
5 Syntactic Metalogic Redux

5.1 Many-Sorted Logic

We now turn to a generalization of first-order logic – a generalization that has proven
to be surprisingly controversial. This generalization proceeds by noting that in ordinary
first-order logic, it is implicitly assumed that all syntactic objects are compatible. For
example, for any two terms s,t , it makes sense to write s = t ; and for any relation
symbol r , and terms t1, . . . ,tn, it makes sense to write r(t1, . . . ,tn). However, that
assumption is not obviously warranted. Instead, one might insist that syntactic objects,
such as terms, come with a type or sort, and that there are sort-based rules about how
these objects can be combined.

This generalization can provoke two responses that pull in completely opposite direc-
tions. On the one hand, one might think that many-sorted logic is stronger than single-
sorted logic, and hence that its theoretical commitments outrun those of single-sorted
logic. (The obvious analogy here is with second-order logic.) On the other hand, some
philosophers, such as Quine (1963, 267–268), argue that many-sorted logic is reducible
to single-sorted logic, and hence is dispensable. If we give pride of place to classical
(single-sorted) first-order logic, then both of these responses would undermine our moti-
vation to study many-sorted logic. However, the presuppositions of these two responses
cannot both be correct – i.e., many-sorted logic cannot both exceed the resources of
single-sorted logic and also be reducible to it. So which view is the right one?

The view we will advance here is that many-sorted logic is, in one clear sense,
reducible to single-sorted logic, but that this reduction does not mean that many-sorted
logic is dispensible. Before we take up this argument, we need to explain how many-
sorted logic works.

definition 5.1.1 A many-sorted signature ! is a set of sort symbols, predicate
symbols, function symbols, and constant symbols. ! must have at least one sort symbol.
Each predicate symbol p ∈ ! has an arity σ1 × . . . × σn, where σ1, . . . ,σn ∈ ! are
(not necessarily distinct) sort symbols. Likewise, each function symbol f ∈ ! has an
arity σ1 × . . . × σn → σ, where σ1, . . . ,σn,σ ∈ ! are again (not necessarily distinct)
sort symbols. Lastly, each constant symbol c ∈ ! is assigned a sort σ ∈ !. In addition
to the elements of !, we also have a stock of variables. We use the letters x, y, and z

to denote these variables, adding subscripts when necessary. Each variable has a sort
σ ∈ !.
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130 5 Syntactic Metalogic Redux

note 5.1.2 The symbol σ1 × · · · × σn has no intrinsic meaning. To say that “p has
arity σ1 × · · ·×σn” is simply an abbreviated way of saying that p can be combined with
n terms, whose sorts must respectively be σ1, . . . ,σn.

A !-term can be thought of as a “naming expression” in the signature !. Each
!-term has a sort σ ∈ !.

definition 5.1.3 The !-terms of sort σ are recursively defined as follows. Every
variable of sort σ is a !-term of sort σ, and every constant symbol c ∈ ! of sort
σ is also a !-term of sort σ. Furthermore, if f ∈ ! is a function symbol with arity
σ1 × . . . × σn → σ and t1, . . . ,tn are !-terms of sorts σ1, . . . ,σn, then f (t1, . . . ,tn)
is a !-term of sort σ. We will use the notation t(x⃗) to denote a !-term in which all of
the variables that appear in t are in the sequence x⃗ ≡ x1, . . . ,xn, but we leave open the
possibility that some of the xi do not appear in the term t .

A !-atom is an expression either of the form s(x1, . . . ,xn) = t(x1, . . . ,xn), where s

and t are !-terms of the same sort σ ∈ !, or of the form p(t1, . . . ,tn), where t1, . . . ,tn
are !-terms of sorts σ1, . . . ,σn and p ∈ ! is a predicate of arity σ1 × . . . × σn.

definition 5.1.4 The !-formulas are defined recursively as follows.

• Every !-atom is a !-formula.

• If φ is a !-formula, then ¬φ is a !-formula.

• If φ and ψ are !-formulas, then φ → ψ, φ ∧ ψ, φ ∨ ψ, and φ ↔ ψ are
!-formulas.

• If φ is a !-formula and x is a variable of sort σ ∈ !, then ∀σxφ and ∃σxφ are
!-formulas.

In addition to the preceding formulas, we will use the notation ∃σ=1yφ(x1, . . . ,xn,y)
to abbreviate the formula

∃σy(φ(x1, . . . ,xn,y) ∧ ∀σz(φ(x1, . . . ,xn,z) → y = z)).

As before, the notation φ(x⃗) will denote a !-formula φ in which all of the free vari-
ables appearing in φ are in the sequence x⃗ ≡ x1, . . . ,xn, but we again leave open the
possibility that some of the xi do not appear as free variables in φ.

definition 5.1.5 A !-sentence is a !-formula that has no free variables.

We will not give an explicit listing of the derivation rules for many-sorted logic.
Suffice it to say that they are direct generalizations of the derivation rules for single-
sorted logic, provided that one observe all restrictions on syntactic compatibility. For
example, in many sorted logic, we can infer ∀xφ(x) from φ(y) only if the variables x

and y are of the same type. If they were not of the same type, then one of these two
formulas would fail to be well-formed.

As a result of these restrictions, we need to exercise some caution about carrying over
intuitions that we might have developed in using single-sorted logic. For example, in
single-sorted logic, for any two terms s and t , we have a tautology

⊢ (s = t) ∨ (s ̸= t).
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However, in many sorted logic, the expressions s = t and s ̸= t are well-formed only
when s and t are terms of the same sort. Thus, to the question “do s and t denote the
same object?” many-sorted logic sometimes offers no answer.

One might be tempted, nonetheless, to think that if s and t are terms of different sorts,
then we can just add t ̸= s as axiom. However, that suggestion can lead to disaster.
For example, suppose that s denotes the number 0 and that t denotes the renowned
actor David Hasselhoff. Because I accept Peano arithmetic, I assume that every natural
number besides 0 is greater than 0. In other words, I assume that

∀x(x ̸= s → (x > 0)),

where x is a variable ranging over natural numbers. If I now added t ̸= s to my total
theory, then I would be committed to the claim that David Hasselhoff is greater than 0.
These considerations show that we need to exercise caution when moving between
many- and single-sorted frameworks.

Example 5.1.6 Let ! = {σ1,σ2}, and let T be the empty theory in !. Note that both
∃σ1x(x = x) and ∃σ2y(y = y). This might seem like a strange consequence: T is
the empty theory, and you might think that the empty theory should have no nontrivial
consequences. But the combination of ∃σ1x(x = x) and ∃σ2y(y = y) seems like a
nontrivial consequence, viz. that there are at least two things!

However, there is a mistake in our reasoning. Those two sentences together do not
imply that there are at least two things. For there is no third quantifier ∃ such that
∃v∃w(v ̸= w) is guaranteed to hold.

These considerations show that distinct sort symbols do not necessarily represent
different kinds of things. Indeed, it is not generally valid to infer that there are n + m

objects from the fact that there are n objects of sort σ1 and m objects of sort σ2. !

Example 5.1.7 Let ! = {σ1,σ2,i}, where i : σ1 → σ2. Let T be the theory that says
that i is bijective; that is, i is injective:

(i(x) = i(y)) → x = y,

and i is surjective:

∃x(i(x) = z).

Then T defines a functional relation φ of sort σ2 × σ1 by means of

φ(z,x) ↔ (i(x) = z).

The function j : σ2 → σ1 corresponding to φ is the inverse of i. !

Example 5.1.8 The theory of categories can conveniently be formulated as a many-
sorted theory. Let ! = {O,A,d0,d1,i,◦}, where O and A are sorts, d0 : A → O,
d1 : A → O, i : O → A, and ◦ is a relation of sort A × A × A. (The relation
◦ is used as the composition function on arrows – i.e., a partial function defined for
compatible arrows.) We will leave it as an exercise for the reader to write down the
axioms corresponding to the following ideas:
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1 For each arrow f, d0f is the domain object, and d1f is the codomain object.
Thus, we may write f : d0f → d1f. More generally, we write f : x → y to
indicate that x = d0f and y = d1f. The function ◦ is defined on pairs of arrows
where the first arrow’s domain matches the second arrow’s codomain.

2 The function ◦ is associative.
3 For each object x, i(x) : x → x. Moreover, for any arrow f such that d1f = x,

we have i(x) ◦ f = f. And for any arrow g such that d0g = x, we have
g ◦ i(x) = g.

!

What can many-sorted logic do for us? In pure mathematics, it can certainly have
pragmatic advantages to introduce sorts. For example, in axiomatizing category theory,
it seems more intuitive to think about objects and arrows as different sorts of things,
rather than introducing some predicate that is satisfied by objects but not by arrows.
Similarly, in axiomatizing the theory of vector spaces, it is convenient to think of vectors
and scalars as different sorts of things. Indeed, in this latter case, it’s hard to imagine a
mathematician investigating the question: “is c a scalar or a vector?” Instead, it seems
that general words like “vector” and “scalar” function more like labels than they do as
names of properties that mathematicians are interested in investigating.

But what about empirical theories? Could a many-sorted formulation of an empirical
theory provide a more perspicuous representation of the structure of reality? Let’s focus
on a more specific question, that was central to twentieth-century philosophy of science:
can the distinction between observable and unobservable be encoded into the syntax of
a theory?

Suppose then that in formulating a theory T, we begin by introducing a sort symbol
O for observable objects, and a sort symbol P for theoretical objects. Then, any relation
symbol R must be explicitly sorted – i.e., each slot after R can be occupied only by
terms of one particular sort. Similarly, formulas such as t = t ′ and t ̸= t ′ are well-
formed only if t and t ′ are terms of the same type. It should be clear now that this
language does not have a predicate “is unobservable,” nor does it have any well-formed
expression corresponding to the sentence:

(∗) No theoretical entity (i.e., entity of type P ) is an observable entity (i.e., entity of type O).

The grammatical malformity of (∗) is sometimes brushed right over in criticisms
of the syntactic view of theories (e.g., van Fraassen, 1980), and in criticisms of the
observation–theory distinction (e.g., Dicken and Lipton, 2006).

5.2 Morita Extension and Equivalence

Glymour (1971) claims that definitional equivalence (see 4.6.15) is a necessary con-
dition on the equivalence of scientific theories. However, there are several reasons to
believe that this criterion is too strict.
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First, it is frequently argued that many-sorted logic is reducible to single-sorted
logic (see Schmidt, 1951; Manzano, 1996). What is actually shown in these arguments
is that for any many-sorted theory T, a corresponding single-sorted theory T ′ can
be constructed. But what is the relation between T and T ′? Obviously, the two
theories T and T ′ cannot be definitionally equivalent, since that criterion applies
only to single-sorted theories. Therefore, to make sense of the claim that many-sorted
logic can be reduced to single-sorted logic, we need a generalization of definitional
equivalence.

Second, there are well-known examples of theories that could naturally be formu-
lated either within a single-sorted framework or within a many-sorted framework –
and we need a generalization of definitional equivalence to explain in what sense these
two formulations are equivalent. For example, category theory can be formulated as a
many-sorted theory, using both a sort of “objects” and a sort of “arrows” (Eilenberg
and Mac Lane, 1942, 1945); and category theory can also be formulated as a single-
sorted theory using only “arrows” (Mac Lane, 1948). (Freyd [1964, p. 5] and Mac
Lane [1971 p. 9] also describe this alternate formulation.) These two formulations of
category theory are in some sense equivalent, and we would like an account of this
more general notion of equivalence.

Third, definitional equivalence is too restrictive even for single-sorted theories. For
example, affine geometry can be formalized in a way that quantifies over points, or it
can be formalized in a way that quantifies over lines (see Schwabhäuser et al., 1983).
But saying that the point theory (Tp) and the line theory (Tℓ) both are formulations of
the same theory indicates again that Tp and Tℓ are in some sense equivalent – although
Tp and Tℓ are not definitionally equivalent. Indeed, the smallest model of Tp has five
elements, which we can think of as the four corners of a square and its center point.
On the other hand, the smallest model of Tℓ has six elements. But if Tp and Tℓ were
definitionally equivalent, then every model M of Tℓ would be the reduct of an expansion
of a model M ′ of Tp (de Bouvére, 1965). In particular, we would have |M| = |M ′|,
which entails that Tℓ has a model of cardinality five – a contradiction. Therefore, Tp and
Tℓ are not definitionally equivalent.

Finally, even if we ignore the complications mentioned previously, and even if we
assume that each many-sorted theory T can be replaced by a single-sorted variant T ′

(by the standard procedure of unifying sorts), definitional equivalence is still inadequate.
Consider the following example.

Example 5.2.1 Let T1 be the objects-and-arrows formulation of category theory, and
let T2 be the arrows-only formulation of category theory. Intuitively, T1 and T2 are
equivalent theories; but their single-sorted versions T ′

1 and T ′
2 are not definitionally

equivalent. Indeed, T ′
2 = T2, since T2 is single sorted. However, T ′

1 has a single sort
that includes both objects and arrows. Thus, while T ′

2 has a model with one element
(i.e., the category with a single arrow), T ′

1 has no models with one element (since every
model of T ′

1 has at least one object and at least one arrow). Therefore, T ′
1 and T ′

2 are not
definitionally equivalent. !
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These examples all show that definitional equivalence does not capture the sense in
which some theories are equivalent. If one wants to capture this sense, one needs a more
general criterion for theoretical equivalence than definitional equivalence. Our aim here
is to introduce one such criterion. We will call it Morita equivalence. This criterion
is a natural generalization of definitional equivalence. In fact, Morita equivalence is
essentially the same as definitional equivalence, except that it allows one to define
new sort symbols in addition to new predicate symbols, function symbols, and constant
symbols. In order to state the criterion precisely, we again need to do some work. We
begin by defining the concept of a Morita extension. In Chapter 7, we will show the sense
in which Morita equivalence is a natural generalization of definitional equivalence.

As we did for predicates, functions, and constants, we need to say how to define new
sorts. Let ! ⊆ !+ be signatures and consider a sort symbol σ ∈ !+\!. One can
define the sort σ as a product sort, a coproduct sort, a subsort, or a quotient sort. In each
case, one defines σ using old sorts in ! and new function symbols in !+\!. These
new function symbols specify how the new sort σ is related to the old sorts in !. We
describe these four cases in detail.

product sort In order to define σ as a product sort, one needs two function symbols
π1,π2 ∈ !+\! with π1 of arity σ → σ1, π2 of arity σ → σ2, and σ1,σ2 ∈ !.
The function symbols π1 and π2 serve as the “canonical projections” associated
with the product sort σ. A sort definition of the symbols σ,π1, and π2 as a product
sort in terms of ! is a !+-sentence of the form

∀σ1x∀σ2y∃σ=1z(π1(z) = x ∧ π2(z) = y).

One should think of a product sort σ as the sort whose elements are ordered pairs,
where the first element of each pair is of sort σ1 and the second is of sort σ2.

coproduct sort One can also define σ as a coproduct sort. One again needs two
function symbols ρ1,ρ2 ∈ !+\! with ρ1 of arity σ1 → σ, ρ2 of arity σ2 → σ,
and σ1,σ2 ∈ !. The function symbols ρ1 and ρ2 are the “canonical injections”
associated with the coproduct sort σ. A sort definition of the symbols σ,ρ1, and
ρ2 as a coproduct sort in terms of ! is a !+-sentence of the form

∀σz
(
∃σ1=1x(ρ1(x) = z) ∨ ∃σ2=1y(ρ2(y) = z)

)
∧ ∀σ1x∀σ2y¬

(
ρ1(x) = ρ2(y)

)

One should think of a coproduct sort σ as the disjoint union of the elements of
sorts σ1 and σ2.

When defining a new sort σ as a product sort or a coproduct sort, one uses two
sort symbols in ! and two function symbols in !+\!. The next two ways of
defining a new sort σ only require one sort symbol in ! and one function symbol
in !+\!.

subsort In order to define σ as a subsort, one needs a function symbol i ∈ !+\! of
arity σ → σ1 with σ1 ∈ !. The function symbol i is the “canonical inclusion”
associated with the subsort σ. A sort definition of the symbols σ and i as a subsort
in terms of ! is a !+-sentence of the form
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∀σ1x
(
φ(x) ↔ ∃σz(i(z) = x)

)
∧ ∀σz1∀σz2

(
i(z1) = i(z2) → z1 = z2

)
, (5.1)

where φ(x) is a !-formula. One can think of the subsort σ as consisting of
“the elements of sort σ1 that are φ.” The sentence (5.1) entails the !-sentence
∃σ1xφ(x). As before, we will call this !-sentence the admissibility condition
for the definition (5.1).

quotient sort Lastly, in order to define σ as a quotient sort, one needs a function
symbol ϵ ∈ !+\! of arity σ1 → σ with σ1 ∈ !. A sort definition of the symbols
σ and ϵ as a quotient sort in terms of ! is a !+-sentence of the form

∀σ1x1∀σ1x2
(
ϵ(x1) = ϵ(x2) ↔ φ(x1,x2)

)
∧ ∀σz∃σ1x(ϵ(x) = z), (5.2)

where φ(x1,x2) is a !-formula. This sentence defines σ as a quotient sort that is
obtained by “quotienting out” the sort σ1 with respect to the formula φ(x1,x2).
The sort σ should be thought of as the set of “equivalence classes of elements of
σ1 with respect to the relation φ(x1,x2).” The function symbol ϵ is the “canonical
projection” that maps an element to its equivalence class. One can verify that the
sentence (5.2) implies that φ(x1,x2) is an equivalence relation. In particular, it
entails the following !-sentences:

∀σ1x(φ(x,x))

∀σ1x1∀σ1x2(φ(x1,x2) → φ(x2,x1))

∀σ1x1∀σ1x2∀σ1x3
(
(φ(x1,x2) ∧ φ(x2,x3)) → φ(x1,x3)

)
.

These !-sentences are the admissibility conditions for the definition (5.2).

Now that we have presented the four ways of defining new sort symbols, we can
define the concept of a Morita extension. A Morita extension is a natural generalization
of a definitional extension. The only difference is that now one is allowed to define new
sort symbols.

definition 5.2.2 Let ! ⊂ !+ be signatures and T a !-theory. A Morita extension
of T to the signature !+ is a !+-theory

T + = T ∪ {δs : s ∈ !+\!}

that satisfies the following conditions. First, for each symbol s ∈ !+\!, the sentence
δs is an explicit definition of s in terms of !. Second, if σ ∈ !+\! is a sort symbol
and f ∈ !+\! is a function symbol that is used in the sort definition of σ, then
δf = δσ. (For example, if σ is defined as a product sort with projections π1 and π2,
then δσ = δπ1 = δπ2 .) And third, if αs is an admissibility condition for a definition δs ,
then T ⊢ αs .

Note that unlike a definitional extension of a theory, a Morita extension can have more
sort symbols than the original theory.1 The following is a particularly simple example
of a Morita extension.
1 Also note that if T + is a Morita extension of T to !+, then there are restrictions on the arities of

predicates, functions, and constants in !+\!. If p ∈ !+\! is a predicate symbol of arity σ1 × . . . × σn,
we immediately see that σ1, . . . ,σn ∈ !. Taking a single Morita extension does not allow one to define
predicate symbols that apply to sorts that are not in !. One must take multiple Morita extensions to do
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Example 5.2.3 Let ! = {σ,p} and !+ = {σ,σ+,p,i} be a signatures with σ and σ+

sort symbols, p a predicate symbol of arity σ, and i a function symbol of arity σ+ → σ.
Consider the !-theory T = {∃σxp(x)}. The following !+-sentence defines the sort
symbol σ+ as the subsort consisting of “the elements that are p.”

∀σx
(
p(x) ↔ ∃σ+z(i(z) = x)

)
∧ ∀σ+z1∀σ+z2

(
i(z1) = i(z2) → z1 = z2

)
. (δσ+ )

The !+-theory T + = T ∪ {δσ+} is a Morita extension of T to the signature !+. The
theory T + adds to the theory T the ability to quantify over the set of “things that are p.” !

definition 5.2.4 Let T1 be a !1-theory and T2 a !2-theory. T1 and T2 are Morita
equivalent if there are theories T 1

1 , . . . ,T n
1 and T 1

2 , . . . ,T m
2 that satisfy the following

three conditions:

• Each theory T i+1
1 is a Morita extension of T i

1 ,

• Each theory T i+1
2 is a Morita extension of T i

2 ,

• T n
1 and T m

2 are logically equivalent !-theories with !1 ∪ !2 ⊆ !.

Two theories are Morita equivalent if they have a “common Morita extension.” The
situation can be pictured as follows, where each arrow in the figure indicates a Morita
extension.

T1 T2

Tm
2Tn

1
∼=

T 1
2T 1

1

· · · ···

At first glance, Morita equivalence might strike one as different from definitional
equivalence in an important way. To show that theories are Morita equivalent, one is
allowed to take any finite number of Morita extensions of the theories. On the other
hand, to show that two theories are definitionally equivalent, it appears that one is only
allowed to take one definitional extension of each theory. One might worry that Morita
equivalence is therefore not perfectly analogous to definitional equivalence.

Fortunately, this is not the case. By Theorem 4.6.17, if T ′ is a definitional extension of
T , then T and T ′ are intertranslatable. Clearly intertranslatability is a transitive relation,
and in Theorem 6.6.21, we will see that if two theories are intertranslatable, then they
are definitionally equivalent. Therefore, if theories T1, . . . ,Tn are such that each Ti+1 is
a definitional extension of Ti , then Tn is in fact a definitional extension of T1. (One can
easily verify that this is not true of Morita extensions.) To show that two theories are

this. Likewise, any constant symbol c ∈ !+\! must be of sort σ ∈ !. And a function symbol f ∈ !+\!
must either have arity σ1 × . . . × σn → σ with σ1, . . . ,σn,σ ∈ !, or f must be one of the function
symbols that appears in the definition of a new sort symbol σ ∈ !+\!.
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definitionally equivalent, therefore, one actually is allowed to take any finite number of
definitional extensions of each theory.

If two theories are definitionally equivalent, then they are trivially Morita equivalent.
Unlike definitional equivalence, however, Morita equivalence is capable of capturing
a sense in which theories with different sort symbols are equivalent. The following
example demonstrates that Morita equivalence is a more liberal criterion for theoretical
equivalence.

Example 5.2.5 Let !1 = {σ1,p,q} and !2 = {σ2,σ3} be signatures with σi sort sym-
bols, and p and q predicate symbols of arity σ1. Let T1 be the !1-theory that says p

and q are nonempty, mutually exclusive, and exhaustive. Let T2 be the empty theory
in !2. Since the signatures !1 and !2 have different sort symbols, T1 and T2 can’t
possibly be definitionally equivalent. Nonetheless, it’s easy to see that T1 and T2 are
Morita equivalent. Let ! = !1 ∪ !2 ∪ {i2,i3} be a signature with i2 and i3 function
symbols of arity σ2 → σ1 and σ3 → σ1. Consider the following !-sentences.

∀σ1x
(
p(x) ↔ ∃σ2y(i2(y) = x)

)

∧ ∀σ2y1∀σ2y2
(
i2(y1) = i2(y2) → y1 = y2

) (δσ2 )

∀σ1x
(
q (x) ↔ ∃σ3z(i3(z) = x)

)

∧ ∀σ3z1∀σ3z2
(
i3(z1) = i3(z2) → z1 = z2

) (δσ3 )

∀σ1x
(
∃σ2=1y(i2(y) = x) ∨ ∃σ3=1z(i3(z) = x)

)

∧ ∀σ2y∀σ3z¬
(
i2(y) = i3(z)

) (δσ1 )

∀σ1x
(
p(x) ↔ ∃σ2y(i2(y) = x)

)
(δp)

∀σ1x
(
q (x) ↔ ∃σ3z(i3(z) = x)

)
(δq )

The !-theory T 1
1 = T1 ∪ {δσ2,δσ3} is a Morita extension of T1 to the signature !.

It defines σ2 to be the subsort of “elements that are p” and σ3 to be the subsort of
“elements that are q .” The theory T 1

2 = T2 ∪ {δσ1} is a Morita extension of T2 to the
signature !2 ∪ {σ1,i2,i3}. It defines σ1 to be the coproduct sort of σ2 and σ3. Lastly, the
!-theory T 2

2 = T 1
2 ∪ {δp,δq } is a Morita extension of T 1

2 to the signature !. It defines
the predicates p and q to apply to elements in the “images” of i2 and i3, respectively. One
can verify that T 1

1 and T 2
2 are logically equivalent, so T1 and T2 are Morita equivalent. !

5.3 Quine on the Dispensability of Many-Sorted Logic

The notion of Morita equivalence bears directly on several central disputes in twentieth-
century analytic philosophy. For example, in his debate with Carnap and the logical pos-
itivists, Quine claims that many-sorted logic is dispensable. Morita equivalence shows
a precise sense in which Quine is right about that. Similarly, to motivate the rejection of
metaphysical realism, Putnam claims that a geometric theory with points as primitives
is equivalent to a theory with lines as primitives. (See, for example, Putnam, 1977,
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489–491; Putnam, 1992, 109, 115–120; and Putnam, 2001.) Morita equivalence also
shows a precise sense in which Putnam is right about that. We take up Quine’s argument
in the remainder of this section. We take up Putnam’s argument in Section 7.4, after we
have developed some semantic tools.

One proves Quine’s claim by explicitly constructing a “corresponding” single-sorted
theory T̂ for every many-sorted theory T . The basic idea behind the construction is
intuitive. The theory T̂ simply replaces the sort symbols that the theory T uses with
predicate symbols. This construction recalls the proof that every theory is definitionally
equivalent to a theory that uses only predicate symbols (Barrett and Halvorson, 2016a,
Prop. 2). Quine (1937, 1938, 1956, 1963) suggests the basic idea behind our proof, as
do Burgess (2005, 12) and Manzano (1996, 221–222). However, the theorem that we
prove here is more general than Quine’s results because we make no assumption about
what the theory T is, whereas Quine only considers Russell’s theory of types and NBG
set theory.

