
7 Semantic Metalogic Redux

In the previous chapter, we covered some of the standard topics in model theory –
focusing on those parts we think are of most interest to philosophers. However, the
semantic methods of the previous chapter are restricted to the special case of single-
sorted logic. In this chapter, we cover semantics for many-sorted logic. But our aim here
is not many-sorted logic for its own sake. Indeed, we feel that one first really understands
single-sorted logic when one sees it as a special case of many-sorted logic. What’s more,
even for single-sorted theories, some of the most interesting relations between theories
can only be explicated by means of many-sorted methods.

7.1 Structures and Models

For the most part, generalizing semantics to many-sorted logic is straightforward:
where a single-sorted structure M has a single domain set, a many-sorted structure
has a separate domain set M(σ) for each separate sort symbol σ ∈ !. Moreover, if a
!-formula φ has free variables of different sorts, then its extension M(φ) will be a
subset of a Cartesian product of different domains.

definition 7.1.1 Let ! be a signature. A !-structure M is a mapping from ! to
appropriate structures in the category Sets. In particular:

• M maps each sort symbol σ ∈ ! to a set M(σ).

• M maps each n-ary relation symbol p of sort σ1 × · · · × σn to a subset M(p) ⊆
M(σ1) × · · · × M(σn).

• M maps each function symbol f of sort σ1 × · · · × σn → σn+1 to a function
M(f ) : M(σ1) × · · · × M(σn) → M(σn+1).

As was the case with single-sorted logic, each !-structure M extends to a map, still
called M , from !-terms to functions, and from !-formulas to subsets. In particular:

• For each term t of type σ1 × · · · × σn → σn+1,

M(t) : M(σ1) × · · · × M(σn) → M(σn+1).

• For each formula φ of type σ1 × · · · × σn,

M(φ) ⊆ M(σ1) × · · · × M(σn).
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definition 7.1.2 Let M and N be !-structures, where ! has sorts σ1, . . . ,σn. An
elementary embedding h : M → N consists of a family {hi | σi ∈ !} of functions
hi : M(σi) → N (σi) that preserves the extension of each !-formula φ.

It’s easy to see that the composition of elementary embeddings is an elementary
embedding. Thus, for a given theory T , we let Mod(T ) be the category whose objects are
models of T and whose arrows are elementary embeddings. Notice that this definition
directly generalizes the definition we gave for single-sorted theories; hence, for a single-
sorted theory T , there is no ambiguity when we write Mod(T ).

7.2 The Dual Functor to a Translation

Intuitively speaking, a translation F : T → T ′ should induce a functor F ∗ :
Mod(T ′) → Mod(T ) going in the opposite direction. To see this, recall that models of
a theory T ′ aren’t static structures but are more like functors from T ′ into the category
Sets. If we think of a model of T ′ as a functor M : T ′ → Sets, then we can precompose
this functor with a translation F : T → T ′, giving a functor

T
F'−→ T ′ M'−→ Sets,

i.e., we get a model F ∗M = M ◦ F of T . However, since M and F are not actually
functors, we have to do some work to validate this intuition.

definition 7.2.1 Let F : T → T ′ be a fixed translation. Given an arbitrary model
M of T ′, we define a !-structure F ∗M as follows:

• For a sort symbol σ of !, first consider the set

M(F (σ)) = M(F (σ)1) × · · · × M(F (σ)n),

and its subset M(Dσ), where Dσ is any one of the domain formulas that F

associates with σ. (These domain formulas are all equivalent.) Since F is a trans-
lation and M is a model of T ′, M(Eσ) is an equivalence relation on M(Dσ). Let
q : M(Dσ) → Y be the corresponding quotient map, and let (F ∗M)(σ) = Y .

• For a relation symbol p : σ1, . . . ,σn of !, we define

(F ∗M)(p) = (q1 × · · · × qn)(M(Fp)),

where qi : M(Dσi ) → Yi is the corresponding projection.

• For a function symbol f : σ1, . . . ,σn → σn+1 of !, we define (F ∗M)(f ) be the
function with graph

(q1 × · · · × qn × qn+1)(M(Ff )).

note 7.2.2 Suppose that F : T → T ′ is a translation, and let φ(x) be a !-formula.
Then F (φ)(x⃗) is compatible with the relation E(x⃗,y⃗) in the following sense: T ′ implies
that if F (φ)(x⃗) and E(x⃗,y⃗), then F (φ)(y⃗). It follows from this that in any model M of
T ′, the subset A ≡ M(F (φ)(x⃗)) of M(D) is compatible with the equivalence relation
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M(E(x⃗,y⃗)). That is, if q : M(D) → Y is the quotient map induced by M(E(x⃗,y⃗)), then
q−1(q(A)) = A.

proposition 7.2.3 Suppose that F : T → T ′ is a translation, and that φ is a
!-formula. Then (F ∗M)(φ) is the image of M(F (φ)) under the corresponding quotient
map q.

Proof To be precise, we prove that the result holds for each !-formula φ, and context
x1, . . . ,xn for φ. Once a context x1, . . . ,xn for φ is fixed, we also fix the corresponding
context x⃗1, . . . ,x⃗n for F (φ). Moreover, for a !-structure N , we take N (φ) to mean the
extension of φ relative to the context x1, . . . ,xn.

The base case follows immediately from the definition of F ∗M . As for inductive
cases, we will treat ∧ and ∃y and leave the others to the reader. We simplify notation as
follows: let N = F ∗M , and for each !-formula φ, let φ∗ = F (φ).

• Suppose that the result is true for φ1 and φ2, in any of their contexts. Let
x1, . . . ,xn be a context for φ1 ∧ φ2, hence also for φ1 and φ2. Let D =
D(x⃗1) ∧ · · · ∧ D(x⃗n) be the conjunction of domain formulas for x1, . . . ,xn;
let E = E(x⃗1,y⃗1) ∧ · · · ∧ E(x⃗n,y⃗n) be the conjunction of the corresponding
equivalence relations; and let q : M(D) → Y be the quotient map determined
by M(E). If we let Ai = M(φ∗

i ) ⊆ M(D), then the inductive hypothesis
asserts that N (φi) = q(Ai). Since (φ1 ∧ φ2)∗ = φ∗

1 ∧ φ∗
2, it follows that

M((φ1 ∧ φ2)∗) = A1 ∩ A2. Thus,

q(M(φ∗)) = q(A1 ∩ A2)
= q(A1) ∩ q(A2)
= N (φ1) ∩ N (φ2)
= N (φ).

The second equation follows from the preceding note; the third equation follows
from the induction hypothesis; and the final equation by the fact that N is a !-
structure.

• Suppose that the result is true for φ. That is,

N (φ) = (q1 × q2)(M(φ∗)),

where q1 : M(D1) → Y1 and q2 : M(D2) → Y2 are the quotient maps. We show
that the result is also true for ∃yφ. Consider the commuting diagram:

M(D1) × M(D2) M(D2)

Y1 × Y2 Y2

π

q1×q2 q2

π

where π is the projection onto the second coordinate. By definition,

M((∃yφ)∗) = M(∃y⃗(φ∗)) = π∗(M(φ∗)).
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Hence,

N (∃yφ) = π(N (φ)) = π((q1 × q2)(M(φ∗)))
= q2(π∗(M(φ∗))) = q2(M((∃yφ)∗)).

Thus, the result also holds for ∃yφ.

proposition 7.2.4 Let F : T → T ′ be a translation. If M is a model of T ′, then
F ∗M is a model of T .

Proof Let φ be a !-formula in context x1, . . . ,xn such that T ⊢ φ. Since F : T → T ′

is a translation, T ′ ⊢ F (φ). If M is a model of T ′, then

M(F (φ)) = M(x⃗1, . . . ,x⃗n).

By the previous proposition, (F ∗M)(φ) is the image of M(F (φ)) under the quotient
map q : M(D(x⃗1, . . . ,x⃗n)) → Y induced by the equivalence relation M(E), where

E = E(x⃗1,y⃗1) ∧ · · · ∧ E(x⃗n,y⃗n).

Thus, (F ∗M)(φ) = Y = (F ∗M)(x1, . . . ,xn), and F ∗M is a model of T .

Thus, if F : T → T ′ is a translation, then F gives rise to a mapping F ∗ from
the objects of Mod(T ′) to the objects of Mod(T ). We now define F ∗ on the arrows
of Mod(T ′). Let M and N be models of T ′, and let h : M → N be an elementary
embedding. Recall that h consists of family {hσ | σ ∈ !′} of functions hi : M(σ) →
N (σ) that preserves the extension of each !′-formula ψ. Now let σ be a sort of !, and
let x⃗ be a sequence of !′-variables of sort F (σ) = σ1, . . . ,σn. Consider the following
diagram:

M(Dσ) N (Dσ)

(F ∗M)(σ) (F ∗N )(σ)

h

qM qN

F ∗h

where qM and qN are the quotient maps induced by M(E) and N (E), respectively, and
h is the restriction of h1 × · · · × hn to M(Dσ), which is well defined since h preserves
the extensions of !′-formulas. Moreover, if ⟨a⃗,b⃗⟩ ∈ M(E), then ⟨h(a⃗),h(b⃗)⟩ ∈ N (E).
Thus, h determines a unique function F ∗h : (F ∗M)σ → (F ∗N )σ such that the previous
diagram commutes.

Now let φ be a !-formula. Then a ∈ (F ∗M)(φ) iff a = qM (b), for some b ∈
M(F (φ)). Moreover, b ∈ M(F (φ)) iff h(b) ∈ N (F (φ)) iff qN (h(b)) ∈ (F ∗N )(φ). This
shows that a ∈ (F ∗M)(φ) iff (F ∗h)(a) ∈ (F ∗N )(φ). Therefore, F ∗h is an elementary
embedding.

It is easy to see that F ∗ preserves composition of elementary embeddings, as well as
identity morphisms of models. Therefore, F ∗ is a functor from Mod(T ′) to Mod(T ).
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discussion 7.2.5 It is tempting to think that any functor G : Mod(T ′) → Mod(T )
corresponds to some potentially interesting relationship between the theories T and T ′.
However, functors of the form F ∗ : Mod(T ′) → Mod(T ), where F : T → T ′ is a
translation, seem to be singled out by the fact that they preserve important theoretical
structures. First, the functor F ∗ is “definable” in the sense that the resulting model
F ∗M is defined in terms of the model M , and in a uniform fashion. That is, the “same
definition” of the new model works, regardless of which model we plug into F ∗. (For
more on the notion of definable functors, see Hudetz [2018a].) Second, in the case of
propositional theories, a functor G : Mod(T ′) → Mod(T ) is simply a function from
the Stone space X′ of T ′ to the Stone space X of T , and functors of the form F ∗ are
precisely the continuous functions.

We now have the tools we need to do some work with the notion of Morita equiv-
alence. We’ll first show how similar Morita equivalence is to its poorer cousin, def-
initional equivalence. In particular, we’ll show that Morita equivalent theories have
equivalent categories of models.

7.3 Morita Equivalence Implies Categorical Equivalence

As with a definitional extension, a Morita extension T + should “say nothing more” than
the original theory T . We will make this idea precise by proving three results about the
relationship between Mod(T +) and Mod(T ). First, the models of T + are “determined”
by the models of T .

theorem 7.3.1 (Barrett) Let ! ⊆ !+ be signatures and T a !-theory. If T + is a
Morita extension of T to !+, then every model M of T has a unique expansion (up to
isomorphism) M+ that is a model of T +.

Before proving this result, we introduce some notation and prove a lemma. Suppose
that a !+-theory T + is a Morita extension of a !-theory T . Let M and N be models
of T + with h : M|! → N |! an elementary embedding between the !-structures M|!
and N |! . The elementary embedding h naturally induces a map h+ : M → N between
the !+-structures M and N .

We know that h is a family of maps hσ : Mσ → Nσ for each sort σ ∈ !. (Here we
have used Mσ for the domain M(σ) that M assigns to the sort symbol σ, and similarly for
Nσ.) In order to describe h+, we need to describe the map h+

σ : Mσ → Nσ for each sort
σ ∈ !+. If σ ∈ !, we simply let h+

σ = hσ. On the other hand, when σ ∈ !+\!, there
are four cases to consider. We describe h+

σ , in the cases where the theory T + defines
σ as a product sort or a subsort. The coproduct and quotient sort cases are described
analogously.

First, suppose that T + defines σ as a product sort. Let π1,π2 ∈ !+ be the projections
of arity σ → σ1 and σ → σ2 with σ1,σ2 ∈ !. The definition of the function h+

σ is
suggested by the following diagram.
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Mσ

Mσ1 Nσ1

Nσ

Mσ2 Nσ2

h+
σ

πM
1

h+
σ1 πN

1

πM
2

h+
σ2

πN
2

Let m ∈ Mσ. We define h+
σ (m) to be the unique n ∈ Nσ that satisfies both πN

1 (n) =
h+
σ1

◦ πM
1 (m) and πN

2 (n) = h+
σ2

◦ πM
2 (m). We know that such an n exists and is unique

because N is a model of T + and T + defines the symbols σ, π1, and π2 to be a product
sort. One can verify that this definition of h+

σ makes the preceding diagram commute.
Suppose, on the other hand, that T + defines σ as the subsort of “elements of sort σ1

that are φ.” Let i ∈ !+ be the inclusion map of arity σ → σ1 with σ1 ∈ !. As before,
the definition of h+

σ is suggested by the following diagram.

Mσ

Mσ1 Nσ1

Nσ
h+
σ

iM h+
σ1 iN

Let m ∈ Mσ. We see that following implications hold:

M ! φ[iM (m)] ⇒ M|! ! φ[iM (m)]

⇒ N |! ! φ[h+
σ1

(iM (m))] ⇒ N ! φ[h+
σ1

(iM (m))]

The first and third implications hold since φ(x) is a !-formula, and the second holds
because hσ1 = h+

σ1
and h is an elementary embedding. T + defines the symbols i and

σ as a subsort and M is a model of T +, so it must be that M ! φ[iM (m)]. By the
preceding implications, we see that N ! φ[h+

σ1
(iM (m))]. Since N is also a model of

T +, there is a unique n ∈ Nσ that satisfies iN (n) = h+
σ1

(iM (m)). We define h+
σ (m) = n.

This definition of h+
σ again makes the diagram commute.

When T + defines σ as a coproduct sort or a quotient sort one describes the map h+
σ

analogously. We leave it to the reader to work out the details of these cases.
For the purposes of proving Theorem 7.3.1, we need the following simple lemma

about this map h+.

lemma 7.3.2 If h : M|! → N |! is an isomorphism, then h+ : M → N is an
isomorphism.

Proof We know that hσ : Mσ → Nσ is a bijection for each σ ∈ !. Using this fact
and the definition of h+, one can verify that h+

σ : Mσ → Nσ is a bijection for each sort
σ ∈ !+. So h+ is a family of bijections. And furthermore, the commutativity of the pre-
ceding diagrams implies that h+ preserves any function symbols that are used to define
new sorts.
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It only remains to check that h+ preserves predicates, functions, and constants that
have arities and sorts in !. Since h : M|! → N |! is a isomorphism, we know that
h+ preserves the symbols in !. So let p ∈ !+\! be a predicate symbol of arity σ1 ×
. . . × σn with σ1, . . . ,σn ∈ !. There must be a !-formula φ(x1, . . . ,xn) such that
T + ! ∀σ1x1 . . . ∀σnxn(p(x1, . . . ,xn) ↔ φ(x1, . . . ,xn)). We know that h : M|! → N |!
is an elementary embedding, so in particular it preserves the formula φ(x1, . . . ,xn).
This implies that (m1, . . . ,mn) ∈ pM if and only if (hσ1 (m1), . . . ,hσn (mn)) ∈ pN .
Since h+

σi
= hσi for each i = 1, . . . ,n, it must be that h+ also preserves the predicate p.

An analogous argument demonstrates that h+ preserves functions and constants.

We now turn to the proof of Theorem 7.3.1.

Proof of Theorem 7.3.1 Let M be a model of T . First note that if M+ exists, then it is
unique up to isomorphism. For if N is a model of T + with N |! = M , then by letting
h be the identity map (which is an isomorphism) Lemma 7.3.2 implies that M+ ∼= N .
We need only to define the !+-structure M+. To guarantee that M+ is an expansion of
M we interpret every symbol in ! the same way that M does. We need to say how the
symbols in !+\! are interpreted. There are a number of cases to consider.

Suppose that p ∈ !+\! is a predicate symbol of arity σ1×. . .×σn with σ1, . . . ,σn ∈
!. There must be a !-formula φ(x1, . . . ,xn) such that T + ! ∀σ1x1 . . . ∀σnxn(p(x1, . . . ,

xn) ↔ φ(x1, . . . ,xn)). We define the interpretation of the symbol p in M+ by letting
M+(p) = M(φ). Obviously this definition implies that M+ ! δp. The cases of function
and constant symbols are handled similarly.

Let σ ∈ !+\! be a sort symbol. We describe the cases where T + defines σ as a
product sort or a subsort. The coproduct and quotient sort cases follow analogously.
Suppose first that σ is defined as a product sort with π1 and π2 the projections of arity
σ → σ1 and σ → σ2, respectively. We define M+

σ = M+
σ1

× M+
σ2

with πM+
1 : M+

σ →
M+
σ1

and πM+
2 : M+

σ → M+
σ2

the canonical projections. One can easily verify that
M+ ! δσ. On the other hand, suppose that σ is defined as a subsort with defining
!-formula φ(x) and inclusion i of arity σ → σ1. We define M+

σ = M(φ) ⊆ Mσ1 with
iM

+
: M+

σ → M+
σ1

the inclusion map. One can again verify that M+ ! δσ.

The previous result immediately yields an important corollary:

theorem 7.3.3 (Barrett) If T + is a Morita extension of T , then T + is a conservative
extension of T .

Proof Suppose that T + is not a conservative extension of T . One can easily see that
T ⊢ φ implies that T + ⊢ φ for every !-sentence φ. So there must be some !-sentence
φ such that T + ⊢ φ, but T ̸⊢ φ. This implies that there is a model M of T such
that M ! ¬φ. This model M has no expansion that is a model of T + since T + ⊢ φ,
contradicting Theorem 7.3.1.

Theorems 7.3.1 and 7.3.3 are natural generalizations from definition extensions to
Morita extensions. In the case that T + is a definitional extension of T , there are natural
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maps I : T → T + and R : T + → T that form a homotopy equivalence. We now define
a reduction map R : T + → T for the case where T + is a Morita extension of T .

Lemma 4.6.11 shows that if T + is a definitional extension of T to !+, then for every
!+-formula φ there is a corresponding !-formula Rφ such that T + ⊢ φ ↔ Rφ. The
following example demonstrates that this result does not generalize to the case of Morita
extensions in a perfectly straightforward manner.

Example 7.3.4 Recall the theories T and T + from Example 5.2.3, and consider the !+-
formula φ(x,z) defined by i(z) = x. One can easily see that there is no !-formula
φ∗(x,z) that is equivalent to φ(x,z) according to the theory T +. Indeed, the variable z

cannot appear in any !-formula since it is of sort σ+ ∈ !+\!. A !-formula simply
cannot say how variables with sorts in ! relate to variables with sorts in !+. "

In order to define R : T + → T , therefore, we need a way of specifying how variables
with sorts in !+\! relate to variables with sorts in !. We do this by defining the
concept of a “code” (see Szczerba, 1977).

definition 7.3.5 Let ! ⊆ !+ be signatures with T a !-theory and T + a Morita
extension of T to !+. We define a code formula ξ(x,y1,y2) for each variable x of sort
σ ∈ !+\! as follows:

• Suppose that T + defines σ as a product sort with π1 and π2 the corresponding
projections. Then ξ(x,y1,y2) is the !+-formula

(y1 = π1(x)) ∧ (y2 = π2(x)).

• Suppose that T + defines σ as a coproduct sort with corresponding function sym-
bols ρ1 : σ1 → σ and ρ2 : σ2 → σ. Then ξ(x,y1,y2) is either the !+-formula
ρ1(y1) = x or the !+-formula ρ2(y2) = x, where yi is a variable of sort σi .
(Note: ξ(x,y1,y2) is not the disjunction of these two formulas.)

• Suppose that T + defines σ as a subsort with i : σ → σ′ the corresponding
function symbol. Then ξ(x,y) is the formula i(x) = y, where y is a variable of
sort σ′ ∈ !.

• Suppose that T + defines σ as a quotient sort with ϵ : σ′ → σ the corresponding
function symbol. Then ξ(x,y) is the !+-formula ϵ(y) = x, where y is again a
variable of sort σ′ ∈ !.

• Given the empty sequence of variables, we let the empty code be the tautology
∃x(x =σ x), where σ ∈ ! is a sort symbol.

Given the conjuncts ξ1, . . . ,ξn, we will use the notation ξ(x1, . . . ,yn2) to denote
the code ξ1(x1,y11,y12) ∧ . . . ∧ ξn(xn,yn1,yn2) for the variables x1, . . . ,xn. Note that
the variables yi1 and yi2 have sorts in ! for each i = 1, . . . ,n. One should think of
a code ξ(x1, . . . ,yn2) for x1, . . . ,xn as encoding one way that the variables x1, . . . ,xn

with sorts in !+\! might be related to variables y11, . . . ,yn2 that have sorts in !.
One additional piece of notation will be useful in what follows. Given a !+-formula
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φ, we will write φ(x1, . . . ,xn,x1, . . . ,xm) to indicate that the variables x1, . . . ,xn

have sorts σ1, . . . ,σn ∈ !+\! and that the variables x1, . . . ,xm have sorts σ1, . . . ,

σm ∈ !.

lemma 7.3.6 (Functionality of codes) Let T be a !-theory and T + a Morita extension
of T to the signature !+. Let x⃗,z⃗ be n-tuples of variables of the same sorts in !+ and
let ξ(x⃗,y⃗) be a code for x⃗. Then we have

T + ⊢ (ξ(x⃗,y⃗) ∧ ξ(z⃗,y⃗)) → x⃗ = z⃗,

where x⃗ = z⃗ is shorthand for (x1 =σ1 z1) ∧ · · · ∧ (xn =σn zn).

Proof This fact follows immediately from the definition of codes.

We can now state our generalization of Lemma 4.6.11.

theorem 7.3.7 (Barrett) Let ! ⊆ !+ be signatures and T a !-theory. Suppose
that T + is a Morita extension of T to !+ and that φ(x1, . . . ,xn,x1, . . . ,xm) is a
!+-formula. Then for every code ξ(x1, . . . ,yn2) for the variables x1, . . . ,xn there is a
!-formula φ∗(x1, . . . ,xm,y11, . . . ,yn2) such that T + entails

ξ(x1, . . . ,yn2) → (φ(x1, . . . xn,x1, . . . ,xm) ↔ φ∗(x1, . . . ,xm,y11, . . . ,yn2)).

The idea behind Theorem 7.3.7 is simple. Although one might not initially be able to
translate a !+-formula φ into an equivalent !-formula φ∗, such a translation is possible
after one specifies how the variables in φ with sorts in !+\! are related to variables
with sorts in !.

