : XN → X that satisfy an appropriate
universal property?
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2.7 The Axiom of Choice

In recent years, it has become routine to supplement set theory with a further axiom,
the so-called axiom of choice. (The axiom of choice is regularly used in fields such
as functional analysis, e.g., to prove the existence of an orthonormal basis for Hilbert
spaces of arbitrarily large dimension.) While the name of this axiom suggests that it
has something to do with our choices, in fact it really just asserts the existence of further
sets. Following our typical procedure in this chapter, we will provide a structural version
of the axiom.

definition 2.7.1 Let f : X → Y be a function. We say that f is a split epimor-
phism just in case there is a function s : Y → X such that f s = 1Y . In this case, we
say that s is a section of f .

exercise 2.7.2 Prove that if f is a split epimorphism, then f is a regular epimor-
phism. Prove that if s is a section, then s is a regular monomorphism.

Axiom 11: Axiom of Choice

Every epimorphism in Sets has a section.

A more typical formulation of the axiom of choice might say that for any set-indexed
collection of nonempty sets, say {Xi | i ∈ I }, the product set

∏
i∈I Xi is nonempty. To

translate that version of the axiom of choice into our version, suppose that the sets Xi

are stacked side by side, and that f is the map that projects each x ∈ Xi to the value i.
Then a section s of f is a function with domain I that returns an element s(i) ∈ Xi for
each i ∈ I . If such a function exists, then

∏
i∈I Xi is nonempty.

In this book, we will never use the full axiom of choice. However, we will use a couple
of weaker versions of it, specifically in the proofs of the completeness theorems for
propositional and predicate logic. For propositional logic, we will assume the Boolean
prime ideal theorem; and for predicate logic, we will use a version of the axiom of
dependent choices to prove the Baire category theorem.

2.8 Notes

• There are many good books on category theory. The classic reference is Mac Lane
(1971), but it can be difficult going for those without extensive mathematical
training. We also find the following useful: Borceux (1994); Awodey (2010);
Van Oosten (2002). The latter two are good entry points for people with some
background in formal logic.

• The elementary theory of the category of sets (ETCS) was first presented by Law-
vere (1964). For pedagogical presentations, see Lawvere and Rosebrugh (2003);
Leinster (2014).