Let ! be a signature with finitely many sort symbols σ1, . . . ,σn. We begin by con-
structing a corresponding signature !̂ that contains one sort symbol σ. The symbols
in !̂ are defined as follows. For every sort symbol σj ∈ !, we let qσj be a predicate
symbol of sort σ. For every predicate symbol p ∈ ! of arity σj1 ×. . .×σjm , we let qp be
a predicate symbol of arity σm (the m-fold product of σ). Likewise, for every function
symbol f ∈ ! of arity σj1 × . . . × σjm → σj , we let qf be a predicate symbol of arity
σm+1. And, lastly, for every constant symbol c ∈ ! we let dc be a constant symbol of
sort σ. The single-sorted signature !̂ corresponding to ! is then defined to be

!̂ = {σ} ∪ {qσ1, . . . ,qσn} ∪ {qp : p ∈ !} ∪ {qf : f ∈ !} ∪ {dc : c ∈ !}.

We can now describe a method of “translating” !-theories into !̂-theories. Let T be
an arbitrary !-theory. We define a corresponding !̂-theory T̂ and then show that T̂ is
Morita equivalent to T .

We begin by translating the axioms of T into the signature !̂. This will take two
steps. First, we describe a way to translate the !-terms into !̂-formulas. Given a !-
term t(x1, . . . ,xn), we define the !̂-formula ψ̂t (y1, . . . ,yn,y) recursively as follows.

• If t(x1, . . . ,xn) is the variable xi , then ψ̂t is the !̂-formula yi = y.

• If t(x1, . . . ,xn) is the constant c, then ψ̂t is the !̂-formula dc = y.

• Suppose that t(x1, . . . ,xn) is the term f (t1(x1, . . . ,xn), . . . ,tk(x1, . . . ,xn)) and
that each of the !̂-formulas ψ̂ti (y1, . . . ,yn,y) have been defined. Then ψ̂t (y1, . . . ,

yn,y) is the !̂-formula

∃σz1 . . . ∃σzk

(
ψ̂t1 (y1, . . . ,yn,z1) ∧ . . . ∧ ψ̂tk (y1, . . . ,yn,zk) ∧ qf (z1, . . . ,zk,y)

)
.

One can think of the formula ψt (y1, . . . ,yn,y) as the translation of the expression
“t(x1, . . . ,xn) = x” into the signature !̂.

Second, we use this map from !-terms to !̂-formulas to describe a map from !-
formulas to !̂-formulas. Given a !-formula ψ(x1, . . . ,xn), we define the !̂-formula
ψ̂(y1, . . . ,yn) recursively as follows.
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• If ψ(x1, . . . ,xn) is t(x1, . . . ,xn) = s(x1, . . . ,xn), where s and t are !-terms of
sort σi , then ψ̂(y1, . . . ,yn) is the !̂-formula

∃σz
(
ψ̂t (y1, . . . ,yn,z) ∧ ψ̂s(y1, . . . ,yn,z) ∧ qσi (z)

)
.

• If ψ(x1, . . . ,xn) is p(t1(x1, . . . ,xn), . . . ,tk(x1, . . . ,xn)), where p ∈ ! is a predi-
cate symbol, then ψ̂(y1, . . . ,yn) is the !̂-formula

∃σz1 . . . ∃σzk

(
ψ̂t1 (y1, . . . ,yn,z1) ∧ . . . ∧ ψ̂tk (y1, . . . ,yn,zk) ∧ qp(z1, . . . ,zk)

)
.

• This definition extends to all !-formulas in the standard way. We define the
!̂-formulas ¬̂ψ := ¬ψ̂, ψ̂1 ∧ ψ2 := ψ̂1 ∧ ψ̂2, ψ̂1 ∨ ψ2 := ψ̂1 ∨ ψ̂2, and
̂ψ1 → ψ2 := ψ̂1 → ψ̂2. Furthermore, if ψ(x1, . . . ,xn,x) is a !-formula, then

we define both of the following:

∀̂σi xψ := ∀σy(qσi (y) → ψ̂(y1, . . . ,yn,y))

∃̂σi xψ := ∃σy(qσi (y) ∧ ψ̂(y1, . . . ,yn,y)).

One should think of the formula ψ̂ as the translation of the !-formula ψ into the
signature !̂.

This allows us to consider the translations α̂ of the axioms α ∈ T . The single-
sorted theory T̂ will have the !̂-sentences α̂ as some of its axioms. But T̂ will have
more axioms than just the sentences α̂. It will also have some auxiliary axioms. These
auxiliary axioms will guarantee that the symbols in !̂ “behave like” their counterparts
in !. We define auxiliary axioms for the predicate symbols qσ1, . . . ,qσn ∈ !̂, qp ∈ !̂,
and qf ∈ !̂, and for the constant symbols dc ∈ !̂. We discuss each of these four cases
in detail.

We first define auxiliary axioms to guarantee that the symbols qσ1, . . . ,qσn behave
like sort symbols. The !̂-sentence φ is defined to be ∀σy(qσ1 (y) ∨ . . . ∨ qσn (y)).2

Furthermore, for each sort symbol σj ∈ ! we define the !̂-sentence φσj to be

∃σy(qσj (y)) ∧ ∀σy
(
qσj (y) → (¬qσ1 (y) ∧ . . . ∧ ¬qσj− 1 (y)

∧ ¬qσj+1 (y) ∧ . . . ∧ ¬qσn (y))
)
.

One can think of the sentences φσ1, . . . ,φσn , and φ as saying that “everything is of
some sort, nothing is of more than one sort, and every sort is nonempty.”

Next we define auxiliary axioms to guarantee that the symbols qp, qf, and dc behave
like their counterparts p, f, and c in !. For each predicate symbol p ∈ ! of arity
σj1 × . . . × σjm, we define the !̂-sentence φp to be

∀σy1 . . . ∀σym

(
qp(y1, . . . ,ym) →

(
qσj1

(y1) ∧ . . . ∧ qσjm
(ym)

))
.

This sentence restricts the extension of qp to the subdomain of n-tuples satisfying
qσj1

, . . . ,qσjm
, guaranteeing that the predicate qp has “the appropriate arity.” Consider,

for example, the case of a unary predicate p of sort σi . In that case, φp says that

2 Note that if there were infinitely many sort symbols in !, then we could not define the !̂-sentence φ in
this way.
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∀σy(qp(y) → qσi (y)),

which means that nothing outside the subdomain qσi satisfies qp. Note, however, that
here we have made a conventional choice. We could just as well have stipulated that
qp applies to everything outside of the subdomain qσi . All that matters here is that
qp is trivial (either trivially true or trivially false) except on the subdomain of objects
satisfying qσi .

For each function symbol f ∈ ! of arity σj1 × . . . × σjm → σj , we define the
!̂-sentence φf to be the conjunction

∀σy1 . . . ∀σym∀σy
(
qf (y1, . . . ,ym,y) → (qσj1

(y1) ∧ . . . ∧ qσjm
(ym) ∧ qσj (y))

)

∧ ∀σy1 . . . ∀σym

(
(qσj1

(y1) ∧ . . . ∧ qσjm
(ym)) → ∃σ=1y(qf (y1, . . . ,ym,y))

)
.

The first conjunct guarantees that the symbol qf has “the appropriate arity,” and the
second conjunct guarantees that qf behaves like a function. Lastly, if c ∈ ! is a constant
symbol of arity σj , then we define the !̂-sentence φc to be qσj (dc). This sentence
guarantees that the constant symbol dc also has “the appropriate arity.”

We now have the resources to define a !̂-theory T̂ that is Morita equivalent to T :

T̂ = {α̂ : α ∈ T } ∪ {φ,φσ1, . . . ,φσn} ∪ {φp : p ∈ !}
∪ {φf : f ∈ !} ∪ {φc : c ∈ !}.

The theory T̂ has two kinds of axioms, the translated axioms of T and the auxiliary
axioms. These axioms allow T̂ to imitate the theory T in the signature !̂. Indeed, one
can prove the following result.

theorem 5.3.1 (Barrett) The theories T and T̂ are Morita equivalent.

The proof of Theorem 5.3.1 requires some work, but the idea behind it is simple. The
theory T needs to define symbols in !̂. It defines the sort symbol σ as a “universal sort”
by taking the coproduct of the sorts σ1, . . . ,σn ∈ !. The theory T then defines the
symbols qp, qf , and dc in !̂ simply by using the corresponding symbols p, f , and c in
!. Likewise, the theory T̂ needs to define the symbols in !. It defines the sort symbol
σj as the subsort of “things that are qσj ” for each j = 1, . . . ,n. And T̂ defines the
symbols p, f , and c again by using the corresponding symbols qp, qf , and dc.

We now proceed to the gory details. We prove a special case of the result for conve-
nience. We will assume that ! has only three sort symbols σ1,σ2,σ3 and that ! does
not contain function or constant symbols. A perfectly analogous (though more tedious)
proof goes through in the general case.

We prove the result by explicitly constructing a “common Morita extension” T4 ∼= T̂4

of T and T̂ to the following signature:

!+ = ! ∪ !̂ ∪ {σ12} ∪ {ρ1,ρ2,ρ12,ρ3} ∪ {i1,i2,i3}.

The symbol σ12 ∈ !+ is a sort symbol. The symbols denoted by subscripted ρ are
function symbols. Their arities are expressed in the following figure.
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σ

σ3σ12

σ2σ1

ρ1

ρ12

ρ3

ρ2

The symbols i1, i2, and i3 are function symbols with arity σ1 → σ, σ2 → σ, and
σ3 → σ, respectively.

We now turn to the proof.

Proof of Theorem 5.3.1 The following figure illustrates how our proof will be orga-
nized.

T

T1

T Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

T2

T3

T4 ∼= T4

T3

T2

T1

Steps 1–3 define the theories T̂1, . . . ,T̂4, Steps 4–6 define T1, . . . ,T4, and Step 7 shows
that T4 and T̂4 are logically equivalent.

Step 1. We begin by defining the theory T̂1. For each sort σj ∈ ! we consider the
following sentence.

∀σy
(
qσj (y) ↔ ∃σj x(ij (x) = y)

)

∧ ∀σj x1∀σj x2(ij (x1) = ij (x2) → x1 = x2)
(θσj )

The sentence θσj defines the symbols σj and ij as the subsort of “things that are qσj .”
The auxiliary axioms φσj of T̂ guarantee that the admissibility conditions for these
definitions are satisfied. The theory T̂1 = T̂ ∪ {θσ1,θσ2,θσ3} is therefore a Morita
extension of T̂ to the signature !̂ ∪ {σ1,σ2,σ3,i1,i2,i3}.

Step 2. We now define the theories T̂2 and T̂3. Let θσ12 be a sentence that defines the
symbols σ12,ρ1,ρ2 as a coproduct sort. The theory T̂2 = T̂1 ∪ {θσ12} is clearly a Morita
extension of T̂1. We have yet to define the function symbols ρ12 and ρ3. The following
two sentences define these symbols.

∀σ3x∀σy(ρ3(x) = y ↔ i3(x) = y) (θρ3 )

∀σ12x∀σy(ρ12(x) = y ↔ ψ(x,y)) (θρ12 )

The sentence θρ3 simply defines ρ3 to be equal to the function i3. For the sentence θρ12 ,
we define the formula ψ(x,y) to be

∃σ1z1
(
ρ1(z1) = x ∧ i1(z1) = y

)
∨ ∃σ2z2

(
ρ2(z2) = x ∧ i2(z2) = y

)
.
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We should take a moment here to understand the definition θρ12 . We want to define what
the function ρ12 does to an element a of sort σ12. Since the sort σ12 is the coproduct of
the sorts σ1 and σ2, the element a must “actually be” of one of the sorts σ1 or σ2. (The
disjuncts in the formula ψ(x,y) correspond to these possibilities.) The definition θρ12

stipulates that if a is “actually” of sort σj , then the value of ρ12 at a is the same as the
value of ij at a. One can verify that T̂2 satisfies the admissibility conditions for θρ3 and
θρ12 , so the theory T̂3 = T̂2 ∪ {θρ3,θρ12} is a Morita extension of T̂2 to the signature

!̂ ∪ {σ1,σ2,σ3,σ12,i1,i2,i3,ρ1,ρ2,ρ3,ρ12}.

Step 3. We now describe the !+-theory T̂4. This theory defines the predicates in the
signature !. Let p ∈ ! be a predicate symbol of arity σj1 × . . . × σjm . We consider the
following sentence.

∀σj1
x1 . . . ∀σjm

xm

(
p(x1, . . . ,xm) ↔ qp(ij1 (x1), . . . ,ijm(xm))

)
. (θp)

The theory T̂4 = T̂3 ∪{θp : p ∈ !} is therefore a Morita extension of T̂3 to the signature
!+.

Step 4. We turn to the left-hand side of our organizational figure and define the
theories T1 and T2. We proceed in an analogous manner to the first part of Step 2. The
theory T1 = T ∪{θσ12} is a Morita extension of T to the signature !∪{σ12,ρ1,ρ2}. Now
let θσ be the sentence that defines the symbols σ,ρ12,ρ3 as a coproduct sort. The theory
T2 = T1 ∪ {θσ} is a Morita extension of T1 to the signature ! ∪ {σ12,σ,ρ1,ρ2,ρ3,ρ12}.

Step 5. This step defines the function symbols i1, i2, and i3. We consider the following
sentences.

∀σ3x3∀σy(i3(x3) = y ↔ ρ3(x3) = y) (θi3 )

∀σ2x2∀σy
(
i2(x2) = y ↔ ∃σ12z(ρ2(x2) = z ∧ ρ12(z) = y)

)
(θi2 )

∀σ1x1∀σy
(
i1(x1) = y ↔ ∃σ12z(ρ1(x1) = z ∧ ρ12(z) = y)

)
(θi1 )

The sentence θi3 defines the function symbol i3 to be equal to ρ3. The sentence
θi2 defines the function symbol i2 to be equal to the composition “ρ12 ◦ ρ2.” Like-
wise, the sentence θi1 defines the function symbol i1 to be “ρ12 ◦ ρ1.” The the-
ory T3 = T2 ∪ {θi1,θi2,θi3} is a Morita extension of T2 to the signature ! ∪
{σ12,σ,ρ1,ρ2,ρ3,ρ12,i1,i2,i3}.

Step 6. We still need to define the predicate symbols in !̂. Let σj ∈ ! be a sort
symbol and p ∈ ! a predicate symbol of arity σj1 ×. . .×σjm . We consider the following
sentences.

∀σy(qσj (y) ↔ ∃σj x(ij (x) = y)) (θqσj
)

∀σy1 . . . ∀σym

(
qp(y1, . . . ,ym) ↔ ∃σj1

x1 . . . ∃σjm
xm(ij1 (x1) = y1 ∧ . . .

∧ ijm(xm) = ym ∧ p(x1, . . . ,xm))
) (θqp )

These sentences define the predicates qσj ∈ !̂ and qp ∈ !̂. One can verify that T3

satisfies the admissibility conditions for the definitions θqσj
. And, therefore, the theory
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T4 = T3 ∪ {θqσ1
,θqσ2

,θqσ3
} ∪ {θqp : p ∈ !} is a Morita extension of T3 to the

signature !+.
Step 7. It only remains to show that the !+-theories T4 and T̂4 are logically equiva-

lent. One can verify by induction on the complexity of ψ that

T4 ⊢ ψ ↔ ψ̂ and T̂4 ⊢ ψ ↔ ψ̂. (5.3)

for every !-sentence ψ. One then uses (5.3) to show that T4 and T̂4 are logically equiv-
alent. The argument involves a number of cases, but since each case is straightforward,
we leave them to the reader to verify. The theories T4 and T̂4 are logically equivalent,
which implies that T and T̂ are Morita equivalent.

Theorem 5.3.1 validates Quine’s claim that every many-sorted theory can be con-
verted to a single-sorted theory. He concluded that many-sorted logic is dispensable.
Whether Quine was right or wrong, his claims in this regard are probably the reason why
many-sorted logic hasn’t been part of the standard curriculum for analytic philosophers.
We hope that our efforts here go some way toward remedying this unfortunate situation.

5.4 Translation Generalized

In the previous chapters, we’ve talked about various notions of a “translation” between
theories. Of course, we did not find the definition of translation written on tablets of
stone; nor did we have a Platonic vision of the one true form of a translation. No, we
found Quine’s definition in the literature, and it works quite well for some purposes,
but it’s also quite restrictive. In particular, Quine’s notions of reconstrual and translation
are not general enough to capture some well-known cases of translations between the
theories of pure mathematics.

1. In the nineteenth century, the German mathematician Leopold Kronecker is
reported to have said, “God made the integers, all else is the work of man.” In
more prosaic terms, talk about higher number systems – such as rational, real,
and complex numbers – can be reduced to talk about integers. However, to effect
such a reduction, one must treat each rational number as a pair of integers – or,
more accurately, as an equivalence class of pairs of integers. Similarly, to reduce
the complex numbers to the real numbers, one must treat a complex number as a
pair of real numbers, viz. the real and imaginary parts of the complex number.

2. Now for a more controversial example, which we will take up at greater length
in Section 7.4. There are different ways that one can write down axioms for
Euclidean geometry. In one axiomatization, the basic objects are points; and in
another axiomatization, the basic objects are lines. Is there a sense in which these
two axiomatized theories could both be Euclidean geometry – in particular, that
they could be equivalent? The answer is yes, but only if one allows translations
that take a single variable of the first theory to a pair of variables of the second
theory. In particular, a line needs to be treated as an equivalence class of pairs of
points, and a point needs to be treated as a pair of intersecting lines.



144 5 Syntactic Metalogic Redux

In the previous chapter, we required that a formula p(x) of ! be translated to a
formula φ(x) of !′. There’s one particular part of this recipe that seems questionable:
why would the same variable x occur in both formulas? In general, why suppose that
two signatures ! and !′ should share the same variables in common? It’s not like vari-
ables have some “trans-theoretical” meaning that must be preserved by any reasonable
translation.

But how then can variables be reconstrued in moving from one theory to another? One
natural proposal would be to include in a reconstrual a mapping from variables of ! to
variables of !′ – i.e., a function that assigns a variable of !′ to each variable of !. Even
so, it’s a nontrivial question whether there is an in-principle reason that a single variable
in ! must be reconstrued as a single variable in !′. Perhaps one theorist uses several
variables to do the work that the other theorist manages to do with a single variable.
Such cases are not hard to find in the sciences – for example, when the objects of one
mathematical theory are reconstrued as “logical constructions” of objects in another
mathematical theory.

Let’s proceed then under the assumption that a single variable in one language could
be reconstrued in terms of multiple variables in another language. Thus, a reconstrual,
in the formal sense, should include a function that matches variables of the signature !

to n-tuples of variables of the signature !′.
Consider again the case of reconstruing rational numbers (i.e., fractions) as pairs of

integers. Of course, not every pair of integers gives a well-defined fraction. For example,
there is no fraction of the form 1

0 . In that case, the “integer theorist” doesn’t think of the
domain of fractions as consisting of all pairs of integers; rather, she thinks of that domain
as consisting of pairs of integers where the second entry is nonzero. To capture this
nuance – the restriction of the domain of quantification – we stipulate that a reconstrual
F includes a formula D of the target language !′. In the running example, the formula
D could be given by

D(x,y) ≡ (x = x) ∧ (y ̸= 0).

The integer theorist can then use the formula D to restrict her quantifiers to the domain
of well-defined fractions.

Finally, and most controversially, let’s consider how we might reconstrue the equality
relation = of the domain theory T as a relation of the target theory T ′. (Our choice here
will prove to be controversial when we show that it yields a positive verdict in favor of
quantifier variance. See Example 5.4.16.) Recall that the single variables x and y will
typically be reconstrued as n-tuples of variables x⃗ and y⃗. In that case, how should we
reconstrue the formula x = y? One might naturally propose that x = y be reconstrued
as the formula

(x1 = y1) ∧ (x2 = y2) ∧ · · · ∧ (xn = yn). (5.4)

But here we need to think a bit harder about how and why variables of ! are encoded
as variables of !′. For this, let’s consider again the example of rational numbers being
reduced to integers.
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Consider a formula x = y in the theory of rational numbers. To the “integer theorist,”
the variables x and y really represent complex entities, namely fractions. What’s more,
to say that two fractions x1

x2
and y1

y2
are equal does not mean that x1 = y1 and x2 = y2.

Rather, x1
x2

= y1
y2

means that x1 × y2 = y1 × x2. In other words, the formula x = y of
the language of the rational numbers is reconstrued as the formula

x1 × y2 = y1 × x2, (5.5)

in the language of the integers, where × is the multiplication operation.
This example suggests that we might not always want the formula x = y to be

reconstrued as Eqn. 5.4. Instead, we might prefer to reconstrue x = y as some other
!′ formula E(x1, . . . ,xn;y1, . . . ,yn). Of course, not everything goes: E will need to
perform the same functions in the theory T ′ that the formula x = y performs in the
theory T . In particular, we will require that E be an equivalence relation relative to the
theory T ′.

We’re now ready to consider ways in which the elements of one signature ! can
be reconstrued as syntactic structures built from a second signature !′. (We include
here the case where !′ = !. In that case, we will be considering substitutions and
permutations of notation.) The case of relation symbols is relatively easy: an m-ary
relation symbol r of ! should correspond to a formula F (r) of !′ with mn free vari-
ables. To be even more precise, it’s the relation symbol r and an n-tuple of variables
x1, . . . ,xn that corresponds to some particular formula F (r) of !′, and we require that
FV (F (r)) = {x⃗1, . . . ,x⃗n}.

We will need to proceed with more caution for the function symbols in the signature
!. The question at issue is: which syntactic structures over !′ are the proper targets
for a reconstrual of the function symbols in !? To say that the target must be another
function symbol is too restrictive. Indeed, there’s a well-known “theorem” that says that
every first-order theory is equivalent to a theory that uses only relation symbols. (The
reason that “theorem” is placed in quotes here is because the result cannot be proven
with mathematical rigor until the word “equivalent” is defined with mathematical rigor.)
The trick to proving that theorem is to reconstrue each function symbol f as a relation

pf (x1, . . . ,xm,y) ≡ (f (x1, . . . ,xm) = y)

and then to add axioms saying that pf relates each m-tuple x1, . . . ,xm to a unique output
y. If we are to be able to validate such a result (which is intuitively correct), then we
ought to permit function symbols of ! to be reconstrued as formulas of !′. We will
deal with this issue by analogy with the way we dealt with relation symbols earlier: a
function symbol f of ! and m + 1 variables x1, . . . ,xn,y of ! ought to correspond to
a formula (Ff )(x⃗1, . . . ,x⃗n,y⃗) of !′.

In order to define a more general notion of a translation, the key is to allow a single
sort σ of ! to be mapped to a sequence of sorts of !′, including the case of repetitions
of a single sort. The idea, in short, is to encode a single variable (or quantifier) in ! by
means of several variables (or quantifiers) in !′. In order to make this idea clearer, it
will help to give a precise definition of the monoid of finite sequences from a set S.
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definition 5.4.1 For a set S, we let S∗ denote the free monoid on S, which is
uniquely defined by the following universal property: there is a function ηS : S → S∗,
and for any monoid A, and function f : S → A, there is a unique monoid morphism
f ∗ : S∗ → A such that f ∗ ◦ ηS = f . Concretely speaking, S∗ can be constructed as
the set

S ⨿ (S × S) ⨿ (S × S × S) ⨿ · · · ,

where ηS : S → S∗ is the first coprojection. In this case, given f : S → A, f ∗ : S∗ →
A is the function

f ∗(s1, . . . ,sn) = f (s1) ◦ · · · ◦ f (sn),

where ◦ is the monoid operation on A.

definition 5.4.2 Let ! and !′ be many-sorted signatures with sets of sorts S and S′

respectively. A generalized reconstrual F : ! → !′ consists of the following:

1. A function F : S → (S′)∗. That is, F maps the sorts of ! to nonempty sequences
of sorts of S′. For each σ ∈ S, let d(σ) be the length of the sequence F (σ). We
call d : S → N the dimension function of F .

2. A corresponding function x 6→ x⃗ = x1, . . . ,xd(σ) from !-variables to sequences
of !′-variables, such that xi : F (σ)i . We require that if x ̸≡ y, then the sequences
x⃗ and y⃗ have no overlap.

3. A function D from !-variables to !′-formulas. We call Dx a domain formula.
We require the map x 6→ Dx to be natural in the following sense: if y is of the
same sort as x, then Dy = Dx[y⃗/x⃗].

4. A function F that takes a relation symbol p of !, and a suitable context x1, . . . ,xn

of variables from !, and yields a formula (Fp)(x⃗1, . . . ,x⃗n) of !′. We again
require this map to be natural in the sense that

(Fp)(y⃗1, . . . ,y⃗n) = (Fp)(x⃗1, . . . ,x⃗n)[y⃗1, . . . ,y⃗n/x⃗1, . . . ,x⃗n].

A reconstrual F naturally extends to a map from !-formulas to !′-formulas. We
define this extension, also called F , so that for any !-formula φ, with x free in φ, the
following two constraints are satisfied:

F (φ) ⊢ D(x⃗), F (φ[y/x]) = F (φ)[y⃗/x⃗].

The first restriction is not technically necessary – it is simply a convenient way to
ignore whatever the formula F (φ) says about things outside of the domain D(x⃗). (This
apparently minor issue plays a significant role in Quine’s argument for the dispensability
of many-sorted logic. See 5.4.17.) Accordingly, for a relation symbol p of !, we first
redefine (Fp)(x⃗1, . . . ,x⃗n) by conjoining with D(x⃗1) ∧ · · · ∧ D(x⃗n). (We could have also
have included this condition in the very definition of a reconstrual.) The extension of F

proceeds as follows:
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• Let F (φ ∧ ψ) = F (φ) ∧ F (ψ), and let F (φ ∨ ψ) = F (φ) ∨ F (ψ).

• Let F (¬φ) = ¬F (φ) ∧ D(x⃗1) ∧ · · · ∧ D(x⃗n), where x1, . . . ,xn are all the free
variables that occur in φ.

• Let F (φ → ψ) = F (¬φ) ∨ F (ψ).

• Let F (∃xφ) = ∃x⃗(D(x⃗) ∧ F (φ)).

• Let F (∀xφ) = ∀x⃗(D(x⃗) → F (φ)).

definition 5.4.3 Let F : ! → !′ be a reconstrual. We say that F is a translation
of T into T ′ just in case, for every !-sentence φ, if T ⊢ φ then T ′ ⊢ F (φ). In this
case, we write F : T → T ′. In the case that ! has a single sort σ, we say that F is a
d(σ)-dimensional translation.