We first prove the following lemma. Given a !+-term t , we will again write
t(x1, . . . ,xn,x1, . . . ,xm) to indicate that the variables x1, . . . ,xn have sorts σ1, . . . ,σn ∈
!+\! and that the variables x1, . . . ,xm have sorts σ1, . . . ,σm ∈ !.

lemma 7.3.8 Let t(x1, . . . ,xn,x1, . . . ,xm) be a !+-term of sort σ and x a variable of
sort σ. Let ξ(x,x1, . . . ,xn,y1,y2,y11, . . . ,yn2) be a code for the variables x,x1, . . . ,xn,
where the variables y1 and y2 are used for coding the variable x. Then there is a
!-formula φt (x,x1, . . . ,xm,y01, . . . ,yn2) such that T + implies

ξ(x, . . . ,yn2) →
(
t(x1, . . . ,xm) = x ↔ φt (x,x1, . . . ,xm,y1, . . . ,yn2)

)
.

If σ ∈ !, then x will not appear in the code ξ. If σ ∈ !+\!, then x will not appear in
the !-formula φt .

Proof We induct on the complexity of t . First, suppose that t is a variable xi of sort σ.
If σ ∈ !, then there are no variables in t with sorts in !+\!. So ξ must be the empty
code. Let φt (x,xi) be the !-formula x = xi . This choice of φt trivially satisfies the
desired property. If σ ∈ !+\!, then there are four cases to consider. We consider the
cases where σ is a product sort and a subsort. The coproduct and quotient cases follow
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analogously. Suppose that T + defines σ as a product sort with projections π1 and π2 of
arity σ → σ1 and σ → σ2. A code ξ for the variables x and xi must therefore be the
formula

π1(x) = y1 ∧ π2(x) = y2 ∧ π1(xi) = yi1 ∧ π2(xi) = yi2.

One defines the !-formula φt to be y1 = yi1 ∧ y2 = yi2 and verifies that it satisfies
the desired property. On the other hand, suppose that T + defines σ as a subsort with
injection i of arity σ → σ1. A code ξ for the variables x and xi is therefore the formula

i(x) = y ∧ i(xi) = yi1.

Let φt be the !-formula y = yi1. The desired property again holds.
Second, suppose that t is the constant symbol c. Note that it must be the case that

c is of sort σ ∈ !. If c ∈ !, then letting φt be the !-formula x = c trivially yields
the result. If c ∈ !+\!, then there is some !-formula ψ(x) that T + uses to explicitly
define c. Letting φt = ψ yields the desired result.

For the third (and final) step of the induction, we suppose that t is a term of the form

f
(
t1(x1, . . . ,xn,x1, . . . ,xm), . . . ,tk(x1, . . . ,xn,x1, . . . ,xm)

)
,

where f ∈ !+ is a function symbol. We show that the result holds for t if it holds for
all of the terms t1, . . . ,tk . There are three cases to consider. First, if f ∈ !, then it must
be that f has arity σ1 × . . . × σk → σ, where σ,σ1, . . . ,σk ∈ !. Let ξ be a code for
x1, . . . ,xn. We define φt to be the !-formula

∃σ1z1 . . . ∃σk zk

(
φt1 (z1,x1, . . . ,yn2) ∧ . . . ∧ φtk (zk,x1, . . . yn2) ∧ f (z1, . . . ,zk) = x

)
,

where each of the φti exists by our inductive hypothesis. One can verify that φt satisfies
the desired property. Second, if f ∈ !+\! is defined by a !-formula ψ(z1, . . . ,zk,x),
then one defines φt in an analogous manner to above. (Note that, in this case, the arity
of f is again σ1 × . . . × σk → σ with σ1, . . . ,σk,σ ∈ !.)

Third, we need to verify that the result holds if f is a function symbol that is used
in the definition of a new sort. We discuss the cases where f is π1 and where f is ϵ.
Suppose that f is π1 with arity σ → σ1. Then it must be that the term t1 is a variable
xi of sort σ since there are no other !+-terms of sort σ. So the term t is π1(xi). Let
ξ(xi,yi1,yi2) be a code for xi . It must be that ξ is the formula

π1(xi) = yi1 ∧ π2(xi) = yi2.

Letting φt be the formula yi1 = x yields the desired result. On the other hand, suppose
that f is the function symbol ϵ of arity σ1 → σ, where σ is a quotient sort defined by
the !-formula ψ(z1,z2). The term t in this case is ϵ(t1(x1, . . . ,xn,x1, . . . ,xm)), and we
assume that the result holds for the !+-term t1 of sort σ1 ∈ !. Let ξ be a code for
the variables x,x1, . . . ,xn. This code determines a code ξ for the variables x1, . . . ,xn

by “forgetting” the conjunct ϵ(y) = x that involves the variable x. We use the code
ξ and the inductive hypothesis to obtain the formula φt1 . Then we define φt to be the
!-formula
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∃σ1z
(
φt1 (z,x1, . . . ,xm,y11, . . . ,yn2) ∧ ψ(y,z)

)
.

Considering the original code ξ, one verifies that the result holds for φt1 .

We now turn to the proof of the main result.

Proof We induct on the complexity of φ. Suppose that φ is the formula t(x1, . . . ,xn,

x1, . . . ,xm) = s(x1, . . . ,xn,x1, . . . ,xm), where t and s are !+-terms of sort σ.
Let ξ(x1, . . . ,yn2) be a code for x1, . . . ,xn, and let x be a variable of sort σ. By
Lemma 7.3.8, there are corresponding !-formulas φt (x,x1, . . . ,xm,y11, . . . ,yn2) and
φs(x,x1, . . . ,xm,y11, . . . ,yn2). The !-formula φ∗ is then defined to be

∃σx
(
φt (x,x1, . . . ,xm,y11, . . . ,yn2) ∧ φs(x,x1, . . . ,xm,y11, . . . ,yn2)

)
.

One can verify that this definition of φ∗ satisfies the desired result.
If t and s are of sort σ ∈ !+\!, then there are four cases to consider. We show that

the result holds when T + defines σ as a product sort or a quotient sort. The coproduct
and subsort cases follow analogously. If T + defines σ as a product sort with projections
π1 and π2 of arity σ → σ1 and σ → σ2, then we define a code ξ(x,x1, . . . ,yn2,v1,v2)
for the variables x,x1, . . . ,xn by

ξ(x1, . . . ,yn2) ∧ π1(x) = v1 ∧ π2(x) = v2.

Lemma 7.3.8 and the code ξ for the variables x,x1, . . . ,xn generate the !-formulas
φt (x1, . . . ,xm,y11, . . . ,yn2,v1,v2) and φs(x1, . . . ,xm,y11, . . . ,yn2,v1,v2). We then
define the !-formula φ∗ to be

∃σ1v1∃σ2 v2
(
φt (x1, . . . ,xm,y11, . . . ,yn2,v1,v2)

∧ φs(x1, . . . ,xm,y11, . . . ,yn2,v1,v2)
)
.

One can verify that φ∗ again satisfies the desired result.
If T + defines σ as a quotient sort with projection ϵ of arity σ1 → σ, then we again

define a new code ξ(x,x1, . . . ,yn2,v) for the variables x,x1, . . . ,xn by

ξ(x1, . . . ,yn2) ∧ ϵ(v) = x,

Lemma 7.3.8 and the code ξ for the variables x,x1, . . . ,xn again generate the !-
formulas φt (x1, . . . ,xm,y11, . . . ,yn2,v) and φs(x1, . . . ,xm,y11, . . . ,yn2,v). We define
the !-formula φ∗ to be

∃σ1 v
(
φt (x1, . . . ,xm,y11, . . . ,yn2,v) ∧ φs(x1, . . . ,xm,y11, . . . ,yn2,v)

)
.

One again verifies that this φ∗ satisfies the desired property. So the result holds when φ
is of the form t = s for !+-terms t and s.

Now suppose that φ(x1, . . . ,xn,x1, . . . ,xm) is a !+-formula of the form

p(t1(x1, . . . ,xn,x1, . . . ,xm), . . . ,tk(x1, . . . ,xn,x1, . . . ,xm)),

where p has arity σ1 × . . . × σk . Note that it must be that σ1, . . . ,σk ∈ !. Either p ∈ !

or p ∈ !+\!. We consider the second case. (The first is analogous.) Let ψ(z1, . . . ,zk)
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be the !-formula that T + uses to explicitly define p and let ξ(x1, . . . ,yn2) be a code for
x1, . . . ,xn. Lemma 7.3.8 and ξ generate the !-formulas φti (zi,x1, . . . ,xm,y11, . . . ,yn2)
for each i = 1, . . . ,k. We define φ∗ to be the !-formula

∃σ1z1 . . . ∃σk zk

(
φt1 (z1,x1, . . . ,xm,y11, . . . ,yn2) ∧ . . .

∧ φtk (zk,x1, . . . ,xm,y11, . . . ,yn2) ∧ ψ(z1, . . . ,zk)
)
.

One can again verify that the result holds for this choice of φ∗.
We have covered the “base cases” for our induction. We now turn to the inductive step.

We consider the cases of ¬,∧, and ∀. Suppose that the result holds for !+-formulas φ1

and φ2. Then it trivially holds for ¬φ1 by letting (¬φ)∗ be ¬(φ∗). It also trivially holds
for φ1 ∧ φ2 by letting (φ1 ∧ φ2)∗ be φ∗

1 ∧ φ∗
2.

The ∀σi case requires more work. If xi is a variable of sort σi ∈ !, we let (∀σi xiφ1)∗

be ∀σi xi(φ∗
1). The only nontrivial part of the inductive step is when one quantifies over

variables with sorts in !+\!. Suppose that φ(x1, . . . ,xn,x1, . . . ,xm) is a !+-formula
and that the result holds for it. We let xi be a variable of sort σi ∈ !+\!, and we
show that the result also holds for the !-formula ∀σi xiφ(x1, . . . ,xn,x1, . . . ,xm). There
are again four cases. We show that the result holds when σi is a product sort and a
coproduct sort. The cases of subsorts and quotient sorts follow analogously.

Suppose that T + defines σi as a product sort with projections π1 and π2 of arity
σi → σi1 and σi → σi2. Quantifying over a variable xi of product sort σi can be
thought of as “quantifying over pairs of elements of sorts σi1 and σi2.” Indeed, let
ξ(x1, . . . ,yn2) be a code for the variables x1, . . . ,xi−1,xi+1, . . . ,xn (these are all of
the free variables in ∀σi xiφ with sorts in !+\!). We define a code ξ for the variables
x1, . . . ,xi−1,xi,xi+1, . . . ,xn by

ξ(x1, . . . ,yn2) ∧ π1(xi) = v1 ∧ π2(xi) = v2.

One uses the code ξ and the inductive hypothesis to generate the !-formula φ∗(x1, . . . ,

xm,y11, . . . ,yn2,v1,v2). We then define the !-formula (∀σi xiφ)∗ to be

∀σi1 v1∀σi2 v2φ∗(x1, . . . ,xm,y11, . . . ,yn2,v1,v2).

And one verifies that the desired result holds for this choice of (∀σi xiφ)∗.
Suppose that T + defines σi as a coproduct sort with injections ρ1 and ρ2 of arity

σi1 → σi and σi2 → σi . Quantifying over a variable xi of coproduct sort σi can
be thought of as “quantifying over both elements of sort σi1 and elements of sort σi2.”
Indeed, let ξ(x1, . . . ,yn2) be a code for the variables x1, . . . ,xi−1,xi+1, . . . ,xn (these are
again all of the free variables in ∀σi xiφ with sorts in !+\!). We define two different
codes ξ for the variables x1, . . . ,xi−1,xi,xi+1, . . . ,xn by

ξ(x1, . . . ,yn2) ∧ ρ1(v1) = xi

ξ(x1, . . . ,yn2) ∧ ρ2(v2) = xi .

We will call the first code ξ′(x1, . . . ,yn2,v1) and the second ξ′′(x1, . . . ,yn2,v2). We use
these two codes and the inductive hypothesis to generate !-formulas φ∗′

and φ∗′′
. We

then define the !-formula (∀σi xiφ)∗ to be
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∀σi1 v1∀σi2 v2
(
φ∗′

(x1, . . . ,xm,y11, . . . ,yn2,v2)

∧ φ∗′′
(x1, . . . ,xm,y11, . . . ,yn2,v2)

)
.

One can verify that the desired result holds again for this definition of (∀σi xiφ)∗.

Theorem 7.3.7 has the following immediate corollary.

corollary 7.3.9 Let ! ⊆ !+ be signatures and T a !-theory. If T + is a Morita
extension of T to !+, then for every !+-sentence φ there is a !-sentence φ∗ such that
T + ⊢ φ ↔ φ∗.

Proof Let φ be a !+-sentence, and consider the empty code ξ. Theorem 7.3.7 implies
that there is a !-sentence φ∗ such that T + ⊢ ξ → (φ ↔ φ∗). Since ξ is a tautology,
we trivially have that T + ⊢ φ ↔ φ∗.

The theorems in this section capture different senses in which a Morita extension of
a theory “says no more” than the original theory. In this way, Morita equivalence is
analogous to definitional equivalence.

At first glance, Morita equivalence might strike one as different from definitional
equivalence in an important way. To show that theories are Morita equivalent, one is
allowed to take any finite number of Morita extensions of the theories. On the other
hand, to show that two theories are definitionally equivalent, it appears that one is only
allowed to take one definitional extension of each theory. One might worry that Morita
equivalence is therefore not perfectly analogous to definitional equivalence.

Fortunately, this is not the case. Theorem 3.3 implies that if theories T1, . . . ,Tn are
such that each Ti+1 is a definitional extension of Ti , then Tn is, in fact, a definitional
extension of T1. (One can easily verify that this is not true of Morita extensions.) To
show that two theories are definitionally equivalent, therefore, one actually is allowed
to take any finite number of definitional extensions of each theory.

If two theories are definitionally equivalent, then they are trivially Morita equivalent.
Unlike definitional equivalence, however, Morita equivalence is capable of capturing
a sense in which theories with different sort symbols are equivalent. The following
example demonstrates that Morita equivalence is a more liberal criterion for theoretical
equivalence.

Example 7.3.10 Let !1 = {σ1,p,q} and !2 = {σ2,σ3} be signatures with σi sort
symbols, and p and q predicate symbols of arity σ1. Let T1 be the !1-theory that says
p and q are nonempty, mutually exclusive, and exhaustive. Let T2 be the empty theory
in !2. Since the signatures !1 and !2 have different sort symbols, T1 and T2 can’t
possibly be definitionally equivalent. Nonetheless, it’s easy to see that T1 and T2 are
Morita equivalent. Let ! = !1 ∪ !2 ∪ {i2,i3} be a signature with i2 and i3 function
symbols of arity σ2 → σ1 and σ3 → σ1. Consider the following !-sentences.



7.3 Morita Equivalence Implies Categorical Equivalence 219

∀σ1x
(
p(x) ↔ ∃σ2y(i2(y) = x)

)

∧ ∀σ2y1∀σ2y2
(
i2(y1) = i2(y2) → y1 = y2

) (δσ2 )

∀σ1x
(
q(x) ↔ ∃σ3z(i3(z) = x)

)

∧ ∀σ3z1∀σ3z2
(
i3(z1) = i3(z2) → z1 = z2

) (δσ3 )

∀σ1x
(
∃σ2=1y(i2(y) = x) ∨ ∃σ3=1z(i3(z) = x)

)

∧ ∀σ2y∀σ3z¬
(
i2(y) = i3(z)

) (δσ1 )

∀σ1x
(
p(x) ↔ ∃σ2y(i2(y) = x)

)
(δp)

∀σ1x
(
q(x) ↔ ∃σ3z(i3(z) = x)

)
(δq)

The !-theory T 1
1 = T1 ∪ {δσ2,δσ3} is a Morita extension of T1 to the signature !.

It defines σ2 to be the subsort of “elements that are p” and σ3 to be the subsort of
“elements that are q.”

The theory T 1
2 = T2∪{δσ1} is a Morita extension of T2 to the signature !2∪{σ1,i2,i3}.

It defines σ1 to be the coproduct sort of σ2 and σ3. Lastly, the !-theory T 2
2 = T 1

2 ∪
{δp,δq} is a Morita extension of T 1

2 to the signature !. It defines the predicates p and
q to apply to elements in the “images” of i2 and i3, respectively. One can verify that T 1

1
and T 2

2 are logically equivalent, so T1 and T2 are Morita equivalent. "

Morita equivalence captures a clear and robust sense in which theories might be
equivalent, but it is a difficult criterion to apply outside of the framework of first-order
logic. Indeed, without a formal language one does not have the resources to say what an
explicit definition is. Questions of equivalence and inequivalence of theories, however,
still come up outside of this framework. It is well known, for example, that there are
different ways of formulating the theory of smooth manifolds (Nestruev, 2002). There
are also different formulations of the theory of topological spaces (Kuratowski, 1966).
None of these formulations are first-order theories. Physical theories, too, are rarely
formulated in first-order logic, and there are many pairs of physical theories that have
been considered to be equivalent. We list just a few examples.

• According to the standard view in physics, Heisenberg’s matrix mechanics is
equivalent to Schrödinger’s wave mechanics – despite the fact that these theories
use completely different formalisms, and neither is axiomatizable in first-order
logic. Or, if you prefer to be more mathematically rigorous, quantum mechanics
can be formulated either in terms of Hilbert spaces or in terms of C∗-algebras.
There are good reasons, however, to think that these two formulations are equiv-
alent.

• A model of Einstein’s general theory of relativity (GTR) is typically taken to be
a smooth manifold with a Lorentzian metric. However, we have a free choice:
either we can use a metric of signature (3,1) or a metric of signature (1,3). These
two formulations of GTR seem to be equivalent – but it’s doubtful that we could
explicate that equivalence in terms of some regimentation of these theories in
first-order logic.
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In fact, GTR can also be formulated with a completely different mathematical
apparatus, viz. “Einstein algebras,” and there is a precise sense in which this for-
mulation is equivalent to the formulation in terms of manifolds (see Rosenstock
et al., 2015; Weatherall, 2018).

• GTR seems to differ radically from classical Newtonian gravitation, since the
latter posits a static spacetime structure. Some have claimed, in fact, that GTR
has a special property, called “general covariance,” that disguishes it from all
previous spacetime theories. However, in the mid-twentieth century, Henri Car-
tan formulated a coordinate-free version of Newtonian gravitation on a curved
spacetime. If this Newton–Cartan gravitational theory is equivalent to Newtonian
gravity, then the latter is also generally covariant. For discussion of this example,
see Glymour (1977); Knox (2014); Weatherall (2016a).

• In typical presentations of rigorous methods in classical physics, it is usually
assumed (or even partially demonstrated) that the Lagrangian formalism is equiv-
alent to the Hamiltonian formalism. However, North (2009) argues that these
two theories have different structure, and hence are inequivalent. For further dis-
cussion, see Halvorson (2011); Swanson and Halvorson (2012); Curiel (2014);
Barrett (2015).

• Most cutting-edge theories in physics make use of the so-called gauge formalism,
and this raises many challenging interpretive issues (see Healey, 2007). Philoso-
phers of science have recently entered into a dispute about whether gauge theories
are better thought of in terms of the fiber bundle formalism, or in terms of the
holonomy formalism. However, Rosenstock and Weatherall (2016) argue that the
two formalisms are equivalent.

Since none of the theories admits a first-order formulation (at least not in any obvi-
ous sense), Morita equivalence is incapable of validating these claims of equivalence.
Philosophers of science are left with two options: either claim or deny equivalence with-
out a precise account of the standards or propose a more broadly applicable explication
of equivalence. We pursue the second option here.

Among the many ways we could explicate theoretical equivalence, we find it most
promising to look for hints from contemporary mathematics. In other words, we look
to which ideas are working well in contemporary mathematics, and we try to put them
to work in the service of philosophy of science. One such fruitful ideas is the notion of
categorical equivalence, which we first mentioned in Chapter 3. Historically speaking,
categorical equivalence was first defined by Eilenberg and Mac Lane (1942, 1945), made
a brief appearance in some earlier work in philosophy of science (Pearce, 1985), and
has recently by reintroduced in philosophical discussion by Halvorson (2012, 2016);
Weatherall (2016a). In the remainder of this section, we review this notion, and prove
a few results that relate categorical and Morita equivalence. In summary, for theories
with a first-order formulation, Morita equivalence implies categorical equivalence, but
not vice versa.

Categorical equivalence is motivated by the following simple observation: First-order
theories have categories of models. If T is a !-theory, we will use the notation Mod(T )
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to denote the category of models of T . The objects of Mod(T ) are models of T . For
the arrows of Mod(T ), we have a couple of salient choices. On the one hand, we could
choose arrows to be homomorphisms – i.e., f : M → N is a function (or family of
functions) that preserves the extensions of the terms in the signature !. On the other
hand, we could choose arrows to be elementary embeddings – i.e., f : M → N is
an injective function (or family of functions) that preserves the extensions of all !

formulas.
Let Mod(T ) denote the category with elementary embeddings as arrows, and let

Modh(T ) denote the category with homomorphisms as arrows. But which of these
two categories, Mod(T ) or Modh(T ), should we think of as representing the theory
T ? We will choose the category Mod(T ), with elementary embeddings as arrows, for
the following reasons. First, the image of a model of T under a homomorphism f is not
necessarily a model of T . For example, let T be the theory (in a single-sorted signature)
that says there are exactly two things. Then a model M of T is a set with two elements.
However, the mapping f : M → M that takes both elements to a single element is
a homomorphism, and its image f (M) is not a model of T . Such a situation is not
necessarily a disaster, but it shows that homomorphisms do not mesh well with full
first-order logic. Second, Modh( · ) does not even preserve definitional equivalence –
i.e., there are definitionally equivalent theories T1 and T2 such that Modh(T1) is not
categorically equivalent to Modh(T2).

Example 7.3.11 Let !1 = {σ}, where σ is a sort symbol, and let T1 be the theory in
!1 that says there are exactly two things. Let !2 = {σ,θ} where θ is a relation of
arity σ × σ, and let T2 be the theory in !2 that says there are exactly two things, and
T2 ! θ(x,y) ↔ (x ̸= y). Obviously T2 is a definitional extension of T1. Now, every
arrow of Modh(T2) is an injection, since it preserves θ and hence ̸=. But arrows of
Modh(T1) need not be injections. Therefore, Modh(T1) and Modh(T2) are not categori-
cally equivalent. "

Because of these issues with homomorphisms, we will continue to associate a the-
ory T with the category Mod(T ) whose objects are models of T and whose arrows
are elementary embeddings between these models. We recall now the definition of an
equivalence of categories.

definition 7.3.12 A functor F : C → D is called an equivalence of categories just
in case there is a functor G : D → C, and natural isomorphisms η : GF ⇒ 1C and
ε : FG ⇒ 1D.

We will also need the following fact, a standard result of category theory (see Mac
Lane, 1971, p. 93).

proposition 7.3.13 A functor F : C → D is equivalence of categories iff F is full,
faithful, and essentially surjective.