The definition of a translation allows us to handle the case where the domain signature
! has equality relations and function symbols. In particular, for each theory T in !, we
explicitly include the following axioms:

• The equality introduction axioms: ⊢ x =σ x.

• The equality elimination axioms: φ(x),(x =σ y) ⊢ φ(y), for each atomic or
negated atomic formula φ of !.

As usual, these axioms together entail that =σ is an equivalence relation. Thus, if F :
T → T ′ is a translation, then F (=σ)(x⃗,y⃗) is an equivalence relation on domain D(x⃗).
We abbreviate this relation by Eσ(x⃗,y⃗) or, when no confusion can result, simply as
E(x⃗,y⃗). In this case, for each relation symbol p of !,

T ′,(Fp)(x⃗),E(x⃗,y⃗) ⊢ (Fp)(y⃗).

Roughly speaking, the predicate Fp has to be compatible with the equivalence relation
E: it holds of something iff it holds of everything E-equivalent to that thing. Equiva-
lently, the extension of Fp is a union of E-equivalence classes.

Now suppose that ! contains a constant symbol c. Then, choosing a variable x of
the same sort, c = x is a unary formula, and F (c = x) is a formula φ(x⃗). The theory
T entails that the formula c = x is uniquely satisfied. Hence, if F : T → T ′ is a
translation, then T ′ entails that φ(x⃗) is uniquely satisfied – relative to the equivalence
relation E. In short, T ′ implies both ∃x⃗(Dx ∧ φ(x⃗)) and φ(x⃗) ∧ φ(y⃗) → E(x⃗,y⃗).
Intuitively speaking, this means that the extension of φ(x⃗) is a single E-equivalence
class.

Similar reasoning applies to the case of any function symbol f of !. The !-formula
f (x1, . . . ,xn) = y is reconstrued as some !′-formula φ(x⃗1, . . . ,x⃗n,y⃗). If F : T → T ′

is a translation, then T ′ entails that φ is a functional relation relative to E-equivalence.
What this means intuitively is that φ is a function from E-equivalence classes to
E-equivalence classes.

Example 5.4.4 (Quantifier variance) We now undertake an extended discussion of an
example that is near and dear to metaphysicians: the debate between mereological uni-
versalism and nihilism. To keep the technicalities to a bare minimum, we will consider a
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dispute over whether the composite of two things exists. Suppose that the parties to the
dispute are are named Niels the Nihilist and Mette the Mereological Universalist. Niels
says that there are exactly two things, whereas Mette says that there are exactly three
things, one of which is composed of the other two.

Now, we press Niels and Mette to regiment their theories, and here’s what they come
up with. Niels has a signature !, which is empty, very much in line with his predilection
for desert landscapes. Niels’ theory has a single axiom, “there are exactly two things.”
Mette has a signature !′ with a binary relation symbol p that she’ll use to express the
parthood relation. Mette’s theory T ′ says that p is a strict partial order, that there are
exactly two atoms, and exactly one thing above those two atoms. Note that Mette can
define an open formula in !′

a(x) ≡ ¬∃y p(y,x),

which intuitively expresses the claim that x is an atom.
At the turn of the twenty-first century, metaphysicians were engaged in a fierce debate

about whether Niels or Mette has a better theory. Then some other philosophers, such
as Eli Hirsch, said, “stop arguing – it’s merely a verbal dispute, like an argument about
whether there are six roses or half a dozen roses” (see Chalmers et al., 2009; Hirsch,
2011). These other philosophers espouse a position known as quantifier variance. One
clear explication of quantifier variance would be to say that Niels and Mette’s theories
are equivalent. So are they equivalent or not? The answer to this question depends
(unsurprisingly) on the standard of equivalence that we adopt. For example, it is easy to
see that Niels and Mette’s theories are not strictly intertranslatable in the sense of Defn.
4.5.15. However, we will now see that Niels and Mette’s theories are intertranslatable in
the weaker sense described in Defn. 5.4.14.

It seems clear that Mette can make sense of Niels’ theory – in particular, that she
can identify Niels’ quantifier as a restriction of her own. The idea that Mette can “make
sense of Niels’ theory” can be cashed out formally as saying that Niels’ theory can be
translated into Mette’s theory. Intuitively speaking, for any sentence φ asserted by Niels,
there is a corresponding sentence φ∗ asserted by Mette. For example, when Niels says,

There are exactly two things,

Mette can charitably interpret him as saying,

There are exactly two atoms.

Now we show that there is indeed a translation F : T → T ′, where T is Niels’
theory, and T ′ is Mette’s theory. Here Niels and Mette’s theories are single-sorted, and
we define F to be a one-dimensional reconstrual. We define the domain formula as
DF (x) = a(x), and we translate Niels’ equality relation as Mette’s equality relation
restricted to DF .

Let’s just check that F is indeed a translation. While a general argument is not
difficult, let’s focus on Niels’ controversial claim φ: that there are at most two objects
in the domain:

φ ≡ ∀x∀y∀z((x = y) ∨ (x = z) ∨ (y = z)).
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The reconstrual F takes x = y to the formula a(x′) ∧ a(y′) ∧ (x′ = y′), and hence F (φ)
is the uncontroversially true statement that there are at most two atoms. Of course, Mette
agrees with that claim, and so F : T → T ′ is a translation of Niels’ theory into Mette’s.

Indeed, F is a particularly nice translation: it’s conservative, in the sense that if T ′ ⊢
F (φ), then T ⊢ φ. Thus, not only does Mette affirm everything that Niels says about
atoms; Niels also affirms everything that Mette says about atoms. Thus, there is a precise
sense in which Niels’ theory is simply a “sub-theory” of Mette’s theory. They are in
complete agreement relative to their shared language, and Mette simply has a larger
vocabulary than Niels.

The existence of the translation F : T → T ′ comes as no surprise. But what about
the other way around? Can Niels be as charitable to Mette as she has been to him? Can
he find a way to affirm everything that she says? The answer to that question is far from
clear. For example, Mette says things like, “x is a composite of y and z.” How in the
world could Niels make sense of that claim? How in the world could Niels say, “what
Mette says here is perfectly correct, if only understood in the proper way”? Similarly,
Mette says that “there are more than two things.” How in the world could Niels validate
such a claim?

We will now see that Niels can indeed charitably interpret, and endorse, all of Mette’s
assertions. Indeed, Niels needs only think of Mette’s notion of “a thing” as correspond-
ing to what he means by “a pair of things” – as long as two pairs are considered to be
“the same” when they are permutations of each other.

More precisely, consider a two-dimensional reconstrual G : !′ → ! that encodes
a !′-variable x as a pair x1,x2 of !-variables. Define DG(x1,x2) to be the formula
(x1 = x1) ∧ (x2 = x2) that holds for all pairs ⟨x1,x2⟩. Define EG(x1,x2,y1,y2) to be the
relation that holds between ⟨x1,x2⟩ and ⟨y1,y2⟩ just in case one is a permutation of the
other. That is,

EG(x1,x2,y1,y2) ≡ (x1 = y1 ∧ x2 = y2) ∨ (x1 = y2 ∧ x2 = y1).

Clearly, T entails that EG is an equivalence relation.
The signature !′ consists of a single binary relation symbol p. Since G is two-

dimensional, Gp must be defined to be a four-place relation in !. Here is the intuitive
idea behind our definition of Gp: we will simulate atoms of Mette’s theory by means of
diagonal pairs, i.e., pairs of the form ⟨x,x⟩. We then say that Gp holds precisely between
pairs when the first is diagonal, the second is not, and the first has a term in common
with the second. More precisely,

(Gp)(x1,x2,y1,y2) ≡ (x1 = x2) ∧ (y1 ̸= y2) ∧ (x1 = y1 ∨ x1 = y2).

Recall that a(x) is the formula of !′ that says that x is an atom. We claim now that the
translation G(a(x)) of a(x) holds precisely for the pairs on the diagonal. That is,

T ⊢ G(a)(x1,x2) ↔ (x1 = x2).

We argue by reductio ad absurdum. (Here we use the notion of a model, which will first
be introduced in the next chapter. Hopefully, the intuition will be clear.) First, if

T ̸⊢ G(a)(x1,x2) → (x1 = x2),
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then there is a model M of T , and two distinct objects c,d of M such that M |9
G(a)(c,d). That means that

M |9 ¬∃y∃z G(p)(y,z,c,d).

But, clearly, M |9 G(p)(c,c,c,d), a contradiction. To prove the other direction, it will
suffice to show that for any model M of T , and for any c ∈ M , we have M |9 G(a)(c,c).
Recalling that T only has one model, namely a model with two objects, the result easily
follows.

When Mette the Mereologist says that there are more than two things, Niels the
Nihilist understands her as saying that there are more than two pairs of things. Of course,
Niels agrees with that claim. In fact, it’s not hard to see that, under this interpretation,
Niels affirms everything that Mette says. !

discussion 5.4.5 We’ve shown that Niels’ theory can be translated into Mette’s,
and vice versa. Granting that this is a good notion of “translation,” does it follow that
these two theories are equivalent? In short, no. Recall the simpler case of propositional
theories. For example, let ! = {p0,p1, . . .}, let T be the empty theory in !, and
let T ′ be the theory with axioms p0 ⊢ p1,p0 ⊢ p2, . . . Then there are translations
f : T → T ′ and g : T ′ → T , but T and T ′ are not equivalent theories. In general,
mutual interpretability is not sufficient for equivalence. Nonetheless, we will soon see
(Example 5.4.16) that there is a precise sense in which Niels’ and Mette’s theories are
indeed equivalent.

We are now ready to prove a generalized version of the substitution theorem. In
its simplest form, the substitution theorem says a valid derivation φ1, . . . ,φn ⊢ ψ is
preserved under uniform substitution of the non-logical symbols in φ1, . . . ,φn and ψ.
For example, from a valid derivation of ∃x(p(x) ∧ q (x)) ⊢ ∃xp(x), substitution of
∀yr(y,z) for p(x) yields a valid derivation of

∃z(∀yr(y,z) ∧ q (z)) ⊢ ∃z∀yr(y,z).

However, we need to be careful in describing what counts as a legitimate “substitution
instance” of a formula. Let’s test our intuitions against an example.

Example 5.4.6 Let ! be a single-sorted signature with equality, but no other symbols.
Let !′ be a single-sorted signature with equality, and one other monadic predicate D(x).
We define a one-dimensional reconstrual F : ! → !′ by taking D(x) to be the domain
formula, and by taking E(x,y) to be equality in !′. We will see now that the substitution
theorem does not hold in the form: if φ ⊢ ψ then F (φ) ⊢ F (ψ).

In !, we have x ̸= y ⊢ ∃z(x ̸= z). Since F translates equality in ! to equality in !′,
we have F (x ̸= y) ≡ (x ̸= y). Furthermore, F (∃z(x ̸= z)) is the relativized formula
∃z(D(z) ∧ x ̸= z). But x ̸= y does not imply that there is a z such that D(z) and x ̸= z.
For example, in the domain {a,b}, if the extension of D is {a}, then a ̸= b, but not
∃z(D(z) ∧ a ̸= z). Thus, the substitution theorem does not hold in the form: if φ ⊢ ψ,
then F (φ) ⊢ F (ψ). So what’s the problem here?
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To speak figuratively, a reconstrual F maps a variable x of ! to variables x⃗ that are
relativized to the domain D(x⃗). However, the turnstile ⊢ for !′ is not relativized in this
fashion: a sequent F (φ) ⊢ F (ψ) corresponds to a tautology ⊢ ∀x⃗(F (φ) → F (ψ)). It
wouldn’t make sense to expect this last statement to hold, since the intention is for the
variables in F (φ) and F (ψ) to range over D(x⃗). Thus, the relevant question is whether
F (φ) ⊢D(x⃗) F (ψ), where the latter is shorthand for

⊢ ∀x⃗(D(x⃗) → (F (φ) → F (ψ))).

In the current example, then, the question is whether the following holds:

F (x ̸= y),D(x),D(y) ⊢ F (∃y(x ̸= y)).

And it obviously does. This example shows us how to formulate a substitution theorem
for generalized reconstruals such as F . !

theorem 5.4.7 (Substitution) Let ! be a signature without function symbols, and
suppose that F is a reconstrual from ! to !′. Then, for any formulas φ and ψ with free
variables x1, . . . ,xn, if φ ⊢ ψ, then F (φ) ⊢D(x⃗1,...,x⃗n) F (ψ). In particular, if φ and ψ
are !-sentences, then F (φ) ⊢ F (ψ).

Proof We will prove this result by induction on the construction of proofs. For the
base case, the rule of assumptions justifies not only φ ⊢ φ, but also F (φ) ⊢ F (φ), and
hence D(x⃗),F (φ) ⊢ F (φ). The inductive cases for the Boolean connectives involve no
special complications, and so we leave them to the reader.

Consider now the case of ∃-elim. Suppose that ∃yφ ⊢ ψ results from application of
∃-elim to φ ⊢ ψ, in which case y is not free in ψ. We rewrite φ and ψ in the suggestive
notation φ(x,y) and ψ(x), indicating that x may be free in both φ and ψ, and that
y ̸≡ x. (Note, however, that our argument doesn’t depend on φ and ψ sharing exactly
one free variable in common.) We want to show that F (∃yφ(x,y)) ⊢D(x⃗) F (ψ(x)),
which expands to

D(x⃗),∃y⃗(D(y⃗) ∧ F (φ(x,y))) ⊢ F (ψ(x)). (5.6)

The inductive hypothesis here says that

D(x⃗),D(y⃗),F (φ(x,y)) ⊢ F (ψ(x)).

Since x and y are distinct variables, the sequences x⃗ and y⃗ have no overlap, and y⃗ does
not occur free in D(x⃗). Thus, n-applications of ∃-intro yield the sequent (5.6).

Consider now the case of ∃-intro. Suppose that φ ⊢ ∃yψ follows from φ ⊢ ψ by an
application of ∃-intro. Again, we will rewrite the former sequent as

φ(x,y) ⊢ ∃yψ(x,y).

We wish to show that

D(x⃗),D(y⃗),F (φ(x,y)) ⊢ ∃y⃗F (ψ(x,y)).
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By the inductive hypothesis, we have

D(x⃗),D(y⃗),F (φ(x,y)) ⊢ F (ψ(x,y)).

Thus, the result follows by repeated application of ∃-intro.

The previous version of the substitution theorem applies only to the case of signatures
without function symbols. Intuitively, however, the formal validity of proofs should also
be maintained through uniform substitution of terms.

Example 5.4.8 Suppose that φ(x) ⊢ ψ(x), which is equivalent to ⊢ ∀x(φ(x) ⊢ ψ(x)).
Now let t(y⃗) be a term with free variables y⃗ ≡ y1, . . . ,yn, and suppose that each of these
variables is free for x in φ and ψ, but none of them are themselves free in either one of
these formulas. (In the simplest case, these variables simply do not occur in either one
of the formulas.) Then ∀-elim and intro yield

⊢ ∀y⃗(φ(t(y⃗)) → ψ(t(y⃗))),

which is equivalent to φ(t(y⃗) ⊢ ψ(t(y⃗)). In other words, a valid proof remains valid if
a variable x is uniformly replaced by a term t(y⃗), so long as the relevant restrictions are
respected. !

At this stage, we have a definition of a generalized translation, and we’ve shown that
it yields a generalized substitution theorem. What we would like to do now is to look at
specific sorts of translations – and most particularly, at which translations should count
as giving an equivalence of theories. It turns out, however, that giving a good definition
of equivalence is a bit complicated. As many examples will show, it won’t suffice to
say that a translation F : T → T ′ is an equivalence just in case it has an inverse
G : T ′ → T , and not even a quasi-inverse in the sense of 4.5.15. For a good definition
of equivalence, we need a notion of a “homotopy” between translations, and we need a
notion of the composition of translations. We turn first to the second of these.

definition 5.4.9 (Composition of reconstruals) Suppose that F : ! → !1 and
G : !1 → !2 are reconstruals. Define a reconstrual H : ! → !2 as follows:

• Since G : S1 → S∗
2 , there is a unique morphism G∗ : S∗

1 → S∗
2 such that

G = G∗ ◦ ηS1 . In other words, G∗ acts on a sequence of S1 sorts by applying G

to each element and then concatenating. We then define H = G∗ ◦ F : S → S∗
2 .

• We use the same idea to associate each variable x of ! with a (double) sequence
X1, . . . ,Xn of variables of !2. In short,

H (x) = G∗(F (x))
= X1, . . . ,Xn

= (x11, . . . ,x1m1 ), . . . ,(xn1, . . . ,xnmn),

where F (x) = x1, . . . ,xn, and G(xi) = Xi = (xi1, . . . ,ximi ).
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• Let DF (x⃗) denote the domain formula of F corresponding to the !-variable x.
Let DG(Xi) denote the domain formula of G corresponding to the !1-variable
xi . Then we define

DH (X1, . . . ,Xn) := G(DF (x⃗)).

Recall that any free variable in G(DF (x⃗)) occurs in the double sequence
X1, . . . ,Xn, and that G(φ) ⊢ DG(Y ) if y is free in φ. Thus, DH (X1, . . . ,Xn) ⊢
DG(Xi) for each i = 1, . . . ,n.

• For a relation symbol p of !, we define

(Hp)(X1, . . . ,Xn) = G((Fp)(x⃗1, . . . ,x⃗n)).

proposition 5.4.10 If F and G are translations, then G ◦ F is a translation.

Proof This result follows trivially once we recognize that G ◦ F is a legitimate recon-
strual.

For some philosophers, it may seem that we have already greatly overcomplicated
matters by using category theory to frame our discussion of theories. I’m sorry to say
that matters are worse than that. The collection of theories really has more interesting
structure than a category has; in fact, it’s most naturally thought of as a 2-category,
where there are 0-cells (objects), 1-cells (arrows), and 2-cells (arrows between arrows).
In particular, our 2-category of theories, Th, has first-order theories as the 0-cells, and
translations as the 1-cells. We now define the 2-cells, which we call t-maps.

Let F and G be translations from T to T ′. Since the definition of a t-map is heavily
syntactic, we begin with an intuitive gloss in the special case where ! has a single
sort σ. In this case F (σ) is a sequence σ1, . . . ,σm of !′-sorts, and G(σ) is a sequence
σ′

1, . . . ,σ
′
n of !′-sorts. Then a t-map χ : F ⇒ G consists of a formula χ(x⃗,y⃗) that links

m-tuples to n-tuples. This formula χ(x⃗,y⃗) should have the following features:

1. The theory T ′ implies that χ(x⃗,y⃗) is a functional relation from DF to DG, relative
to the notion of equality given by the equivalence relations EF and EG.

2. For each formula φ of !, χ maps the extension of F (φ) into the extension of
G(φ).

We now turn to the details of the definition.

definition 5.4.11 A t-map χ : F ⇒ G is a family of !′-formulas {χσ}, where σ
runs over the sorts of !, where each χσ has dK (σ) +dL(σ) free variables, and such that
T ′ entails the following (which we label with suggestive acronyms):

χσ(x⃗,y⃗) → (DF (x⃗) ∧ DG(y⃗)) (dom-ran)

(EF (x⃗,w⃗) ∧ EG(y⃗,z⃗) ∧ χσ(w⃗,z⃗)) → χσ(x⃗,y⃗) (well-def)

DF (x⃗) → ∃y⃗(DG(y⃗) ∧ χσ(x⃗,y⃗)) (exist)

(χσ(x⃗,y⃗) ∧ χσ(x⃗,z⃗)) → EG(y⃗,z⃗) (unique)
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Furthermore, for any !-formula φ(x1, . . . ,xn) with x1 : σ1, . . . ,xn : σn, the theory
must T ′ entail that

χσ⃗(X,Y ) → (F (φ)(X) → G(φ)(Y )),

where we abbreviate X = x⃗1, . . . ,x⃗n, Y = y⃗1, . . . ,y⃗n, and χσ⃗(X,Y ) = χσ1 (x⃗1,y⃗1) ∧
. . . ∧ χσn (x⃗n,y⃗n).

We are especially interested in what it might mean to say that two translations F :
T → T ′ and G : T → T ′ are isomorphic – i.e., the conditions under which a t-map
χ : F ⇒ G is an isomorphism.

definition 5.4.12 We say that a t-map χ : F ⇒ G is a homotopy (or an isomor-
phism of translations) if each of the functions χ establishes a bijective correspondence,
relative to the equivalence relations EF and EG. More precisely, the theory T ′ entails

DG(y⃗) → ∃x⃗(DF (x⃗) ∧ χ(x⃗,y⃗)) (onto)

(χ(x⃗,y⃗) ∧ χ(w⃗,y⃗)) → EF (x⃗,w⃗) (one-to-one)

Furthermore, for each formula φ of !, the theory T ′ entails that

χ(X,Y ) → (G(φ)(Y ) → F (φ)(X)).

Here we have omitted the sort symbol σ from χσ merely in the interest of notational
simplicity.

discussion 5.4.13 Note that F and G can be isomorphic translations even if they
have different dimension functions – i.e., if they encode !-variables into different-
length strings of !′-variables. We will see an example below of a single sorted theory
T , and a two-dimensional translation F : T → T that is isomorphic to the identity
translation 1T : T → T . In this case, the theory T might be glossed as saying: “pairs of
individuals correspond uniquely to individuals.”

definition 5.4.14 We say that two theories T and T ′ are weakly intertranslatable
(also homotopy equivalent) if there are translations F : T → T ′ and G : T ′ → T , and
homotopies χ : GF ⇒ 1T and χ′ : 1T ′ ⇒ FG.

note 5.4.15 Here the word “weakly” in “weakly equivalent” shouldn’t be taken to
hold any deep philosophical meaning – as if it indicates that the theories aren’t fully
equivalent. Instead, the use of that word traces back to category theory and topology,
where it has proven to be interesting to “weaken” notions of strict equality, isomorphism,
or homeomorphism. In many such cases, the weakened notion is a more interesting and
useful notion than its strict counterpart. One thing we like about this proposed notion of
theoretical equivalence is precisely its connection with the sorts of notions that prove to
be fruitful in contemporary mathematical practice. If we were to wax metaphysical, we
might say that such notions carve mathematical reality at the joints.
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Example 5.4.16 (Quantifier variance) We can now complete the discussion of Exam-
ple 5.4.4 by showing that Mette the Mereologist and Niels the Nihilist have equivalent
theories – at least by the standard of “weak intertranslatability.” Recall that the trans-
lation F : T → T ′ includes Niels’ theory as a subtheory of Mette’s, restricted to the
atoms. The translation G : T ′ → T maps Mette’s variables to pairs of Niels’ variables
(up to permutation), and it translates the parthood relation as the relation that holds
between a diagonal pair and non-diagonal pair that matches in one place.

We give an informal description of the homotopy maps ε : GF ⇒ 1T and η : FG ⇒
1T ′ . First, GF σ = σ,σ. That is, GF translates Niels’ variables into pairs of Niels’
variables, and the domain formula is the diagonal x = y. It’s easy enough then to define
a functional relation

ε(x,y;z) ↔ (x = y) ∧ (x = z),

from the diagonal of σ,σ to σ. For the homotopy map η, note that FG translates Mette’s
variables into pairs of Mette’s variables, and the domain formula is a(x) ∧ a(y) – i.e.,
both x and y are atoms. We then define η(x,y;z) to be the functional relation such that
if x = y then z = x, and if x ̸= y, then z is the composite of x and y. A tedious
verification shows that ε and η satisfy the definition of homotopy maps, and therefore
F,G form a homotopy equivalence.

Thus, there is a precise notion of theoretical equivalence that validates the claim of
quantifier variance. However, this fact just pushes the debate back one level – to a debate
over what we should take to be the “correct” notion of theoretical equivalence. Perhaps
weak intertranslatability seems more mathematically natural than its strong counterpart.
Or perhaps weak intertranslatability is closer to the notion that mathematicians use in
practice. But these kinds of considerations could hardly be expected to move someone
who antecedently rejects the claim of quantifier variance. !

Example 5.4.17 Let’s look now at an example that is relevant to the debate between
Carnap and Quine.

Suppose that ! = {σ1,σ2,p,q}, with p a unary predicate symbol of sort σ1, and q a
unary predicate symbol of sort σ2. Let T be the empty theory in !. For simplicity, we
will suppose that T implies that there are at least two things of sort σ1, and at least two
things of sort σ2. In order to get a more intuitive grasp on this example, let’s suppose that
the T -theorist is intending to use σ1 to model the domain of mathematical objects, and
σ2 to model the domain of physical objects. As Carnap might say, “mathematical object”
and “physical object” are Allwörter to mark out domains of inquiry. Let’s suppose also
that p(x) stands for “x is prime,” and q (x) stands for “x is massive” (i.e., has nonzero
mass).

Now, Quine thinks that there’s no reason to use sorts. Instead, he says, we should
suppose that there is a single domain that can be divided by the predicates, “being a
mathematical object” and “being a physical object.” He says,
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since the philosophers [viz. Carnap] who would build such categorial fences are not generally
resolved to banish from language all falsehoods of mathematics and like absurdities, I fail to see
much benefit in the partial exclusions that they do undertake; for the forms concerned would
remain still quite under control if admitted rather, like self-contradictions, as false. (Quine, 1960,
p. 229)

Quine’s proposal seems to be the following:
1. Unify the sorts σ1 and σ2 into a single sort σ; and
2. For each formula φ with a type-mismatch, such as “There is a massive number,”

declare that φ is false.
For example, in the signature !, the predicate symbols p and q are of different sorts,
hence they cannot be applied to the same variable, and φ ≡ ∃x(p(x) ∧ ¬q (x)) is ill-
formed. Quine suggests then that φ should be taken to be false. But what then are we
to do about the fact that ¬φ ⊢ ∀x(p(x) → q (x))? If φ is false, then it follows that all
prime numbers are massive. Something has gone wrong here.

Of course, Quine is right to think that the many-sorted theory T is equivalent to
a single-sorted theory T1. Nonetheless, there are a couple of problems for Quine’s
suggestion that we simply throw away T in favor of T1. First, there is another single-
sorted theory T2 that is equivalent to T , but T1 and T2 disagree on how to extend the
ranges of predicates in T . Quine provides no guidance about whether to choose T1 or
T2, and it seems that the choice would have to be conventional. The second problem is
that T leaves open possibilities for specification that would be prematurely settled by
passing to T1 (or to T2).