While each first-order theory T defines a category Mod(T ), this structure is not
particular to first-order theories. Indeed, one can easily define categories of models



222 7 Semantic Metalogic Redux

for the different formulations of the theory of smooth manifolds and for the different
formulations of the theory of topological spaces. The arrows in these categories are
simply the structure-preserving maps between the objects in the categories. One can
also define categories of models for physical theories; see, for example, Barrett (2015);
Rosenstock et al. (2015); Weatherall (2016a,c, 2018). This means that the following
criterion for theoretical equivalence is applicable in a more general setting than defini-
tional equivalence and Morita equivalence. In particular, it can be applied outside of the
framework of first-order logic.

definition 7.3.14 Theories T1 and T2 are categorically equivalent if their cate-
gories of models Mod(T1) and Mod(T2) are equivalent.

Categorical equivalence captures a sense in which theories have “isomorphic seman-
tic structure.” If T1 and T2 are categorically equivalent, then the relationships that models
of T1 bear to one another are “isomorphic” to the relationships that models of T2 bear to
one another.

In order to show how categorical equivalence relates to Morita equivalence, we focus
on first-order theories. We will show that categorical equivalence is a strictly weaker
criterion for theoretical equivalence than Morita equivalence is. We first need some
preliminaries about the category of models Mod(T ) for a first-order theory T . Suppose
that ! ⊆ !+ are signatures and that the !+-theory T + is an extension of the !-theory
T . There is a natural “projection” functor " : Mod(T +) → Mod(T ) from the category
of models of T + to the category of models of T . The functor " is defined as follows.

• "(M) = M|! for every object M in Mod(T +).

• "(h) = h|! for every arrow h : M → N in Mod(T +), where the family of maps
h|! is defined to be h|! = {hσ : Mσ → Nσ such that σ ∈ !}.

Since T + is an extension of T , the !-structure "(M) is guaranteed to be a model of T .
Likewise, the map "(h) : M|! → N |! is guaranteed to be an elementary embedding.
One can easily verify that " : Mod(T +) → Mod(T ) is a functor.

The following three propositions will together establish the relationship between
Mod(T +) and Mod(T ) when T + is a Morita extension of T . They imply that when T +

is a Morita extension of T , the functor " : Mod(T +) → Mod(T ) is full, faithful, and
essentially surjective. The categories Mod(T +) and Mod(T ) are therefore equivalent.

proposition 7.3.15 Let ! ⊆ !+ be signatures and T a !-theory. If T + is a Morita
extension of T to !+, then " is essentially surjective.

Proof If M is a model of T , then Theorem 7.3.1 implies that there is a model M+ of
T + that is an expansion of M . Since "(M+) = M+|! = M the functor " is essentially
surjective.

proposition 7.3.16 Let ! ⊆ !+ be signatures and T a !-theory. If T + is a Morita
extension of T to !+, then " is faithful.

Proof Let h : M → N and g : M → N be arrows in Mod(T +), and suppose that
"(h) = "(g). We show that h = g. By assumption, hσ = gσ for every sort symbol
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σ ∈ !. We show that hσ = gσ also for σ ∈ !+\!. We consider the cases where T +

defines σ as a product sort or a subsort. The coproduct and quotient sort cases follow
analogously.

Suppose that T + defines σ as a product sort with projections π1 and π2 of arity
σ → σ1 and σ → σ2. Then the following equalities hold.

πN
1 ◦ hσ = hσ1 ◦ πM

1 = gσ1 ◦ πM
1 = πN

1 ◦ gσ

The first and third equalities hold since h and g are elementary embeddings, and the
second since hσ1 = gσ1 . One can verify in the same manner that πN

2 ◦ hσ = πN
2 ◦ gσ.

Since N is a model of T + and T + defines σ as a product sort, we know that N !
∀σ1x∀σ2y∃σ=1z(π1(z) = x ∧ π2(z) = y). This implies that hσ = gσ.

On the other hand, if T + defines σ as a subsort with injection i of arity σ → σ1, then
the following equalities hold:

iN ◦ hσ = hσ1 ◦ iM = gσ1 ◦ iM = iN ◦ gσ.

These equalities follow in the same manner as previously. Since iN is an injection it
must be that hσ = gσ.

Before proving that " is full, we need the following simple lemma.

lemma 7.3.17 Let M be a model of T + with a1, . . . ,an elements of M of sorts
σ1, . . . ,σn ∈ !+\!. If x1, . . . ,xn are variables sorts σ1, . . . ,σn, then there is
a code ξ(x1, . . . ,xn,y11, . . . ,yn2) and elements b11, . . . ,bn2 of M such that M !
ξ[a1, . . . ,an,b11, . . . ,bn2].

Proof We define the code ξ(x1, . . . ,yn2). If T + defines σi as a product sort, quotient
sort, or subsort, then we have no choice about what the conjunct ξi(xi,yi1,yi2) is. If
T + defines σi as a coproduct sort, then we know that either there is an element bi1 of
M such that ρ1(bi1) = ai or there is an element bi2 of M such that ρ2(bi2) = ai . If
the former, we let ξi be ρ1(yi1) = xi , and if the latter, we let ξi be ρ2(yi2) = xi . One
defines the elements b11, . . . ,bn2 in the obvious way. For example, if σi is a product
sort, then we let bi1 = πM

1 (ai) and bi2 = πM
2 (ai). By construction, we have that M !

ξ[a1, . . . ,an,b11, . . . ,bn2].

We now use this lemma to show that " is full.

proposition 7.3.18 Let ! ⊆ !+ be signatures and T a !-theory. If T + is a Morita
extension of T to !+, then " is full.

Proof Let M and N be models of T + with h : "(M) → "(N ) an arrow in Mod(T ).
This means that h : M|! → N |! is an elementary embedding. We show that the map
h+ : M → N is an elementary embedding and therefore an arrow in Mod(T +). Since
"(h+) = h, this will imply that " is full.

Let φ(x1, . . . ,xn,x1, . . . ,xm) be a !+-formula, and let a1, . . . ,an,a1, . . . ,am be ele-
ments of M of the same sorts as the variables x1, . . . ,xn,x1, . . . ,xm. Lemma 7.3.17
implies that there is a code ξ(x1, . . . ,xn,y11, . . . ,yn2) and elements b11, . . . ,bn2 of M

such that M ! ξ[a1, . . . ,an,b11, . . . ,bn2]. The definition of the map h+ implies that
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N ! ξ[h+(a1, . . . ,an,b11, . . . ,bn2)]. We now show that M ! φ[a1, . . . ,an,a1, . . . ,am]
if and only if N ! φ[h+(a1, . . . ,an,a1, . . . ,am)]. By Theorem 7.3.7, there is a !-
formula φ∗(x1, . . . ,xm,y11, . . . ,yn2) such that

T + ! ∀σ1x1 . . .∀σnxn∀σ1x1 . . . ∀σmxm∀σ11y11 . . . ∀σn2yn2
(
ξ(x1, . . . ,yn2) →

(
φ(x1, . . . xn,x1, . . . ,xm) ↔ φ∗(x1, . . . ,xm,y11, . . . ,yn2)

)) (7.1)

We then see that the following string of equivalences holds.

M ! φ[a1, . . . ,an,a1, . . . ,am] ⇐⇒M ! φ∗[a1, . . . ,am,b11, . . . ,bn2]

⇐⇒M|! ! φ∗[a1, . . . ,am,b11, . . . ,bn2]

⇐⇒N |! ! φ∗[h(a1, . . . ,am,b11, . . . ,bn2)]

⇐⇒N ! φ∗[h(a1, . . . ,am,b11, . . . ,bn2)]

⇐⇒N ! φ∗[h+(a1, . . . ,am,b11, . . . ,bn2)]

⇐⇒N ! φ[h+(a1, . . . ,an,a1, . . . ,am)]

The first and sixth equivalences hold by (5) and the fact that M and N are models of T +,
the second and fourth hold since φ∗ is a !-formula, the third since h : M|! → N |!
is an elementary embedding, and the fifth by the definition of h+ and the fact that the
elements a1, . . . ,am,b11, . . . ,bn2 have sorts in !.

These three propositions provide us with the resources to show how categorical
equivalence is related to Morita equivalence. Our first result follows as an immediate
corollary.

theorem 7.3.19 (Barrett) Morita equivalence entails categorical equivalence.

Proof Suppose that T1 and T2 are Morita equivalent. Then there are theories T 1
1 , . . . ,T n

1
and T 1

2 , . . . ,T m
2 that satisfy the three conditions in the definition of Morita equivalence.

Propositions 7.3.15, 7.3.16, and 7.3.18 imply that the " functors between these theories,
represented by the arrows in the following figure, are all equivalences.

· · · ···

Mod(Tn
1) Mod(Tm

2 )

Mod(T1
2)

Mod(T2)Mod(T1)

Mod(T1
1)

=

This implies that Mod(T1) is equivalent to Mod(T2), and so T1 and T2 are categorically
equivalent.

The converse to Theorem 7.3.19, however, does not hold. There are theories that are
categorically equivalent but not Morita equivalent. In order to show this, we need one
piece of terminology.
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definition 7.3.20 A category C is discrete if it is equivalent to a category whose
only arrows are identity arrows.

Note that discrete categories are essentially just sets. In other words, each discrete
category is uniquely determined by its underlying set of objects.

theorem 7.3.21 Categorical equivalence does not entail Morita equivalence.

Proof Let !1 = {σ1,p0,p1,p2, . . .} be a signature with a single sort symbol σ1 and a
countable infinity of predicate symbols pi of arity σ1. Let !2 = {σ2,q0,q1,q2, . . .} be a
signature with a single sort symbol σ2 and a countable infinity of predicate symbols qi

of arity σ2. Define the !1-theory T1 and !2-theory T2 as follows.

T1 = {∃σ1=1x(x = x)}
T2 = {∃σ2=1y(y = y),∀σ2y(q0(y) → q1(y)),∀σ2y(q0(y) → q2(y)), . . .}

The theory T2 has the sentence ∀σ2y(q0(y) → qi(y)) as an axiom for each i ∈ N.
We first show that T1 and T2 are categorically equivalent. It is easy to see that

Mod(T1) and Mod(T2) both have 2ℵ0 (non-isomorphic) objects. Furthermore, Mod(T1)
and Mod(T2) are both discrete categories. We show here that Mod(T1) is discrete.
Suppose that there is an elementary embedding f : M → N between models M and
N of T1. It must be that f maps the unique element m ∈ M to the unique element
n ∈ N . Furthermore, since f is an elementary embedding, M ! pi[m] if and only if
N ! pi[n] for every predicate pi ∈ !1. This implies that f : M → N is actually
an isomorphism. Every arrow f : M → N in Mod(T1) is therefore an isomorphism,
and there is at most one arrow between any two objects of Mod(T1). This immediately
implies that Mod(T1) is discrete. An analogous argument demonstrates that Mod(T2)
is discrete. Any bijection between the objects of Mod(T1) and Mod(T2) is therefore an
equivalence of categories.

But T1 and T2 are not Morita equivalent. Suppose, for contradiction, that T is a
“common Morita extension” of T1 and T2. Corollary 7.3.9 implies that there is a !1-
sentence φ such that T ⊢ ∀yq0(y) ↔ φ. One can verify using Theorem 7.3.1 and
Corollary 7.3.9 that the sentence φ has the following property: If ψ is a !1-sentence
and T1 ⊢ ψ → φ, then either (i) T1 ⊢ ¬ψ or (ii) T1 ⊢ φ → ψ. But φ cannot have this
property. Consider the !1-sentence

ψ := φ ∧ ∀xpi(x),

where pi is a predicate symbol that does not occur in φ. We trivially see that T1 ⊢
ψ → φ, but neither (i) nor (ii) hold of ψ. This implies that T1 and T2 are not Morita
equivalent.

7.4 From Geometry to Conceptual Relativity

The twentieth century saw wide swings in prevailing philosophical opinion. In the
1920s, the logical positivists staked out a decidedly antirealist position, particularly in
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their rejection of the possibility of metaphysical knowledge. Only a few decades later,
prevailing opinion had reached the opposite end of the spectrum. The great analytic
philosophers of the 1970s and 1980s – Putnam, Lewis, Kripke, etc. – were unabashed
proponents of scientific and metaphysical realism. Or perhaps it would be more accu-
rate to say that these philosophers presupposed realism and built their philosophical
programs on the assumption that there is a kind of knowledge that transcends the claims
of the empirical sciences.

But the pendulum didn’t rest there. By the end of the twentieth century, several
analytic philosophers were giving arguments against realism, saying that it didn’t mesh
well with the way that the sciences actually work. For example, Putnam and Goodman
pointed to the existence of different formulations of Euclidean geometry, some of which
take points as primitives, and some of which take lines as primitives, saying that realists
must render the incorrect verdict that these are inequivalent theories. We will call the
invocation of this particular example the argument from geometry against realism.

According to the argument from geometry, certain situations can equally well be
described using a theory that takes points as fundamental entities or, instead, using a
theory that takes lines as fundamental entities. Someone who adopts the first theory
is committed to the existence of points and not lines, while someone who adopts the
second theory is committed to the existence of lines and not points. But points and lines
are different kinds of things, and, in general, the number of points (according to the
first theory) will be different from the number of lines (according to the second theory).
Since both parties correctly describe the world but use different ontologies to do so, it’s
supposed to follow that there is no matter of fact about what the ontology of the world
is – in direct contradiction with a fundamental tenet of metaphysical realism.

In responding to examples of this sort, metaphysical realists typically agree that
the two theories in question involve incompatible ontological commitments (see Sider,
2009; van Inwagen, 2009). These realists then claim, however, that at most one of the
two theories can be correct, at least in a fundamental sense. The upshot of this kind
of response, of course, is that a realist ontology has been purchased at the price of an
epistemic predicament: Only one of the theories is correct, but we will never know
which one.

In this section, we propose another reply to arguments of this sort, and specifically
to the argument from geometry. We show that geometries with points can naturally be
considered equivalent to geometries with lines, and we argue that this equivalence does
not in any way threaten the idea that there is an objective world. In other words, since
these two theories are equivalent, there is a sense in which they involve exactly the same
ontological commitments. The example of geometries with points and geometries with
lines does not undermine metaphysical realism in the way that Putnam and Goodman
suggested.

There are many ways to formulate a particular geometric theory, and these formu-
lations often differ with respect to the kinds of objects that are taken as primitive.
The most famous example of this phenomenon is Euclidean geometry. Tarski first
formulated Euclidean geometry using open balls (Tarski, 1929), and later using points
(Tarski, 1959). Schwabhäuser and Szczerba (1975) formulated Euclidean geometry
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using lines, and Hilbert (1930) used points, lines, planes, and angles. These formulations
of Euclidean geometry all take different kinds of objects to be primitive, but despite
this ostensible difference, they nonetheless manage to express the same geometric facts.
Indeed, it is standard to recognize some sense in which all of these formulations of
Euclidean geometry are equivalent. This sense of equivalence, however, is rarely made
perfectly precise.

In fact, from a certain point of view, it might seem that these theories cannot be
equivalent. Consider a simple example: Take six lines in the Euclidean plane, as in the
following diagram.

On the one hand, if this diagram were described in terms of the point-based version
of Euclidean geometry (Tp), then we would say that there are exactly five things. On
the other hand, if this diagram were described in terms of the line-based version of
Euclidean geometry (Tℓ), then we would say that there are exactly six things. The
point-based and line-based descriptions therefore seem to disagree about a feature of
the diagram – namely, how many things there are in the diagram.

Indeed, according to one natural notion of theoretical equivalence, the first descrip-
tion Tp is not equivalent to the second description Tℓ. The notion we have in mind is
definitional equivalence, which we introduced in Section 4.6, and which first entered
into philosophy of science through the work of Glymour (1971, 1977, 1980). If two
theories are definitionally equivalent, then the cardinalities of their respective domains
will be equal. Since the domains of Tp and Tℓ do not have the same cardinality, these
descriptions cannot be definitionally equivalent.

This would be the end of the matter if definitional equivalence were the only legiti-
mate notion of theoretical equivalence. But, as we now know, there is a better notion of
theoretical equivalence that does not prejudge issues about the cardinality of domains.

All of the geometries that we will consider are formulated using (some subset of) the
following vocabulary. Here we follow Schwabhäuser et al. (1983).

• The sort symbols σp and σℓ will indicate the sort of points and the sort of lines,
respectively. We will use letters from the beginning of the alphabet like a,b,c to
denote variables of sort σp, and letters from the end of the alphabet like x,y,z to
denote variables of sort σℓ.
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• The predicate symbol r(a,x) of arity σp × σℓ indicates that the point a lies on the
line x.

• The predicate symbol s(a,b,c) of arity σp ×σp ×σp indicates that the points a,b,
and c are colinear.

• The predicate symbol p(x,y) of arity σℓ × σℓ indicates that the lines x and y

intersect.

• Lastly, the predicate symbol o(x,y,z) of arity σℓ ×σℓ ×σℓ indicates that the lines
x,y, and z are compunctual – i.e., that they all intersect at a single point.

We now prove two theorems that capture the equivalence between geometries with
points and geometries with lines. We then provide three examples that illustrate the
generality of these results.

Suppose that we are given a formulation of geometry T that uses both of the sort
symbols σp and σℓ. The two theorems that we will prove in this section show that,
given some natural assumptions, the theory T is Morita equivalent both to a theory
Tp that only uses the sort σp and to a theory Tℓ that only uses the sort σℓ. In this sense,
therefore, the geometry T can be formulated using only points, only lines, or both points
and lines.

Our first theorem captures a sense in which the geometry T can be formulated using
only points. In order to prove this theorem, we will need the following important result.
The proof of this proposition is given by Schwabhäuser et al. (1983, Proposition 4.59).

proposition 7.4.1 (Elimination of line variables) Let T be a theory formulated in
the signature ! = {σp,σℓ,r,s}, and suppose that T entails the following sentences:

1. (a ̸= b) → ∃=1x (r(a,x) ∧ r(b,x))
2. ∀x∃a∃b (r(a,x) ∧ r(b,x) ∧ (a ̸= b))
3. s(a,b,c) ↔ ∃x (r(a,x) ∧ r(b,x) ∧ r(c,x))

Then for every !-formula φ without free variables of sort σl , there is a !-formula φ∗,
whose free variables are included in those of φ, that contains no variables of sort σℓ,
and such that T ! ∀a⃗(φ(a⃗) ↔ φ∗(a⃗)).

We should take a moment here to unravel the intuition behind this proposition. The
theory T can be thought of as a geometry that is formulated in terms of points and
lines, using the basic notions of a point lying on a line and three points being colinear.
Since the theory T is a geometry, the sentences 1, 2, and 3 are sentences that one should
naturally expect T to satisfy. Given these assumptions on T , Proposition 7.4.1 simply
guarantees that !-formulas φ can be “translated” into corresponding formulas φ∗ that
do not use the apparatus of lines. This translation eliminates the line variables from every
!-formula in two steps. First, one uses the fact that every line is uniquely characterized
by two nonidentical points lying on it to replace equalities between line variables with
more complex expressions using the predicate r . Second, one replaces instances of
the predicate r(a,x) by using complex expressions involving the colinearity predicate
s(a,b,c). The reader is encouraged to consult Schwabhäuser et al. (1983, Proposition
4.59) for details.
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With this proposition in hand, we have the following result.

theorem 7.4.2 (Barrett) Let T be a theory that satisfies the hypotheses of Proposition
7.4.1. Then there is a theory Tp in the restricted signature !0 = !\{σℓ,r} that is Morita
equivalent to T .

Theorem 7.4.2 captures a sense in which every geometry that is formulated with
points and lines could be formulated equally well using only points. The idea behind
the proof of Theorem 7.4.2 should be clear. Consider the !0-theory defined by

Tp = {φ∗ : T ⊢ φ},

where the existence of the sentences φ∗ is guaranteed by the fact that T satisfies the
hypotheses of Proposition 7.4.1. The theory Tp can be thought of as a theory that “says
the same thing as T ” but uses only the apparatus of points. One proves Theorem 7.4.2
by showing that this theory Tp has the resources to define the sort σℓ of lines. (Note that
in the following proof we abuse our convention and occasionally use the variables x,y,z

as variables that are not of sort σℓ. But the sort of variables should always be clear from
context.)

Proof of Theorem 7.4.2 It suffices to show that the theories T and Tp are Morita equiv-
alent. The following figure illustrates the structure of our argument:

T

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Tp

T1
p

T2
p

T3
p

T4
p

· · ·

T+∼=

We begin on the right-hand side of the figure by building four theories T 1
p , T 2

p , T 3
p , and

T 4
p . The purpose of these theories is to define, using the resources of the theory Tp, the

symbols σℓ and r .
Step 1: The theory T 1

p is the Morita extension of Tp obtained by defining a new
sort symbol σp × σp as a product sort (of the sort σp with itself). We can think of the
elements of the sort σp × σp as pairs of points. The theory T 1

p is a Morita extension of
Tp to the signature !0 ∪ {σp × σp,π1,π2}, where π1 and π2 are both function symbols
of arity σp × σp → σp.

Step 2: The theory T 2
p is the Morita extension of T 1

p obtained by defining a new sort
symbol σs as a subsort of σp × σp. The elements of sort σs are the elements (a,b) of
sort σp × σp such that a ̸= b. One can easily write out the defining formula for the
subsort σs to guarantee that this is the case. We can think of the elements of sort σs as
the pairs of distinct points or, more intuitively, as the “line segments formed between
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distinct points.” The theory T 2
p is a Morita extension of T 1

p to the signature !0 ∪ {σp ×
σp,π1,π2,σs,i}, where i is a function symbol of arity σs → σp × σp.

Step 3: The theory T 2
p employs a sort of “line segments,” but we do not yet have a sort

of lines. Indeed, we need to take care of the fact that some line segments determine the
same line. We do this by considering the theory T 3

p , the Morita extension of T 2
p obtained

by defining the sort symbol σℓ as a quotient sort of σs using the formula

s(π1 ◦ i(x),π1 ◦ i(y),π2 ◦ i(y)) ∧ s(π2 ◦ i(x),π1 ◦ i(y),π2 ◦ i(y)).

Using the fact that T is a conservative extension of Tp, one can easily verify that T 2
p

satisfies the admissibility conditions for this definition – i.e., the preceding formula is
an equivalence relation according to T 2

p . The idea here is simple: two line segments
(a1,a2) and (b1,b2) determine the same line just in case the points a1,b1,b2 are colinear,
and the points a2,b1,b2 are, too. The theory T 3

p simply identifies the line segments that
determine the same line in this sense. We have now defined the sort σℓ of lines. The
theory T 3

p is a Morita extension of T 2
p to the signature !0 ∪{σp ×σp,π1,π2,σs,i,σℓ,ϵ},

where ϵ is a function symbol of sort σs → σℓ.
Step 4: All that remains on the right-hand side of the figure is to define the predicate

symbol r . The theory T 4
p is the Morita extension of T 3

p obtained by defining the predicate
r(a,z) using the formula

∃σp×σpx∃σs y(π1(x) = a ∧ i(y) = x ∧ ϵ(y) = z).

The idea here is again intuitive. A point a is on a line z just in case there is another point
b such that the pair of points (a,b) determines the line l. (In the preceding formula, one
can think of the variable x as playing the role of this pair (a,b).) The theory T 4

p is a
Morita extension of T 3

p to the signature !0 ∪ {σp × σp,π1,π2,σs,i,σℓ,ϵ,r}.
Step 5: We now turn to the left-hand side of our organizational figure. The theory T

is formulated in the signature !, so it needs to define all of the new symbols that we
added to the theory Tp in the course of defining σp and r . The theory T defines the
symbols σp × σp,π1,π2,σs,i in the obvious manner. For example, it defines σp × σp

as the product sort (of σp with itself) with the projections π1 and π2.
We still need, however, to define the function symbol ϵ. The function ϵ intuitively

maps a pair of distinct points to the line that they determine. This suggests that we
define ϵ(x) = y using the formula

r(π1 ◦ i(x),y) ∧ r(π2 ◦ i(x),y).

Intuitively, this formula is saying that a pair of points x = (x1,x2) determines a line y

just in case x1 is on y and x2 is on y. We call the theory that results from defining all of
these symbols T +.

Step 6: All that remains now is to show that the theory T 4
p is logically equivalent to

the theory T +. This argument is mainly a tedious verification. The only nontrivial part
of the argument is the following: one needs to show that T 4

p ! φ for every sentence φ
such that T ! φ. One does this by verifying that T 4

p itself entails the three sentences
1, 2, and 3 in the statement of Proposition 1. This means that T 4

p entails the sentences
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φ ↔ φ∗ for every !-sentence φ. In conjunction with the fact that T 4
p ! φ∗ for every

consequence φ of T , this implies that T 4
p ! φ. The theories T 4

p and T + are logically
equivalent, so Tp and T must be Morita equivalent.

Our second theorem is perfectly analogous to Theorem 7.4.2. It captures a sense
in which a geometry T can be formulated using only lines. As with Theorem 7.4.2,
we will need a preliminary result. The proof of the following proposition is given by
Schwabhäuser et al. (1983, Proposition 4.89).

proposition 7.4.3 (Elimination of point variables) Let T be a theory formulated in
the signature ! = {σp,σℓ,r,p,o}, and suppose that T implies the following sentences.

1. (x ̸= y) → ∃≤1a(r(a,x) ∧ r(a,y))
2. ∀a∃x∃y((x ̸= y) ∧ r(a,x) ∧ r(a,y))
3. o(x,y,z) ↔ ∃a(r(a,x) ∧ r(a,y) ∧ r(a,z))
4. p(x,y) ↔ ((x ̸= y) ∧ s(x,y,y))
5. p(x,y) ↔ ((x ̸= y) ∧ ∃a(r(a,x) ∧ r(a,y)))

Then for every !-formula φ without free variables of sort σp, there is a !-formula φ∗,
whose free variables are included in those of φ, that contains no variables of sort σp,
and such that T ! ∀x⃗(φ(x⃗) ↔ φ∗(x⃗)).

Proposition 7.4.3 is perfectly analogous to Proposition 7.4.1. One again thinks of
the theory T as a geometry, and so sentences 1–5 are sentences that one naturally
expects T to satisfy. Proposition 7.4.3 guarantees that !-formulas can be “translated”
into formulas φ∗ that do not use the apparatus of points. Analogous to Proposition
7.4.1, one proves this proposition by showing that variables of sort σp can be eliminated
in the following manner. One first replaces equalities between these variables and then
interprets r(a,x) in terms of o(y,z,x), where y and z have a as their intersection point.
The reader is invited to consult Schwabhäuser et al. (1983, Proposition 4.89) for further
details.

With Proposition 7.4.3 in hand, we have the following result.

theorem 7.4.4 (Barrett) Let T be a theory that satisfies the hypotheses of Proposition
7.4.3. There is a theory Tℓ in the restricted signature !0 = !\{σp,r} that is Morita
equivalent to T .

Proof The proof is analogous to the proof of Theorem 7.4.2, so we will not go into
as much detail. Consider the !0-theory Tℓ defined by Tℓ = {φ∗ : T ⊢ φ}, where
the existence of the sentences φ∗ is guaranteed since T satisfies the hypotheses of
Proposition 7.4.3. One shows that the theory Tℓ is Morita equivalent to T . The theory Tℓ

needs to define the sort symbol σp. It does this by first defining a product sort of “pairs
of lines,” and then a subsort of “pairs of intersecting lines.” The sort of points is then the
quotient sort that results from identifying two pairs of intersecting lines (w,x) and (y,z)
just in case both w,x,y and w,x,z are compunctual. The theory Tℓ also needs to define
the symbol r . It does this simply by requiring that r(a,x) holds of a point a and a line x
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just in case there is another line y such that the pair of lines (x,y) intersect at the point
a. As in the proof of Theorem 7.4.2, T defines the symbols of Tℓ in the natural way.

Theorem 7.4.2 shows that every geometry formulated using points and lines could
be formulated equally well using only points; Theorem 7.4.4 shows that it could
be formulated equally well using only lines. These two results together capture a
robust sense in which geometries with points and geometries with lines are equivalent
theories.

Theorems 7.4.2 and 7.4.4 are quite general. Indeed, one can verify that many of
the theories that we usually think of as geometries satisfy the hypotheses of the two
theorems. We provide three examples here. We begin by revisiting a simple geometric
theory that we considered earlier.

Example 7.4.5 Recall the earlier diagram of six lines and five points in the Euclidean
plane. By interpreting the symbols σp,σℓ,r,s,p, and o in the natural way, one can
easily convert this diagram into a {σp,σℓ,r,s,p,o}-structure M . We now consider the
geometric theory Th(M) = {φ : M ⊢ φ}. One can verify by inspection that Th(M)
satisfies the hypotheses of both Theorems 7.4.2 and 7.4.4. Theorem 7.4.2 implies that
this diagram can be fully described using only the apparatus of points (using the theory
Th(M)p), while Theorem 7.4.4 implies that it can be fully described using only the
apparatus of lines (using the theory Th(M)ℓ), and all three of these theories are Morita
equivalent. "

In our next two examples, we consider more general geometric theories: projective
geometry and affine geometry.

Example 7.4.6 (Projective geometry) Projective geometry is a theory Tproj formulated
in the signature {σp,σℓ,r}, where all of these symbols are understood exactly as they
were earlier. The theory Tproj has the following three axioms (Barnes and Mack, 1975).

• a ̸= b → ∃=1x(r(a,x) ∧ r(b,x))

• x ̸= y → ∃=1a(r(a,x) ∧ r(a,y)

• There are at least four points, no three of which lie on the same line.

(One can easily express the third axiom as a sentence of first-order logic, but we here
refrain for the sake of clarity.)

Projective geometry satisfies the hypotheses of both Theorems 7.4.2 and 7.4.4. We
consider Theorem 7.4.4. In order to apply this result, we need to add the following two
axioms that define the symbols p and o:

p(x,y) ↔ (x ̸= y ∧ ∃a(r(a,x) ∧ r(a,y))) (θp)

o(x,y,z) ↔ ∃a(r(a,x) ∧ r(a,y) ∧ r(a,z)) (θo)
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One can easily verify that the {σℓ,σp,r,p,o}-theory T +
proj obtained by adding the def-

initions θp and θo to the axioms of Tproj satisfies sentences 1–5 of Proposition 7.4.3.
Theorem 7.4.4 then implies that there is a theory in the restricted signature {σℓ,p,c}
that is Morita equivalent to T +

proj. Projective geometry can therefore be formulated using
only the apparatus of lines. One argues in a perfectly analogous manner to show that
Theorem 7.4.2 also applies to projective geometry, so it can also be formulated using
only the apparatus of points. "

Example 7.4.7 (Affine geometry) Affine geometry is a theory Taff formulated in the
signature {σℓ,σp,r}, where all of these symbols are again understood exactly as earlier.
The theory Taff has the following five axioms (Veblen and Young, 1918, 118).

• a ̸= b → ∃x(r(a,x) ∧ r(b,x))

• ¬r(a,x) → ∃=1y(r(a,y) ∧ ∀b(r(b,y) → ¬r(b,x)))

• ∀x∃a∃b(a ̸= b ∧ r(a,x) ∧ r(b,x))

• ∃a∃b∃c(a ̸= b ∧ a ̸= c ∧ b ̸= c ∧ ¬∃x(r(a,x) ∧ r(b,x) ∧ r(c,x)))

• Pappus’ theorem (Veblen and Young, 1918, p. 103 and Figure 40).

The fifth axiom can easily be written as a first-order sentence in the signature {σℓ,σp,r},
but since this axiom is not used in the following argument, we leave its translation to the
reader. (Indeed, one only needs the first, third, and fourth axioms of Taff to complete all
of the following verifications.)

Affine geometry satisfies the hypotheses of both Theorems 7.4.2 and 7.4.4. We con-
sider Theorem 7.4.2. In order to apply this result, we need to add one additional axiom
to Taff that defines the symbol s as follows:

s(a,b,c) ↔ ∃x(r(a,x) ∧ r(b,x) ∧ r(c,x)). (θs)

It is now trivial to verify that sentences 1–3 of Proposition 7.4.1 are satisfied by the
{σℓ,σp,r,s}-theory T +

aff that is obtained by adding the sentence θs to the axioms of Taff.
Theorem 7.4.2 therefore implies that there is a theory in the restricted signature {σp,s}
that is Morita equivalent to T +

aff, capturing a sense in which affine geometry can be
formulated using only the apparatus of points. In a perfectly analogous manner, one can
apply the Theorem 7.4.4 to the case of affine geometry. This captures a sense in which
affine geometry can also be formulated using only lines. "

The previous example is more general than it might initially appear. Indeed, affine
geometry serves as the foundation for many of our most familiar geometries. For exam-
ple, by supplementing the affine geometry with the proper notion of orthogonality,
one can obtain two dimensional Euclidean geometry or two dimensional Minkowski
geometry. (See Coxeter [1955], Szczerba and Tarski [1979], Szczerba [1986, p. 910],
or Goldblatt [1987] for details.) Theorems 7.4.2 and 7.4.4 therefore capture a sense
in which both Euclidean geometry and Minkowski geometry can be formulated using
either points or lines.
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7.5 Morita Equivalence Is Intertranslatability

The results of the previous section might seem to validate Putnam’s arguments against
metaphysical realism. After all, we proved that line-based geometries are (Morita)
equivalent to point-based geometries. However, in order to make a case against realism,
one would need say something more about why Morita equivalence is the right notion of
equivalence. Perhaps, you might worry that the inventors of Morita equivalence cooked
it up precisely to deliver this kind of antirealistic verdict. Indeed, the definition of Morita
equivalence seems to include several arbitrary choices. Why, for example, allow the
construction of just these kinds of sorts (products, coproducts, subsorts, quotient sorts)
and not others (such as exponential sorts)?

In this section, we provide independent motivation for Morita equivalence. In partic-
ular, we show that Morita equivalence corresponds to the notion of intertranslatability
described in Section 5.4. The coincidence between these two notions is remarkable, as
they were developed independently of each other. On the one hand, Morita equivalence
was proposed by Barrett and Halvorson (2016b) and was motivated by results in topos
theory (see Johnstone, 2003). On the other hand, many-sorted intertranslatability was
being used already in model theory in the 1970s. It was given a precise formulation
by van Benthem and Pearce (1984), and has been further articulated by Visser (2006).
The coincidence of these two notions – Morita equivalence and intertranslatability –
suggests that there is something natural about them, at least from a mathematical point
of view.

We established previously that definitional equivalence of single-sorted theories cor-
responds to strong intertranslatability (4.6.17 and 6.6.21). We now generalize this result
as follows: for many-sorted theories without trivial sorts (i.e., sorts that are restricted
to only one thing), Morita equivalence corresponds to weak intertranslatability. Our
argument proceeds as follows: first we show that if T + is a Morita extension of T ,
then there is a reduction R : T + → T that is inverse (up to homotopy) to the inclusion
I : T → T +. Intuitively speaking, R expands each definiendum in !+ into its definiens
in !. The trick here is figuring out how an equality relation x =σ y, with σ ∈ !+, can
be reconstrued in terms of !-formulas. For product sorts in !+, the answer is simple:
x =σ1×σ2 y can be reconstrued as (x1 =σ1 y1) ∧ (x2 =σ2 y2). For coproduct sorts in
!+, the answer is more complicated. The problem here is that an equality x =(σ1+σ2) y

defines an equivalence relation, but (x1 =σ1 y1) ∨ (x2 =σ2 y2) does not define an
equivalence relation; hence the former cannot be reconstrued as the latter. Thus, to
reconstrue equality statements over a coproduct sort, we will need a more roundabout
construction. To this end, we borrow the following definition from Harnik (2011).

definition 7.5.1 Let T be a theory in signature !. We say that T is proper just in
case there is a !-formula φ(z) such that T ⊢ ∃zφ(z) and T ⊢ ∃z¬φ(z). Here we allow
z also to be a sequence of variables, possibly of various sorts.

note 7.5.2 Suppose that ! has a sort symbol σ and that T ⊢ ∃x∃y(x ̸=σ y). Then T

is proper, as witnessed by the formula φ(x,y) ≡ (x =σ y).
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theorem 7.5.3 (Washington) Let T be a proper theory, and let T + be a Morita
extension of T . Then there is a translation R : T + → T that is inverse to the inclusion
I : T → T +.

Before we give a proof of this result, we give an example to show why it’s necessary
to restrict to proper theories.

Example 7.5.4 Let T be the theory of equality over a single sort σ. Let T + be the Morita
extension of T to the signature {σ,σ′,ρ1,ρ2}, where T + defines σ′ as a coproduct with
coprojections ρ1 : σ → σ′ and ρ2 : σ → σ′. In this case, T + ⊢ ρ1(x1) ̸= ρ2(x2);
hence T + ⊢ ∃y1∃y2(y1 ̸= y2), with y1,y2 variables of sort σ′.

If there were a translation R : T + → T , then we would have a corresponding model
functor R∗ : Mod(T ) → Mod(T +). But consider the model M of T with M(σ) a
singleton set. In that case, (R∗M)(σ′) would be a quotient of a subset of M(σ) × · · · ×
M(σ), which is again a singleton set. This contradicts the fact that T + ⊢ ∃y1∃y2(y1 ̸=
y2). Therefore, there is no translation (in the sense of 5.4.2) from T + to T . "

Proof of 7.5.3 Since T is proper, there is a sort σ∗ of ! and a formula φ(z) with z : σ∗
such that T ⊢ ∃zφ(z) and T ⊢ ∃z¬φ(z). We first define R : S → (S+)∗. All cases are
straightforward, except for coproduct sorts, which require a special treatment.

• Suppose that T + defines σ as a product with projections π1 : σ → σ1 and
π2 : σ → σ2. Then we define R(σ) = σ1,σ2.

• Suppose that T + defines σ as a coproduct with coprojections ρ1 : σ1 → σ and
ρ2 : σ2 → σ. Then we define R(σ) = σ1,σ2,σ∗. Here the final sort σ∗ plays an
auxiliary role that permits us to define a coproduct of two sorts as a quotient of a
product of sorts.

• Suppose that T + defines σ as a subsort with injection i : σ → σ′. Then we define
R(σ) = σ′.

• Suppose that T + defines σ as a quotient sort with projection p : σ′ → σ. Then
we define R(σ) = σ′.

• Finally, if σ ∈ !, we define R(σ) = σ.

We now define the formulas Eσ for each sort symbol σ ∈ !+.

• If σ is defined as a product sort σ1 × σ2, then we set

E(x1,x2,y1,y2) ≡ (x1 = y1) ∧ (x2 = y2).

• Suppose that T + defines σ as a coproduct sort σ1 + σ2, in which case R(σ) =
σ1,σ2,σ∗. Intuitively speaking, we will use a triple x,y,z to represent a variable of
sort σ1 + σ2. We will think of the triples satisfying φ(z) as ranging over σ1 (with
y and z as dummy variables), and we will think of the triples satisfying ¬φ(z) as
ranging over σ2 (with x and z as dummy variables). Since ⊢ φ(z) ∨ ¬φ(z), any
triple x,y,z satisfies exactly one of these two conditions. We can then explicitly
define the relevant formula E(x1,x2,z;x′

1,x
′
2,z

′) as
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(φ(z) ∧ φ(z′) ∧ (x1 = x′
1)) ∨ (¬φ(z) ∧ ¬φ(z′) ∧ (x2 = x′

2)).

• If T + defines σ as a quotient sort in terms of a !-formula φ, then define E(x,y) ≡
φ(x,y).

• If σ is defined as a subsort in terms of a !-formula φ, then define E(x,y) ≡
φ(x) ∧ φ(y) ∧ (x = y).

To complete the definition of the reconstrual, we need to give the mapping from predi-
cate symbols and function symbols of !+ to !.

• If p ∈ !+\! is a predicate symbol with explicit definition p ↔ ψp, then we
define R(p)(x1, . . . ,xn) as ψp(x1, . . . ,xn). If p ∈ !, then we define the image to
be p(x1, . . . ,xn).

• If f ∈ !+\! is a function symbol that is not used in an explicit definition of
a sort symbol, and if f has explicit definition (f (x⃗) =σ y) ↔ ψf (x⃗,y), then
we define R(f )(x⃗,y) as ψf (x⃗,y). If f ∈ !, then we define the image to be
f (x⃗) =σ y.

• For function symbols πi : σ → σi that define a product sort, we define
R(π1)(x1,x2,y1) ≡ (x1 =σ1 y1) and R(π2)(x1,x2,y2) ≡ (x2 =σ2 y2).

• For function symbols ρi : σi → σ that define a coproduct sort, we define
R(ρ1)(v1,x1,x2,z) ≡ (v1 =σ1 x1) and R(ρ1)(v2,x1,x2,z) ≡ (v2 =σ2 x2).

• For a function symbol ϵ : σ′ → σ that defines a quotient sort, we define
R(ϵ)(x,y) ≡ φ(x,y).

• For a function symbol i : σ → σ′ that defines a subsort, we define R(i)(x,y) ≡
φ(x) ∧ φ(y) ∧ (x = y).

We now show that RI ≃ 1T and IR ≃ 1T + . The former case is trivial: since R acts
as the identity on elements of !, it follows that RI = 1T . For the proof that IR ≃ 1T +,
we will define a t-map χ : IR ⇒ 1T + , and we will show that χ is a homotopy.

Recall that a homotopy is a family of formulas, one for each sort symbol σ ∈ !+.
We will treat only the case where T + defines σ as a coproduct over ρ1 : σ1 → σ and
ρ2 : σ2 → σ. We need to define a !+-formula χ whose free variables are of sorts
R(σ) and σ. Intuitively speaking, χ should establish a bijection between elements of
sort (σ1,σ2,σ∗)/E and elements of sort σ. We define

χ(x1,x2,z,x) ≡ (φ(z) ∧ (ρ1(x1) = x)) ∨ (¬φ(z) ∧ (ρ2(x2) = x)).

We sketch the argument for the various conditions in the definition of a t-map (5.4.11).
Throughout, we argue internally to the theory T +.

• We show that χ is well defined relative to the equivalence relation E on σ1,σ2,σ∗.
That is,

E(x1,x2,z;x′
1,x

′
2,z

′) ∧ χ(x1,x2,z,x) → χ(x′
1,x

′
2,z

′,x).

Indeed, if E(x1,x2,z;x′
1,x

′
2,z

′), then there are two cases: either φ(z) ∧ φ(z′) or
¬φ(z) ∧ ¬φ(z′). In the former case, we have both x1 = x′

1 and χ(x1,x2,z,x) ↔
(ρ(x1) = x). Hence χ(x′

1,x
′
2,z

′,x). The second case is similar.
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• The “exists” property – i.e., ∃xχ(x1,x2,z,x) – follows immediately from the fact
that φ(z) ∨ ¬φ(z) and the fact that ρ1,ρ2 are functions.

• We show now that χ is one-to-one (relative to the equivalence relation E on
σ1,σ2,σ1,σ1); that is,

χ(x1,x2,z,x) ∧ χ(x′
1,x

′
2,z

′,x) → E(x1,x2,z;x′
1,x

′
2,z

′).

Assume that χ(x1,x2,z,x) ∧ χ(x′
1,x

′
2,z

′,x), which expands to
[
(φ(z) ∧ ρ1(x1) = x) ∨ (¬φ(z) ∧ ρ2(x2) = x)

]

∧
[
(φ(z′) ∧ ρ1(x′

1) = x) ∨ (¬φ(z′) ∧ ρ2(x′
2) = x)

]
.

Since ρ1(y1) ̸= ρ2(y2), the first conjunct is inconsistent with the fourth, and the
second is inconsistent with the third. Since ρ1 and ρ2 are injective, that formula
is equivalent to

(φ(z) ∧ φ(z′) ∧ (x1 = x′
1)) ∨ (¬φ(z) ∧ ¬φ(z′) ∧ (x2 = x′

2)),

which, of course, is E(x1,x2,z;x′
1,x

′
2,z

′).

• Finally, we show that χ is onto, i.e., ∃z∃x1∃x2 χ(x1,x2,z,x). Fix x, in which case,
we have ∃x1(ρ1(x1) = x)∨∃x2(ρ2(x2) = x). Since T + is proper, ∃zφ(z). Hence,
in the case that ∃x1(ρ1(x1) = x), we have

∃z∃x1(φ(z) ∧ (ρ1(x1) = x)),

from which it follows that

∃z∃x1∃x2
[
(φ(z) ∧ ρ1(x1) = x) ∨ (¬φ(z) ∧ ρ2(x2) = x)

]
.

Again, since T is proper, ∃z¬φ(z), hence the same holds in the case that
∃x2(ρ2(x2) = x). In either case, ∃z∃x1∃x2 χ(x1,x2,z,x), as we needed to prove.

Thus, we have shown how to define the component of χ : IR ⇒ 1T + where σ ∈ !+

is defined to be a coproduct sort. The other cases are simpler, and we leave them to the
reader.

This completes the proof that Morita equivalence implies weak intertranslatability.
We now turn to the converse implication.

theorem 7.5.5 (Washington) If T1 and T2 are weakly intertranslatable, then T1 and
T2 are Morita equivalent.

While this result is not surprising, it turns out that the proof is extremely complicated
because of needing to keep track of all the newly defined symbols. Thus, before we
descend into the details of the proof, we discuss the intuition behind it.

A weak translation F : T1 → T2 doesn’t necessarily map a sort symbol σ of T1

to a sort symbol of T2. Nor does it exactly map a sort symbol σ of T1 to a “product”
σ1 × · · · × σn of sort symbols of T2, because the domain formula DF restricts to a
“subsort” F•(σ) of σ1 × · · · × σn. What’s more, the equality relation =σ is translated
to the equivalence relation Eσ, which means that σ is really translated into something
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like the “quotient sort” of F•(σ) modulo Eσ. In what follows, we will frequently write
F (=σ) instead of Eσ in order to explicitly indicate the reconstrual F .

Now, notice that each of the constructions we mentioned earlier is permitted in taking
a Morita extension of T2. Intuitively, then, T2 has a Morita extension T +

2 that has
enough sorts so that the translation F : T1 → T2 can be extended to a one-dimensional
translation F̂ : T1 → T +

2 , i.e., such that F̂ (σ) is a single sort symbol of T +
2 . Intuitively,

then, this extended translation F̂ should be one-half of a homotopy equivalence in the
strict sense.

One can then repeat this process to define a one-dimensional translation Ĝ : T2 →
T +

2 . Then, using the reductions Ri : T +
i → Ti , one hopes to show that T +

1 and T +
2

are intertranslatable in the strict (one-dimensional) sense, which entails that they have a
common definitional extension.