To be more specific, we will construct these theories T1 and T2. First let !i =
{σ,u,p′,q ′}, where σ is a sort symbol, and u,p′,q ′ are unary predicate symbols. Let
T1 be the theory in !1 with axioms:

T1 ⊢ ∃xu(x) ∧ ∃x¬u(x)
T1 ⊢ ∀x(¬u(x) → ¬p′(x))
T1 ⊢ ∀x(u(x) → ¬q ′(x)).

The first axiom ensures that the domains u and ¬u are nonempty. The second axiom
implements Quine’s requirement that physical objects are not prime, and the third axiom
implements Quine’s requirement that mathematical objects are not massive. It then
follows that

T1 ⊢ ¬∃x(p′(x) ∧ q ′(x))
T1 ⊢ ∀x(p′(x) → ¬q ′(x)).

It’s not difficult to see that T can be translated into T1. Indeed, we can set F (σ1) = σ =
F (σ2), taking the domain formula for σ1 variables to be u, and the domain formulas for
σ2 variables to be ¬u. We can then set F (p) = p′ and F (q ) = q ′. It is not difficult to
see that F is a translation. In fact, there is also a translation G from T1 to T , but it is
more difficult to define. The problem here is determining how to translate a variable x

of the signature !1 into variables of the signature !. In particular, x ranges over things
that satisfy u(x) as well as things that satisfy ¬u(x), but each variable of ! is held fixed
to one of the sorts, either σ1 or σ2.
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Consider now the theory T2 that is just like T1 except that it replaces the axiom
∀x(u(x) → ¬q ′(x)) with the axiom ∀x(u(x) → q ′(x)). The theory T2 differs from
T1 precisely in that it adopts a different convention for how to extend the predicates
q ′(x) and ¬q ′(x) to the domain u(x). T1 says that q ′ should be restricted to ¬u(x), and
T2 says that ¬q ′ should be restricted to ¬u(x). Quine’s original proposal seems to say
that we should restrict all predicates of sort σ2 to ¬u(x), but that proposal is simply
incoherent.

Thus, the many-sorted theory T could be replaced with the single-sorted theory T1,
or it could be replaced with the single-sorted theory T2. In one sense, it shouldn’t make
any difference which of these two single-sorted theories we choose. (In fact, T1 and T2

are intertranslatable in the strict, single-sorted sense.) But in another sense, either choice
could block us from adding new truths to the theory T .

Suppose, for example, that we decided to hold on to T , instead of replacing it with T1

or T2. Suppose further that we come to discover that

ψ ≡ ∃xp(x) ∧ ¬∃y¬q (y).

But if we take the translation manual p 6→ p′ and q 6→ q ′, then T1 rules out ψ since
T1 ⊢ ∀x(p′(x) → ¬q ′(x)). In this case, then, it would have been disastrous to follow
Quine’s recommendation to replace T by T1, because we would have thereby stipulated
as false something that T allows to be true. One of the important lessons of this example
is that equivalent theories aren’t equally good in all ways. !

5.5 Symmetry

Philosophers of science, and especially philosophers of physics, are fascinated by the
topic of symmetry. And why so? For one, because contemporary physics is chock full
of symmetries and symmetry groups. Moreover, philosophers of physics have taken
it upon themselves to interpret the theories of physics – by which they mean, among
other things, to say what those theories really mean, and to lay bare their ontological
commitments. In the famous words of Bas van Fraassen, the goal of interpreting a theory
is to say how the world might be such that the theory is true.

Symmetry is now thought to play a special role in interpretation, in particular as a tool
to winnow the ontological wheat from the formal chaff (sometimes affectionately called
“descriptive fluff” or “surplus structure”). Here’s how the process is supposed to work:
we are given a theory T that says a bunch of things. Some of the things that T says,
we should take seriously. But some of the other things that T says – or seems, prima
facie, to say – should not be taken seriously. So what rule should we use to factorize
T into the pure descriptive part T0, and the superfluous part T1? At this point, we’re
supposed to look to the symmetries of T . In rough-and-ready formulation, T0 is the part
of T that is invariant under symmetries, and T1 is the part of T that is not invariant under
symmetries.
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Philosophers didn’t make this idea out of thin air; instead, they abstracted it from
well-known examples of theories in physics.

• If you describe space by a three-dimensional vector space V , then you must
associate the origin 0 ∈ V with a particular point in space. But all points in
space were created equal, so the representation via V says something misleading.
We can then wash out this superfluous structure by demanding that translation
x 6→ x + a be a symmetry, which amounts to replacing V with the affine space
A over V .

• In classical electrodynamics, we can describe the electromagnetic field via poten-
tials. However, the values of these potentials don’t matter; only the gradients
(rates of change) of the potentials matter. There is, in fact, a group G of sym-
metries that changes the values of the potentials but leaves their gradients (and,
hence, the Maxwell tensor Fab) invariant.

• In quantum field theory, there is an algebra F of field operators and a group G of
symmetries. Not all field operators are invariant under the group G. Those field
operators that are invariant under G are called observables, and it is a common
opinion that only the observables are “real.”

Based on these examples, and others like them, it’s tempting for philosophers to propose
methodological rules, such as: “if two things are related by a symmetry, then they are the
same,” or “a thing is real only if it is invariant under symmetries.” Such principles are
tendentious, but my goal here isn’t to attack them directly. Even before we can discuss
the merits of these principles, we need to be clearer about what symmetries are.

What is a symmetry of a theory? Sometimes we hear talk of permutations of models.
Other times we hear talk of permutations of spacetime points. And yet other times we
hear talk about transformations of coordinates. The goal of this section, stated bluntly,
is to clear away some of the major sources of confusion. These confusions come from
conflating things that ought to be kept distinct. The first thing to distinguish are theories
and individual models. Even if one is a firm believer in the semantic view of theories,
still a collection of models is a very different thing from an individual model; and a
symmetry of an individual model is a very different thing from a symmetry on the class
of models. The second thing to distinguish is, yet again, syntax and semantics. One can
look at symmetries from either point of view, but confusion can arise when we aren’t
clear about which point of view we’re taking.

In physics itself, one occasionally hears talk of symmetries of equations. Such talk is
especially prominent in discussions of spacetime theories, where one says things like,
“X transforms as a tensor.” Nonetheless, in recent years, philosophers of science have
tended to look at symmetries as transformations of models. Certainly, it is possible to
develop a rigorous mathematical theory of symmetries of models – as we shall discuss in
the following two chapters. However, transformations of models aren’t the only kind of
symmetries that can be defined in a mathematically rigorous fashion. In this section, we
discuss syntactic symmetries – i.e., symmetries of a theory considered as a syntactic
object.

Some examples of syntactic symmetries are quite obvious and trivial.
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Example 5.5.1 Let ! = {p,q} be a propositional logic signature, and let T be the empty
theory in !. It seems intuitively correct to say that T cannot distinguish between the
propositions p and q . And, indeed, we can cash this intuition out in terms of a “self-
translation” F : T → T . In particular, let F be the translation given by Fp = q and
Fq = p. It’s easy to see then that F is its own inverse. Thus, F is a “self-equivalence”
of the theory T . !

In the previous example, F is its own inverse, and it is an exact inverse – i.e., FFφ is
literally the formula φ. To formulate a general definition of a syntactic symmetry, both
of these conditions can be loosened. First, the inverse of F may be a different translation
G : T → T . Second, G need not be an inverse in the strict sense, but only an inverse
up to provable equivalence. Thus, we require only that there is a G : T → T such that
GF ≃1T and FG ≃1T – i.e., F : T → T is an equivalence of theories.

definition 5.5.2 Let F : T → T be a translation of a theory T to itself. We say that
F is a syntactic symmetry just in case F is an equivalence of theories.

discussion 5.5.3 The previous definition can make one’s head spin. Isn’t T trivially
equivalent to itself? What does it mean to say that F : T → T is an equivalence? Just
remember that whenever we say that two theories are equivalent, that is shorthand for
saying that there is at least one equivalence between them. There may be, and typically
will be, many different equivalences between them.

Example 5.5.4 Let’s slightly change the previous example. Suppose now that T ′ is the
theory in ! with the single axiom ⊢ p. Then intuitively, there should not be a symmetry
of T ′ that takes p to q and vice versa. And that intuition can indeed be validated,
although we leave the details to the reader. !

Example 5.5.5 Now for a predicate logic example. Let ! consist of a single binary
relation symbol r . As shorthand, let’s write φ(x,y) ≡ r(y,x), which is the “opposite”
relation rop of r . Let T be the empty theory in !. Now we define a translation F : T →
T by setting Fr = φ. To be more precise,

(Fr)(x,y) = φ(x,y) = r(y,x).

In effect, F flips the order of the variables in r . It is easy to see then that F : T → T is
a syntactic symmetry. !

Example 5.5.6 Let’s slightly change the previous example. Suppose now that T ′ is the
theory in ! with the single axiom

⊢ ∀x∃y r(x,y).
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Then there is no syntactic symmetry F : T ′ → T ′ such that Fr = rop. Indeed, if there
were such a symmetry F , then we would have

∀x∃y r(x,y) ⊢ ∀x∃y r(y,x),

which is intuitively not the case (and which can indeed be shown not to be the case).
Incidentally, this example shows yet again why it’s not always good to identify

things that are related by a symmetry. In the previous example, the relations r(x,y) and
rop(x,y) are related by a symmetry. A person with Ockhamist leanings may be sorely
tempted to say that there is redundancy in the description provided by T , and that a
better theory would treat r(x,y) and rop(x,y) as a single relation. However, treating
r(x,y) and rop(x,y) as the same relation would foreclose certain possibilities – e.g., the
possibility that ∀x∃y r(x,y) holds but ∀x∃y rop(x,y) does not. In summary, redundancy
in ideology isn’t directly analogous to redundancy in ontology, and we should think
twice before applying Ockham’s razor at the ideological level. (For discussion of an
analogous concrete case, see Belot [1998].) !

exercise 5.5.7 Suppose now that T is the theory in ! with the single axiom

r(x,y) ⊢ ¬r(y,x),

which says that r is asymmetric. This axiom can be rewritten as

r(x,y) ⊢ ¬rop(x,y).

Show that Fr = rop defines a symmetry of T .

exercise 5.5.8 Show that the theory of a partial order (Example 4.1.1) has a symme-
try that maps ≤ to the converse relation ≥.

Example 5.5.9 In the nineteenth century, mathematicians discovered a neat feature of
projective geometry: points and lines play a dual role in the theory. Thus, they realized,
every theorem in projective geometry automatically has a dual theorem, where the roles
of points and lines have been reversed. In terms of first-order logic, projective geometry
is most conveniently formulated within a many-sorted framework. We shall describe
it as such in Section 7.4. One can also present projective geometry as a single-sorted
theory T , with predicates for “is a point” and “is a line.” In this case, the duality of
projective geometry is a syntactic symmetry F of T that exchanges these two predicates.
The duality of theorems amounts to the fact that T ⊢ φ iff T ⊢ Fφ.

A similar duality holds for the first-order theory of categories (see 5.1.8). In that case,
the symmetry permutes the domain and codomain functions on arrows. One speaks
intuitively of “flipping the arrows.” However, that way of speaking can be misleading,
since it suggests an action on a model (i.e., on a category), and not an action on syntactic
objects. As we will soon see (Section 7.2), every syntactic symmetry of a theory does
induce a functor on the category of models of that theory. In the case of the theory of
categories, this dual functor takes each category C to its opposite category Cop. !
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We now consider a special type of syntactic symmetry – a type that we might want to
call inner symmetry or continuous symmetry. (The analogy here is an element of a
Lie group that is connected by a continuous path to the identity element.) Suppose that
F : T → T is a self-translation with the feature that F ≃1T . That last symbol means,
intuitively and loosely, that there is a formula χ(x,y) of ! that establishes a bijective
correspondence between the original domain of the quantifiers and the restricted domain
DF (y). This bijective correspondence also matches up the extension of φ with the
extension of Fφ, for each formula φ of !. (All these statements are relative to the
theory T .)

The reason we might want to call F an “inner symmetry” is because the theory T

itself can “see” that the formulas φ and Fφ are coextensive: T ⊢ φ ↔ Fφ. In the
general case of a syntactic symmetry, φ and Fφ need not be coextensive. (In the first
example, we have Fp = q , but T ̸⊢ p ↔ q .)

We claim that whenever this condition holds, i.e., when F ≃1T , then F is a syntactic
symmetry. Indeed, it’s easy to check that FF ≃1T , and hence F is an equivalence.

Example 5.5.10 Let ! be a signature with a single propositional constant p. Let T be
the empty theory in !. Define a reconstrual F of ! by setting Fp = ¬p. Since ! is
empty, F is a translation. Moreover, since FFp = ¬¬p and T ⊢ p ↔ ¬¬p, it follows
that F is its own quasi-inverse. Therefore, F is a syntactic symmetry. This result is not
at all surprising: from the point of view of the empty theory T , p and ¬p play the same
sort of role.

Indeed, recall from Chapter 3 that translations between propositional theories cor-
respond to homomorphisms between the corresponding Lindenbaum algebras. In this
case, F : T → T corresponds to an automorphism f : B → B. Moreover, B is
the four-element Boolean algebra, and f is the automorphism that flips the two middle
elements.

Although F is a syntactic symmetry, it is not the case that T ⊢ p ↔ Fp. Therefore,
F is not inner. Using the correspondence with Lindenbaum algebras, it’s easy to see
that T has no nontrivial inner symmetries. Or, to be more precise, if G is an inner
symmetry of T , then G ≃1T . For example, for G = FF , we have Gp = ¬¬p. Here G

is not strictly equal to the identity translation 1T . Rather, for each formula φ, we have
T ⊢ φ ↔ Gφ. !

Example 5.5.11 Let T be Mette the Mereologist’s theory, and let T ′ be Niels the
Nihilist’s theory. Recall from 5.4.16 that there is a pair of translations F : T → T ′ and
G : T ′ → T that forms an equivalence. Thus, GF ≃1T and GF is an inner symmetry
of Mette’s theory. Here GF is the mapping that (intuitively speaking) relativizes Mette’s
quantifier to the domain of atoms. !

Example 5.5.12 Let ! = {σ1,σ2}, and let T be the empty theory in !. Define a
reconstrual F : ! → ! by setting F (σ1) = σ2 and F (σ2) = σ1. Then F is a symmetry
of T . This symmetry F is the only nontrivial symmetry of T , and it is not deformable
to the identity 1T . (If F were deformable to 1T , then T would define an isomorphism
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between σ1 and σ2.) In contrast, the empty theory T ′ in signature !′ = {σ} has no
nontrivial symmetries. It follows that T and T ′ are not equivalent in the category Th.
Finally, let T ′′ be the theory in ! ∪ {f }, where f is a function symbol, and where T ′′

says that f : σ1 → σ2 is an isomorphism. Then F is still a symmetry of T ′′, and it is is
contractible to 1T ′′ . In fact, it is not difficult to see that T ′ and T ′′ are equivalent. This
equivalence will send the isomorphism f of T ′′ to the equality relation for T ′. !

The examples we have given were all drawn from first-order logic, and not even
from the more complicated parts thereof (e.g., it would be interesting to investigate
the syntactic symmetries of first-order axiomatizations of special relativity). The goal
has been merely to illustrate the fact that it would be a mistake to consider syntactic
symmetries as trivial symmetries; in fact, the syntactic symmetries of a theory tell us
a lot about the structure of that theory, and even about the relations between theories.
For example, if two theories are equivalent, then they have the same group of syntactic
symmetries.

We have also been keen to emphasize that having “redundant syntactic structure” – in
particular, having nontrivial syntactic symmetry – is by no means a defect of a theory.
Indeed, one of the reasons to allow syntactic redundancy in a theory is to leave open the
possibility of future developments of that theory.

5.6 Notes

• For more details on many-sorted logic, see Feferman (1974), Manzano (1993),
and Manzano (1996). The last of these also discusses a sense in which second-
order logic (with Henkin semantics) is reducible to many-sorted first-order logic.
For an application of many-sorted logic in recent metaphysics, see Turner (2010,
2012).

• The concept of Morita equivalence – if not the name – is already familiar in cer-
tain circles of logicians. See Andréka et al. (2008) and Mere and Veloso (1992).
The name “Morita equivalence” descends from Kiiti Morita’s work on rings with
equivalent categories of modules. Two rings R and S are said to be Morita equiv-
alent just in case there is an equivalence Mod(R) ∼= Mod(S) between their cate-
gories of modules. The notion was generalized from rings to algebraic theories by
Dukarm (1988). See also Adámek et al. (2006). There is also a notion of Morita
equivalence for C∗-algebras, see Rieffel (1974). More recently, topos theorists
have defined theories to be Morita equivalent just in case their classifying toposes
are equivalent (Johnstone, 2003). See Tsementzis (2017b) for a comparison of the
topos-theoretic notion of Morita equivalence with ours.

• Price (2009) discusses Quine’s criticism of Carnap’s Allwörter, coming to a sim-
ilar conclusion as ours – but approaching it from a less technical angle. We agree
with Price that in citing the technical result, Quine didn’t settle the philosophical
debate.
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• The notion of a generalized translation between first-order theories seems to have
been first described in van Benthem and Pearce (1984), who mention antecedent
work by Szczerba (1977) and Gaifman. Our treatment is essentially a generaliza-
tion of what can be found in Visser (2006); Friedman and Visser (2014); Rooduijn
(2015). Our notion of homotopy is inspired by similar notions in Ahlbrandt and
Ziegler (1986).

• The implementation of Morita equivalence to first-order logic comes from Barrett
and Halvorson (2016b). We claim no originality for the notion of defining new
sorts. For example, Burgess (1984) uses “extension by abstractions,” which is the
same thing as our quotient sorts. See also Mere and Veloso (1992); Andréka et al.
(2008).

• Quine’s argument for the dispensability of many-sorted logic is discussed by
Barrett and Halvorson (2017b).

• For recent considerations on quantifier variance, see Warren (2014); Dorr (2014);
Hirsch and Warren (2017).

• For more on symmetry, see Weatherall (2016b); Dewar (2017b); Barrett (2018b).



6 Semantic Metalogic

6.1 The Semantic Turn

Already in the nineteenth century, geometers were proving the relative consistency of
theories by interpreting them into well-understood mathematical frameworks – e.g.,
other geometrical theories or the theory of real numbers. At roughly the same time,
the theory of sets was under active development, and mathematicians were coming to
realize that the things they were talking about (numbers, functions, etc.) could be seen to
be constituted by sets. However, it was only in the middle of the twentieth century that
Alfred Tarski gave a precise definition of an interpretation of a theory in the universe
of sets.

Philosophers of science were not terribly quick to latch onto the new discipline
of logical semantics. Early adopters included the Dutch philosopher Evert Beth
and, to a lesser extent, Carnap himself. It required a generational change for the
semantic approach to take root in philosophy of science. Here we are using “semantic
approach” in the broadest sense – essentially for any approach to philosophy of science
that is reactionary against Carnap’s syntax program, but that wishes to use precise
mathematical tools (set theory, model theory, etc.) in order to explicate the structure of
scientific theories.

What’s most interesting for us is how the shift to the semantic approach influenced
shifts in philosophical perspective. Some of the cases are fairly clear. For example, with
the rejection of the syntactic approach, many philosophers stopped worrying about the
“problem of theoretical terms” – i.e., how scientific theories (with their abstract theoret-
ical terms) connect to empirical reality. According to Putnam, among others, if you step
outside the confines of Carnap’s Wissenschaftslogik program, there is no problem of
theoretical terms. (Interestingly, debates about the conventionality of geometry all but
stopped around the 1970s, just when the move to the semantic view was in full swing.)
Other philosophers diagnosed the situation differently. For example, van Fraassen saw
the semantic approach as providing the salvation of empiricism – which, he thought,
was incapable of an adequate articulation from a syntactic point of view.

In reading twentieth-century analytic philosophy, it can seem that logical seman-
tics by itself is supposed to obviate many of the problems that exercised the previous
generation of philosophers. For example, van Fraassen (1989, p. 222) says that “the
semantic view of theories makes language largely irrelevant to the subject [philosophy
of science].” Indeed, the picture typically presented to us is that logical semantics deals

164
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with mind-independent things (viz. set-theoretic structures), which can stand in mind-
independent relations to concrete reality, and to which we have unmediated epistemic
access. Such a picture suggests that logical semantics provides a bridge over which we
can safely cross the notorious mind–world gap.

But something is fishy with this picture. How could logical semantics get any closer
to “the world” than any other bit of mathematics? And why think that set-theoretic
structures play this privileged role as intermediaries in our relation to empirical reality?
For that matter, why should our philosophical views on science be tied down to some
rather controversial view of the nature of mathematical objects? Why the set-theoretic
middleman?

In what follows, we will attempt to put logical semantics back in its place. The
reconceptualization we’re suggesting begins with noting that logical semantics is a
particular version of a general mathematical strategy called “representation theory.”
There is a representation theory for groups, for rings, for C∗-algebras, etc., and the
basic idea of all these representation theories is to study one category C of mathematical
objects by studying the functors from C to some other mathematical category, say S. It
might seem strange that such an indirect approach could be helpful for understanding
C, and yet, it has proven to be very frutiful. For example, in the representation theory
of groups, one studies the representations of a group on Hilbert spaces. Similarly, in
the representation theory of rings, one studies the modules over a ring. In all such
cases, there is no suggestion that a represented mathematical object is less linguistic
than the original mathematical object. If anything, the represented mathematical object
has superfluous structure that is not intrinsic to the original mathematical object.

To fully understand that logical semantics is representation theory, one needs to see
theories as objects in a category, and to show that “interpretations” are functors from that
category into some other one. We carried out that procedure for propositional theories
in Chapter 3, where we represented each propositional theory as a Boolean algebra.
We could carry out a similar construction for predicate logic theories, but the resulting
mathematical objects would be something more complicated than Boolean algebras.
(Tarski himself suggested representing predicate logic theories as cylindrical algebras,
but a more elegant approach involves syntactic categories in the sense of Makkai and
Reyes [1977].) Thus, we will proceed in a different manner and directly define the
arrows (in this case, translations) between predicate logic theories. We begin, however,
with a little crash course in traditional model theory.

Example 6.1.1 Let T be the theory, in empty signature, that says, “there are exactly two
things.” A model of T is simply a set with two elements. However, every model of T

has “redundant information” that is not specified by T itself. To the question “how many
models does T have?” there are two correct answers: (1) more than any cardinal number
and (2) exactly one (up to isomorphism). !

Example 6.1.2 Let T1 be the theory of groups, as axiomatized in Example 4.5.3. Then a
model M of T1 is a set S with a binary function ·M : S ×S → S and a preferred element
eM ∈ S that satisfy the conditions laid out in the axioms. Once again, every such model
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M carries all the structure that T1 requires of it and then some more structure that T1

doesn’t care about. !

In order to precisely define the concept of a model of a theory, we must first begin
with the concept of a !-structure.

definition 6.1.3 A !-structure M is a mapping from ! to appropriate structures
in the category Sets. In particular, M fixes a particular set S, and then

• M maps each n-ary relation symbol p ∈ ! to a subset M(p) ⊆ Sn = S × · · ·×S.

• M maps each n-ary function symbol f ∈ ! to a function M(f ) : Sn → S.

A !-structure M extends naturally to all syntactic structures built out of !. In par-
ticular, for each !-term t , we define M(t) to be a function, and for each !-formula φ,
we define M(φ) to be a subset of Sn (where n is the number of free variables in φ). In
order to do so, we need to introduce several auxiliary constructions.

definition 6.1.4 Let " be a finite set of !-formulas. We say that x⃗ = x1, . . . ,xn is
a context for " just in case x⃗ is a duplicate-free sequence that contains all free variables
that appear in any of the formulas in ". We say that x⃗ is a minimal context for " just
in case every variable xi in x⃗ occurs free in some formula in ". Note: we also include,
as a context for sentences, the zero-length string of variables.

definition 6.1.5 Let x⃗ and y⃗ be duplicate-free sequences of variables. Then x⃗.y⃗
denotes the result of concatenating the sequences, then deleting repeated variables in
order from left to right. Equivalently, x⃗.y⃗ results from deleting from y⃗ all variables that
occur in x⃗, and then appending the resulting sequence to x⃗.

definition 6.1.6 For each term t , we define the canonical context x⃗ of t as follows.
First, for a variable x, the canonical context is x. Second, suppose that for each term ti ,
the canonical context x⃗i has been defined. Then the canonical context for f (t1, . . . ,tn)
is (· · · ((x⃗1.x⃗2) · · · ).x⃗n.

exercise 6.1.7 Suppose that x⃗ = x1, . . . ,xn is the canonical context for t . Show that
FV (t) = {x1, . . . ,xn}.

definition 6.1.8 For each formula φ, we define the canonical context x⃗ of φ as
follows. First, if x⃗i is the canonical context for ti , then the canonical context for t1 = t2 is
x⃗1.x⃗2, and the canonical context for p(t1, . . . ,tn) is (· · · ((x⃗1.x⃗2) · · · ).x⃗n. For the Boolean
connnectives, we also use the operation x⃗1.x⃗2 to combine contexts. Finally, if x⃗ is the
canonical context for φ, then the canonical context for ∀xφ is the result of deleting x

from x⃗, if it occurs.

exercise 6.1.9 Show that the canonical context for φ does, in fact, contain all and
only those variables that are free in φ.

If a !-structure M has a domain set S, then it assigns relation symbols to subsets of
the Cartesian products,

S,S × S,S3, . . .
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Of course, these sets are all connected to each other by projection maps, such as the
projection S × S → S onto the first coordinate. We will now develop some apparatus to
handle these projection maps. To this end, let [n] stand for the finite set {1, . . . ,n}.

lemma 6.1.10 For each injective function p : [m] → [n], there is a unique projection
πp : Sn → Sm defined by

πp⟨x1, . . . ,xn⟩ = ⟨xp(1), . . . ,xp(m)⟩.

Furthermore, if q: [ℓ] → [m] is also injective, then πp◦q = πq◦ πp.