In practice, there are many complications in working out this idea. Thus, in the
following proof, it will be convenient to allow ourselves a liberalized notion of a Morita
extension where we can, in one step, add subsorts of product sorts. Suppose that ! has
sort symbols σ1, . . . ,σn, and a formula φ(x⃗), with xi : σi , and such that T ⊢ ∃x⃗φ(x⃗).
Then we may take

!+ = ! ∪ {σ} ∪ {π1, . . . ,πn},

where πi : σ → σi , and we may add explicit definitions that specify σ as the subsort of
σ1 × · · · × σn determined by the formula φ(x⃗):

1. The projections πi are jointly injective, i.e.,

n∧

i=1

(πi(x) = πi(y)) → (x = y).

2. The projections πi are jointly surjective, with image in φ(x⃗), i.e.,

φ(x1, . . . ,xn) ↔ ∃x : σ
n∧

i=1

(πi(x) = xi).

This liberalized notion of Morita equivalence is clearly equivalent to the original. So,
there is no harm in allowing the direct construction of subsorts σ # σ1 × · · · × σn,
given that there is an appropriate formula φ(x⃗).

Proof Let T1 be a !1-theory and T2 a !2 theory that are intertranslatable by the
translations F : T1 → T2 and G : T2 → T1, and homotopies χ : GF ∼= 1T1 and
χ′ : FG ∼= 1T2 . We will create Morita extensions of T1 and T2 in several stages, first
defining new sort symbols and then defining new relation and function symbols.

Step 1: Suppose that σ ∈ !1 is a sort symbol and that F (σ) = F (σ)1, . . . ,F (σ)n.
Let F•(σ) be a new sort symbol, and let

!1
2 = !2 ∪ {F•(σ) | σ ∈ S1} ∪ {πF (σ)i | σ ∈ S1},
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where πF (σ)i is a function symbol of sort F•(σ) → F (σ)i . Let T 1
2 be the Morita

extension of T2 that defines F•(σ) # F (σ)1 × · · · × F (σ)n, with projections πF (σ)i ,
using the domain formula DF (x⃗).

Similarly, let

!1
1 = !1 ∪ {G•(σ) | σ ∈ S2} ∪ {πG(σ)i | σ ∈ S2},

and let T 1
1 be the Morita extension of T1 that defines each such G•(σ) as a product of

G(σ)1, . . . ,G(σ)m, with projections πG(σ)i .
Before proceeding to the next step, recall that G(=σ) is a T1-provable equivalence

relation on the domain DG(x⃗) # G(σ)1, . . . ,G(σ)n. Thus, we can use the projections
πi ≡ πG(σ)i to define an equivalence relation G•(=σ)(x,y) on G•(σ):

G•(=σ)(x,y) ≡ G(=σ) (π1(x), . . . ,πn(x);π1(y), . . . ,πn(y)) .

Step 2: For σ ∈ S2, we use T 1
1 to define σ as the quotient of G•(σ) modulo

G•(=σ). Let

!2
1 = !1

1 ∪ {σ | σ ∈ S2} ∪ {ϵσ | σ ∈ S2},

where ϵσ is a new function symbol of sort G•(σ) → σ. Let δσ be the explicit definition

δσ ≡ ((ϵσ(x) = ϵσ(y)) ↔ G•(=σ)(x,y)) ∧ ∀y∃x(ϵσ(x) = y). (7.2)

We then define a Morita extension

T 2
1 = T 1

1 ∪ {δσ | σ ∈ S2}.

Similarly, let

!2
2 = !1

2 ∪ {σ | σ ∈ S1} ∪ {ϵσ | σ ∈ S1},

where ϵσ : F•(σ) → σ, and let T 2
2 be the Morita extension of T 1

2 that defines each
σ ∈ S1 as a quotient sort.

Before proceeding to the next step, we show that T 2
1 defines a functional relation ξ

from the domain DGF to G•(F (σ)1), . . . ,G•(F (σ)n) or, more precisely, to the image of
the latter in GF (σ). Recall that the domain formulas of the composite GF are given by
the general recipe DGF = G(DF ); and that G is defined so that

G(φ)(x⃗1, . . . ,x⃗n) ⊢ DG(x⃗i),

for any !2-formula φ. Thus, DGF (x⃗1, . . . ,x⃗n) ⊢ DG(x⃗i). Furthermore, G•(F (σ)i) is
defined as a subsort of G(F (σ)i)1, . . . ,G(F (σ)i)m via the formula DG(x⃗i).

DGF (x⃗1, . . . ,x⃗n)

G•(F (σ)1), . . . ,G•(F (σ)n) DG(x⃗1) ∧ · · · ∧ DG(x⃗n)

GF (σ)

ξ

ζ
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Step 3: In Step 1, we equipped T 1
2 with subsorts F•(σ) # F (σ)1, . . . ,F (σ)n. Now

we add these sorts to T 2
1 as well. Given σ ∈ !1, each F (σ)i is a sort in !2, hence by

Step 2, also in !2
1 . Now let

!3
1 = !2

1 ∪ {F•(σ) | σ ∈ S1} ∪ {πF (σ)i | σ ∈ S1},

where πF (σ)i is the !1
2 function symbol of sort F•(σ) → F (σ)i . In order to define

F•(σ), we need an appropriate formula U (x1, . . . ,xn) # F (σ)1, . . . ,F (σ)n. We choose
the image of DGF under the function ρ ≡ ϵF (σ)1 ∧ · · · ∧ ϵF (σ)n .

DGF (x⃗1, . . . ,x⃗n) U (x1, . . . ,xn)

DG(x⃗1) ∧ · · · ∧ DG(x⃗n) F (σ)1, . . . ,F (σ)n

GF (σ)

ρ

ρ

That is,

U (x1, . . . ,xn) ≡ ∃x⃗1 . . . ∃x⃗n

(
DGF (x⃗1, . . . ,x⃗n) ∧

n∧

i=1

(ϵF (σ)i (x⃗i) = xi)
)
.

Since T1 ⊢ ∃X DGF (X), it follows that T 2
1 ⊢ ∃x⃗ U (x⃗). Thus, we can use U (x⃗) to

define F•(σ) as a subsort of F (σ)1, . . . ,F (σ)n, and we let T 3
1 denote the resulting Morita

extension of T 2
1 .

Similarly, let

!3
2 = !2

2 ∪ {G•(σ) | σ ∈ S2} ∪ {πG(σ)i | σ ∈ S2},

and let T 3
2 be the Morita extension of T 2

2 that defines each G•(σ) as a subsort of
G(σ)1, . . . ,G(σ)n.

Step 4: Let !4
1 be the union of !3

1 with all relation and function symbols from !2. We
extend T 3

1 to T 4
1 by adding explicit definitions for all the new symbols. For notational

simplicity, we treat only the case of a predicate symbol p ∈ !2 of sort σ ∈ !2. We
leave the other cases to the reader. Recall that T 3

1 defines ϵσ : G•(σ) → σ as a quotient,
and also the projections πG(σ)i : G•(σ) → G(σ)i can be conjoined to give a bijection
θ between G•(σ) and DG(x⃗).

G(p)(x⃗) G•(p) φp(x)

DG(x⃗) G•(σ) σθ ϵσ

To define φp, first pull G(p)(x⃗) back along π to obtain G•(p); then take the image of
G•(p) under ϵσ. That is,

φp(x) ≡ ∃y (G(p)(π1(y), . . . ,πn(y)) ∧ (ϵσ(y) = x)) .
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Recall that

G(=σ)(π1(y), . . . ,πn(y);π1(z), . . . ,πn(z)) ⊢ ϵσ(y) = ϵσ(z),

and also that

G(p)(x⃗),G(=σ)(x⃗,y⃗) ⊢ G(p)(y⃗).

Hence the preceding diagram defines a functional relation from G(p)(x⃗) to φp(x),
relative to the notion of equality given by G(=σ).

We now add explicit definitions δp ≡ p(x) ↔ φp(x) for each relation symbol p ∈
!2, creating a Morita extension T 4

1 of T 3
1 . We perform the analogous construction to

obtain extensions !4
2 ⊇ !3

2 and T 4
2 ⊇ T 3

2 .
Before proceeding, we note that at this stage, the expanded signature !4

2 has copies
of the !1-formulas DGF and χ that define the homotopy χ : GF ⇒ 1T for T .

F•(σ)

DGF (x⃗1, . . . ,x⃗n) σ

ϵσ
χ

Step 5: In Step 3, we equipped T 3
2 with function symbols ϵσ : F•(σ) → σ, for

σ ∈ S1. We now add these function symbols to T 4
1 as well. Let

!5
1 = !4

1 ∪ {ϵσ | σ ∈ S1}.

We need to find a !4
1-formula that can serve as a suitable definiens for ϵσ. We construct

a span of relations.

DG(x⃗1) ∧ · · · ∧ DG(x⃗n) DGF (x⃗1, . . . ,x⃗n) σ

F (σ)1, . . . ,F (σ)n U (x1, . . . ,xn)

F•(σ)

ρ ρ

χ

θ

Here DG(x⃗i) is the domain formula corresponding to the assignment F (σ)i '→
G(F (σ)i); and ρ ≡ ϵF (σ)1 ∧ · · · ∧ ϵF (σ)n , where ϵF (σ)i : G(F (σ)i) → F (σ)i defines
F (σ)i as a quotient sort via the equivalence relation G(=F (σ)i ); and θ is given by

θ(x1, . . . ,xn;y) ≡ U (x1, . . . ,xn) ∧
n∧

i=1

(xi = πi(y)),

for U (x1, . . . ,xn), as defined in Step 3. Here θ is a bijection, so we ignore it. We show
that the span of ρ : DGF → U and χ : DGF → σ defines a functional relation from
U to σ.

Since the homotopy formula χ is well defined relative to the equivalence relation
GF (=σ), and surjective onto σ, we have

GF (=σ)(Y,Z) ⊢ ∃σ=1x (χ(Y,x) ∧ χ(Z,x)).
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Here we have used Y = y⃗1, . . . ,y⃗n and Z = z⃗1, . . . ,z⃗n for sequences of variables of
sort GF (σ). It will suffice then to show that

ρ(Y ;x1, . . . ,xn),ρ(Z;x1, . . . ,xn) ⊢ GF (=σ)(Y,Z). (7.3)

Now, the definition of ρ yields

ρ(Y ;x1, . . . ,xn),ρ(Z;x1, . . . ,xn) ⊢
n∧

i=1

G(=F (σ)i )(y⃗i,z⃗i). (7.4)

Moreover, since F is a translation, T2 entails that F (=σ) is an equivalence relation on
F (σ)1, . . . F (σ)n. Hence, by reflexivity,

n∧

i=1

(y =F (σ)i z) ⊢ F (=σ)(y1, . . . ,yn;z1, . . . ,zn).

Since G : T2 → T1 is a translation, the substitution theorem gives

n∧

i=1

G(=F (σ)i )(y⃗i,z⃗i) ⊢ GF (=σ)(Y,Z). (7.5)

The implications (7.4) and (7.5) together show that χ ◦ ρ−1 is a functional relation from
U to σ, where equality on the former is given by GF (=σ). Thus, χ ◦ (θ ◦ ρ)−1 is a
functional relation from F•(σ) to σ. Using ψ to denote this relation, we introduce the
explicit definition

δϵσ ≡ (ϵσ(x) = y) ↔ ψ(x,y), (7.6)

and we define a Morita extension

T 5
1 = T 4

1 ∪ {δϵσ | σ ∈ S1}.

We define a Morita extension T 5
2 of T 4

2 in an analogous fashion. Therefore, !5
1 = !5

2 .
This completes our construction of the Morita extensions T 5

1 of T1, and T 5
2 of T2.

We will now show that T 5
1 and T 5

2 are logically equivalent, thereby establishing
the Morita equivalence of T1 and T2. To this end, note first that since T 5

1 is a Morita
extension of T1, the two theories are intertranslatable, and similarly for T 5

2 and T2.
(Note that the construction does not use coproduct sorts. Hence, the result holds even
when T1 and T2 are not proper theories.) Composing these translations gives translations
F : T 5

1 → T 5
2 and G : T 5

2 → T 5
1 that extend the original translations F : T1 → T2

and G : T2 → T1. We will use these translations to show that T 5
1 and T 5

2 have the same
models in their shared signature !5

1 = !5
2 . The intuition behind the result is clear: since

T 5
1 is a Morita extension of T1, each model of T1 uniquely expands to a model of T 5

1 , and
similarly for T2 and T 5

2 . Since the original model functor F ∗ : Mod(T2) → Mod(T1)
is an equivalence of categories, the lifted model functor F ∗ : Mod(T 5

2 ) → Mod(T 5
1 ) is

also an equivalence of categories. We proceed now to the details of the argument.
Recall that we defined a reconstrual F̃ : !1 → !3

2 that is constant on sorts. (Hence,
we may treat F̃ as a reconstrual in the more narrow sense.) We extend F̃ as usual to a
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map from !1- formulas to !3
2 formulas. Since F is a translation, F̃ is also a translation.

Thus, the corresponding model map F̃ ∗ has the feature that

(F̃ ∗M)(φ) = M(F̃ (φ)),

for each !1-formula φ. In particular, F̃ ∗M ! φ iff M ! F̃ (φ). The translation F̃ :
T1 → T 3

2 also has the feature that T 5
2 ⊢ F (φ) ↔ F̃ (φ), for any sentence φ of T1.

Now let M be a model of T 5
2 . First we show that M ! φ for any !1-sentence φ such

that T1 ⊢ φ. Since M satisfies the explicit definitions we gave for all the symbols in
!1, it follows (by induction) that M(F̃ (φ)) = M(φ) for any !1-formula φ. Since M

is a model of T 3
2 , F ∗M is a model of T1, and F̃ ∗M ! φ. By the previous paragraph,

M ! F̃ (φ), hence M ! F (φ), and, therefore, M ! φ.
We now show that M satisfies the explicit definitions we added to T 5

1 in Steps 1–5. In
Step 1, we added the definition of G(σ) as a product sort. However, we added the same
definition to T 3

2 in Step 3. Thus, since M is a model of T 3
2 , these definitions are satisfied

by M .
In Step 2, we expand !1

2 to !2
2 by adding sort symbols σ ∈ S1 and function symbols

ϵσ : F•(σ) → σ, and we let T 2
2 define ϵσ : F•(σ) → σ as a quotient map corresponding

to the equivalence relation F•(=σ). Hence, in any model M of T 5
2 , we have

ϵσ(a) = ϵσ(b) iff F•(=σ)(a,b),

for a,b ∈ MF•(σ). Recall also that T 5
2 explicitly defines F•(σ) as a subsort of

F (σ)1, . . . ,F (σ)n, and that

F•(=σ)(a,b) iff F (=σ)(a⃗,b⃗).

In Step 5, we stipulate that T 5
1 ⊢ δϵσ , where δϵσ is the explicit definition:

δϵσ ≡ (ϵσ(x) = z) ↔ (χ ◦ ρ−1)(x,z).

We need to show that T 5
2 ⊢ δϵσ , and for this, we need to see how T 5

2 defines the symbols
χ and ρ. First, χ : DGF → σ is the homotopy map, which is originally a !1-formula.
Thus, the symbols in χ are explicitly defined by T 4

2 in Step 4.
Next, ρ ≡ ϵF (σ)1 ∧ · · · ∧ ϵF (σ)n , where F (σ)i is a !2 sort symbol, and ϵF (σ)i :

G•(F (σ)i) → F (σ)i is a function symbol. In Step 1, we have T 1
1 define G•(F (σ)i)

as a sub-product sort of G(F (σ)i)1, . . . ,G(F (σ)i)m. In Step 5, we have T 5
2 define the

function symbol ϵF (σ)i in terms of the !2 homotopy map χ′.
We need to show now that M ! δϵσ or, in other words, that ϵσ(x) = z and ψ(x,z)

define the same relation in M . We can show that the following diagram commutes
(where the objects are meant to be domains of the sort symbols in the model M).

FGF σ F σ

GF σ σ

ϵGF σ

χ′
F σ

ϵσ
ξ

χσ
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We can thus characterize χσ as the map that makes the preceding diagram commute. A
key observation is that F (χσ) = χ′

F (σ) for each sort σ ∈ S1.

technical aside 7.5.6 The sheer complexity of the previous proof shows one reason
why it can be convenient to move to the context of categorical logic, where theories are
treated as certain kinds of categories. We conjecture that a more intuitive (but concep-
tually laden) proof of this result could be obtained as follows.

Each first-order theory T has a unique classifying (Boolean) pretopos in the sense
of Makkai (1987). Intuitively speaking, T and T ′ should have the same classifying
pretopos iff T and T ′ are weakly intertranslatable in the sense we have described here.
Furthermore, Tsementzis (2017b) shows that T and T ′ have the same classifying preto-
pos iff T and T ′ are Morita equivalent.

Having completed this result, we now have a much clearer picture of the various
options for a precise notion of theoretical equivalence. We have placed the most salient
options in the following chart.

SI WI CE

DE ME

Here “I” represents the intertranslatability notions (strong and weak), and “E” represents
the equivalence notions (definitional, Morita, and categorical). In this chart, the further
to the right, the more liberal the notion of theoretical equivalence, and the fewer the
invariants of equivalence. For example, if F : T → T ′ is a strong (one-dimensional)
translation, then the dual functor F ∗ : Mod(T ′) → Mod(T ) preserves the size of the
underlying domains of models, which isn’t necessarily the case for Morita equivalent
theories. Similarly, if F : T → T ′ is a weak translation, then F ∗ : Mod(T ′) → Mod(T )
preserves ultraproducts, which isn’t necessarily the case for an arbitrary categorical
equivalence between Mod(T ′) and Mod(T ).

7.6 Open Questions

We do not mean to give the impression that we have answered all of the interesting
questions that could be raised about theories and the relations between them. Quite to
the contrary, we hope that our investigations serve to reinvigorate the sort of “exact
philosophy” that Rudolf Carnap envisioned. We conclude this section, then, with a list
of some open questions and lines of investigation that might be pursued.

1. We encourage philosophers of science to return to previous discussions of specific
scientific theories, where claims of equivalence (or inequivalence) play a central
role, but where the relevant notion of equivalence was not explicated. Can the
tools we have developed here help clarify the commitments that led to certain
judgments of equivalence or inequivalence?
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2. It would be interesting to look again at the possibilities for providing perspicuous
first-order formalizations of interesting scientific theories. Some work in this
direction continues, e.g., with the Budapest group working on axiomatizations
of relativity theory (see Andréka and Németi, 2014).

3. Some theories are so strong that new sorts (e.g., product sorts) seem to be encoded
already into the original sorts. For example, in Peano arithmetic, n-tuples of nat-
ural numbers can be encoded as individual natural numbers. This encoding could
perhaps be represented as an isomorphism f : (σ×σ) → σ in a Morita extension
T + of T . One might conjecture that for theories like Peano arithmetic, strict
(one-dimensional) intertranslatability is equivalent to weak (many-dimensional)
intertranslatability.

4. It’s tempting to think that one could resort to “ontological maximalism” in the
following sense: for a model M of theory T , the ontology for M consists of all
the objects in every set that can be constructed from the domain M or, if the theory
is many-sorted, from the domains M(σ1), . . . ,M(σn). (This idea is in the spirit of
the suggestion of Hawthorne [2006].)

There are three immediate difficulties with this proposal. First, this proposal
would make the ontology of every nontrivial theory infinite. In particular,
infinitely many distinct elements occur in the tower of Cartesian products:
M,M × M,M × M × M, . . . And that’s even before we construct equivalence
classes and coproducts from these sets. Second, it’s not clear which constructions
should be permitted. Should we allow the constructions from a Morita extension,
or should we also allow, say, the construction of powersets? Third and finally,
ontological maximalism runs contrary to the spirit of Ockham’s razor.

5. One might worry that the definition of Morita equivalence is arbitrary. Why do
we allow the particular definitions we do, and not others? Is there any intrinsic
motivation for this choice? There is an intuition that the definitions permitted in
a Morita extension are precisely those definitions that can be expressed in first-
order language. How can we make that intuition precise?

7.7 Notes

• The notion of a dual functor F ∗ : Mod(T ′) → Mod(T ) makes an appearance
already in Makkai and Reyes (1977), who explore the correspondence between
properties of F and properties of F ∗. This exploration is part of their proof of the
“conceptual completeness” of coherent logic.

However, for Makkai and Reyes, first-order theories are replaced by coherent
theories, and the latter are replaced by their corresponding pretoposes – all of
which make their discussion a bit inaccessible for most philosophers. For an even
more sophisticated investigation in this direction, see Breiner (2014). The dual
functor makes an appearance in classical first-order logic in Gajda et al. (1987).
The dual functor also seems to be quite closely related to the notion of a “model
mapping” due to Gaifman (see Myers, 1997).
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In later work, Makkai (1991) explores the question of which functors G :
Mod(T ′) → Mod(T ) are duals of translations. He makes some progress by
assuming that Mod(T ) and Mod(T ′) are not just categories, but ultracategories,
i.e., categories with ultraproduct structure. In this case, the dual functors are those
that preserve the ultraproduct structure.

• The proof that Morita equivalence implies categorical equivalence is from Barrett
and Halvorson (2016b). In one sense, the result was no surprise all: the notion
of Morita equivalence for first-order theories was modelled after the notion of
Morita equivalence in categorical logic, i.e., when two theories T and T ′ have
equivalent classifying toposes ET and ET ′ . And when ET ≃ ET ′ , standard topos-
theoretic methods show that Mod(T ) ≃ Mod(T ′) (see Johnstone, 2003, D1.4.13).
Tsementzis (2017b) calls the notion we use here “T-Morita equivalence,” and he
gives a precise description of the relation between it at the topos-theoretic notion.

• The Morita equivalence of point and line geometries was demonstrated by Barrett
and Halvorson (2017a). The arguments about geometry are novel, but not without
precedent. Beth and Tarski (1956), Scott (1956), Tarski (1956), Robinson (1959),
and Royden (1959) focus on the relationships between formulations of geom-
etry that use different primitive predicate symbols, but not different primitive
sort symbols. Szczerba (1977) and Schwabhäuser et al. (1983) take crucial steps
toward capturing the relationships between geometries with different sorts but do
not explicitly prove their equivalence. Andréka et al. (2008) and Andréka and
Németi (2014), however, introduce a collection of tools from definability theory
that allows one to demonstrate a precise equivalence.

• The proof that Morita equivalence coincides with weak intertranslatability is due
to Washington (2018).



8 From Metatheory to Philosophy

Much of twentieth-century analytic philosophy was concerned – when not explicitly,
then implicitly – with theories and with the relationships between them. For example, is
every spacetime theory equivalent to one with Euclidean background geometry? Or is
folk psychology reducible to neuroscience? Or can there be a good reason to choose a
theory over an empirically equivalent rival theory?

But what is a theory? And what does it mean to say that two theories are equivalent or
that one theory is reducible to another? Carnap had the audacious idea that philosophy
can follow mathematics’ method of explication: to take an intuitive notion and to find
a nearby neighbor in the realm of precisely defined mathematical concepts. In this
book, we’ve tried to follow Carnap’s lead; and indeed, we hope that we’ve done a
bit better than Carnap, because mathematics has come a long way in the past hundred
years. We now have mathematical concepts – such as categories, functors, and natural
transformations – the likes of which Carnap never dreamed about.