Proof The first claim is obvious. For the second claim, it’s easier if we ignore the
variables x1, . . . ,xn and note that πp is defined by the coordinate projections:

πi ◦ πp = πp(i),

for i = 1, . . . ,m. Thus, in particular,

πi ◦ πq◦ πp = πq(i) ◦ πp = πp(q(i)) = πi ◦ πp◦q,

which proves the second claim.

definition 6.1.11 Let x⃗ = x1, . . . ,xm and y⃗ = y1, . . . ,yn be duplicate-free
sequences of variables. We say that x⃗ is a subcontext of y⃗ just in case each element
in x⃗ occurs in y⃗. In other words, for each i ∈ [m], there is a unique p(i) ∈ [n] such
that xi = yp(i). Since i +→ yi is injective, p : [m] → [n] is also injective. Thus,
p determines a unique projection πp : Sn → Sm. We say that πp is the linking
projection for contexts y⃗ and x⃗. If x⃗ and y⃗ are canonical contexts of formulas or terms,
then we say that πp is the linking projection for these formulas or terms.

We are now ready to complete the extension of the !-structure M to all !-terms.

definition 6.1.12 For each term t with n-free variables, we define M(t) : Sn → S.

1. Recall that a constant symbol c ∈ ! is really a special case of a function symbol,
viz. a 0-ary function symbol. Thus, M(c) should be a function from S0 to S. Also
recall that the 0-ary Cartesian product of any set is a one-point set {∗}. Thus,
M(c) : {∗} → S, which corresponds to a unique element cM ∈ S.

2. For each variable x, we let M(x) : S → S be the identity function. This might
seem like a strange choice, but its utility will soon be clear.

3. Let t ≡ f (t1, . . . ,tn), where M(ti) has already been defined. Let ni be the number
of free variables in ti . The context for ti is a subcontext of the context for t . Thus,
there is a linking projection πi : Sn → Sni . Whereas the M(ti) may have different
domains (if ni ̸= nj ), precomposition with the linking projections makes them
functions of a common domain Sn. Thus, we define

M[f (t1, . . . ,tn)] = M(f ) ◦ ⟨M(t1) ◦ π1, . . . ,M(tn) ◦ πn⟩,

which is a function from Sn to S.
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We illustrate the definition of M(t) with a couple of examples.

Example 6.1.13 Suppose that f is a binary function symbol, and consider the two terms
f (x,y) and f (y,x). The canonical context for f (x,y) is x,y, and the canonical context
for f (y,x) is y,x. Thus, the linking projection for f (x,y) and x is the projection π0 :
S × S → S onto the first coordinate; and the linking projection for f (y,x) and x is
π1 : S × S → S onto the second coordinate. Thus,

M(f (x,y)) = M(f ) ◦ ⟨π0,π1⟩ = M(f ).

A similar calculation shows that M(f (y,x)) = M(f ), which is as it should be: f (x,y)
and f (y,x) should correspond to the same function M(f ).

However, it does not follow that the formula f (x,y) = f (y,x) should be regarded
as a semantic tautology. Whenever we place both f (x,y) and f (y,x) into the same
context, this context serves as a reference point by which the order of inputs can be
distinguished. !

definition 6.1.14 For each formula φ of ! with n distinct free variables, we define
M(φ) to be a subset of Sn = S × · · · × S.

1. M(⊥ ) is the empty set ∅, considered as a subset of the one-element set 1.
2. Suppose that φ ≡ (t1 = t2), where t1 and t2 are terms. Let ni be the number of

free variables in ti . Since the context for ti is a subcontext of that for t1 = t2, there
is a linking projection πi : Sn → Sni . We define M(t1 = t2) to be the equalizer
of the functions M(t1) ◦ π1 and M(t2) ◦ π2.

3. Suppose that φ ≡ p(t1, . . . ,tm), where p is a relation symbol and t1, . . . ,tm are
terms. Let n be the number of distinct free variables in φ. Since the context of ti
is a subcontext of that of φ, there is a linking projection πi : Sn → Sni . Then
⟨π1, . . . ,πm⟩ is a function from Sn to Sn1 ×· · ·×Snm . We define M[p(t1, . . . ,tm)]
to be the pullback of M(p) ⊆ Sm along the function

⟨M(t1) ◦ π1, . . . ,M(tm) ◦ πm⟩.

4. Suppose that M has already been defined for φ. Then we define M(¬φ) =
Sn\M(φ).

5. Suppose that φ is a Boolean combination of φ1,φ2, and that M(φ1) and M(φ2)
have already been defined. Let πi be the linking projection for φi and φ, and let
π∗

i be the corresponding pullback (preimage) map that takes subsets to subsets.
Then we define

M(φ1 ∧ φ2) = π∗
1(M(φ1)) ∩ π∗

2(M(φ2)),

M(φ1 ∨ φ2) = π∗
1(M(φ1)) ∪ π∗

2(M(φ2)),

M(φ1 → φ2) = (Sn\π∗
1(M(φ1))) ∪ π∗

2(M(φ2)).

6. Suppose that M(φ) is already defined as a subset of Sn. Suppose first that x is
free in φ, and let π : Sn+1 → S be the linking projection for φ and ∃xφ. Then
we define M(∃xφ) to be the image of M(φ) under π, i.e.,

M(∃xφ) = {a⃗ ∈ Sn | π−1(a⃗) ∩ M(φ) ̸= ∅}.
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If x is not free in φ, then we define M(∃xφ) = M(φ).
Similarly, if x is free in φ, then we define

M(∀xφ) = {a⃗ ∈ Sn | π−1(a⃗) ⊆ M(φ)}.

If x is not free in φ, then we define M(∀xφ) = M(φ).

Example 6.1.15 Let’s unpack the definitions of M(x = y) and M(x = x). For the
former, the canonical context for x = y is x,y. Thus, the linking projection for x = y

and x is π0 : S × S → S onto the first coordinate, and the linking projection for x = y

and y is π1 : S×S → S onto the second coordinate. By definition, M(x) ≡ 1S ≡ M(y),
and M(x = y) is the equalizer of 1s ◦ π0 and 1S ◦ π1. This equalizer is clearly the
diagonal subset of S × S:

M(x = y) ≡ {⟨a,b⟩ ∈ S × S | a = b} ≡ {⟨a,a⟩ | a ∈ S}.

In contrast, the canonical context for x = x is x, and the linking projection for x = x

and x is simply the identity. Thus, M(x = x) is defined to be the equalizer of M(x) and
M(x), which is the entire set S. That is, M(x = x) ≡ S. !

exercise 6.1.16 Describe M(f (x,y) = f (y,x)), and explain why it won’t neccesar-
ily be the entire set S × S.

We are now going to define a relation φ "M ψ of semantic entailment in a structure
M; and we will use that notion to define the absolute relation φ " ψ of semantic
entailment. (In short: φ " ψ means that φ "M ψ in every structure M .) Here φ and ψ
are formulas (not necessarily sentences), so we need to take a bit of care with their free
variables. One thing we could do is to consider the sentence ∀x⃗(φ → ψ), where x⃗ is
any sequence that includes all variables free in φ or ψ. However, even in that case, we
would have to raise a question about whether the definition depends on the choice of the
sequence x⃗. Since we have to deal with that question in any case, we will instead look
more directly at the relation between the formulas φ and ψ, which might share some
free variables in common.

As a first proposal, we might try saying that φ "M ψ just in case M(φ) ⊆ M(ψ).
But the problem with this proposal is that M(φ) and M(ψ) are typically defined to be
subsets of different sets. For example: the definition of "M should imply that p(x) "M

(p(x) ∨ q(y)). However, for any !-structure M , M(p(x)) is a subset of S whereas
M(p(x) ∨ q(y)) is a subset of S × S. The way to fix this problem is to realize that
M(p(x)) can also be considered to be a subset of S × S. In particular, p(x) is equivalent
to p(x) ∧ (y = y), and intuitively M(p(x) ∧ (y = y)) should be the subset of S × S

of things satisfying p(x) and y = y. In other words, M(p(x) ∧ (y = y)) should be
M(p(x)) × S.

Here’s what we will do next. First we will extend the definition of M so that it assigns
a formula φ an extension Mx⃗(φ) relative to a context x⃗. Then we will define φ "M ψ
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to mean that Mx⃗(φ) ⊆ Mx⃗(ψ), where x⃗ is an arbitrarily chosen context for φ,ψ. Then
we will show that this definition does not depend on which context we chose.

In order to define My⃗(φ) where y⃗ is an arbitrary context for φ, we will first fix the
canonical context x⃗ for φ, and we will set Mx⃗(φ) = M(φ). Then for any other context
y⃗ of which x⃗ is a subcontext, we will use the linking projection πp to define My⃗(φ) as
a pullback of Mx⃗(φ).

definition 6.1.17 Let y⃗ = y1, . . . ,yn be a context for φ, let x⃗ = x1, . . . ,xm be
the canonical context for φ, and let p : [m] → [n] be the corresponding injection. We
define My⃗(φ) to be the pullback of M(φ) along πp. In particular, when y⃗ = x⃗, then
p : [n] → [n] is the identity, and Mx⃗(φ) = M(φ).

Now we are ready to define the relation φ "M ψ.

definition 6.1.18 For each pair of formulas φ,ψ, let x⃗ be the canonical context for
φ → ψ. We say that φ "M ψ just in case Mx⃗(φ) ⊆ Mx⃗(ψ).

We will now show that the definition of φ "M ψ is independent of the chosen context
x⃗ for φ,ψ. In particular, we show that for any two contexts x⃗ and y⃗ for φ,ψ, we have
Mx⃗(φ) ⊆ Mx⃗(ψ) if and only if My⃗(φ) ⊆ My⃗(ψ). As the details of this argument are a
bit tedious, the impatient reader may wish to skip to Definition 6.1.23.

We’ll first check the compatibility of the definitions My⃗(φ) and Mz⃗(φ), where y⃗ and
z⃗ are contexts for φ.

lemma 6.1.19 Suppose that x⃗ = x1, . . . ,xℓ is a subcontext of y⃗ = y1, . . . ,ym, and
that y⃗ is a subcontext of z⃗ = z1, . . . ,zn. Suppose that p : [ℓ] → [m], q : [m] → [n],
and r : [ℓ] → [n] are the corresponding injections. Then r = q◦ p.

Proof By definition of p, yp(i) = xi for i ∈ [ℓ]. By definition of r , zr(i) = xi for
i ∈ [ℓ]. Thus, yp(i) = zr(i). Furthermore, by definition of q, zq(p(i)) = yp(i). Therefore,
zq(p(i)) = zr(i), and q(p(i)) = r(i).

lemma 6.1.20 Suppose that x⃗ is a context for φ, and that x⃗ is a subcontext of y⃗. Let
πr : Sn → Sm be the projection connecting the contexts y⃗ and x⃗. Then My⃗(φ) is the
pullback of Mx⃗(φ) along πr .

Proof Let πp be the projection connecting x⃗ to the canonical context for φ, and let
πq be the projection connecting y⃗ to the canonical context for φ. Thus, Mx⃗(φ) =
π∗

p[M(φ)], where π∗
p denotes the operation of pulling back along πp. Similarly,

My⃗(φ) = π∗
q[M(φ)]. Furthermore, πq = πp ◦ πr , and since pullbacks commute, we

have

My⃗(φ) = π∗
q[M(φ)] = π∗

r [π∗
p[M(φ)]] = π∗

r [Mx⃗(φ)],

as was to be shown.

proposition 6.1.21 Suppose that x⃗ is a context for φ,ψ, and that x⃗ is a subcontext
of y⃗. If Mx⃗(φ) ⊆ Mx⃗(ψ) then My⃗(φ) ⊆ My⃗(ψ).
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Proof Suppose that Mx⃗(φ) ⊆ Mx⃗(ψ). Let πr : Sn → Sm be the projection connecting
the contexts y⃗ and x⃗. By the previous lemma, My⃗(φ) = π∗

r [Mx⃗(φ)] and My⃗(ψ) =
π∗

r [Mx⃗(ψ)]. Since pullbacks preserve set inclusion, My⃗(φ) ⊆ My⃗(ψ).

Since we defined φ "M ψ using a minimal context x⃗ for φ,ψ, we now have the
first half of our result: if φ "M ψ, then My⃗(φ) ⊆ My⃗(ψ) for any context y⃗ for
φ,ψ. To complete the result, we now show that redundant variables can be deleted
from contexts.

lemma 6.1.22 Let x⃗ be a context for φ, and suppose that y does not occur in x⃗. Then
Mx⃗.y(φ) = Mx⃗(φ) × S.

Proof Let x⃗ = x1, . . . ,xn, and let p : [n] → [n + 1] be the injection corresponding to
the inclusion of x⃗ in x⃗.y. In this case, p(i) = i for i = 1, . . . ,n, and πp : Sn+1 → Sn

projects out the last coordinate. By Lemma 6.1.20, Mx⃗.y(φ) is the pullback of Mx⃗(φ)
along πp. However, the pullback of any set A along πp is simply A × S.

Now suppose that Mx⃗.y(φ) ⊆ Mx⃗.y(ψ), where x⃗ is a context for φ,ψ, and y does
not occur in x⃗. Then the previous lemma shows that Mx⃗.y(φ) = Mx⃗(φ) × S and
Mx⃗.y(ψ) = Mx⃗(ψ) × S. Thus, Mx⃗.y(φ) ⊆ Mx⃗.y(ψ) if and only if Mx⃗(φ) ⊆ Mx⃗(ψ).
A quick inductive argument then shows that any number of appended empty variables
makes no difference.

We can now conclude the argument that Mx⃗(φ) ⊆ Mx⃗(ψ) if and only if My⃗(φ) ⊆
My⃗(ψ), where x⃗ is a subcontext of y⃗. The “if” direction was already shown in Prop.
6.1.21. For the “only if” direction, suppose that My⃗(φ) ⊆ My⃗(ψ). First use Prop. 6.1.21
again to move any variables not in x⃗ to the end of the sequence y⃗. (Recall that y⃗ is a
subcontext of any permutation of y⃗.) Then use the previous lemma to eliminate these
variables. The resulting sequence is a permutation of x⃗, hence a subcontext of x⃗. Finally,
use Prop. 6.1.21 one more time to show that Mx⃗(φ) ⊆ Mx⃗(ψ). Thus, we have shown
that the definition of φ "M ψ is independent of the context chosen for φ,ψ.

definition 6.1.23 We say that φ semantically entails ψ, written φ " ψ, just in case
φ "M ψ for every !-structure M . We write " ψ as shorthand for ⊤ " ψ.

note 6.1.24 The canonical context x⃗ for the pair {⊤,φ} is simply the context for φ.
By definition, Mx⃗(⊤) is the pullback of 1 along the unique map π : Sn → 1. Thus,
Mx⃗(⊤) = Sn, and ⊤ "M φ if and only if M(φ) = Sn.

We’re now ready for two of the most famous definitions in mathematical philosophy.

Truth in a Structure

A sentence φ has zero free variables. In this case, M(φ) is defined to be a subset
of S0 = 1, a one-element set. We say that φ is true in M if M(φ) = 1, and we
say that φ is false in M if M(φ) = ∅.
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Model

Let T be a theory in signature !, and let M be a !-structure. We say that M is a
model of T just in case: for any sentence φ of !, if T ⊢ φ, then M(φ) = 1.

6.2 The Semantic View of Theories

In Chapter 4, we talked about how Rudolf Carnap used syntactic metalogic to explicate
the notion of a scientific theory. By the 1960s, people were calling Carnap’s picture the
“syntactic view of theories,” and they were saying that something was fundamentally
wrong with it. According to Suppe (2000), the syntactic view of theories died in the
late 1960s (March 26, 1969, to be precise) after having met with an overwhelming
number of objections in the previous two decades. Upon the death of the syntactic view,
it was unclear where philosophy of science would go. Several notable philosophers –
such as Feyerabend and Hanson – wanted to push philosophy of science away from
formal analyses of theories. However, others such as Patrick Suppes, Bas van Fraassen,
and Fred Suppe saw formal resources for philosophy of science in other branches of
mathematics, most particularly set theory and model theory. Roughly speaking, the
“semantic view of theories” designates proposals to explicate theory-hood by means
of semantic metalogic.

We now have the technical resources in place to state a preliminary version of the
semantic view of theories:

(SV) A scientific theory is a class of !-structures for some signature !.

Now, proponents of the semantic view will balk at SV for a couple of reasons. First,
semanticists stress that a scientific theory has two components:

1. A theoretical definition and
2. A theoretical hypothesis.

The theoretical definition, roughly speaking, is intended to replace the first component
of Carnap’s view of theories. That is, the theoretical definition is intended to specify
some abstract mathematical object – the thing that will be used to do the representing.
Then the theoretical hypothesis is some claim to the effect that some part of the world
can be represented by the mathematical object given by the theoretical definition. So,
to be clear, SV here is only intended to give one-half of a theory, viz. the theoretical
definition. I am not speaking yet about the theoretical hypothesis.

But proponents of the semantic view will balk for a second reason: SV makes refer-
ence to a signature !. And one of the supposed benefits of the semantic view was to
free us from the language dependence implied by the syntactic view. So, how are we to
modify SV in order to maintain the insight that a scientific theory is independent of the
language in which it is formulated?
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I will give two suggestions, the first of which I think cannot possibly succeed. The
second suggestion works, but it shows that the semantic view actually has no advantage
over the syntactic view in being “free from language dependence.”

How then to modify SV? The first suggestion is to formulate a notion of mathematical
structure that makes no reference to language. At first glance, it seems simple enough to
do so. The paradigm case of a mathematical structure is supposed to be an ordered
n-tuple ⟨X,R1, . . . Rn⟩, where X is a set, and R1, . . . ,Rn are relations on X. (This
notion of mathematical structure follows in the footsteps of Bourbaki [1970], which,
incidentally, has been rendered obsolete by category theory.) Consider, for example, the
proposal made by Lisa Lloyd:

In our discussion, a model is not such an interpretation [i.e., not an !-structure], matching
statements to a set of objects which bear certain relations among themselves, but the set of
objects itself. That is, models should be understood as structures; in the cases we shall be
discussing, they are mathematical structures, i.e., a set of mathematical objects standing in
certain mathematically representable relations. (Lloyd, 1984, p. 30)

However, it’s difficult to make sense of this proposal. Consider the following example.

Example 6.2.1 Let a be an arbitrary set, and consider the following purported example
of a mathematical structure:

M =
〈
{a,b,⟨a,a⟩},{⟨a,a⟩}

〉
.

That is, the domain X consists of three elements a,b,⟨a,a⟩, and the indicated structure
is the singleton set containing ⟨a,a⟩. But how are we supposed to understand this
structure? Are we supposed to consider {⟨a,a⟩} to be a subset of X or as a subset of
X×X? The former is a structure for a signature ! with a single unary predicate symbol;
the latter is a structure for a signature !′ with a single binary relation symbol. In writing
down M as an ordered n-tuple, we haven’t yet fully specified an intended mathematical
structure.

We conclude then that a mathematical structure cannot simply be, “a set of mathe-
matical objects standing in certain mathematically representable relations.” To press the
point further, consider another purported example of a mathematical structure:

N =
〈
{a,b,⟨a,b⟩},{⟨a,b⟩}

〉
.

Are M and N isomorphic structures? Once again, the answer is underdetermined. If M

and N are supposed to be structures for a signature ! with a single unary predicate
symbol, then the answer is yes. If M and N are supposed to be structures for a signature
!′ with a single binary relation symbol, then the answer is no. !

Thus, it’s doubtful that there is any “language-free” account of mathematical struc-
tures, and hence no plausible language-free semantic view of theories. I propose then
that we embrace the fact that we are “suspended in language,” to borrow a phrase from
Niels Bohr. To deal with our language dependence, we need to consider notions of
equivalence of theory-formulations – so that the same theory can be formulated in
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different languages. And note that this stratagem is available for both semantic and
syntactic views of theories. Thus, “language independence” is not a genuine advantage
of the semantic view of theories as against the syntactic view of theories.

Philosophical Moral

It is of crucial importance that we do not think of a !-structure M as representing
the world. To say that the world is isomorphic to, or even partially isomorphic to,
or even similar to, M , would be to fall into a profound confusion.

A !-structure M is not a “set-theoretic structure” in any direct sense of that
phrase. Rather, M is a function whose domain is ! and whose range consists of
some sets, subsets, and functions between them. If one said that “M represents the
world,” then one would be saying that the world is represented by a mathematical
object of type ! → Sets. Notice, in particular, that M has “language” built into
its very definition.

6.3 Soundness, Completeness, Compactness

We now prove versions of four central metalogical results: soundness, completeness,
compactness, and Löwnheim–Skölem theorems. For these results, we will make a cou-
ple of simplifying assumptions, merely for the sake of mathematical elegance. We will
assume that ! is fixed signature that is countable and that has no function symbols. This
assumption will permit us to use the topological techniques introduced by Rasiowa and
Sikorski (1950).

Soundness

In its simplest form, the soundness theorem shows that for any sentence φ, if φ is
provable (⊤ ⊢ φ), then φ is true in all !-structures (⊤ " φ). Inspired by categorical
logic, we derive this version of soundness as a special case of a more general result
for !-formulas. We show that: for any !-formulas φ and ψ, and for any context x⃗ for
{φ,ψ}, if φ ⊢x⃗ ψ, then Mx⃗(φ) ⊆ Mx⃗(ψ).

The proof proceeds by induction on the construction of proofs – i.e., over the defi-
nition of the relation ⊢. Most cases are trivial verifications, and we leave them to the
reader. We will just consider the case of the existential elimination rule, which we
consider in the simple form:

φ ⊢x,y ψ
∃yφ ⊢x ψ

assuming that y is not free in ψ. We assume then that the result holds for the top line –
i.e., Mx,y(φ) ⊆ Mx,y(ψ). By definition, Mx(∃yφ) is the image of Mx,y(φ) under the
projection X × Y → X. And since y is not free in ψ, Mx,y(ψ) = Mx(ψ) × Y .
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To complete the argument, it will suffice to make the following general observation
about sets: if A ⊆ X × Y and B ⊆ X, then the following inference is valid:

A ⊆ π−1(B)
π(A) ⊆ B

.

Indeed, suppose that z ∈ π(A), which means that there is a y ∈ Y such that ⟨z,y⟩ ∈ A.
By the top line, ⟨z,y⟩ ∈ π−1(B), which means that z = π⟨z,y⟩ ∈ B. Now set
A = Mx,y(φ) and B = Mx(ψ), and it follows that existential elimination is sound.

We leave the remaining steps of this proof to the reader, and briefly comment on
the philosophical significance (or lack thereof) of the soundness theorem. (The discus-
sion here borrows from the ideas of Michaela McSweeney. See McSweeney [2016b].)
Philosophers often gloss this theorem as showing that the derivation rules are “safe” –
i.e., that they don’t permit derivations which are not valid, or even more strongly, that the
rules won’t permit us to derive a false conclusion from true premises. But now we have
a bit of a philosophical conundrum. What is this standard of validity against which we
are supposed to measure ⊢? Moreover, why think that this other standard of validity is
epistemologically prior to the standard of validity we have specified with the relation ⊢?

Philosophers often gloss the relation " in terms of “truth preservation.” They say
that φ " ψ means that whenever φ is true, then ψ is true. Such statements can be
highly misleading, if they cause the reader to think that " is the intuitive notion of truth
preservation. No, the relation " is yet another attempt to capture, in a mathemtically
precise fashion, our intuitive notion of logical consequence. We have two distinct ways
of representing this intuitive notion: the relation ⊢ and the relation ". The soundness
and completeness theorems happily show that we’ve captured the same notion with two
different definitions.

The important point here is that logical syntax and logical semantics are enterprises
of the same kind. The soundness and completeness theorems are not theorems about
how mathematics relates to the world, nor are they theorems about how a mathematical
notion relates to an intuitive notion. No, these theorems demonstrate a relationship
between mathematical things.

The soundness theorem has sometimes been presented as an “absolute consistency”
result – i.e., that the predicate calculus is consistent tout court. But such presentations are
misleading: The soundness theorem shows only that the predicate calculus is consistent
relative to the relation ", i.e., that the relation ⊢ doesn’t exceed the relation ". It doesn’t
prove that there is no sentence φ such that " φ and " ¬φ. We agree, then, with David
Hilbert: the only kind of formal consistency is relative consistency.

Completeness

In Chapter 3, we saw that the completeness theorem for propositional logic is equivalent
to the Boolean ultrafilter axiom (i.e., every nonzero element in a Boolean algebra is
contained in an ultrafilter). In many textbooks of logical metatheory, the completeness
theorem for predicate logic uses Zorn’s lemma, which is a variant of the axiom of
choice (AC). It is known, however, that the completeness theorem does not require the
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full strength of AC. The proof we give here uses the Baire category theorem, which is
derivable in ZF with the addition of the axiom of dependent choices, a slightly weaker
choice principle. (Exercise: can you see where in the proof we make use of a choice
principle?)

theorem 6.3.1 (Baire category theorem) Let X be a compact Hausdorff space, and
let U1,U2, . . . be a countable family of sets, all of which are open and dense in X. Then⋂∞

i=1 Ui is dense in X.

Proof Let U =
⋂∞

i=1 Ui , and let O be a nonempty open subset of X. We need only
show that O ∩ U is nonempty. To this end, we inductively define a family Oi of open
subsets of X as follows:

• O1 = O ∩ U1, which is open, and nonempty since U1 is dense;

• Assuming that On is open and nonempty, it has nonempty intersection with Un+1,
since the latter is dense. But any point x ∈ On ∩ Un+1 is contained in a neigh-
borhood On+1 such that On+1 ⊆ Un+1, and On+1 ⊆ On, using the regularity of
X.

It follows then that the collection {Oi : i ∈ N} satisfies the finite intersection property.
Since X is compact, there is a p in

⋂∞
i=1 Oi . Since Oi+1 ⊆ Oi , it also follows that

p ∈ Oi ⊆ Ui , for all i. Therefore, O ∩ U is nonempty.

Our proof of the completess theorem for predicate logic is similar in conception to
the proof for propositional logic. First we construct a Boolean algebra B of provably-
equivalent formulas. Using the definition of ⊢, it is not difficult to see that the equiva-
lence relation is compatible with the Boolean operations. Thus, we may define Boolean
operations as follows:

[φ] ∩ [ψ] = [φ ∧ ψ], [φ] ∪ [ψ] = [φ ∨ ψ], − [φ] = [¬φ].

If we let 0 = [⊥ ] and 1 = [⊤], then it’s easy to see that ⟨B,0,1, ∩ , ∪ ,−⟩ is a Boolean
algebra.

Now we want to show that if φ is not provably equivalent to a contradition, then there
is a !-structure M such that M(φ) is not empty. In the case of propositional logic, it
was enough to show that there is a homomorphism f : B → 2 such that f (φ) = 1.
But that won’t suffice for predicate logic, because once we have this homomorphism
f : B → 2, we need to use it to build a !-structure M , and to show that M(φ) is
not empty. As we will now see, to ensure that M(φ) is not empty, we must choose a
homomorphism f : B → 2 that is “smooth on existentials.”

definition 6.3.2 Let f : B → 2 be a homomorphism. We say that f is smooth on
existentials just in case for each formula ψ, if f (∃xψ) = 1, then f (ψ[xi/x]) = 1 for
some i ∈ N.

We will see now that these “smooth on existentials” homomorphisms are dense in the
Stone space X of B. In fact, the argument here is quite general. We first show that for
any particular convergent family ai → a in a Boolean algebra, the set of non-smooth
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homomorphisms is closed and has empty interior. By saying that ai → a is convergent,
we mean that ai ≤ a for all i, and for any b ∈ B, if ai ≤ b for all i, then a ≤ b. That is,
a is the least upper bound of the ai .

Let’s say that a homomorphism f : B → 2 is smooth relative to the convergent
family ai → a just in case f (ai) → f (a) in the Boolean algebra 2. Now let D be
the set of homomorphisms f : B → 2 such that f is not smooth on ai → a. Any
homomorphism f : B → 2 preserves order, and hence f (ai) ≤ f (a) for all i. Thus, if
f (ai) = 1 for any i, then f is smooth on ai → a. It follows that

D = Ea ∩
[
⋂

i∈I

E¬ai

]

.

As an intersecton of closed sets, D is closed. To see that D has empty interior, suppose
that f ∈ Eb ⊆ D, where Eb is a basic open subset of X. Then we have Eb ⊆ E¬ai ,
which implies that ai ≤ ¬b; and since ai ≤ a, we have ai ≤ a ∧ ¬b. Thus, a ∧ ¬b

is an upper bound for the family {ai}. Moreover, if a = a ∧ ¬b, then a ∧ b = 0 in
contradiction with the fact that f (a ∧ b) = 1. Therefore, a is not the upper bound of
{ai}, a contradiction. We conclude that D contains no basic open subsets, and hence it
has empty interior.

Now, this general result about smooth homomorphisms is of special importance for
the Boolean algebra of equivalence classes of formulas. For in this case, existential
formulas are the least upper bound of their instances.

lemma 6.3.3 Let φ be a !-formula, and let I be the set of indices such that xi does
not occur free in φ. Then in the Lindenbaum algebra, E(∃xφ) is the least upper bound
of {E(φ[xi/x]) | i ∈ I }.

Proof For simplicity, set E = E(∃xφ) and Ei = E(φ[xi/x]). The ∃-intro rule shows
that Ei ≤ E. Now suppose that Eψ ∈ B such that Ei ≤ Eψ for all i ∈ N. That is,
φ[xi/x] ⊢ ψ for all i ∈ I . Since φ and ψ have a finite number of free variables, there is
some i ∈ I such that xi does not occur free in ψ. By the ∃-elim rule, ∃xiφ[xi/x] ⊢ ψ.
Since xi does not occur free in φ, ∃xiφ[xi/x] is equivalent to ∃xφ. Thus, ∃xφ ⊢ ψ,
and E ≤ Eψ . Therefore, E is the least upper bound of {Ei | i ∈ I }.

Thus, for each existential !-formula φ, the clopen set Eφ is the union of the clopen
subsets corresponding to the instances of φ, plus the meager set Dφ of homomorphisms
that are not smooth relative to φ. Since the signature ! is countable, there are countably
many such existential formulas, and countably many of these sets Dφ of non-smooth
homomorphisms. Since each Dφ is meager, the Baire category theorem entails that
their union also is meager. Thus, the set U of homomorphisms that are smooth on all
existentials is open and dense in the Stone space X.

We are now ready to continue with the completeness theorem. Let φ be our arbitrary
formula that is not provably equivalent to a contradiction. We know that the set Eφ of
homomorphisms f : B → 2 such that f ([φ]) = 1 is open and nonempty. Hence, Eφ
has nonempty intersection with U . Let f ∈ Eφ ∩ U . That is, f ([φ]) = 1, and f is
smooth on all existentials. We now use f to define a !-structure M .



178 6 Semantic Metalogic

• Let the domain S of M be the set of natural numbers.

• For an n-ary relation symbol R ∈ !, let a⃗ ∈ M(R) if and only if f (R(xa1, . . . ,

xan )) = 1.

lemma 6.3.4 For any !-formula φ with canonical context xc1, . . . ,xcn , if f (φ) = 1,
then c⃗ ∈ M(φ).

Proof We prove this result by induction on the construction of φ. Note that an n-tuple
c⃗ of natural numbers corresponds to a unique function c : [n] → N. Supposing that
we are given a fixed enumeration x1,x2, . . . of the variables of !, each such function
c also corresponds to an n-tuple xc1, . . . ,xcn , possibly with duplicate variables. Since
each formula φ determines a canonical context (without duplicates), φ also determines
an injection a : [n] → N. For any other function c : [n] → N, we let φc denote the
result of replacing all free occurences of xai in φ with xci .

1. Suppose that φ ≡ R(xa1, . . . ,xam), and let xc1, . . . ,xcn be the canonical context of
φ. Thus, for each i = 1, . . . ,m, there is a p(i) such that xai = xcp(i) . Now, M(φ)
is defined to be the pullback of M(R) along πp. Since πiπp(c⃗) = cp(i) = ai and
a⃗ ∈ M(R), it follows that c⃗ ∈ M(φ).

2. Suppose that the result is true for φ and ψ, and suppose that f (φ ∧ ψ) = 1.
Let x⃗ = xc1, . . . ,xcn be the canonical context of φ ∧ ψ. The context of φ is a
subsequence of x⃗, i.e., it is of the form xcp(1), . . . ,xcp(m) where p : [m] → [n] is
an injection. If πp : Sn → Sm is the corresponding projection, then

πp(c⃗) = ⟨cp(1), . . . ,cp(m)⟩.

Similarly, if xcq(1), . . . ,xcq(ℓ) is the context of ψ, then

πq(c⃗) = ⟨cq(1), . . . ,cq(ℓ)⟩.

Since f (φ) = 1 = f (ψ), the inductive hypothesis entails that πp(c⃗) ∈ M(φ)
and πq(c⃗) ∈ M(ψ). By definition, M(φ ∧ ψ) = π∗

p(M(φ)) ∩ π∗
q(M(ψ)), hence

c⃗ ∈ M(φ ∧ ψ) iff πp(c⃗) ∈ M(φ) and πq(c⃗) ∈ M(ψ).
3. Suppose that φ ≡ ∃xkψ, and that the result is true for ψ, as well as for any ψ ′

that results from uniform replacement of free variables in ψ. Suppose first that xk

is free in ψ. For notational simplicity, we will assume that xk is the last variable
in the canonical context for ψ. Thus, if the context for φ is xc1, . . . ,xcn , then the
context for ψ is xc1, . . . ,xcn,xk . (In the case where φ is a sentence, i.e., n = 0,
the string c⃗ is empty.)

Now suppose that f (∃xkψ) = 1. Since f is smooth on existentials, there is
a j ∈ N such that xj is not free in ψ, and f (ψ[xj /xk]) = 1. The context
of ψ[xj /xk] is xc1, . . . ,xcn,xj , and the inductive hypothesis entails that c⃗,j ∈
M(ψ[xj /xk]). By the definition of M(∃xkψ), if c⃗,j ∈ M(ψ[xj /xk]), then c⃗ =
π(c⃗,j ) ∈ M(∃xkψ).

The remaining inductive steps are similar to the preceding steps, and are left to the
reader.
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This lemma concludes the proof of the completeness theorem, and immediately yields
two other important model-theoretic results.

theorem 6.3.5 (Downward Löwenheim–Skølem) Let ! be an countable signature,
and let φ be a !-sentence. If φ has a model, then φ also has a countable model.

Proof If φ has a model, then, by the soundness theorem, φ is not provably equivalent
to a contradiction. Thus, by the completeness theorem, φ has a model whose domain is
the natural numbers.

discussion 6.3.6 The downward Löwenheim–Skølem theorem does not hold for
arbitrary sets of sentences in uncountable signatures. Indeed, let ! = {cr | r ∈ R},
and let T be the theory with axioms cr ̸= cs when r ̸= s. Then T has a model (for
example, the real numbers R) but no countable model.

The Löwenheim–Skølem theorem has sometimes been thought to be paradoxical,
particularly in application to the case where T is the theory of sets. The theory of sets
implies a sentence φ whose intended interpretation is, “there is an uncountable set.” The
LS theorem implies that if T has any model, then it has a countable model M , and hence
that "M φ. In other words, there is a countable model M that makes true the sentence,
“there is an uncountable set.”

theorem 6.3.7 (Compactness) Suppose that T is a set of !-sentences. If each finite
subset of T has a model, then T has a model.

It would be nice to be able to understand the compactness theorem for predicate logic
directly in terms of the compactness of the Stone space of the Lindenbaum algebra.
However, this Stone space isn’t exactly the space of !-structures, and so its compactness
isn’t the same thing as compactness in the logical sense. We could indeed use each
point f ∈ X to define a !-structure M; but, in general, f (φ) = 1 wouldn’t entail that
M(φ) = 1. What’s more, there are additional !-structures that are not represented by
points in X, in particular, !-structures with uncountably infinite domains. Thus, we are
forced to turn to a less direct proof of the compactness theorem.

Proof We first modify the proof of the completeness theorem by constructing the
Boolean algebra BT of equivalence classes of formulas modulo T -provable equivalence.
This strengthened completeness theorem shows that if T " φ, then T ⊢ φ. However, if
T ⊢ φ, then T0 ⊢ φ for some finite subset T0 of T .

discussion 6.3.8 The compactness theorem yields all sorts of surprises. For example,
it shows that there is a model that satisfies all of the axioms of the natural numbers, but
which has a number greater than all natural numbers. Let ! consist of a signature for
arithmetic and one additional constant symbol c. We assume that ! has a name n for
each natural number. Now let

T = T h(N) ∪ {n < c | n ∈ N},

where T h(N) consists of all !-sentences true in N. It’s easy to see that each finite
subset of T of consistent. Therefore, by compactness, T has a model M . In the model
M , nM < cM for all n ∈ N.
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6.4 Categories of Models

There are many interesting categories of mathematical objects such as sets, groups,
topological spaces, smooth manifolds, rings, etc. Some of these categories are of special
interest for the empirical sciences, as the objects in thos categories are the “models” of a
scientific theory. For example, a model of Einstein’s general theory of relativity (GTR)
is a smooth manifold with Lorentzian metric. Hence, the mathematical part of GTR can
be considered to be some particular category of manifolds. (The choice of arrows for this
category of models raises interesting theoretical questions. See, e.g., Fewster [2015].)
Similarly, since a model of quantum theory is a complex vector space equipped with
some particular dynamical evolution, the mathematical part of quantum theory can be
considered to be some category of vector spaces.

Philosophers of science want to talk about real-life scientific theories – not imagi-
nary theories that can be axiomatized in first-order logic. Nonetheless, we can benefit
tremendously from considering tractable formal analogies, what scientists themselves
would call “toy models.” In this section, we pursue an analogy between models of a sci-
entific theory and models of a first-order theory T . In particular, we show that any first-
order theory T has a category Mod(T ) of models, and intertranslatable theories have
equivalent categories of models. Thus, we can think of the 2-category of all categories
of models of first-order theories as a formal analogy to the universe of all scientific
theories.

There are two natural definitions of arrows in the category Mod(T ), one more liberal
(homomorphism) and another more conservative (elementary embedding).

definition 6.4.1 Let ! be a fixed signature, and let M and N be !-structures. We
will use X and Y to denote their respective domain sets. A !-homomorphism h : M →
N consists of a function h : X → Y that satisfies the following:

1. For each relation symbol R ∈ !, there is a commutative diagram:

MR NR

Xn Ynhn

Here the arrows MR # Xn and NR # Yn are the subset inclusions, and
hn : Xn → Yn is the map defined by hn⟨a1, . . . ,an⟩ = ⟨h(a1), . . . ,h(an)⟩. The
fact that the diagram commutes says that for any ⟨a1, . . . ,an⟩ ∈ MR, we have
⟨h(a1), . . . ,h(an)⟩ ∈ NR.

2. For each function symbol f ∈ !, the following diagram commutes:

Xn Yn

X Y

hn

Mf Nf

h
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In other words, for each ⟨a1, . . . ,an⟩ ∈ Xn, we have h(M(f )⟨a1, . . . ,an⟩) =
N (f )⟨h(a1), . . . ,h(an)⟩. When c is a constant symbol, this condition implies that
h(cM ) = cN .

definition 6.4.2 Let M and N be !-structures, and let h : M → N be a homomor-
phism. We say that h is a !-elementary embedding just in case for each !-formula φ,
the following is a pullback diagram:

M(φ) N (φ)

Xn Ynhn

In other words, for all a⃗ ∈ Xn, a⃗ ∈ M(φ) iff h(a⃗) ∈ N (φ). In particular, for the case
where φ is a sentence, the following is a pullback:

M(φ) N (φ)

1 1

which means that M " φ iff N " φ.

exercise 6.4.3 Show that the composite of elementary embeddings is an elementary
embedding.

Note that the conditions for being an elementary embedding are quite strict. For
example, let φ be the sentence that says there are exactly n things. If h : M → N

is an elementary embedding, then M " φ iff N " φ. Thus, if the domain X of M has
cardinality n < ∞, then Y also has cardinality n < ∞. Suppose, for example, that T

is the theory of groups. Then for any two finite groups G,H , there is an elementary
embedding h : G → H only if |G| = |H |. Therefore, the notion of elementary
embedding is stricter than the notion of a group homomorphism.

Similarly, let ! be the empty signature. Let M be a !-structure with one element,
and let N be a !-structure with two elements. Then any mapping h : M → N is a
homomorphism, since ! is empty. However, "M x = y but ̸"N x = y. Therefore, there
is no elementary embedding h : M → N .

The strictness of elementary embeddings leads to a little dilemma in choosing arrows
in our definition of the category Mod(T ) of models of a theory T . Do we choose
homomorphisms between models, of which there are relatively many, or do we choose
elementary embeddings, of which there are relatively few? We have opted to play it safe.

definition 6.4.4 We henceforth use Mod(T ) to denote the category whose objects
are models of T , and whose arrows are elementary embeddings between models. As
with any category, we say that an arrow f : M → N in Mod(T ) is an isomorphism just
in case there is an arrow g : N → M such that g ◦ f = 1M and f ◦ g = 1N . In this
particular case, we say that f is a !-isomorphism.
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There is a clear sense in which elementary embeddings between models of T are
structure that is definable in terms of T . In short, elementary embeddings between mod-
els should be considered to be part of the semantic content of the theory T . Accordingly,
formally equivalent theories ought at least to have equivalent categories of models. We
elevate this idea to a definition.

definition 6.4.5 Let T and T ′ be theories, not necessarily in the same signature. We
say that T and T ′ are categorically equivalent just in case the categories Mod(T ) and
Mod(T ′) are equivalent.

Notice that if we had chosen all homomorphisms as arrows, then Mod(T ) would have
more structure, and it would be more difficult for the categories Mod(T ) and Mod(T ′)
to be equivalent. In fact, there are theories T and T ′ that most mathematicians would
consider to be equivalent, but which this criterion would judge to be inequivalent.

definition 6.4.6 If M is a !-structure, we let T h(M) denote the theory consisting
of all !-sentences φ such that M " φ.

definition 6.4.7 Let M and N be !-structures. We say that M and N are elemen-
tarily equivalent, written M ≡ N , just in case T h(M) = T h(N ).

exercise 6.4.8 Show that if h : M → N is an isomorphism, then M and N are
elementarily equivalent.

The converse to this exercise is not true. For example, let T be the empty theory in
the signature {=}. Then for each cardinal number κ, T has a model M with cardinality
κ; and if M and N are infinite models of T , then M and N are elementarily equivalent.
(The signature {=} has no formulas that can discriminate between two different infinite
models.) Thus, T has models that are elementarily equivalent but not isomorphic.

6.5 Ultraproducts

The so-called ultraproduct construction is often considered to be a technical device
for proving theorems. Here we will emphasize the structural features of ultraproducts,
rather than the details of the construction. Note, however, that ultraproducts are not
themselves limits or colimits in the sense of category theory. Thus, we cannot give a
simple formula relating an ultraproduct to the models from which it is constructed. In
one sense, ultraproducts are more like limits in the topological sense than they are in the
category-theoretic sense. Indeed, in the case of propositional theories, the ultraproduct
of models of a theory is the topological limit in the Stone space of the theory.

To see this, it helps to redescribe limits in a topological space X in terms of infinitary
operations X∞ → X. Recall that a point p ∈ X is said to be a limit point of a subset
A ⊆ X just in case every open neighborhood of p intersects A. When X is nice enough
(e.g., second countable), these limit points can be detected by sequences. That is, in such
cases, p is a limit point of A just in case there is a sequence a1,a2, . . . of elements in A
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such that limi ai = p. This last equation is simply shorthand for the statement: for each
neighborhood U of p, there is a n ∈ N such that ai ∈ U for all i ≥ n.

Suppose now, more specifically, that X is a compact Hausdorff space. Consider the
product

∏
i∈N X, which consists of infinite sequences of elements of X. We can alter-

nately think of elements of
∏

i∈N X as functions from N to X. Since N is discrete, every
such function f : N → X is continuous, i.e., f −1 maps open subsets of X to (open)
subsets of N. Of course, f −1 also preserves inclusions of subsets. Hence, for each filter
V of open subsets of X, f −1(V ) is a filter on N. For each point p ∈ X, let Vp be
the filter of open neighborhoods of p. Now, for each ultrafilter U on N, we define an
operation limU :

∏
i∈N X → X by the following condition:

lim
U

f = p ⇐⇒ f −1(Vp) ⊆ U .

To show that this definition makes sense, we need to check that there is a unique p

satisfying the condition on the right. For uniqueness, suppose that f −1(Vp) and f −1(Vq)
are both contained in U . If p ̸= q, then there are U ∈ Vp and V ∈ Vq such that U ∩ V

is empty. Then f −1(U ) ∩ f −1(V ) is empty, in contradiction with the fact that U is an
ultrafilter. For existence, suppose first that U is a principal ultrafilter – i.e., contains all
sets containing some n ∈ N. Let p = f (n). Then for each neighborhood V of p, f −1(V )
contains f (n), and hence is contained in U . Suppose now that U is non-principal, hence
contains the cofinite filter. Since X is Hausdorff, the sequence f (1),f (2), . . . has a limit
point p. Thus, for each V ∈ Vp, f −1(V ) is a cofinite subset of N, and hence is contained
in U . In either case, there is a p ∈ X such that f −1(Vp) ⊆ U .

Thus, the topological structure on a compact Hausdorff space X can be described in
terms of a family of operations limU :

∏
i Xi → X, where U runs through all the

ultrafilters on N. This result holds in particular when X = Mod(T ) is the Stone space
of models of a propositional theory. A limit model limU Mi is called an ultraproduct
of the models Mi . Thus, in the propositional case, an ultraproduct of models is simply
the limit relative to the Stone space topology.

We will now try to carry over this intuition to the case of general first-order theories,
modifying details when necessary. To begin with, if T is a first-order theory Mod(T )
is too large to have a topology – it is a class and not a set. What’s more, even if we
pretend that Mod(T ) is a set, the ultraproduct construction couldn’t be expected to yield
a topology, but something like a “pseudo-topology” or “weak topology,” where limits
are defined only up to isomorphism.

The details of the ultraproduct construction run as follows. Let I be an index set, and
suppose that for each i ∈ I , Mi is a !-structure. If U is an ultrafilter on I , then we
define a !-structure N := limU Mi as follows:

• First consider the set
∏

Mi of “sequences,” where each ai ∈ Mi . We say that
two such sequences are equivalent if they eventually agree in the sense of the
ultrafilter U . That is, (ai) ∼ (bi) just in case {i | ai = bi} is contained in U . We
let the domain of N be the quotient of

∏
Mi under this equivalence relation.

• For each relation symbol R of !, we let N (R) consist of sequences on n-tuples
that eventually lie in Mi(R) in the sense of the ultrafilter U . That is, (ai) ∈ N (R)
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just in case {i | ai ∈ Mi(R)} is contained in U . (Here one uses the fact that U is
a ultrafilter to prove that N (R) is well-defined as a subset of N .)

The resulting model limU Mi is said to be an ultraproduct of the models Mi . In the
special case where each Mi is the same M , we call limU Mi an ultrapower of M . In
this case, there is a natural elementary embedding h : M → limU Mi that maps each
a ∈ M to the constant sequence a,a, . . .

We now cite without proof a fundamental theorem for ultraproducts.

theorem 6.5.1 (Łos) Let {Mi | i ∈ I } be a family of !-structures, let U be an
ultrafilter on I , and let N = limU Mi . Then for each !-sentence φ, N " φ iff {i |
Mi " φ} ∈ U .

Intuitively speaking, limU Mi satisfies exactly those sentences that are eventually
validated by Mi as i runs through the ultrafilter U .

We saw before that elementarily equivalent models need not be isomorphic. Indeed,
for M and N to be elementarily equivalent, it’s sufficient that there is a third model L

and elementary embeddings h : M → L and j : N → L. The following result shows
that this condition is necessary as well.

proposition 6.5.2 Let M and N be !-structures. Then the following are equivalent.

1. M ≡ N , i.e., M and N are elementarily equivalent.
2. There is a !-structure L and elementary embeddings h : M → L and j : N → L.
3. M and N have isomorphic ultrapowers.

Sketch of proof (3 ⇒ 2) Suppose that j : limU1 M → limU2 N is an isomorphism,
and let L = limU2 N . Let h : M → limU1 M be the natural embedding, and similarly
for k : N → limU2 N . Then j ◦h : M → L and k : N → L are elementary embeddings.

(2 ⇒ 1) Since elementary embeddings preserve truth-values of sentences, this result
follows immediately.

(1 ⇒ 3) This is a difficult result, known as the Keisler–Shelah isomorphism theorem.
We omit the proof and refer the reader to Keisler (2010) for further discussion.

6.6 Relations between Theories

In the previous two chapters, we analyzed theories through a syntactic lens. Thus, to
explicate relations between theories – such as equivalence and reduction – we used a
syntactic notion, viz. translation. In this chapter, we’ve taken up the semantic analysis
of theories – i.e., thinking about theories in terms of their models. Accordingly, we
would like to investigate precise technical relations between categories of models that
correspond with our intuitive notions of the relations that can hold between theories. In
the best-case scenario, the technical notions we investigate will be useful in honing our
intuitions about specific, real-life cases.
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This investigation takes on special philosophical significance when we remember
that at a few crucial junctures, philosophers claimed a decisive advantage for semantic
analyses of relations between theories. Let’s recall just a couple of the most prominent
such maneuvers.

• van Fraassen (1980) claims that while the empirical content of a theory cannot be
isolated syntactically, it can be isolated semantically. Since the notion of empirical
content is essential for empiricism, van Fraassen thinks that empiricism requires
the semantic view of theories.

• Defenders of various dressed-up versions of physicalism claim that the mental–
physical relationship cannot be explicated syntactically, but can be explicated
semantically. For example, the non-reductive physicalists of the 1970s claimed
that the mental isn’t reducible (syntactically) to the physical, but it does supervene
(semanatically) on the physical. Similarly, Bickle (1998) claims that the failure
of mind–brain reduction can be blamed on the syntactic explication of reduction,
and that the problems can be solved by using a semantic explication of reduction.

These claims give philosophers a good reason to investigate the resources of logical
semantics.

Let’s begin by setting aside some rather flat-footed attempts to use semantics to
explicate relations between theories. In particular, there seems to be a common mis-
conception that the models of a theory are language-free, and can provide the standard
by which to decide questions of theoretical equivalence. The (mistaken) picture here is
that two theories, T and T ′, in different languages, are equivalent just in case Mod(T ) =
Mod(T ′). We can illustrate this idea with a picture:

Mod(T ) = Mod(T ′)

T T ′

The picture here is that the theory formulations T and T ′ are language-bound, but the
class Mod(T ) = Mod(T ′) of models is a sort of thing-in-itself that these different
formulations intend to pick out.

If you remember that models are mappings from signatures, then you realize that there
is something wrong with this picture. Yes, there are categories Mod(T ) and Mod(T ′), but
these categories are no more language-independent than the syntactic objects T and T ′.
In particular, if ! and !′ are different signatures, then there is no standard by which one
can compare Mod(T ) with Mod(T ′). A model of T is a function from ! to Sets, and
a model of T ′ is a function from !′ to Sets. Functions with different domains cannot
be equal; but it would also be misleading to say that they are unequal. In the world of
sets, judgments of equality and inequality only make sense for things that live in the
same set.

In a similar fashion, we can’t make any progress in analyzing the relations between
T and T ′ by setting their models side by side. One occasionally hears philosophers of
science say things like
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(I) There is a model of T that is not isomorphic to any model of T ′; hence, T and T ′ are not
equivalent.

(E) If T is a subtheory of T ′, then each model of T can be embedded in a model of T ′.

However, if T and T ′ are theories in different signatures, then neither I nor E makes
sense. The notions of isomorphism and elementary embedding are signature-relative: a
function h : M → N is an elementary embedding just in case h(M(φ)) = N (φ) for
each !-formula φ. If T and T ′ are written in different signatures, then there is simply
no way to compare a model M of T directly with a model N of T ′. (And this lesson goes
not only for theories in first-order logic, but for any mathematically formalized scientific
theory – such as quantum mechanics, general relativity, Hamiltonian mechanics, etc.)

With these flat-footed analyses set aside, we can now raise some serious questions
about the relations between Mod(T ) and Mod(T ′). For example, what mathematical
relation between Mod(T ) and Mod(T ′) would be a good explication of the idea that T

is equivalent to T ′? Is it enough that Mod(T ) and Mod(T ′) are equivalent categories,
or should we require something more? Similarly, what mathematical relation between
Mod(T ) and Mod(T ′) would be a good explication of the idea that T is reducible to T ′?
Finally, to return to the issue of empiricism, can the empirical content of a theory T be
identified with some structure inside the category Mod(T )?