In this book, we’ve attempted to explicate the concept of a theory, as well as some
of the relations between theories that scientists and philosophers find it useful to dis-
cuss. With these explications in the background, we can now return to some of the big
questions of philosophy of science, such as, “what is the proper attitude to take toward
a successful scientific theory?”

8.1 Ramsey Sentences

No analytic philosopher’s education is complete until she learns the magic of the Ram-
sey sentence. The idea was proposed by Frank Ramsey (1929) and was reinvented by
Carnap in the 1950s – or, more accurately, Carnap forgot that he learned about it from
Herbert Bohnert (see Psillos, 2000). Most contemporary philosophers know of the idea
because David Lewis (1970) argued that it solves the problem of theoretical terms. In
the years since Lewis’ seminal paper, Ramsey sentences have become a sort of deus ex
machina of analytic philosophy.

Let’s start with a simple example. Suppose that P is a theoretical predicate and that
O is an observational predicate. (Or, in Lewis’ preferred terminology, O is antecedently
understood vocabulary, and P is new vocabulary.) Now suppose that our theory T

consists of a single sentence P (c) → O(c), which might be paraphrased as saying
that O(c) is an empirical sign that P (c). (Here c is a constant symbol. We omit

247
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first-order quantifiers to keep things simple.) To form the Ramsey sentence of T , we
simply perform an instance of second-order existential generalization:

P (c) → O(c)
∃X(X(c) → O(c))

.

The sentence below the line is called the Ramsey sentence T R of the theory T . Thus,
while the original theoretical statement T mentions some particular property P , the
Ramsey sentence T R simply says that there is some or other property that plays the
appropriate role. It may feel – and has felt to many philosophers – that the truth of T R

somehow magically endows the term P with meaning. In particular, philosophers are
wont to say things like, “P is whatever it is that plays the role described by T R .”

Since Ramsey sentences draw upon the resources of second-order logic, the neophyte
is left to wonder: does the philosophical magic here depend on something special that
happens in second-order logic, something that only the most technically sophisticated
philosophers can understand? We think that the answer to this question is no. In fact,
Ramsifying a theory simply weakens that theory in the same way that existentially quan-
tifying a first-order sentence weakens that sentence. Consider the following pedestrian
example.

Example 8.1.1 Let ! = {m}, where the name m is a theoretical term. Let T be the
theory ∃x(x = m) in !. Then the Ramsey sentence T R of T is the sentence ∃x(x = x),
which is just a tautology. That is, T R is the empty theory in the empty signature. It is
easy to see that the inclusion I : T R → T is conservative but not essentially surjective.
In particular, there is no formula φ of ! such that (Iφ)(x) ≡ (x = m). The fact that
I is not essentially surjective corresponds to the fact that I ∗ : Mod(T ) → Mod(T R) is
not full. Here I ∗ is the functor that takes a model of T and forgets the extension of m.
In general, then, I ∗M has more symmetries than M .

We can be yet more precise about the differences between Mod(T ) and Mod(T R). In
short, a model of T R is simply a nonempty set X (and two such models are isomorphic
if they have the same cardinality). For each p ∈ X, there is a corresponding model
Xp of T where Xp(m) = p. For a fixed X, and p,q ∈ X, there is an isomorphism
h : Xp → Xq that maps p to q. However, the automorphism group of Xp is smaller
than the automorphism group of X. Indeed, Aut(Xp) consists of all permutations of X

that fix p, hence is isomorphic to Aut(X\{p}).
We can see then that T and T R are not intertranslatable (or definitionally equivalent).

Nonetheless, there is a sense in which mathematicians would have no qualms about
passing from T R to the more structured theory T . Indeed, once we’ve established that
the domain X is nonempty (which, of course, is a presupposition of first-order logic),
we could say, “let m be one of the elements of X.” This latter statement does not involve
any further theoretical commitment over what T R asserts. !

Our advice then to the neophyte is not to allow herself to be intimidated by
second-order quantification. In fact, we will argue that passage from a theory T to its
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Ramsified version T R either forgets too much of what the original theory said or says
more than what the original theory said – depending on which notion of second-order
logical equivalence one adopts. Before we do this, let’s pause to recall just how much
philosophical work Ramsey sentences have been asked to do. We will look at three
applications. First, Carnap claims that Ramsey sentences solve the problem of dividing
the analytic and synthetic parts of a scientific theory. Second, Lewis claims that Ramsey
sentences solve the problem of theoretical terms and, in particular, the problem of
giving meaning to “mentalese” in a physical world. Third, contemporary structural
realists claim that Ramsey sentences give a way of isolating the structural claims of a
scientific theory.

Carnap’s Irenic Realism

One theme running throughout Carnap’s work is a rejection of what he sees as false
dilemmas. In one sense, Carnap is one of the most pragmatic philosophers ever in
the Western tradition, as he places extreme emphasis on questions such as: what
questions are worth asking, and what problems are worth working on? Now, one can
imagine a philosophy graduate student asking herself: what question should I try to
answer in my dissertation? If she’s a particularly ambitious (or perhaps overconfident)
student, she might decide to determine whether materialism or dualism is true. Or
she might decide to determine whether scientific realism or instrumentalism is true.
Carnap’s advice to her would be to work on such questions is not a good use of
your time.

In the early twentieth century, the debate between scientific realism and instrumen-
talism centered around the question: do theoretical entities – i.e., the things named by
scientific theories, but which are not evident in our everyday experience – exist? Or,
shifting to a more explicitly normative manner of speech: are we entitled to believe in
the existence of these entities, and perhaps even obliged to do so? The realist says yes to
these questions, and the instrumentalist says no. Carnap attempts to steer a middle way.
He says that the questions are ill-posed.

Toward the end of his career, Carnap hoped that Ramsey sentences could help show
why there is no real argument between realism and instrumentalism. In particular, if T

is a scientific theory containing some theoretical terms r1, . . . ,rn, then Carnap parses T

into two parts: the Ramsey sentence T R and the sentence T R → T that has since been
dubbed the “Carnap sentence.” Carnap claims that the Ramsey sentence T R gives the
empirical (synthetic) content of T , whereas T R → T gives the definitional (analytic)
part of T . The latter claim can be made plausible by realizing that T R → T is trivially
satisfiable, simply by stipulating appropriate extensions for r1, . . . ,rn.

Psillos (2000) argues that Carnap’s equation of synthetic content with the Ramsey
sentence makes him a structural realist – in which case he is subject to Newman’s
objection, which impales him on the horns of the realism–instrumentalism dilemma.
Friedman (2011) disagrees, arguing that Carnap’s invocation of the Ramsey sentence
successfully implements his neutralist stance. Debate on this issue continues in the
literature – see, e.g., Uebel (2011); Beni (2015).
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Ramsey Sentence Functionalism

In the philosophy of mind, Ramsey sentences came to play a central role through the
work of Lewis (1966, 1972, 1994) and, more generally, in a point of view known as
functionalism. To be sure, Lewis claims not to know whether or not he is a functionalist,
and most functionalists don’t talk explicitly about Ramsey sentences. However, by the
1980s, the connection between functionalism and Ramsey had been firmly established
(see Shoemaker, 1981).

Around 1970, materialist reductionism had gone out of style. Philosophers concluded
that folk psychology cannot, and should not, be reduced – neither to descriptions of
behavior nor to physiological descriptions. However, philosophers weren’t ready to give
up the physicalist project, and, in particular, they didn’t want to entertain the possibility
that there is an autonomous realm of mental objects or properties. The goal then is to
explain how mental properties are anchored in physical properties, even if the former
cannot be explicitly defined in terms of the latter.

Functionalism, and functional definitions, are supposed to provide a solution to this
problem. According to functionalism, mental properties are defined by the role that they
play in our total theory T , which involves both mental concepts (such as “belief” and
“desire”) and physical concepts (such as “smiling” or “synapse firing”). How then are
we supposed to cash out this notion of being “defined by role”? It’s here that Ramsey
sentences are invoked as providing the best formal explication of functional definitions.

Contemporary analytic philosophers routinely mention Ramsey sentences in this con-
nection. Nonetheless, long ago, Bealer (1978) argued that this attempt to define men-
tal properties – call it “Ramsey sentence functionalism” – is inconsistent. According
to Bealer, functionalism has both a negative and a positive theses. On the negative
side, functionalism is committed to the non-reductionist thesis: mental properties (m-
properties) cannot be explicitly defined in terms of physical properties (p-properties).
On the positive side, m-properties are defined in terms of the role they play vis-à-vis
each other and the p-properties.

Let T be a theory in signature ! ∪ {r1, . . . ,rn}, where we think of ! as p-vocabulary,
and of r1, . . . ,rn as m-vocabulary. We then adopt the following proposal (which defend-
ers of functionalism are welcome to reject or modify):

T provides functional definitions of r1, . . . ,rn in terms of ! just in case, in each model M of the
Ramsey sentence T R , there are unique realizing properties M(r1), . . . ,M(rn).

It’s easy to see then that T provides functional definitions of r1, . . . ,rn in terms of !

only if T implicitly defines r1, . . . ,rn in terms of !. Indeed, if M and N are models of
T , then M|! and N |! are models of T R , and it follows from the uniqueness clause that
M(ri) = N (ri). It then follows from Beth’s theorem that T explicitly defines r1, . . . ,rn
in terms of !.

Bealer’s argument, if successful, shows that functionalism is inconsistent: the pos-
itive thesis of functionalism entails the negation of the negative thesis. Surprisingly,
however, functionalism lives on, apparently oblivious of this little problem of incon-
sistency. In fact, functionalism hasn’t just survived; it is flourishing and spreading its
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tendrils – indeed, it has become an overarching philosophical ideology: the Canberra
plan. The goal of the Canberra plan is to find a place in the causal nexus of physical
properties for all the stuff that makes up our daily lives – things like moral and aesthetic
values, laws, society, love, etc. (For further discussion, see Menzies and Price [2009].)

Structural Realism

In more recent times, Ramsey sentences have been invoked in support of a trendy
view in philosophy of science: structural realism. In the early 1990s, structural realism
was the new kid on the block in discussions of scientific realism and antirealism. As
forcefully recounted by Worrall (1989), there are good arguments against both scientific
realism and scientific antirealism. Against scientific realism, there is the pessimistic
metainduction, which points to the long history of failed scientific theories as evidence
that our current favorite scientific theories will probably also fail. Against scientific
antirealism, there is the no miracles argument, which points to the success of scientific
theories as something crying out for an explanation. In good Hegelian fashion, Worrall
seeks a synthesis of the extremes of realism and antirealism – a position that offers the
best of both worlds. His proposal is structural realism, according to which the part of a
theory to take seriously is its pronouncements on issues of structure.

Worrall illustrates the idea of “preserved structure” with a specific example. In par-
ticular, before Einstein’s special theory of relativity, it was thought that there was a
substance, the “aether,” in which electric and magentic waves propagated. After the
Michelson–Morley experiment and the success of special relativity, there was no longer
any use for the aether. Thus, the transition to special relativity might be taken to be a par-
ticularly clear example of failed reference – showing, in particular, that pre-Einsteinian
physicists ought not to have taken their theory so seriously.

Nonetheless, says Worrall, it would have been a mistake for pre-Einsteinian physicists
to treat their theory instrumentally, i.e., merely as a tool for making predictions. For
the form of the equations of motion was preserved through the transition to special
relativity – hence, they would have done well to trust their equations. The general lesson,
says Worrall, is to trust your theory’s structure but not the underlying stuff it purports to
be talking about.

Worrall’s example is highly suggestive, and we might like to apply it in a forward-
looking direction. In particular, take one of our current-day successful scientific theories
T , such as quantum mechanics. The pessimistic metainduction suggests that T will be
wrong about something. But can we already make an educated guess about which parts
of T will be preserved and which part will go on the scrap heap with other rejected
theories?

Worrall and Zahar (2001), Cruse and Papineau (2002), and Zahar (2004) provide
a specific proposal for picking out the structural commitments of a theory T : they are
given by its Ramsey sentence T R . This idea certainly has some intuitive appeal – trading
on an analogy to coordinate-free descriptions of space. For a naive or straightforward
description of physical space, we might use triples of real numbers, i.e., the mathemati-
cal space R3. But now our description of space has superfluous structure. In particular,
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we assigned the origin 0 ∈ R3 to some particular point in space – but we didn’t mean
to indicate that the denoted point is any different than any other point in space. Thus,
our description breaks the natural symmetry of space, and it would be natural to look
for another description that respects these symmetries. Indeed, that’s precisely the idea
behind the move from using vector spaces to using affine spaces to describe space.

Now, just as a vector-space description of space breaks its symmetry, so our theo-
retical descriptions in general might fail to respect the symmetry between properties.
For example, we didn’t need to use the word “electron” to describe those things that
are found in the energy shells around an atom’s nucleus – we could simply say that
something or other plays the relevant role. And that’s exactly what the Ramsified theory
says. Thus, it might seem that T R provides a more intrinsic description than the original
theory T .

Nonetheless, the intuitive appeal of Ramsey sentences fades quickly in the light of
critical scrutiny. Most famously, already in 1928, Newman argued that Bertrand Rus-
sell’s structuralism trivializes, for these structural claims are true whenever their obser-
vational consequences are true (see Newman, 1928). The so-called Newman objection
to structural realism has been the centerpiece of recent debates about Ramsey-sentence
structuralism. But even before we get to that level of scrutiny, there is something quite
strange in the idea of passing to the Ramsified theory T R to get rid of redundancy.
Let’s recall that a formal theory T doesn’t actually refer to things like electrons or
protons – it’s formulated in an uninterpreted calculus. Hence, T doesn’t actually have
any referring terms.

It seems that the impulse to Ramsify is no other than the original impulse to use unin-
terpreted mathematical symbols to represent physical reality. You’ll recall that one of
the key maneuvers in the development of non-Euclidean geometries was de-interpreting
words like “line,” thereby liberating mathematicians to focus attention solely on the
relation that “line” plays relative to other (uninterpreted) terms in their formal calculus.

In any case, what’s really at stake here is the question of what attitude we should
take toward the best scientific theories of our day and age. At one extreme, radical
scientific realists assert that we should give nothing less than full assent to these theories,
interpreted literally. To draw an analogy (that scientific realists will surely eschew), the
extreme scientific realist is akin to the radical religious fundamentalist, and in particular
to those fundamentalists who say that one must interpret scriptures literally. The point
of that injunction, we all know, is to enable religious leaders to foist their opinions on
others. At the opposite extreme, an extreme scientific antirealist sees science as having
no epistemic authority whatsoever – i.e., a successful scientific theory doesn’t call for
any more epistemic attention on our part than, say, Zoroastrianism.

In the light of this somewhat hyperbolic characterization of the anti/realism debate,
we can see various alternative positions as granting a selective epistemic authority to
successful scientific theories. Consider an analogy: suppose that you know a highly
skilled car mechanic, Jacob. You completely trust Jacob when it comes to his opinions
on automobile-related issues. For example, if he says that you need a new alternator,
then you won’t doubt him, even if it costs you a lot of money. Nonetheless, if Jacob
tells you that you need a new kidney, or that you should vote for a certain candidate,
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you might well ignore his opinion – since he’s speaking on a topic that lies outside his
proper expertise.

Now, selective scientific realists consider successful scientific theories to be epis-
temically authoritative, but only when they speak on topics within their expertise. The
different brands of selective realism are distinguished by how they understand the exper-
tise of science. For example, a constructive empiricist (such as van Fraassen) trusts a
successful scientific theory T when it makes predictions about empirical phenomena
(presupposing, as he does, that it makes sense to speak of predictions and empirical
phenomena – precisely the point to which Boyd and Putnam object). Similarly, a struc-
tural realist (such as Worrall) trusts a successful scientific theory T on its structural
pronouncements. But if T says something about things in themselves (or whatever is
not structure), then the structural realist treats it as no more of an authority than your
auto mechanic is on politics.

The previous considerations suggest that varieties of selective scientific realism can
be classified by means of different notions of theoretical equivalence. For example,
the strict empiricist thinks that the important part of a theory is its empirical content;
and hence, if two theories T1 and T2 agree on empirical content, then there is no
epistemically relevant difference between them. Similarly, a structural realist thinks
that the important part of a theory is its pronouncements about structure; and hence,
if two theories T1 and T2 agree on structure, then there is no epistemically relevant
difference between them. In the particular case of Ramsey-sentence structuralism,
the structural pronouncements of a theory Ti are captured by its Ramsey sentence
T R

i . Hence, if T R
1 ≡ T R

2 , then there is no epistemically relevant difference between
T1 and T2.

Unfortunately, the statement “T R
1 ≡ T R

2 ” doesn’t have an obvious meaning, since
there is no single, obviously correct notion of second-order logical consequence. What
this means is that we get different notions of “same structure” depending on which
notion of second-order consequence we adopt. Let’s review, then, some salient notions
of second-order logical consequence.

Second-order logic is a complicated subject in its own right, and has been the source
of much dispute among analytic philosophers. We refer the reader to studies such as
Shapiro (1991) and Bueno (2010) for more details. For present purposes, it will suffice
to make some minor modifications of first-order logical grammar: first, we add a list of
second-order variables X,Y, . . . Each second-order variable has a specific arity n ∈ N,
which means that it can stand in the place of an n-ary relation symbol. We then permit
formulas such as X(x1, . . . ,xn), with a second-order variable of arity n applied to n first-
order variables. We also add an existential quantifier ∃X that can be applied to quantify
over second-order variables.

Now there are two important facts to keep in mind about second-order logic. The first
fact to keep in mind is that second-order logic has is intrinsically incomplete – hence
there is no tractable syntactic relation “⊢” of second-order provability. The second fact
to keep in mind is that there are several candidates for the semantic relation “"” of
entailment. Depending on which choice we make for this relation, we will get a different
notion of logical equivalence.



254 8 From Metatheory to Philosophy

definition 8.1.2 A second-order !-frame F = (M,(E )n∈N) consists of a first order
!-structure M and, for each n ∈ N, a subset En of P(Mn). We let E F =

⋃
n∈N En.

Here the sets in E F will give the domain of the second-order quantifiers in frame F .

In order to define the relation ", we will also make use of the notion of a variable
assignment. Given a !-frame F , a first-order variable assignment g assigns each vari-
able x to an element g(x) ∈ M . A second-order variable assignment G assigns each
variable X of arity n an element G(X) ∈ En. We then define

M[G,g] " ∃Xφ iff for some E ∈ En, M[GE
X,g] " φ, where GE

X is the second-order variable
assignment that agrees with G on everything besides X, which it assigns to E.

Now to define the relation " between sentences, we have to decide which second-
order !-frames to quantify over. We get three different notions, depending on the family
we choose:

1. For full semantics, we permit only those !-frames in which En = P(Mn).
2. For Henkin semantics, we permit all !-frames in which En is closed under first-

order definability.
3. For frame semantics, we permit all !-frames.

Recall that the more structures there are, the more counterexamples and, hence, the
fewer implications. Accordingly, full semantics has more entailments than Henkin
semantics, and Henkin semantics has more entailments than frame semantics. Hence,
full semantics yields a more liberal notion of equivalence than Henkin semantics, which
yields a more liberal notion of equivalence than frame semantics.

In the following discussion, we will take Ti , for i = 1,2, as a theory in signature
! ∪ !i , where !i is disjoint from !. We let T ∗

i be the result of replacing terms in
!i with (possibly second-order) variables, and we let T R

i be the corresponding Ramsey
sentence of Ti . We now give a general schema for Ramsey equivalence of theories.

definition 8.1.3 Two theories T1 and T2 are Ramsey equivalent if T R
1 is logically

equivalent to T R
2 .

The three choices of frames discussed earlier give rise to three notions of Ramsey
equivalence.

• RE1 = loose Ramsey equivalence = Ramsey sentences are equivalent relative to
full semantics.

• RE2 = moderate Ramsey equivalence = Ramsey sentences are equivalent relative
to Henkin semantics.

• RE3 = strict Ramsey equivalence = Ramsey sentences are equivalent relative to
frame semantics.

Obviously, then, we have RE3 ⇒ RE2 ⇒ RE1.
We can now give a sharpened formulation of the Newman problem – in the spirit

of Ketland (2004) and Dewar (2019). Recall that on the old-fashioned syntactic view
of theories, two theories T1 and T2 are considered to be empirically equivalent if they
have the same consequences in the observation language. If we now think of ! as the
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observation vocabulary, then we could formulate this criterion as saying that Cn(T1)|! =
Cn(T2)|! , where Cn(Ti)|! indicates the restriction of the set of consequences to those
that contain only observation terms.

One might also wish to formulate a more semantically oriented notion of empirical
equivalence. For example, we might say that two theories T1 and T2 are empirically
equivalent if their models agree on !-structure.

definition 8.1.4 We say that T1 and T2 are !-equivalent just in case, for each model
M of T1, there is a model N of T2 and an isomorphism h : M|! → N |! , and vice versa.

The following result shows that this semantic notion of empirical equivalence implies
the syntactic notion.

proposition 8.1.5 If T1 and T2 are !-equivalent, then Cn(T1)|! = Cn(T2)|! .

Proof Suppose that T1 and T2 are !-equivalent. Let φ be a !-sentence such that φ ̸∈
Cn(T2). By completeness, there is a model M of T2 such that M ̸" φ. Since T1 and
T2 are !-equivalent, there is a model N of T1 and an isomorphism h : M|! → N |! .
But then N ̸" φ, hence φ ̸∈ Cn(T1). It follows that Cn(T1)|! ⊆Cn(T2)|! . The result
follows by symmetry.

However, this implication cannot be reversed – i.e., the syntactic notion of empirical
equivalence doesn’t imply the semantic notion.

Example 8.1.6 Let ! be the empty signature (with equality). Let !1 = {cr | r ∈ R}, and
let T1 be the theory in ! ∪ !1 with axioms cr ̸= cs , for all r ̸= s. Let T2 be the theory
in ! that says there are infinitely many things. Then Cn(T1)|! = Cn(T2)|! . However,
T2 has a countable model M , and T1 has no countable model. Therefore, T1 and T2 are
not !-equivalent. !

The Newman problem for structural realism is usually phrased as saying that it’s too
easy for a theory’s Ramsey sentence to be true – that the Ramsey sentence is “trivially
realizable.” We can make precise what is meant here by “too easy” in terms of the
notion of theoretical equivalence. In short, Ramsey equivalence – i.e., having logically
equivalent Ramsey sentences – is too liberal a notion of equivalence. In particular,
empirically equivalent theories are Ramsey equivalent.

proposition 8.1.7 (Dewar) If T1 and T2 are !-equivalent, then T R
1 and T R

2 are
logically equivalent relative to full semantics.

Proof Suppose that T1 and T2 are !-equivalent. Now let F be a full !-frame such that
F " T R

1 . Thus, there is a second-order variable assignment G such that F [G] " T ∗
1 .

Let M be the ! ∪ !1 structure obtained by assigning M(R) = G(X), where X is the
variable in T ∗

1 that replaces R in T1. Clearly M is a model of T1. Since T1 and T2 are
!-equivalent, M is !-isomorphic to a model N of T2. This model N of T2 defines a
second-order variable assignment G′ such that F [G′] " T ∗

2 , and hence F " T R
2 .
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The notion of empirical equivalence imposes no constraints whatsoever on what the
theories T1 and T2 say in their theoretical vocabulary – and for this reason, nobody but
the most extreme empiricist should adopt weak Ramsey equivalence as their standard.