We will approach these questions from two directions. Our first approach will involve
attempting to transfer notions from the syntactic side to the semantic side, as in the
following picture:

T Mod(T )

T ′ Mod(T ′)

You will have noticed that we already followed this approach in Chapter 3, with respect
to propositional theories. The goal is to take a syntactic relation between theories (such
as “being reducible to”) and to translate it over to a semantic relation between the models
of those theories.

Of course, this first approach won’t be at all satisfying to those who would be free
from the “shackles of language.” Thus, our second angle of attack is to ask directly
about relations between Mod(T ) and Mod(T ′). Where do Mod(T ) and Mod(T ′) live
in the mathematical universe, and what are the mathematical relationships between
them? Again, it will be no surprise to you that we think Mod(T ) should, at the very
least, be considered to be a category, whose mathematical structure includes not only
models, but also arrows between them. Moreover, once we equip Mod(T ) with sufficient
structure, we will see that these two approaches converge – i.e., that the most interesting
relations between Mod(T ) and Mod(T ′) are those that correspond to some syntactic
relation between T and T ′. It is in this sense that logical semantics is dual to logical
syntax.
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We begin then with the first approach and, in particular, with showing that each
translation F : T → T ′ gives rise to a functor F ∗ : Mod(T ′) → Mod(T ). We will
also provide a partial translation manual between properties of the translation F and
properties of the functor F ∗. To the extent that such a translation manual exists, each
syntactic relation between T and T ′ corresponds to a unique semantic relation between
Mod(T ) and Mod(T ′), and vice versa.

definition 6.6.1 Suppose that F : T → T ′ is a translation, and let M be a model
of T ′. We define a !-structure F ∗M as follows:

• Let F ∗M have the same domain as M .

• For each relation symbol r of !, let

(F ∗M)(r) = M(Fr).

• For each function symbol f of !, let (F ∗M)(f ) be the function with graph
M(Ff ).

We will now show that (F ∗M)(φ) = M(Fφ) for each !-formula φ. However, we
first need an auxiliary lemma. For this, recall that if f : X → Y is a function, then its
graph is the subset {⟨x,f (x)⟩ | x ∈ X} of X × Y .

lemma 6.6.2 For each !-term t , M(F t) is the graph of the function (F ∗M)(t).

Proof We prove this by induction on the construction of t . Recall that if t is a term
with n free variables, then F t is a formula with n + 1 free variables, and M(F t) is a
subset of Sn+1.

• Suppose that t ≡ x. Then F t ≡ (x = y) for some variable y ̸≡ x. In this case,
M(F t) is the diagonal of S × S, which is the graph of 1S = (F ∗M)(x).

• Now suppose that the result is true for t1, . . . ,tm, and let t ≡ f (t1, . . . ,tm).
Recall that F t is defined as the composite of the relation Ff with the relations
F t1, . . . ,F tm. Since M preserves the relevant logical structures, M(F t) is the
composite of the relation M(Ff ) with the relations M(F t1), . . . ,M(F tm). More-
over, (F ∗M)(t) is defined to be the composite of the function (F ∗M)(f ) with the
functions (F ∗M)(t1), . . . ,(F ∗M)(tm). In general, the graph of a composite func-
tion is the composite of the graphs. Therefore, M(F t) is the graph of (F ∗M)(t).

proposition 6.6.3 For each !-formula φ, (F ∗M)(φ) = M(Fφ).

Proof We prove this by induction on the construction of φ.

• Suppose that φ ≡ (t1 = t2). Then Fφ is the formula ∃y(F t1(x⃗,y) ∧ F t2(x⃗,y)).
Here, for simplicity, we write x⃗ for the canonical context of Fφ. Thus, M(Fφ)
consists of elements a⃗ ∈ Sn such that ⟨a⃗,b⟩ ∈ M(F t1) and ⟨a⃗,b⟩ ∈ M(F t2)
for some b ∈ S. By the previous lemma, M(F ti) is the graph of (M∗F )(ti).
Thus, M(Fφ) is the equalizer of (M∗F )(t1) and (M∗F )(t2). That is, M(Fφ) =
(M∗F )(φ).
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• Suppose that φ ≡ p(t1, . . . ,tm). Then Fφ is the formula

∃z1 · · · ∃zm(Fp(y1, . . . ,ym) ∧ F t1(x⃗,y1) ∧ · · · ∧ F tm(x⃗,ym)).

Hence M(Fφ) consists of those a⃗ ∈ Sn such that there are b1, . . . ,bm ∈ S with
⟨a⃗,bi⟩ ∈ M(F ti) and b⃗ ∈ M(Fp). By the previous lemma, M(F ti) is the graph
of (F ∗M)(ti). Hence, M(Fφ) consists of those a⃗ ∈ Sn such that

⟨(F ∗M)(t1), . . . ,(F ∗M)(tm)⟩(a⃗) ∈ M(Fp) = (F ∗M)(p).

In other words, M(Fφ) = (F ∗M)(φ). (Here we have ignored the fact that the
terms t1, . . . ,tm might have different free variables. In that case, we need simply
to prefix the (F ∗M)(ti) with the appropriate projections to represent them on the
same domain Sn.)

• Suppose that φ ≡ (φ1 ∧ φ2), and the result is true for φ1 and φ2. Now, F (φ1 ∧
φ2) = Fφ1 ∧ Fφ2. Hence M(F (φ1 ∧ φ2)) is the pullback of M(Fφ1) and
M(Fφ2) along the relevant projections (determined by the contexts of φ1 and
φ2). Since F preserves contexts of formulas, and M(Fφi) = (F ∗M)(φi), it
follows that M(F (φ1 ∧ φ2)) = (F ∗M)(φ1 ∧ φ2).

• We now deal with the existential quantifier. For simplicity, suppose that φ has
free variables x and y. We suppose that the result is true for φ; that is,

(F ∗M)(φ) = M(F (φ)),

and we show that

(F ∗M)(∃xφ) = M(F (∃xφ)).

By definition, (F ∗M)(∃xφ) is the image of (F ∗M)(φ) under the projection π :
X × Y → Y . Moreover, F (∃xφ) = ∃xF (φ), which means that M(F (∃xφ)) is
the image of M(F (φ)) under the projection π.

proposition 6.6.4 Suppose that F : T → T ′ is a translation. If M is a model of T ′

then F ∗M is a model of T .

Proof Suppose that T ⊢ φ. Since F is a translation, T ′ ⊢ Fφ. Since M is a model
of T ′, M(Fφ) = Sn. Therefore, (F ∗M)(φ) = Sn. Since φ was an arbitrary !-formula,
we conclude that F ∗M is a model of T .

definition 6.6.5 Let F : T → T ′ be a translation. We now extend the action of F ∗

from models of T ′ to elementary embeddings between these models. Let M and N be
models of T ′ with corresponding domains X and Y . Let h : M → N be an elementary
embedding. Since F ∗M has the same domain as M , and similarly for F ∗N and N ,
this h is a candidate for being an elementary embedding of F ∗M into F ∗N . We need
only check that the condition of Defn. 6.4.2 holds – i.e., that for each !-formula φ, the
following diagram is a pullback:
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(F ∗M)(φ) (F ∗N )(φ)

Xn Ynhn

But (F ∗M)(φ) = M(Fφ) and (F ∗N )(φ) = N (Fφ). Since h : M → N is elementary,
the corresponding diagram is a pullback. Therefore, h : F ∗M → F ∗N is elementary.

Now, the underlying function of F ∗h : F ∗M → F ∗N is the same as the underlying
function of h : M → N . Thus, F ∗ preserves composition of functions, as well as
identity functions; and F ∗ : Mod(T ′) → Mod(T ) is a functor.

We have shown that each translation F : T → T ′ corresponds to a functor F ∗ :
Mod(T ′) → Mod(T ). Now we would like to compare properties of F with properties
of F ∗. The fundamental result here is that if F is a homotopy equivalence, then F ∗ is
an equivalence of categories.

proposition 6.6.6 If T and T ′ are intertranslatable, then Mod(T ) and Mod(T ′) are
equivalent categories. In particular, if F : T → T ′ and G : T ′ → T form a homotopy
equivalence, then F ∗ and G∗ are inverse functors.

Sketch of proof In the following chapter, we prove a stronger result: if T and T ′ are
Morita equivalent, then Mod(T ) and Mod(T ′) are equivalent categories. In order to
avoid duplicating work, we will just sketch the proof here. One shows that (FG)∗ =
G∗F ∗, and that for any two translations F and G, if F ≃ G, then F ∗ = G∗. Since
GF ≃ 1T , it follows that

F ∗G∗ = (GF )∗ = 1∗
T = 1Mod(T ).

Similarly, G∗F ∗ = 1Mod(T ′), and therefore Mod(T ) and Mod(T ′) are equivalent cate-
gories.

corollary 6.6.7 If T and T ′ are intertranslatable, then T and T ′ are categorically
equivalent.

One upshot of this result is that categorical properties of Mod(T ) are invariants of
intertranslatability. For example, if Mod(T ) has all finite products and Mod(T ′) does
not, then T and T ′ are not intertranslatable. We should think a bit, then, about which
features of a category are invariant under categorical equivalence.

Recall that the identity of a category C has nothing to do with the identity of its
objects. All that matters is the relations that these objects have to each other. Thus, if
we look at Mod(T ) qua category, then we are forgetting that its objects are models.
Instead, we are focusing exclusively on the arrows (elementary embeddings) that relate
these models, including the symmetries (automorphisms) of models. Here are some of
the properties that can be expressed in the language of category theory:

1. C has products.
2. C has coproducts.
3. C has all small limits.
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The list could go on, but the real challenge is to say which of the properties of the
category Mod(T ) corresponds to an interesting feature of the theory T . For example,
might it be relevant that Mod(T ) has products – i.e., that for any two models M,N

of T , there is a model M × N , with the relevant projections, etc.? Keep in mind that
these mathematical statements don’t have an obvious interpretation in terms of what
the theory T might be saying about the world. For example, to say that Mod(T ) has
products doesn’t tell us that there is an operation that takes two possible worlds and
returns another possible world.

Recall, in addition, that category theorists ignore properties that are not invariant
under categorical equivalence. For example, the property “C has exactly two objects,”
is not invariant under all categorical equivalences. Although the notion of a “categorical
property” is somewhat vague, the practicing category theorist knows it when he sees
it – and fortunately, work is in progress in explicating this notion more precisely (see
Makkai, 1995; Tsementzis, 2017a).

To be clear, we don’t mean to say that Mod(T ) should be seen merely as a category. If
we did that, then we would lose sight of some of the most interesting information about
a theory. Consider, in particular, the following fact:

proposition 6.6.8 If T is a propositional theory, then Mod(T ) is a discrete
category – i.e., the only arrows in Mod(T ) are identity arrows.

This result implies that for any two propositional theories T and T ′, if they have
the same number of models, then they are categorically equivalent. But don’t let this
make you think that the space Mod(T ) of models of a propositional theory T has no
interesting structure. We saw in Chapter 3 that it has interesting topological structure,
which represents a notion of “closeness” of models.

At the time of writing, there is no canonical account of the structure that is possessed
by Mod(T ) for a general first-order theory T . However, there has been much interesting
mathematical research in this direction. The first main proposal, due to Makkai (1985),
defines the “ultraproduct structure” on Mod(T ) – i.e., which models are ultraproducts
of which others. Interestingly, as we saw in the previous section, the ultraproduct
construction looks like a topological limiting construction – and the coincidence is exact
for the case of propositional theories. The second proposal for identifying the structure
of Mod(T ) is due originally to Butz and Moerdijk (1998), and has been recently devel-
oped by Awodey and Forssell (2013). According to this second proposal, Mod(T )
is a topological groupoid, i.e., a groupoid in the category of topological spaces. Thus,
according to both proposals, Mod(T ) is like a category with a topology on it, where
neither bit of structure – categorical or topological – is dispensable.

In the case of predicate logic theories, the categorical structure of Mod(T ) does
occasionally tell us something about T . We first show that the completeness or incom-
pleteness of a theory can be detected by its category of models. Recall that a theory T

in signature ! is said to be complete just in case for each !-sentence φ, either T ⊢ φ
or T ⊢ ¬φ. Obviously every inconsistent theory is incomplete. So when we talk about
a complete theory T , we usually mean a complete, consistent theory. In this case, the
following conditions are equivalent:



6.6 Relations between Theories 191

1. T is complete.
2. Cn(T ) = Th(M) for some !-structure M .
3. T has a unique model, up to elementary equivalence – i.e., if M,N are models of

T , then M ≡ N .
4. Mod(T ) is directed in the sense that for any two models M1,M2 of T , there is a

model N of T and elementary embeddings hi : Mi → N .

exercise 6.6.9 Prove that the four conditions are equivalent. Hint: use Prop. 6.5.2.

The last property is a categorical property: if C and D are categorically equivalent,
then C is directed iff D is directed. Therefore, completeness of theories is an invariant
of categorical equivalence.

Now, it is well known that complete theories can nonetheless have many non-
isomorphic models. It has occasionally been thought that an ideal theory T would
be categorical in the sense that every two models of T are isomorphic. (The word
“categorical” here has nothing to do with category theory.) However, the Löwenheim–
Skølem theorem destroys any hope of finding a nontrivial categorical theory: if T has an
infinite model, then it has models of other infinite cardinalities, and these models cannot
be isomorphic. For the purposes, then, of classifying more of less “nice” theories,
logicians found it useful to weaken categoricity in the following way:

definition 6.6.10 Let κ be a cardinal number, and let T be a theory in signature
!. We say that T is κ-categorical just in case any two models M and N of T , if
|M| = |N | = κ, then there is an isomorphism h : M → N .

Example 6.6.11 Let T be the empty theory in signature {=}. A model of T is simply a
set, and two models of T are isomorphic if they have the same cardinality. Therefore, T

is κ-categorical for each cardinal number κ. !

Example 6.6.12 Let ! = {<}, where < is a binary relation symbol. Let T be the theory
in ! that says that < is a discrete linear order without endpoints. Then T is not ℵ0-
categorical. For example, the set N of natural numbers (with its standard ordering) is a
model of T , but so is the disjoint union N ⨿ N, where every element of the second copy
is greater than every element of the first. !

Thus, if T is categorical for all cardinal numbers, then Mod(T ) has a relatively simple
structure as a category: it is like a tower, with a unique (up to isomorphism) model
Mκ for each cardinal number κ. (A generalization of the Löwenheim–Skølem theorem
shows that for each infinite model M of T , there is a model N of T of higher cardinality
and an elementary embedding h : M → N .) Nonetheless, it is well known that there
are many inequivalent categorical theories, and these theories are differentiated by the
topological groups of symmetries of their models.

We now set aside the discussion of equivalence to look at other types of relations
between theories. Recall that a translation F : T → T ′ is said to be essentially surjec-
tive just in case for each !-sentence ψ there is a !-sentence φ such that T ′ ⊢ ψ ↔ Fφ.
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A paradigmatic case of an essentially surjective translation is the translation from a
theory T to a theory T ′ with some new axioms in the same signature. Recall also that a
functor F ∗ : C → D is said to be full just in case for any objects M,N of C, and for
any arrow f : F ∗M → F ∗N , there is an arrow g : M → N such that F ∗g = f . In the
special case of groups (i.e., categories with only one object, and only isomorphisms), a
functor is full iff it is a surjective homomorphism.

proposition 6.6.13 If F : T → T ′ is essentially surjective then F ∗ : Mod(T ′) →
Mod(T ) is full.

Proof Let h : F ∗M → F ∗N be a !-elementary embedding. We need to show that
h = F ∗j where j : M → N is a !′-elementary embedding. Finding the function j is
easy, since h is already a function from the domain of M to the domain of N . Thus, we
need only show that h is !′-elementary – i.e., that for any !′-formula ψ, the following
is a pullback:

M(ψ) N (ψ)

Xn Ynhn

Since F is eso, there is a !-formula φ such that T ′ ⊢ ψ ↔ Fφ. Since M and N are
models of T ′, M(ψ) = M(Fφ) = F ∗M(φ) and N (ψ) = N (Fφ) = (F ∗N )(φ). Since
h is !-elementary, the diagram is a pullback. Therefore, j : M → N is !′-elementary,
and F ∗ is full.

The preceding result can be quite useful in showing that there is no essentially sur-
jective translation from T to T ′.

Example 6.6.14 Let T be the theory in signature {=} that says there are exactly two
things. Let T ′ be the theory in signature {= ,c} that says there are exactly two things.
These two theories consist of exactly the same sentences; and yet, we will now see that
they are not intertranslatable.

The theory T is categorical: i.e., it has a unique model M = {∗,⋆} up to isomorphism,
and Aut(M) = Z2 is the permutation group on two elements. Thus, Mod(T ) is equiv-
alent to the group Z2. The theory T ′ is also categorical; however, its models are rigid,
i.e., have no nontrivial automorphisms. Hence, Mod(T ′) is equivalent to the group (e).
Clearly there is no full functor G : Mod(T ′) → Mod(T ), and, therefore, Prop. 6.6.13
entails that there is no essentially surjective translation F : T → T ′.

It would hardly to make sense to think of either T or T ′ as an actual scientific
theory. However, in the spirit of constructing toy models, we could raise a fanciful
question: if Jack accepted T and Jill accepted T ′, then what would be the locus of
their disagreement? They both assert precisely the same sentence: there are exactly two
things. We cannot say that they disagree about whether there are constant symbols,
because symbols aren’t things “in the world,” but are devices used to speak about things
in the world. So perhaps Jack and Jill disagree about whether the two things in the world
are interchangeable? !
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The next pair of results derive properties of F from properties of F ∗. We first recall
the syntactic notion of a conservative extension.

definition 6.6.15 A translation F : T → T ′ is said to be conservative just in case
T ′ ⊢ Fφ only if T ⊢ φ, for each !-formula φ.

Thus, a conservative translation F : T → T ′ is one that does not create new conse-
quences for T . Paradigm examples of this kind of translation can be generated by the
inclusion I : ! → !′ where ! ⊆ !′. Adding this new vocabulary to ! does not
generate new consequences for a theory T in !.

Now let’s consider how the notion of a conservative extension might be formulated
semantically. Recall that a functor F ∗ : Mod(T ′) → Mod(T ) is said to be essentially
surjective just in case for each model M of T , there is a model N of T ′ and an
isomorphism h : M → F ∗N . In the case of an inclusion I : ! → !′, the functor
I ∗ is essentially surjective iff each model of T can be expanded to a model of T ′.

It’s fairly easy to see that if F ∗ is essentially surjective, then F is conservative. In
fact, we can weaken the condition on F ∗ as follows.

definition 6.6.16 Let F : T → T ′ be a translation. We say that F ∗ : Mod(T ′) →
Mod(T ) is covering just in case for each M ∈ Mod(T ), there is an N ∈ Mod(T ′) and
an elementary embedding h : M → F ∗(N ).

proposition 6.6.17 Let F : T → T ′ be a translation. If F ∗ is covering then F is
conservative.

Proof Suppose that T ′ ⊢ Fφ. Let M be an arbitrary model of T , and let h : M →
F ∗(N ) be the promised elementary embedding. Since N " Fφ, we have F ∗(N ) " φ,
and since h is elementary, M " φ. Since M was an arbitrary model of T , it follows that
T ⊢ φ.

corollary 6.6.18 Let F : T → T ′ be a translation. If F ∗ is essentially surjective,
then F is conservative.

The following example shows that the condition of F ∗ being essentially surjective is
strictly stronger than F being conservative. Thus, a translation F : T → T ′ may be
conservative even though not every model of T can be expanded to a model of T ′.

Example 6.6.19 Let ! = {cq | q∈ Q}, and let !′ = {cr | r ∈ R}. Let T ′ be the theory
with axioms cr ̸= cs when r ̸= s, and let T be the restriction of T ′ to !. Obviously, for
each model M of T , there is a model M ′ = M ⨿ N of T ′ and an elementary embedding
h : M → I ∗(M ′). By Prop. 6.6.17, T ′ is a conservative extension of T . However, a
countable model M of T cannot be isomorphic to I ∗(M ′), for any model M ′ of T ′.
Therefore, I ∗ is not essentially surjective. !

discussion 6.6.20 We have given a relatively weak condition on F ∗ : Mod(T ′) →
Mod(T ), which implies that F : T → T ′ is conservative. Unfortunately, we do not
know if these conditions are equivalent. It seems, in fact, that F being conservative is
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equivalent to a slightly weaker (and more complicated) condition on F ∗, as described
by Breiner (2014).

The dual functor F ∗ : Mod(T ′) → Mod(T ) has many additional uses. For example,
we can now complete the proof that two theories T1 and T2 have a common definitional
extension iff they are intertranslatable (i.e., homotopy equivalent).

theorem 6.6.21 (Barrett) Suppose that Ti is a theory in !i , where !1 and !2 are
disjoint signatures. If T1 and T2 are intertranslatable, then T1 and T2 have a common
definitional extension.

Proof Suppose that T1 and T2 are intertranslatable, with F : T1 → T2 and G : T2 →
T1 the relevant translations. We begin by defining definitional extensions T +

1 and T +
2 of

T1 and T2 to the signature !1 ∪ !2.
We define T +

1 = T1 ∪ {δs : s ∈ !2}, where for each symbol s ∈ !2 the !2-sentence
δs is an explicit definition of s. If q ∈ !2 is an n-ary predicate symbol, then we let
the definition δq ≡ ∀x⃗(q↔ Gq). If g ∈ !2 is an n-ary function symbol, then we let
the definition δg ≡ ∀x⃗∀y(g(x⃗) = y ↔ Gg(x⃗,y)). It is straightforward to verify that T1

satisfies the admissibility condition for δg .
We define T +

2 = T2 ∪ {δt : t ∈ !1} in the same manner. If p ∈ !1 is an n-ary
predicate symbol, then we let δp ≡ ∀x⃗(p ↔ Fp). If f ∈ !1 is an n-ary function
symbol, then we let δf ≡ ∀x⃗∀y(f (x⃗) = y ↔ Ff (x⃗,y)). It is also straightforward to
verify that T2 satisfies the admissibility condition for δf .

We show now that T +
1 and T +

2 are logically equivalent. Without loss of generality, we
show that every model of T +

2 is a model of T +
1 . The converse follows via an analogous

argument. Let M be a model of T +
2 . We show that M is a model of T +

1 . There are two
cases that need checking.

First, we show that M(φ) = 1 when T1 ⊢ φ. Since F ∗M is a model of T1, we have
1 = (F ∗M)(φ) = M(Fφ). One can then verify by induction that for every !1 formula
ψ, and for every model M of T +

2 , M(ψ) = M(Fψ). Therefore, M(φ) = 1.
Second, we show that M(δs) = 1 for every s ∈ !2. Let q∈ !2 be an n-ary predicate

symbol. Then

M(q(x⃗)) = M(FGq(x⃗)) = M(Gq(x⃗)).

The first equality follows from the fact that F and G are quasi-inverse and the fact that
M is a model of T +

2 . The second equivalence follows from the argument of the previous
paragraph. Thus, M(δq) = 1. In a similar manner one can verify that M(δg) = 1 for
every function symbol g ∈ !2.

We have therefore shown that each model of T +
1 is a model T +

2 . Thus, T +
1 and T +

2
are logically equivalent, and T1 and T2 are definitionally equivalent.

Example 6.6.22 Let ! ≡ {=}, let T1 be the theory in ! that says there is exactly one
thing, and let T2 be the theory in ! that says there are exactly two things. In one
important sense, T1 and T2 have the same number of models: one (up to isomorphism).
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Since T1 and T2 should not be considered to be equivalent, having the same number of
models is not an adequate criterion for equivalence.

Perhaps we can strengthen that criterion by saying that two theories are equivalent
if the models of the one can be constructed from the models of the other? But that
criterion seems also to say that T1 and T2 are equivalent. From each model {∗} of T1,
we can construct a corresponding model {∗,{∗}} of T2; and we can recover the original
model {∗} from the model {∗,{∗}}.

This criterion is alluring, but it is still far too liberal. We will need to do something to
capture its intuition, but without making the criterion of equivalence too liberal.

One natural suggestion here is to consider Mod(T1) and Mod(T2) as categories, and
to consider functors between them. There are then two proposals to consider:
1. Each functor F : Mod(T1) → Mod(T2) represents a genuine theoretical relation

between T1 and T2.
2. Every genuine theoretical relation between T1 and T2 is represented by a functor

F : Mod(T1) → Mod(T2).
There is immediate reason to question the first proposal. For example, in the case of
propositional theories T1 and T2, the categories Mod(T1) and Mod(T2) are discrete.
Hence, functors F : Mod(T1) → Mod(T2) correspond one-to-one with functions on
objects (in this case, models). But we have seen cases where intuitively inequivalent
propositional theories have categories with the same number of models. Thus, it seems
that not every functor (or function) between Mod(T1) and Mod(T2) represents a legiti-
mate relation between the theories.

There’s another, more concrete, worry about the first proposal. Consider the case
where T1 and T2 are fairly expressive theories in first-order logic. For example, T1 might
be Peano arithmetic, and T2 might be ZF set theory. Setting aside worries about the size
of sets, a function from Mod(T1) to Mod(T2) is simply a pairing ⟨M,N⟩ of models of
T2 with models of T1. But there need not be any “internal” relation between M and N .
This goes against an intuition that for theories T1 and T2 to be equivalent, there needs
to be relations between their individual models, and not just their categories of models
qua categories. In the case at hand, we want to say that for any model M of T1, there is
a model N of T2, and some relation %(M,N ) between M and N . But what relations %

are permitted? And does the same relation % need to hold for every model M and the
corresponding N , or can the relation itself depend on the input model M? !

6.7 Beth’s Theorem and Implicit Definition

[T]here is an argument, based on an application of Beth’s renowned definability theorem, which
might appear to render simultaneous support for physicalism and anti-reductionism impossible.
(Hellman and Thompson, 1975)

The logical positivists vacillated between being metaphysically neutral and being com-
mitted to metaphysical naturalism. One particular instance of the latter commitment was
their view on the mind–body problem. With the new symbolic logic as their tool, they
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had a clear story to tell about how the mental is related to the physical: it is reducible
to it. For example, suppose that r(x) denotes some kind of mental property, say the
property of being in pain. In this case, the reductionist says that there is a predicate φ(x)
in the language of basic physics such that ∀x(r(x) ↔ φ(x)) – i.e., something is in pain
iff it instantiates the physical property φ.

Of course, we should be clearer when we say that ∀x(r(x) ↔ φ(x)), for even a
Cartesian dualist might say that this sentence is contingently true. That is, a Cartesian
dualist might say that there is a purely physical description φ(x) that happens, as a mat-
ter of contingent fact, to pick out exactly those things that are in pain. The reductionist,
in contrast, wants to say more – that there is some sort of lawlike connection between
being in pain and being in a certain physical state. At the very least, a reductionist would
say that

T ⊢ ∀x(r(x) ↔ φ(x)),

where T is our best scientific theory (perhaps the ideal future scientific theory). That is,
according to the best theory, to be in pain is nothing more or less than to instantiate the
physical property φ.

By the third quarter of the twentieth century, this sort of hard-core reductionism had
fallen out of fashion. In fact, some of the leading lights in analytic philosophy – such
as Hilary Putnam – had devised master arguments which were taken to demonstrate the
utter implausibility of the reductionist point of view. Nonetheless, what had not fallen
out of favor among analytic philosophers was the naturalist stance that had found its pre-
cise explication in the reductionist thesis. Thus, analytic philosophers found themselves
on the hunt for a new, more plausible way to express their naturalistic sentiments.

In the 1970s, philosophers with naturalistic sentiments often turned to the concept
of “supervenience” in order to describe the relationship between the mental and the
physical. Now, there has been much debate in the ensuing years about how to cash out
the notion of supervenience, and we don’t have anything to add to that debate. Instead,
we’ll opt for the most obvious explication of supervenience in the context of first-order
logic, in which case supervenience amounts to the model theorist’s notion of implicit
definability:

Given a fixed background theory T , a predicate r is implicitly definable in terms of others
p1, . . . ,pn just in case for any two models M,N of T , if M and N agree on the extensions of
p1, . . . ,pn, then M and N agree on the extension of r .

Now, there is a relevant theorem from model theory, viz. Beth’s theorem, which shows
that if T implicitly defines r in terms of p1, . . . ,pn, then T explicitly defines r in terms
of p1, . . . ,pn; that is

T ⊢ ∀x(r(x) ↔ φ(x)),

where φ is a formula built from the predicates p1, . . . ,pn. In other words, if r

supervenes on p1, . . . ,pn, then r is reducible to p1, . . . ,pn. According to Hellman and
Thompson, this result “might appear to render simultaneous support for physicalism
and anti-reductionism impossible.”
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We begin the technical exposition with a description of the background assumptions
of Beth’s theorem. To be clear, philosophers can take exception with these background
assumptions. They might say that we have stacked the deck against non-reductive physi-
calism by means of these assumptions, and that a different account of supervenience will
permit it to be distinguished from reducibility. Although such a response is completely
reasonable, it suggests that physicalism isn’t a sharp hypothesis but a stance that can be
held “come what may.”

Fixed Assumptions of Svenonius’ and Beth’s Theorems

• T is a theory in signature !.

• !+ = ! ∪ {r}, where r is an n-ary relation symbol.

• T + is a theory in !+.

• T + is a conservative extension of T .

Svenonius’ and Beth’s theorems are closely related. Svenonius’ theorem begins with
an assumption about symmetry and invariance:

In each model M of T +, the subset M(r) is invariant under !-automorphisms.

It then shows that for each model M of T +, there is a !-formula φ such that M(r) =
M(φ). The formula φ may differ from model to model. Beth’s theorem begins with the
assumption that T + implicitly defines r in terms of !.

definition 6.7.1 We say that T + implicitly defines r in terms of ! just in case for
any two models M,N of T +, if M|! = N |! , then M = N .

(Here M|! is the !-structure that results from “forgetting” what M assigns to the
relation symbol r ∈ !+\!.) Beth’s theorem then shows that T + explicitly defines r

in terms of ! – i.e., there is a single !-formula φ such that T + ⊢ ∀x⃗(r(x⃗) ↔ φ(x⃗)),
hence, in every model M of T +, the relation r is coextensive with φ.

There are a variety of ways that one can prove the theorems of Beth and Svenonius.
The reader may like, for example, to study the fairly straightforward proof of Beth’s
theorem in Boolos et al. (2002, chapter 20). However, our goal here is not merely to
convince you that these theorems are true. We want to give you a feel for why they are
true and to help you see that they are instances of certain general mathematical patterns.
To achieve these ends, it can help to expand the mathematical context – even if that
requires a bit more work. Accordingly, we will present a proof of Beth’s theorem with
a more topological slant.

We begin with the notion of a type in a model M of a theory T . (The terminology here
is not particularly intuitive, but it has become standard. A better phrase might be been
“ideal element.”) As a quick overview, each element a ∈ M corresponds to a family "

of formulas φ(x), viz. those formulas that it satisfies. That is,
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" = {φ(x) | a ∈ M(φ(x))}.

In fact, this set " is a filter relative to implication in M . That is, if φ(x) ∈ " and M |C
∀x(φ(x) → ψ(x)), then ψ(x) ∈ ". Similarly, if φ(x),ψ(x) ∈ ", then φ(x) ∧ ψ(x) ∈ ".
Finally, for any φ(x), either φ(x) ∈ " or ¬φ(x) ∈ ".

However, it’s also possible to have an ultrafilter " of formulas for which there is no
corresponding element a ∈ M . The obvious cases here are where the formulas “run off
to infinity.” For example, consider the family of formulas

" = {r < x | r ∈ R},

with R the real numbers. Then " is a filter, but no real number a satisfies all formulas
in ". Intuitively speaking, the filter " is satisfied by an ideal point at infinity that is
greater than any real number. (While " is a filter, it is not an ultrafilter. It is contained in
infinitely many distinct ultrafilters, each of which corresponds to a point at infinity.)

It’s also possible for a model M to have ideal points “in the interstices” between the
real points. For example, in the case of the real numbers R, let’s say that a filter " of
formulas is centered on 0 just in case " contains each formula −δ < x < δ. Then
a simple counting argument (with infinite cardinalities) shows that there are infinitely
many incompatible filters, all of which are centered on 0. Each such filter corresponds
to an ideal element that is smaller than any finite real number.

definition 6.7.2 Let M be a !-structure, and let p be a set of !-formulas in context
x⃗ = x1, . . . ,xn. We call p an n-type if p ∪ Th(M) is satisfiable. We say that p is a
complete n-type if φ ∈ p or ¬φ ∈ p for all !-formulas φ in context x⃗. We let SM

n be
the set of all complete n-types.

Each element a in a model gives rise to a complete 1-type:

tpM (a) = {φ(x) | a ∈ M(φ(x))}.

Similarly, each n-tuple a⃗ = a1, . . . ,an gives rise to a complete n-type tpM (a⃗) ∈ SM
n .

We say that a⃗ realizes the type p ∈ SM
1 when p = tpM (a⃗).

definition 6.7.3 We now equip the set SM
n of complete n-types with a topology,

and we show that this topology makes SM
n a Stone space. For each !-formula φ in

context x⃗, let

Eφ = {p ∈ SM
n | φ ∈ p}.

The definition here is similar to that which we used in defining the Stone space of a
propositional theory. In that case, Eφ was the set of models of the sentence φ. In the
present case, SM

n are not quite models of a theory. But if M is a model of a theory T ,
then the types SM

n are essentially all elements of Mn along with ideal elements.

In order to show that SM
n is a compact topological space, we will need to adduce a

central theorem of model theory – the so-called realizing types theorem. We cite the
result without proof, referring the interested reader to Marker (2006, chapter 4).
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theorem 6.7.4 (Realizing types) Suppose that F is a finite subset of SM
n . Then there

is an elementary extension N of M such that each p ∈ F is realized in N .

proposition 6.7.5 SM
n is a compact topological space.

Proof Recall that a topological space is compact just in case any family of closed sets
with the finite intersection property (fip) has nonempty intersection. Suppose then that F
is a collection of closed subsets of SM

n that has the fip. It will suffice to consider the case
where the elements of F are each of the form Eφ for some !-formula φ. Let F0 denote
the corresponding family of formulas. Since F has the fip, for each φ1, . . . ,φn ∈ F0,
there is some p ∈ SM

n such that φ1, . . . ,φn ∈ p, hence φ1 ∧ · · · ∧ φn ∈ p. By the
realizing types theorem, there is an elementary extension N of M and a ∈ N (φ1 ∧ · · ·∧
φn). Thus, Th(M) ∪F0 is finitely satisfiable. By the compactness theorem, Th(M) ∪F0

is satisfiable, and hence F0 is an n-type. Since each n-type is contained in a complete
n-type, we are done.

We now look at the relationship between types and symmetries of models.

definition 6.7.6 Let M be a !-structure, and let a,b ∈ M . We say that a and b are
indiscernible in M just in case tpM (a) = tpM (b). In other words, for every !-formula
φ, a ∈ M(φ) iff b ∈ M(φ).

definition 6.7.7 Let a,b ∈ M . We say that a and b are co-orbital just in case there
is an automorphism h : M → M such that h(a) = b.

Since automorphisms are invertible and closed under composition, being co-orbital is
an equivalence relation on M , and it partitions M into a family of equivalence classes.
We call these equivalence classes the orbits under the symmetry group Aut(M).

proposition 6.7.8 Let h : M → N be an elementary embedding. Then tpM (a) =
tpN (h(a)).

Proof Since h is an elementary embedding a ∈ M(φ) iff h(a) ∈ N (φ), for all !-
formulas φ.

The preceeding result leads immediately to the following.

proposition 6.7.9 If two elements a,b are co-orbital, then they are indistinguishable.
That is, if there is an automorphism h : M → M such that h(a) = b, then tpM (a) =
tpM (b).

Example 6.7.10 We now show that the converse to the previous proposition is not gen-
erally true – i.e., indistinguishable elements are not necessarily co-orbital. Let ! =
{< ,c1,c2, . . . ,d1,d2, . . .}, where < is a binary relation, and the ci and dj are constant
symbols. Define a !-structure M as follows: the domain of M is the rational numbers
Q; < is given its standard interpretation on Q; M(ci) = − 1

i and M(di) = 1 + 1
i for

i = 1,2, . . .
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• We claim first that [0,1] is invariant under all automorphisms of M . Indeed, for
each i ∈ N, let (ci,di) = M(ci < x < di). Then

[0,1] =
∞⋂

i=1

(ci,di).

If h : M → M is an automorphism, then (ci,di) is invariant under h, hence [0,1]
is invariant under h.

• We claim that there is no !-formula φ such that [0,1] = M(φ). Indeed, it’s easy
to see that for any formula φ, if 1 ∈ M(φ), then there is a δ > 0 such that
1 + δ ∈ M(φ).

• We claim that tpM (a) = tpM (b) for all a,b ∈ [0,1]. For this, we can argue in two
steps. First, for any a,b ∈ (0,1), there is an automorphism h : M → M such
that h(a) = b. Second, choose a ∈ (0,1), and show that tpM (a) = tpM (1). Let
φ ∈ tpM (1). By an argument similar to the preceding one, there is some δ > 0
and some c ∈ (1 − δ,1) such that φ ∈ tpM (c). Since there is an automorphism h

such that h(a) = c, it follows that φ ∈ tpM (a). Therefore, tpM (1) ⊆ tpM (a).

• We claim that there is no automorphism h : M → M such that h(0) = 1.
Suppose, to the contrary, that h is such an automorphism, and let a ∈ (0,1).
Since 0 < a and h is order preserving, 1 = h(0) < h(a). Thus, there is an i ∈ N
such that h(a) ∈ (di,∞). But tpM (a) = tpM (h(a)), and, therefore, a ∈ (di,∞) –
a contradiction.

• Notice, finally, that the element 1 ∈ M has the following feature: for every
formula φ, if M " φ(1), then M ⊢ φ(a) for some a > 1.

!

The previous considerations show that M has a partition O into orbits and a partition
I into indiscernables, and that I ⊆ O.

We will also need the following result, which shows that indiscernibles in M always
lie on the same orbit in some elementary extension N of M . We again refer the reader
to Marker (2006, chapter 4) for a proof.

proposition 6.7.11 Let M be a !-structure, and suppose that tpM (a) = tpM (b).
Then there is a !-structure N , an elementary embedding h : M → N , and an automor-
phism s : N → N such that s(h(a)) = h(b).

In the case of finite structures, most of these subtle distinctions evaporate. For exam-
ple, in finite structures, indistinguishable elements are automatically co-orbital.

proposition 6.7.12 Let M be a finite !-structure, and suppose that tpM (a) =
tpM (b). Then there is an automorphism k : M → M such that k(a) = b.

Proof Suppose that tpM (a) = tpM (b). By Prop 6.7.11, there is an elementary embed-
ding h : M → N and an automorphism j : N → N such that j (h(a)) = h(b). Since
M is finite, h is an isomorphism. Define k = h−1 ◦ j ◦ h. Then k(a) = h−1(j (h(a))) =
h−1(h(b)) = b.
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Let’s talk now about invariant subsets of a model M . A subset A ⊆ M is said to be
invariant just in case h(A) = A for every automorphism h : M → M . By definition, the
automorphisms of a !-structure preserve the extensions of ! formulas. That is, if φ is a
!-formula (with a single free variable), then M(φ) is invariant under all automorphisms
of M . The converse, however, is not true – i.e., not all invariant subsets are extensions of
some formula. We already saw one example of this situation in 6.7.10. Other examples
are easy to come by. Consider, for example, the natural numbers N as a model of
Peano arithmetic. This model is rigid – i.e., there are no nontrivial automorphisms.
Hence, every subset of N is invariant under automorphisms. Nonetheless, the language
! of Peano arithmetic only has a countable number of formulas. Thus, there are many
invariant subsets of N that are not of the form N(φ) for some formula φ.

Once again, finite structures don’t have as much subtlety. Indeed, in finite structures,
all invariant subsets are definable.

theorem 6.7.13 (finite Svenonius) If M is a finite !-structure, and A is an invariant
subset of M , then there is a !-formula θ such that A = M(θ).

Proof Let B be the Boolean algebra of representable subsets of M , i.e., sets of the
form M(φ) for some formula φ. For each a ∈ M , the set

{M(φ) | φ ∈ tpM (a)} = {M(φ) | a ∈ M(φ)},

is an ultrafilter on B. Thus, if X is the Stone space of B, there is a map π ≡ tpM :
M → X such that π(a)[M(φ)] = 1 iff a ∈ M(φ). In this case, since B is finite, each
ultrafilter is principal, i.e., is the up-set of some M(φ). Hence π : M $X is surjective.

Since A is invariant under Aut(M), Prop. 6.7.12 entails that tpM (a) ̸= tpM (b) when-
ever a ∈ A and b ̸∈ A. Thus, A descends along π, i.e., π−1[π(A)] = A. Since X is
finite, π(A) is clopen – i.e., there is a formula θ such that A = M(θ).

The following key result will lead very quickly to a proof of Svenonius’ theorem.

proposition 6.7.14 Let M be a !+-structure, and suppose that for every elementary
extension N of M , any automorphism of N |! preserves N (r). Then there is a !-formula
φ such that M " ∀x(r(x) ↔ φ(x)).

Proof We first claim that in every elementary extension N of M , if a,b ∈ N such
that tpN (a)|! = tpN (b)|! , then a ∈ N (r) iff b ∈ N (r). Suppose not, i.e., that there
is an elementary extension N of M with a,b ∈ N satisfying the same !-formulas, but
a ∈ N (r) and b ̸∈ N (r). By using an argument similar to the realizing types theorem,
we can show that there is an elementary extension i : N → N ′, and an automorphism
s of N ′|! such that s(i(a)) = i(b). Thus, s does not leave N ′(r) invariant, contradicting
the assumptions of the proposition.

Now since any finite subset of SM
1 is realized in some elementary extension of M

(Prop 6.7.4), it follows that for all p,q∈ SM
1 , if p|! = q|! , then p ∈ Er iff q∈ Er .

Conversely, if p ∈ Er and q ̸∈ Er , then there is some !-formula φ such that p ∈ Eφ
and q ̸∈ Eφ. From this, it follows that the intersection of all Eφ such that p ∈ Eφ lies
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in Eφ. By the compactness of SM
1 , there are finitely many !-formulas φ1, . . . ,φn such

that p ∈ Eφi
and

Eφi
∩ · · · ∩ Eφn ⊆ Er .

If we let ψp ≡ φ1 ∧ · · ·∧φn, then p ∈ Eψp and Eψp ⊆ Er . The family {Eψp | p ∈ Er}
covers Er , hence by compactness again has a finite subcover. Taking the conjunction of
the corresponding formulas gives an explicit definition of r(x) in terms of !.

theorem 6.7.15 (Svenonius) Suppose that in every model M of T +, the set M(r) is
invariant under all !-automorphisms. Then there are !-formulas φ1, . . . ,φn such that

T ⊢ ∀x(r(x) ↔ φ1(x)) ∨ · · · ∨ ∀x(r(x) ↔ φn(x)).

Proof By the previous proposition, for each model M of T , there is a !-formula φM

such that M " ∀x(r(x) ↔ φM (x)). Let ψM ≡ ∀x(r(x) ↔ φM (x)), and let & be
the set of ¬ψM , where M runs over all models of T . (To deal with size issues, we
could consider isomorphism classes of models bounded by a certain size, depending on
the signature !.) Then T ∪ & is inconsistent. By compactness, there is a finite subset
¬ψ1, . . . ,¬ψn of & such that T ⊢ ψ1 ∨ · · · ∨ ψn.

If, in addition, the theory T is complete, then the assumptions of Svenonius’ theo-
rem entail that T explicitly defines r in terms of !. Beth’s theorem derives the same
conclusion, without the completeness assumption, but with a stronger notion of implicit
definability. Consider the following explications of the notion of definability:

IE Invariance under elementary embeddings: For any models M and N of T , and for
any !-elementary embedding h : M → N , h(M(r)) = N (r).

IA Invariance under automorphisms: For any model M of T , and for any !-
automorphism h : M → M , h(M(r)) = M(r).

IS For any models M and N of T , if M|! = N |! then M = N . (This version is very
close to the metaphysician’s notion of global supervenience.)

ID Let T ′ be the result of uniformly replacing r in T with r ′. Then T ∪ T ′ ⊢
∀x(r(x) ↔ r ′(x)).

The implication IE ⇒ IA is immediate. To see that IE ⇒ IS, suppose that M|! =
N |! , and let h : M → N be the identity function. Then h is a !-elementary embedding,
hence IE implies that h(M(r)) = N (r), that is, M(r) = N (r). To see that IS ⇒ ID, let
M be a model of T ∪ T ′. Define a ! ∪ {r} structure N to agree with M on !, and such
that N (r) = M(r ′). Because M is a model of T ′, it follows that N is a model of T .
Hence M(r) = N (r) = M(r ′), and M " ∀x(r(x) ↔ r ′(x)).

We now show that ¬IE ⇒ ¬ID. If ¬IE, then there are models M and N of T , and
an elementary embedding h : M → N such that h(M(r)) ̸= N (r). We use N to define
a ! ∪ {r,r ′} structure N ′: let N ′ agree with N on ! ∪ {r}, and let N ′(r ′) = h(M(r)).
Obviously N ′ is a model of T . To see that N ′ is a model of T ′, first let M ′ be the
! ∪ {r ′} structure that looks just like M except that M ′(r ′) = M(r). Then M ′ " T ′,
and N ′(r ′) = h(M(r)) = h(M ′(r ′)). That is, N ′ is the push-forward of M ′, and hence
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N ′ " T ′. Finally, N ′(r) ̸= N ′(r ′), and hence T ∪T ′ ̸" ∀x(r(x) ↔ r ′(x)). This completes
the proof that ¬IE ⇒ ¬ID.

All told, we have the following chain of implications:

IE ID IS

IA

What’s more, the implication ID ⇒ IA cannot be reversed.
We now sketch the proof that the stronger notion of implicit definability (IE,ID,IS)

implies explicit definability.

theorem 6.7.16 (Beth’s theorem) If T implicitly defines r in terms of !, then T

explicitly defines r in terms of !.

Proof We follow the outlines of the proof by Poizat (2012, 185). Assume that T

implicitly defines r in terms of !. Since IS ⇒ IA, Svenonius’ theorem implies that
there are !-formulas φ1, . . . ,φn such that

T ⊢ ∀x(r(x) ↔ φ1(x)) ∨ · · · ∨ ∀x(r(x) ↔ φn(x)).

If T were inconsistent, or consistent with only a single one of these disjuncts, then T

would explicitly define r in terms of !. So suppose that n > 1, and T is consistent with
all n disjuncts. For each disjunct ∀x(r(x) ↔ φi(x)), let Ti be the theory that results from
replacing r in T with φi . Implicit definability then yields Ti ∪Tj ⊢ ∀x(φi(x) ↔ φj (x)).
Notice that r does not occur in Ti ∪Tj . Using the compactness theorem, we can then use
!-formulas θ1, . . . ,θm to divide the space of models of T into cells with the feature
that for each k, we have T ,θk ⊢ ∀x(r(x) ↔ φi(k)) for some i(k). One can then use the
formulas θ1, . . . ,θm to construct an explicit definition of r in terms of !.

Example 6.7.17 Petrie (1987) argues that global supervenience does not entail reducibil-
ity. We first state his definition verbatum:

Let A and B be sets of properties. We say that A globally supervenes on B just in case worlds
which are indiscernible wih regard to B are also indiscernible with regard to A .

Switching to the formal mode – i.e., speaking of predicates rather than properties – and
restricting to the context of first-order logic, it appears that global supervenience is just
another name for implicit definability. We will use ! = {p} for the subvenient predicate
symbol, and we let !+ = !∪{r}. Petrie describes his example as follows (with notation
adapted):

There are two structures M and N , both of which have domain {a,b}. In M , the extension of p is
{a,b} and the extension of r is {a}. In N , the extension of p is {a} and the extension of r is empty.

Petrie points out that this example does not satisfy strong supervenience. However, since
M|! ̸= N |! , it trivially satisfies global supervenience – i.e., r is implicitly defined in
terms of p.
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Here we need to slow down: implicit definability is defined in terms of some back-
ground theory T . In this case, however, there can be no theory T such that M and N are
models of T , and such that T implicitly defines r in terms of p. Indeed, for any theory
T in !+, if M is a model of T , then so is M ′ where M ′(p) = {a,b} and M ′(r) = {b}.
But then M|! = M ′|! , whereas M(r) ̸= M ′(r). Therefore, T does not implicitly define
r in terms of !.

Thus, Petrie’s space of possible worlds is not of the form Mod(T ) for any theory T .
One of the key assumptions of formal logic is that possibilities are specified only up
to isomorphism – i.e., if M is possible, and M ′ results from permuting some of the
(featureless) elements of M , then M ′ is also possible. (Why would it be possible that
a is an r , but not possible that b is an r?) Thus, for one to grant the force of Petrie’s
counterexample, one has to abandon a key assumption of formal logic. Is it worth
sacrificing formal logic in order to defend non-reductive physicalism? !

6.8 Notes

• Within mathematics, the study of logical semantics is called model theory, and
there are several excellent textbooks. Some of our favorites: Hodges (1993);
Marker (2006); Poizat (2012).

• The classic sources on the semantic view of theories are Suppe (1974, 1989).

• The completeness of the predicate calculus was first proven by Kurt Gödel in his
PhD thesis (Gödel, 1929).

The typical textbook proof of the theorem proceeds as follows: supposing that
" is proof-theoretically consistent, show that " can be expanded to a maximally
consistent set "∗. This expansion invokes Zorn’s lemma, which is a variant of the
axiom of choice. The resulting set "∗ is then used to construct a model of ".

The topological proof in this chapter has several advantages over the typical
textbook proof. For example, the topological theorem makes it clear that com-
pleteness doesn’t require the full axiom of choice. It is known that the Baire
category theorem is strictly weaker than AC (see Herrlich and Keremedis, 2000;
Herrlich, 2006). The topological completeness proof was first given by Rasiowa
and Sikorski (1950). See also (Rasiowa and Sikorski, 1963).

An even more elegant proof of completeness is provided by Deligne’s embed-
ding theorem for coherent categories (see Makkai and Reyes, 1977). If T ̸⊢ ⊥ ,
then T corresponds to a (Boolean) coherent category CT . By Deligne’s theorem,
there is an embedding F : CT → Sets, which yields a model of T .

• The category Sets has tons of structure (limits, colimits, exponentials, etc.), and so
is adequate to represent all syntactic structures of a first-order theory. If we’re only
interested in a fragment of first-order logic, it can also be interesting to look at rep-
resentations in less structured categories. For example, Cartesian categories have
enough structure to represent algebraic theories (such as the theory of groups).
For more details, see Johnstone (2003).
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• In Section 6.5, we redescribed topological structure on X as a family of operations
X∞ → X, i.e., functions from infinite sequences to points of X. This description
is not merely heuristic: the category CHaus of compact Hausdorff spaces is
equivalent to the category of algebras for the ultrafilter monad on Sets. Thus,
CHaus is the category of models of an (infinitary) algebraic theory. For more
details, see (Mac Lane, 1971, VI.9) and (Manes, 1976, 1.5.24).

• For an interesting analysis of supervenience and reduction in terms of ultraprod-
ucts, see Dewar (2018b).

• Beth’s theorem first appeared in (1956), and Svenonius’ in (1959). In recent work,
Makkai (1991); Zawadowski (1995); Moerdijk and Vermeulen (1999) show that
Beth’s theorem is equivalent to a result about effective descent morphisms, a
notion of central importance in mainstream mathematics. This kind of unifying
result shows that there is no clear boundary between mathematics and metamath-
ematics.

• Our discussion of Beth’s theorem draws from Barrett (2018b). The relevance of
Beth’s theorem to the prospects of non-reductive physicalism was first pointed
out by Hellman and Thompson (1975), and has been subsequently discussed by
Bealer (1978); Hellman (1985); Tennant (1985, 2015). According to Hellman
(personal communication), the issue was first brought up by Hilary Putnam in
a graduate seminar at Harvard. For more on supervenience and its history in
analytic philosophy, see McLaughlin and Bennett (2018).