Moving back toward the right-wing side of the spectrum of theoretical equivalence,
one might hope that moderate Ramsey equivalence would provide a more reasonable
standard. But the following result shows that any two mutually interpretable theories
satisfy RE2.

proposition 8.1.8 (Dewar) If T1 and T2 are !-equivalent and mutually inter-
pretable, then T R

1 and T R
2 are logically equivalent relative to Henkin semantics.

Proof Suppose that Ti is a theory in ! ∪ !i . We will show that if F : T1 → T2

is a translation (which is the identity on !), then T R
2 " T R

1 , where the " symbol is
entailment relative to Henkin semantics, and T R

i is the result of Ramsefying out !i .
Suppose then that F : T1 → T2 is a translation and that H is a Henkin structure (of
signature !) such that H " T R

2 . Thus, H [G] " T ∗
2 relative to some second-order

variable assignment G. Consider then the first-order structure M for signature ! ∪ !1

that agrees with H on !, and such that M(P ) = G(XP ), for each P ∈ !2, where
XP is the second-order variable that replaces P in T ∗

1 . It is clear then that M " T2.
Now we will use the fact that the translation F : T1 → T2 gives rise to a functor
F ∗ : Mod(T2) → Mod(T1) (6.6.5). In particular, (F ∗M)(Q) = M(F (Q)) for each
relation symbol Q ∈ ! ∪ !1. Now define a second-order variable assignment G′ by
setting

G′(XQ) = (F ∗M)(Q) = M(F (Q)),

for each variable XQ that occurs in T ∗
1 . (Again, we use XQ to denote the variable that

replaces a relation symbol Q that occurs in T1.) To see that G′ is a Henkin-admissible
assignment, note that F (Q) is a !2-formula, and so M(F (Q)) is a first-order definable
subset of M . By construction, each first-order definable subset of M is an element of
E H . Now, it’s clear that H [G′] " T ∗

1 , and hence that H " T R
1 . Since H was an

arbitrary Henkin frame, it follows that T R
2 " T R

1 . By symmetry, if there is a translation
G : T2 → T1, then T R

1 " T R
2 . Therefore, if T1 and T2 are mutually interpretable, then

T R
1 and T R

2 are Henkin equivalent.

There is one last hope for the Ramsefier: that strict Ramsey equivalence (RE3) will
provide the right notion of structural equivalence. Unfortunately, RE3 proves to be the
worst candidate for structuralism, since intertranslatable theories need not satisfy RE3.

Example 8.1.9 Let !1 = {r}, and let !2 = {r ′}, where both r and r ′ are unary pred-
icates. Let T1 = {∃xr(x)}, and let T2 = {∃x¬r ′(x)}. The reconstrual F (r) = ¬r ′(x)
induces a homotopy equivalence between T1 and T2 – i.e., T1 and T2 are intertrans-
latable. However, the Ramsey sentences of T1 and T2 are not frame equivalent. In
particular, consider any frame F with first-order domain M , and E F

1 = {M} – i.e.,
M is the only admissible subset of M . Then F " T R

1 but F ̸" T R
2 . !
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Since strict Ramsey equivalence (RE3) is more conservative (“right wing”) than def-
initional equivalence, we don’t expect structural realists to find it congenial. But what
about those hard-core realists – like David Lewis or Ted Sider – who pin their theoretical
hopes on natural properties and reference magnetism? Might they actually want a
criterion of equivalence that is even more conservative than definitional equivalence?
In fact, it seems that frame semantics might be a good way to capture the idea that to
describe a possible world, you need to say not only what things exist, but also what the
natural properties are. We should note, however, that adopting a first-order signature !

already goes some way to picking out natural properties. When we specify a !-structure
M , we get a natural property M(φ) for each formula φ of !. It’s not clear then why a
theorist who has adopted a first-order signature ! would need to additionally specify a
notion of natural properties.

The previous results can be summarized in the following diagram:

EE MI IT

RE1 RE2 RE3

Here “EE” is empirical equivalence (explicated semantically), “MI” is mutual inter-
pretability over !, and “IT” is intertranslatability over !, which is equivalent to defini-
tional equivalence. It appears then that none of the notions of Ramsey equivalence gets
us near the promising area in the neighborhood of intertranslatability. Most philoso-
phers, we think, would agree that intertranslatability is a reasonable – if somewhat strict
– explication of the idea that two theories have the same logical structure.

8.2 Counting Possibilities

If you page through an analytic philosophy journal, it won’t be long before you see the
phrase “possible world.” Many philosophical discussions focus on this concept, and it
is frequently used as a basis from which to explicate other concepts – Humean superve-
nience, counterfactuals, laws of nature, determinism, physicalism, content, knowledge,
etc. When the logically cautious philosopher encounters this concept, she will want to
know what rules govern its use. Where things get really tricky is when philosophers
start invoking facts about the structure of the space of possible worlds – e.g., how many
worlds there are, which worlds are similar, and which worlds are identical. These sorts
of assumptions play a significant role in discussions of fundamental ontology. To take
a paradigm example, Baker (2010) argues that if two models are isomorphic, then they
represent the same possible world.

Analytic philosophers might be the primary users of the phrase “possible world,” but
they aren’t the only ones using the concept. Scientists talk about possible worlds all the
time. However, at least in the exact sciences, there are explicit rules governing the use of
possible-worlds talk. Indeed, these rules are built into the structure of their theories and,
more particularly, in the structure of those theories’ spaces of models. Following Belot
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(2017), we think that philosophers ought to try to understand the way that scientists’
theories guide their use of modal concepts.

Nonetheless, it’s not hard to find philosophers scratching their heads and asking
themselves questions like the following:

(⋆) Consider two general relativistic spacetimes, M and N , and suppose that h : M → N is an
isomorphism (e.g., a metric preserving diffeomorphism). Do M and N represent the same
possible world?

(∗) Consider two Newtonian spacetimes, M and N , and suppose that h : M → N is an
isomorphism (e.g., a shift). Do M and N represent the same possible world?

Belot (2017) helpfully classifies philosophers into two groups according to how they
answer these questions: the shiftless claim that isomorphisms do not generate new pos-
sibilities, and the shifty claim that isomorphisms do generate new possibilities. In par-
ticular, the shiftless philosopher says that if h : M → N is an isomorphism, then
M and N represent the same possibility. In contrast, the shifty philosopher allows that
M and N might represent different possibilities, even though they are isomorphic. While
the majority of philosophers of physics and metaphysicians have become shiftless, Belot
champions the heterodox, shifty point of view. As we will now argue, all parties to the
dispute have adopted a questionable presupposition, viz. that it makes sense to count
possibilia.

But first, what hangs on this dispute between the shifty and the shiftless? In the first
place, shiftless philosophers believe that they are on the right side of history, ontolog-
ically speaking. In particular, they believe that it would be wrong to countenance the
existence of two possibilities, represented by M and N , when a single one will do
the job. This way of thinking trades on vague associations with Leibniz’s principle
of the identity of indiscernibles: since M and N are indiscernible, there is no reason
to regard them as different. Belot points out, however, that shiftless philosophers have
trouble making sense of how theories can guide the use of modal concepts. In particular,
he argues that the shiftless view is in danger of collapsing the distinction between
deterministic and indeterministic theories.

One is tempted immediately to dismiss the shiftless position, because it patently
conflicts with the standard reading of physical theories. Take, for example, a Galilean
spacetime M , and let γ : R → M be an inertial world line in M . Now, a boost
x ,→ x + vt for some fixed v > 0 is represented by an isomorphism h : M → M . Does
this boost generate a new possibility? The question might seem confusing because the
model on the right side of h : M → M is the same as the model on the left side. It might
seem to be trivially true, then, that h : M → M does not generate a new possibility.
But let’s see what happens if we adopt the shiftless view. If h does not generate a new
possibility, then we ought to say, of a particle in inertial motion that it could not be
in some other state of inertial motion (because there is no other such state of inertial
motion). But that claim is contrary to the way that physicists use this theory to guide
their modal reasoning. When a physicist adopts Galilean relativity, she commits to the
claim that there are many distinct possible states of inertial motion, and that a thing that
is in one state of inertial motion could be in some other state of inertial motion. In other
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words, it matters to physicists that the isomorphism h : M → M is not the identity
isomorphism and, in particular, that the world line h◦γ is not the same as the world line
γ. Nonetheless, shiftless philosophers can’t make sense of these modal claims, because
they insist that isomorphisms don’t generate new possibilities.

Despite the implausibility of the shiftless view, there are some very serious and smart
philosophers who defend it. What is it, then, that really drives their insistence on saying
that isomorphism (at the level of representations) implies identity (at the level of the
represented)? We suspect that the shiftless are fumbling their way toward an insight –
but an insight that is difficult to articulate when one is operating with mistaken views
about mathematical objects and, in particular, about the relation between abstract and
concrete objects. We blame a lot of this confusion on Quine, who decided that we have
no need for the abstract–concrete distinction – in particular, that belief in the existence
of abstracta is no different in principle from belief in the existence of concreta.

At risk of oversimplifying, we will first give a simple formulation of the basic insight
toward which we think the shiftless philosophers are fumbling:

(†) A theory T is indifferent to the question of the identity of its models. In other words, if M

and N are models of T , then T neither says that M = N nor that M ̸= N . The only question T

understands is: are these models isomorphic or not?

Now, please don’t get us wrong: (†) does not say that isomorphic models are identical,
nor does it say that the theory T treats isomorphic models as if they were identical. No,
from the point of view of T , the question, “are they identical?” simply does not make
sense. According to this thesis, claims of identity, or nonidentity of models, play no
explanatory role in the theory.

We realize that this thesis is controversial and that it might take some time for philoso-
phers to become comfortable with it. The problem is that we learned a little bit of set
theory in our young years, and we seem to assume that everything lives in a world of
sets – where questions of the form “is M equal to N” always have a definite answer.
Indeed, the rigid grip of set theory makes philosophers profoundly uncomfortable with
contemporary mathematics, which likes to play a fast and loose game with identity
conditions. Consider a simple example (due to John Burgess): suppose that we ask two
different mathematicians two different questions:

(Q1) How many groups are there with two elements?

(Q2) Inside the group Z2 ⊕ Z2, how many subgroups are there with two elements?

What we are likely to find is that mathematicians will give apparently conflicting
answers. On the one hand, they will tell us that there is only one group with two
elements. On the other hand, they will tell us that Z2 ⊕ Z2 has two distinct subgroups
with two elements. Obviously, if taken literally, these two answers contradict each other.
But there is no genuine conflict, and mathematicians are not in crisis about the number
of groups with two elements. No, the fact is mathematicians use words and symbols in
a different way than we use them in everyday life – e.g., when we count the number of
apples in a basket.
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To reinforce this point, recall that categorical equivalence doesn’t respect the number
of objects in a category. Consider, for example, the following two categories: let C be
the category with one object and one identity morphism. Let D be the category with two
objects a,b, one identity morphism from each object to itself, and a pair of morphisms
f : a → b and g : b → a that are inverse to each other. Then C and D are equivalent
categories – which entails that “this category” doesn’t really have a definite number of
objects. It is not correct to say that it has one object, and it’s not correct to say that it has
two. Or, perhaps better: it is just as correct to say that it has one object as it is to say that
it has two.

Here, then, is our positive proposal:

For the purposes of interpreting a theory T , the collection Mod(T ) of its set-theoretic models
should be treated as nothing more nor less than a category. In particular, the philosopher of
science shouldn’t say things about Mod(T ) that are not invariant under categorical equivalence,
nor should they argue over questions – such as “how many models does T have?” – whose
answer is not invariant under categorical equivalence.

If this proposal is adopted, then there is no debate to be had between the shifty and the
shiftless. The question they are asking – do isomorphisms generate new possibilities? –
depends on a notion (the number of isomorphic possibilities) that is not invariant under
categorical equivalence.

The rationale for this proposal is our belief that models of a theory T in Sets are
representations of that theory; the set-theoretic description of these models is not itself
a further theory that attempts to describe the world at an even finer-grained level of detail
than was done by T . We can further clarify these points by means of a simple example.

Example 8.2.1 Suppose that Berit is a scientist with a very simple theory. Her language
! has a single predicate symbol P , and her theory T says that there are exactly two
things, one of which is a P :

∃x∃y(P (x) ∧ ¬P (y) ∧ ∀z((z = x) ∨ (z = y))).

Now we metatheorists know that a set-theoretic model M of T consists of a two-element
set, say X = {a,b}, with a singleton set M(P ). Let M be the model such that M(P ) =
{a}, and let N be the model such that N (P ) = {b}. Then the permutation h(a) =
b,h(b) = a gives a !-isomorphism h : M → N . (But the permutation h is not an
automorphism of M .)

Let’s consider the shifty–shiftless dilemma with regard to the models M and N , with
the isomorphism h : M → N . The shifty philosopher (e.g., Belot) says that M and N

represent distinct possibilities. The shiftless philosopher (e.g., Baker) says that M and
N represent the same possibility. Who is on the side of truth?

In our opinion, both the shifty and the shiftless say misleading things about this
example. On the one hand, the shifty claim is misleading, because the user of T doesn’t
have the language to say what would be different between M and N . She cannot say, “in
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M , a is P , and in N , a is not P ,” because she herself doesn’t have the name “a.” The
shiftless wants us to start counting how many models there are, but the theory T doesn’t
answer that question.

On the other hand, the shiftless would insist that there is only one possibility, repre-
sented redundantly by M and N . But that claim is misleading for the following reason.
Berit’s theory T is an extension of the theory T0, in empty signature, that says there
are exactly two things. Let I : T0 → T be the translation of T0 into T , and let
I ∗ : Mod(T ) → Mod(T0) be the functor that forgets the assignment of P . Here I ∗M and
I ∗M are both the bare two-point set X, and the isomorphism I ∗h = h : X → X is the
nontrivial permutation. Recall, though, that functors map identity morphisms to identity
morphisms. Hence, if the isomorphism h : M → N is considered to be an identity (as
the shiftless seem to do), then it would follow that I ∗h is the identity morphism. Thus,
contra the shiftless, we cannot identify M and N and forget that there was a nonidentity
isomorphism h : M → N . If we do that, then we won’t be able to see how the theory T

is related to the theory T0.
The confusion here is somewhat similar to Skølem’s paradox (about the existence of

uncountable sets in models of ZF set theory), where we run into trouble if we don’t
distinguish between claims made in the object language and claims made in the meta-
language. In the present case, one might be tempted to think of the theory T as saying
things such as

In model M , a is a P .

Of course, T says no such thing, since it doesn’t have names for models or for elements
in models.

The other problem here is in the way that we’ve set up the problem – by speaking as
if the representation relation holds between M (or N ) and the world. To the contrary,
the representation relation holds between Berit’s language and the world, and we (the
metatheorists) are representing Berit’s theorizing using our own little toy theory (which
presumably includes some fragment of set theory, because that’s a convenient way to
talk about collections of formulas, etc.). Berit herself doesn’t claim that M (or N )
represents the world – rather, the metatheorist claims that M and N represent ways
that Berit’s language could represent the world. Accordingly, Berit doesn’t claim that
M = N , or that M ̸= N ; those are metatheoretical assertions – and do not add to the
stock of knowledge about the world. !

Before proceeding, we should deal with an obvious objection to the view we’ve put
forward. Some philosophers will point out that it is simply false to say that physicists
don’t count the number of possibilities. Indeed, it’s precisely by counting the number of
possibilities that physicists derive notions such as entropy.

We do not disagree with this point, but it doesn’t conflict at all with our positive
proposal (to talk about models of a theory as a category). Category theory is a framework
that is almost infinitely flexible: what we can talk about in a categorically invariant way
depends on how we – or physicists – define the relevant category. For the case at hand,
if X is a classical phase space, then it is assumed that X is a discrete category – i.e., that
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there are no nontrivial isomorphisms between elements of X. Thus, in this case, there
is no question about whether to count two isomorphic possibilities as the same, because
we (or better, the physicists) have chosen not to admit isomorphic possibilities.

To be clear, we explicitly reject the idea that there is a single relation “being isomor-
phic” that either holds or does not hold between concrete objects. On the contrary, the
notion of isomorphism applies to abstractions, and different notions of isomorphism are
valid for different levels of abstraction. It’s up to us to decide which level of abstraction
serves our purposes in reasoning about concrete, physical reality. (In particular, models
of a theory are not concrete realities, and that’s why they cannot either be identical or
nonidentical.)

For all of its other virtues, one of the defects of the semantic view of theories is that
it obscures the object language-metalanguage distinction, a distinction that is absolutely
necessary to make sense of the notion of symmetry of representations. To be more
accurate, the targets of this criticism are advocates of the “language-free” or “semantic-
L” view (see Halvorson, 2013). The picture we get from the language-free semantic
view is that mathematical structures are out there in the world, and that they are either
isomorphic to each other or they are not. Of course, that picture completely ignores the
fact that isomorphisms are defined in terms of language or, to put it more accurately,
that isomorphisms relate mappings M : ! → Sets and N : ! → Sets, which have
a common domain !. Thus, in particular, arbitrary mathematical structures are neither
isomorphic nor non-isomorphic.

The object language ! serves as the reference point in defining a notion of symmetry.
The object language tells us what must be held fixed, and the metalanguage tells us what
can be varied. In particular, a model M of a theory T can have a nontrivial automorphism
group because of two features of the formal setup:

1. The metalanguage describes the world in finer-grained language than the object
language.

2. Distinctions that are not made by the object language are not significant for the
kinds of explanations that the theory T gives.

If we drop either one of those components, then we will most likely make a hash of the
notion of symmetry. Without the metalanguage, there is no way to see any difference
between a and b, and so no way to express the change the occurs in the permutation
a ,→ b. But if we think of the metalanguage as a better object language, then we
shouldn’t count a ,→ b as a symmetry, since these two things are distinguishable
in the metalanguage. Thus, it’s precisely the mismatch between object language and
metalanguage that provides us with a rich notion of symmetry; and, conversely, the
importance of the notion of symmetry gives us reason to maintain a distinction between
object language and metalanguage.

The distinction between object language and metalanguage is one of the most interest-
ing ideas in twentieth century logic and philosophy – and it remains one of the least well
understood. Obviously, Carnap made a lot of this distinction, and, in fact, he seems to
use it as his primary analogy in formulating the distinction between internal and external
questions and, more generally, in understanding the relationship between theories in
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the exact sciences and our other, nonscientific beliefs and attitudes. In contrast, Quine
seems to reject the idea that there is an important difference of status between object and
metalanguage. He seems to propose, instead, that the ascent to metalanguage should be
seen as an extension of one’s object language – and so assertions in the metalanguage
have exactly the same force as assertions in the object language.

8.3 Putnam’s Paradox

Perhaps the most notorious argument from logical metatheory to philosophy is Hilary
Putnam’s model-theoretic argument against realism (Putnam, 1977, 1980). Here is how
the argument goes.

Suppose that theory T is consistent, i.e., T does not imply ⊥ , or equivalently, T has a model.
Now let W represent the collection of all actually existing objects, i.e., W represents “the world.”
Besides consistency, we will make two other minimal mathematical assumptions about T : First,
the cardinality of the language is not so large as to force belief in the existence of too many
objects. In short, we require that |!| ≤ |W |. Second, the theory T doesn’t entail that there are at
most n things, for n ∈ N.

We then proceed as follows: by the Löwenheim–Skølem theorem, there is a model M of T such
that |M| = |W |. This means, of course, that there is a bijection f : M → W . Now we define
another model of T , still called W , by setting W (p) = f (M(p)) for each relation symbol p in
the theory T . But then the the world is a model of T . That is, T is true.

This argument is intended to show that if T is consistent, then T is true – actually true,
in the real world. There is one obvious way to try to block this argument, and that’s
to say that the model W may not be the “intended” assignment of relation, function,
and constant symbols to things in the real world. However, Putnam tries to block that
response essentially by calling upon your charity. Imagine that T is the theory held by
some other person, and that you’re going to try your best to believe that what that person
says is true. In other words, you are going to give her the benefit of the doubt whenever
possible. Then what Putnam has shown is essentially that there is a way of giving her
the benefit of the doubt.

This simple-looking argument is so subtle, and there are many ways we might respond
to it. But let me be completely clear about my view of this argument: it is absurd. This
version of Putnam’s argument is not merely an argument for antirealism, or internal
realism, or something like that. This version of the argument would prove that all
consistent theories should be treated as equivalent: there is no reason to choose one
over the other. Thus, Putnam’s paradox is essentially an argument for one of the most
radically liberal views of theoretical equivalence imaginable. The only more radical
view is the Zenonian view, according to which all theories are equivalent.

To keep things concrete, let’s suppose that T is Mette’s theory. The goal of Putnam’s
argument is to show that Mette’s theory is true. In my view, the problematic assumption
in the argument is the following:

(S) The world can be described as an object W in the universe of Sets.
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The question to be raised here is: who is using the theory of sets to describe the world?
Putnam’s presentation makes it seem that either: (1) it’s unproblematic and theory-
neutral to describe the world as a set, or (2) a realist must describe the world as a set.
We don’t agree with either claim.

Let’s remember that nobody here – including Putnam – is free from language and
theory. When Putnam describes the world as a set, it might seem that he is making
minimal assumptions about it. But the opposite is true. When you have a set, you have
all of its subsets; and when you have two sets, you have all of the functions between
them. To even say these things, we need the rich and expressive language of set theory.

Thus, Putnam has set things up in a misleading way by (1) describing the world as a
set but (2) failing to note who is responsible for this description of the world as a set.
Suddenly it becomes clear why Putnam’s argument goes through, and why it’s trivial.
Putnam assumes that Mette’s theory T is set-theoretically consistent, which simply
means that Mette’s theory can be translated into the background theory T0 that was
used to describe the world. That is, there is a translation F : T → T0. Putnam rightly
concludes that the T0-theorist could take Mette’s theory T to be true. What Putnam does
not show is that anybody, regardless of their background theory, could take Mette’s
theory to be true.

Putnam’s argument should actually not make any assumption about W – i.e., it should
be like a black box. However, Putnam begins by assuming that there is already a fixed
interpretation of ZF into the world – i.e., we know what objects are, and collections
of objects, and functions between objects, etc. He then asks whether T has one (or
perhaps even many) interpretations into this already understood domain. And of course,
the answer is yes.

Thus, Putnam assumes that he is permitted a trans-theoretical language to speak of
the domains M and W . By “trans-theoretical” here, I mean simply that the language of
T0 (in this case, ZF) is not the same as the language of the theory T . In particular, for
Putnam’s argument to go through, he needs to be able to make distinctions in W that
simply cannot be made by users of the theory T .

To make these ideas more concrete, let’s consider an example: Let ! = {c,d}, where
c and dare constant symbols. Let T be the theory in ! that says c ̸= d, and ∀x((x =
c) ∨ (x = d)). (This example violates the strictures of Putnam’s Löwenheim–Skølem
based argument, but the point will not depend on those details.) Of course, there is only
one model of T up to isomorphism. And yet, a skeptical worry arises! Imagine two
people, Mette and Niels, both of whom accept T , and both of whom think that the world
is the set {a,b}. And yet, Mette says that c denotes a, whereas Niels says that c denotes
b. Do Mette and Niels disagree? The answer is yes and no.

We have already misdescribed the situation. Mette cannot say that “c denotes a,”
because a is not a name in her language. Similarly, Niels cannot say that “c denotes
b.” It is the metatheorist who can say: “Mette uses c to denote a,” and “Niels uses d

to denote b.” But how does the metatheorist’s language get a grip on the world? How
can he tell what Mette and Niels are denoting, and that they are different things? Now,
Putnam might claim that it is not he, but the realist, who thinks that the world is made
of things, and that when our language use is successful, our names denote these things.
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So far I agree. The realist does think that. But the realist can freely admit that even
he has just another theory, and that his theory cannot be used to detect differences in
how other people’s theories connect up with the world. All of us – Mette, Niels, Hilary,
you, and I – are on the same level when it comes to language use. None of us has the
metalinguistic point of view that would permit us to see a mismatch between language
and world.

Now, I suspect that some people might think that I’ve simply affirmed Putnam’s
conclusion – i.e., that I have embraced internal realism. I can neither affirm nor deny
that claim (largely because of unclarity in the meaning of “internal realism”). But I
insist that if Putnam’s argument works, then we have no reason to discriminate between
(ideal) consistent theories, and we should adopt an absolutely radical left-wing account
of theoretical equivalence. I, for one, am loath to think that good theories are so easy
to find.

Consider another scenario, where now I, rather than Putnam, get to choose the rules
of the game. In other words, I have my own theory T0 of which I believe the world W is a
model. Then along comes Putnam and says that any consistent theory can be interpreted
into the world W . But if my background theory T0 is not ZF, then I don’t see W as a set,
and Putnam’s argument cannot even get started. In particular, I don’t necessarily grant
that there is an isomorphism f : M → W between a model M of T and this model W of
my theory T0. For one, what would I even mean by the word “isomorphism”? I, the user
of the theory T0, know about isomorphisms between models of my theory. However, M

is a model of a different theory T , written in a different signature !, and so there may
be no standard of comparison between models of T and models of T0.

There is still another, more severe problem for Putnam’s argument. For a scientific
theory to be “ideal,” it’s really not enough for it to correctly report every actual fact.
In must do more! There are a few ways to get a handle on what more a good scientific
theory must do. David Lewis recognized that the “best theory” is not simply one that
gets every fact correct. Instead, the “best” achieves an ideal balance of strength and
simplicity. Here “strength” means reporting the facts, and simplicity means . . . well, we
all know it when we see it, right? Whether or not we philosophers have a good account
of simplicity, the fact is that Lewis was right that there is (at least) a second component
to theory evaluation, and it has something to do with systematicity, or choosing the right
language, or cutting nature at the joints.

Thus, when I’m looking at a scientific theory, I’m not just interested in whether
it’s true. You could write down every truth in a massive encyclopedia, and I wouldn’t
consider it to be the best scientific theory. There are better and worse ways to say the
truth. And what this means for our considerations here is that not all true theories are
created equal; thus, certainly not all ideal consistent theories are equal.

We might want to go to the trouble of explaining when I, user of theory T0, would
grant that T can be interpreted into a model M of my theory. In the simplest sort of
case, I would require that for each relation symbol p of T , there is a formula Fp of
the appropriate arity of my language !0 such that p can be interpreted as M(Fp). As
a user of theory T0, I only recognize those subsets of M that can be described via the
predicates of my theory. In particular, I don’t necessarily have the resources to name the
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elements of the domain M , and I don’t necessarily have the resources to collect arbitrary
elements of M and form subsets out of them. I can only talk about “things that satisfy
φ”, where φ is one of the predicates of my language.

So, suppose then that T is consistent relative to my theory T0: for each model M of
my theory, there is a model M∗ of T with the same domain as M , and such that for
each relation symbol p of !, M∗p = M(Fp) for some formula Fp of my language
!0. However, even in this scenario, I wouldn’t necessarily consider the theory T to be
adequate, for it may fail to pick up the relationships between various models of my
theory. I’d want to know that the user of T recognizes the same connections between
models that I do. In particular, where I see an elementary embedding h : M → N , I
would require the user of T to see a corresponding elementary embedding h∗ : M∗ →
N∗ between models of his theory T . And that just means that h ,→ h∗ completes the
definition of a functor from Mod(T0) to Mod(T ), where the object part is given by
M ,→ M∗. We then have the following result.

proposition 8.3.1 Let F be a map of !-formulas to !0-formulas such that the map
M(φ) ,→ M(Fφ) defines a functor from Mod(T0) to Mod(T ). Then F : T → T0 is a
translation.

Proof Define a reconstrual G : ! → !0 by setting Gp = Fp. We claim that T0 ⊢
Gφ ↔ Fφ for all formulas φ of !. For this, it suffices to run through the clauses in
the definition of F . For example, we need to check that F (φ1 ∧ φ2) ≡ F (φ1) ∧ F (φ2),
where ≡ means provable equivalence modulo T0. But this is easy to check: let M be an
arbitrary model of T0. Then

M(F (φ1 ∧ φ2)) ≡ M∗(φ1 ∧ φ2)
≡ M∗(φ1) ∩ M∗(φ2)
≡ M(F (φ1)) ∩ M(F (φ2)
≡ M(F (φ1) ∧ F (φ2)).

(Here I’ve ignored for simplicity the fact that φ1 and φ2 might have different free
variables.) The clauses for the other connectives and for the quantifiers are similar.

The upshot of this result for Putnam’s argument is as follows: a user of a theory T0

should only grant that T can be true if there is a translation of T into T0. This result is
not surprising at all. In real life, this is the sort of criterion we do actually employ. If I
hear someone else speaking, I judge that what they are saying “could be true” if I can
reconstrue what they are saying in my language. If there is no way that I can interpret
their utterances into my language, then I am forced to regard those utterances as false or
meaningless.

As Otto Neurath pointed out, and as Quine liked to repeat, we cannot start the search
for knowledge from scratch. Each of us already has a theory, or theories. And we have
a notion of permissible translations between theories that regulates (or describes) our
attitude about which other theories could potentially be correct. If a theory T can be
conservatively translated into my theory T0, then I will think that T might possibly say
something true (perhaps if its terms are charitably interpreted). But even then, I would
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not necessarily judge T to be true. Indeed, if my standard of theoretical equivalence is
weak intertranslatability, then I will judge T to be potentially true (even under the most
charitable interpretation) only if T and T0 are weakly intertranslatable. (And do recall
that weak intertranslatability is a fairly conservative criterion of equivalence.)

What Putnam has shown, at best, is that relative to a background theory T0 of bare
sets, a theory T that has a model in Sets could be charitably interpreted as true by a user
of T0. The result is really not very interesting – except insofar as it reminds us of the
dangers of uncritically accepting set theory as our background metatheory. Indeed, set
theory makes nontrivial existence claims – e.g., the claim that any two points in a model
are related by a permutation.

The things I’ve just said might sound quite similar to Lewis’ (1984) response to
Putnam’s argument. Lewis attempts to block the argument precisely by denying the
permissibility of the relevant permutation – or, what’s the same, of denying that each
subset of World picks out a genuine property. But Lewis’ response is not, by itself,
sufficient to block Putnam’s argument. Suppose indeed that we’ve identified a privileged
subclass N of natural properties among the subsets of World. We can also require, as
Lewis does, that a predicate symbol p of the signature ! must be assigned to a set
M(p) ∈ N. In other words, M cannot assign p to any old subset of World.

What Lewis has done here, in effect, is to propose an extension of Putnam’s back-
ground theory T0, by means of adding predicate symbols to the signature !0 in order
to designate the subsets in N. Let T1 be Lewis’ strengthened background theory – the
theory that describes the world as a set World, with a privileged family N of subsets of
World to represent the natural properties. Then Lewis’ requirement that the predicates
of T be interpreted as elements of N is tantamount to the requirement that there is an
interpretation of T into Lewis’ background theory T1. Since T1 is expressively weaker
than Putnam’s background theory T0, it is more demanding to ask for an interpretation
of T into T1 than it is to ask for an interpretation of T into T0.

Lewis’ requirement can block Putnam’s trivializing maneuver: for some choices of
N, there are theories T that are set-theoretically consistent but that cannot be translated
into T1. To take one trivial example, suppose that T1 has three natural properties: the
empty set, the entire world, and some proper subset of the world. Suppose also that T

includes the axiom

∃xPx ∧ ∃yQy ∧ ¬∃z(Pz ∧ Qz).

Then T is set-theoretically consistent, but T cannot be translated into T1.
Nonetheless, Lewis’ demands here are not strong enough. In general, for any suffi-

ciently rich family of natural properties N, too many theories T will be interpretable into
Lewis’ background theory T1. And hence, if Lewis grants Putnam’s call for charitable
interpretation, then Lewis must grant that those theories are true. That concedes too
much. It is easy to think of examples that would make a realist choke. For example,
suppose that Gargamel has a theory that says there are many gods, and there are no
electrons. If Lewis countenances just a single natural property with instances, then
Gargamel’s theory can be translated into Lewis’ background theory – and, by the prin-
ciple of charity, should be counted as true.
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We will not engage now in further formal investigation of these matters, e.g., to
ask how many natural properties there need to be in order for a given theory T to
be interpretable into Lewis’ background theory. We don’t think that question is very
interesting – because we’ve already gone off on a bad track. There are two interrelated
problems here. The first problem is that Lewis’ background theory T1 has little to
recommend it, even if we are inclined to accept that there are “natural properties.”
(And anyone who uses first-order logic implicitly does accept the existence of natural
properties – they are precisely the properties that are definable in her language.) The
second, and deeper, problem is that Lewis, like Putnam, seems to be supposing that
all parties – or at least all metaphysical realists – can agree on some particular fixed
background theory T∗. We reject that assumption, and as a result, Putnam’s paradox
simply dissolves.

8.4 Realism and Equivalence

According to the standard stereotype, the logical positivists were antirealists or instru-
mentalists about scientific theories. Moreover, this antirealist stance was facilitated by
means of the syntactic analysis of scientific theories, according to which a theory T ’s
language has some purely observational terms O, and its empirical content can be
identified with T |O . With this formal analysis, the positivists could then articulate their
particular versions of epistemic and semantic empiricism:

• Epistemic empiricism: the reasons we have to believe T derive from reasons we
have for believing T |O .

• Semantic empiricism: the meaning of terms in !\O derives exclusively from the
meaning of terms in O.

The extreme instrumentalist would say that the terms in !\O have no meaning: there
are merely instruments to facilitate making predictions. The attenuated instrumentalist
tries to find a way for terms in ! to inherit meaning from terms in O.

In the 1960s and 1970s, the syntactic view of theories was discredited, and the tide
seemed to have turned decisively against antirealism – or at least against this stereotyped
antirealism. Without a clear delineation of the empirical part of a theory, it was no longer
possible to think that warrant or meaning could flow upward from the observationally
relevant parts of a theory.

Van Fraassen characterized the state of play in 1976: “After the demise of logical
positivism, scientific realism has once more returned as a major philosophical position”
(van Fraassen, 1976, 623). He goes on to characterize scientific realism as commitment
to the following thesis:

The aim of science is to give us a literally true story of what the world is like; and the proper
form of acceptance of a theory is to believe that it is true. (van Fraassen, 1976, 623)

As is well known, van Fraassen then gave several strong arguments against scientific
realism, before going on to develop his positive alternative: constructive empiricism.
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In the years that followed, there was much back-and-forth debate: van Fraassen on
the side of constructive empiricism – and dozens of other philosophers on the side of
scientific realism. The terms of this debate had been set by van Fraassen, and these
terms were rarely (if ever) questioned. In particular, the scientific realists seem to have
been happy enough with van Fraassen’s characterization of their position; their job was
merely to bring out its merits.

However, if we look more closely, it becomes apparent that the debate wasn’t so
clear-cut. During the 1960s and 1970s, scientific realists were fond of saying that the
philosophical position of scientific realism is itself a scientific hypothesis, and that the
reasons for believing it are of the same nature as the reasons for believing any other
scientific theory. In particular, they claimed that the hypothesis of scientific realism is
the best explanation for the success of the scientific enterprise.

Now, van Fraassen certainly questioned the latter claim. But more interestingly, he
chose not to play by the same game as the scientific realists. For van Fraassen, the
reasons for being a constructive empiricist are different in kind from the reasons for
accepting a scientific theory. For those who were following the debate closely, it became
clear that the choice between realism and antirealism about science was not a simple
disagreement about which hypothesis better explains a common domain of phenomena.
There was a deeper and more elemental disagreement about the goals of philosophical
reflection.

For many philosophers of the next generation, the question of scientific realism versus
scientific antirealism had receded too far into the upper reaches of metaphilosophy. The
simple “pro and con” arguments of the 1970s and 1980s were not going to get us any-
where, seeing that the opposed parties were using different standards to evaluate these
arguments. Thus, the next generation of philosophers of science moved downward –
back to the analysis of specific scientific theories. Although they may not openly use
these words, I suspect that many philosophers of science now feel that “realism or
antirealism?” is a pseudoquestion, or at least not a particularly interesting question.

Speaking of pseudoquestions, what makes a question pseudo? Here is one criterion:
a question is pseudo if getting an answer to it wouldn’t change anything you do. By
that standard, it’s easy to see why the realism–antirealism debate might seem like a
pseudodebate. Would a scientist do anything differently tomorrow if he converted to
constructive empiricism? Wouldn’t he go on looking for the elegant and powerful theo-
ries, and using them to make predictions and give explanations?

This last thought suggests a better way to understand what’s really at stake in the
realism–antirealism debate. I suggest that the debate can be fruitfully reconceived as a
battle over standards of theoretical equivalence. In particular, a realist is somebody who
adopts – or recommends that people adopt – stricter standards of theoretical equivalence.
Conversely, an antirealist is somebody who adopts – or recommends that people adopt –
looser standards of theoretical equivalence. In short, realists are conservatives about
theoretical equivalence, and antirealists are liberals about theoretical equivalence.

This construal of the realism–antirealism debate matches well with various well-
known cases. Consider, for example, the case of the logical positivists. We tend to think
that they were antirealists because they said, “the content of the theory T resides in its
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observable part T |O .” But there are a lot of unclear words here, such as “content” and
“residing” and “observable,” and so this doesn’t make for a very sharp statement of a
philosophical thesis. However, one concrete implication of these positivist words is that
if T |O = T ′|O , then we should treat T and T ′ as equivalent. For example, suppose that
two scientists, say Werner and Erwin, have apparently conflicting theories T and T ′ with
the same empirical content, i.e., T |O = T ′|O . Then the positivist would recommend that
Werner and Erwin reconcile, for there can be no reason to prefer T over T ′ or vice versa.
The difference between their theories is no more important than the difference between
theories written in German and French. In contrast, if T says anything that conflicts with
T ′, then the scientific realist thinks that one of the two must be better than the other, and
that we should actively pursue inquiries to determine which it is.

This picture of the realism debate also makes sense of what structural realists were
trying to achieve. In short, structural realists urge that not every single detail of a suc-
cessful scientific theory should be taken with equal seriousness. In particular, they argue
that if two theories T and T ′ differ only with respect to content, and not with respect to
structure, then one can have no reason to prefer T over T ′, or vice versa. The normative
core of structural realism, then, is to propose a notion of theoretical equivalence that lies
somewhere to the left of the extreme right realist view and somewhere to the right of the
extreme left views of the logical positivists, Nelson Goodman, and Putnam in the later
stages of his career.

Scientists and philosophers – and, in fact, everyone – have implicit standards of
equivalence that they employ to judge between truth claims, especially when those
claims seem prima facie to conflict. If you believe “God doesn’t exist,” and your French
colleague believes “Dieu n’existe pas,” then you know that there is no dispute to be set-
tled. Not only are those two sentences compatible with each other; they are equivalent.
Even within a single language, we can say the same thing in different ways. Imagine
that your friends Anne and Bent disagree about the number of roses in the vase on the
counter. Anne says, “there are six roses,” and Bent says, “there are a half dozen roses.”
In such a case, you would surely advise Anne and Bent to kiss and make up, since their
dispute is merely verbal.

Those cases are easy. But there are more difficult cases in life – especially as we move
into the more abstruse regions of the sciences. (And that’s not even to speak of cases
such as differences in matters of politics or religion.) For example, there is a debate
among evolutionary biologists about the units of selection: is it the individual or the
species? Many a friendship between scientists has been broken because of disagreement
on issues like this one. But what if there really was no dispute between them? What if
they were saying the same thing in different terms?

You might think such a scenario is unimaginable. But if the history of science can
be trusted, then there have been numerous cases where prima facie disagreement has
later been judged to be spurious. For example, in the mid-1920s, Werner Heisenberg
developed a theory that made use of non-commutative algebra in order to predict the out-
comes of measurements. This theory, called matrix mechanics, was hailed by many as
a breakthrough, for it unified the ad hoc recipes that plagued the old quantum theory of
Bohr and Sommerfeld. However, others abjured matrix mechanics, on the grounds that
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it was incomprehensible and unvisualizable and entailed bizarre claims, most notably
the existence of “quantum jumps.” Thus, a competing theory was developed by Erwin
Schrödinger, a theory based on completely different ideas and mathematical techniques.
According to Schrödinger’s theory, there are waves moving through physical space (or
a higher-dimensional configuration space), and particles such as electrons are simply
harmonic resonances in these waves.

Thus, Heisenberg presented one theory, T1, to account for the quantum phenom-
ena, and Schrödinger presented another theory, T2, to account for the same phenom-
ena. While both these were empirically adequate, the battle between Heisenberg and
Schrödinger was fierce, including name-calling, a fight for prominence at professional
meetings, and competition for funding and university positions. The behavior of Heisen-
berg and Schrödinger clearly indicated that they saw this debate as genuine and in need
of resolution.

The conclusion of this story is typically told as follows. Based on some suggestions
that Schrödinger himself made, a young mathematician, John von Neumann, formulated
a conjecture: Heisenberg’s matrix mechanics T1 is equivalent to Schrödinger’s wave
mechanics T2. Von Neumann then went on to prove this theorem, to the great satisfaction
of most participants involved – especially those like Niels Bohr, who didn’t want to
choose between Heisenberg and Schrödinger. As a result, the debate came to an end.
Since T1 and T2 are equivalent theories, there is no question about which one is better,
at least not in any epistemically or ontologically relevant sense. There is no decision to
be made about whether to accept T1 or T2.

Such is the nature of judgments of theoretical equivalence. When one judges that the-
ories T1 and T2 are equivalent, one judges that accepting T1 is tantamount to accepting
T2. Conversely, if one feels that T1 might be favored over T2, or vice versa, then one
judges that these theories are not equivalent.

Are there equivalent theories? Setting aside the Heisenberg-Schrödinger theory as
controversial, still every sane person will admit that at least some theories are equivalent.
For example, say that T1 is the theory written down in the textbook General Relativity
by Robert Wald that is sitting on the shelf in my office, and that T2 is the theory written
down in the textbook General Relativity by Robert Wald that is sitting on the shelf in
Carlo Rovelli’s office. Of course, we all know that T1 and T2 are equivalent theories. In
fact, most of us just say that these are the same theory, and that’s why we use a definite
description for it: “the general theory of relativity.” But if we boil everything down to
fundamental physics, then we can only say that there are two distinct collections of ink
splotches, one in an office in Princeton and another in an office in Marseilles.

In my experience, philosophers tend to react to this silly sort of example by flying
to the realm of abstract entities. They say something like this: the two books contain
sentences that pick out the same propositions, and that’s why we say that the sentences
represent the same theory. Now, I don’t disagree with this claim; I only doubt its util-
ity. If you give me two languages I don’t understand, and theories in the respective
languages, then I have no way of knowing whether those theories pick out the same
propositions. And that’s precisely the sort of case we face with something like matrix
and wave mechanics. Employing new formalism that is not yet very well understood,
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it is unclear whether these theories say the same thing. Thus, we need some criterion
for equivalence that is checkable, at least in principle. In other words, we need to know
when two sentences pick out the same proposition.

There are essentially two ways to proceed from here. On the one hand, we can ask:
what features must two theories have in common in order to be equivalent? In philo-
sophical jargon: what are the necessary conditions for theoretical equivalence? This
question can also be given a mathematical gloss: what are the invariants of theoretical
equivalence? For example, some people would say that for two (single-sorted) first-order
theories T1 and T2 to be equivalent, they must agree on the number of existing objects.
There are other conditions we might try to impose, but which are a bit more difficult
to cash out in terms of formal logic. For example, many contemporary philosophers
would say that two equivalent theories must have the same primitive notions – i.e., those
objects, properties, etc., that ground the other things that the theory mentions.

The second question we could ask has a more top-down flavor: could we simply
define an equivalence relation on the collection Th of all theories? Disregarding the fact
that Th is a proper class and not a set, there are many such equivalence relations, all
of which yield some notion of theoretical equivalence. Among these untold number of
equivalence relations, some have relatively simple or elegant definitions. Indeed, each
one of the notions of equivalence we have canvassed in this book – e.g., definitional
equivalence, Morita equivalence, and categorical equivalence – defines an equivalence
relation on the class of all first-order theories.

An ideal method, I think, is to take both procedures into account. On the one hand, we
need not accept a definition of equivalence if it violates necessary conditions to which
we are committed. On the other hand, some of us might feel compelled to abandon an
intuitive necessary condition of equivalence – i.e., some intuitive invariant of theoretical
equivalence – if it conflicts with what otherwise seems the most reasonable formulation
of an equivalence relation on Th.

We can see these sorts of choices and trade-offs being made all the time in philosophy.
On the more conservative side, philosophers such as David Lewis and Ted Sider lay
heavy stress on choosing the right primitives. At times it seems as if they would go so
far as to say that there is a privileged language for metaphysics so that no theory in
this language could be equivalent to a theory that is not in this language. (One wonders,
however, how they individuate languages.)

One could imagine an even more conservative stance on theoretical equivalence. For
example, suppose that ! is a fixed signature (say, the preferred signature for meta-
physics), and T1 and T2 are theories in ! that have the same consequences (equivalently,
have the same models). Should we then consider T1 and T2 to be equivalent? I suspect
that Sider would say yes. But I also suspect that some philosophers would have said
no, for they might have thought that there are preferred ways of axiomatizing a theory.
Indeed, if you really believe that some facts are more basic than all the others, then
shouldn’t those facts be the ones enunciated in the axioms, so that all other facts are
seen as flowing from them? Thus, we get an even finer-grained equivalence relation on
Th if we demand that equivalent theories are in the same signature and have the same
axioms.
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Even that requirement – having the same axioms – is not the most conservative
imaginable. We might even require that the theories literally have the same notation.
For example, in formulating group theory, we could use the symbol ◦ for the binary
relation, or we could use the symbol •. Who knows, perhaps one of these two symbols
more perspicuously represents the structure of the binary function in the world that we
are trying to represent. At the farthest end of this spectrum, one could adopt a pure
“Heraclitean” account of theoretical equivalence, according to which no two theories
are the same. In other words, the criterion of theory identity could be made out to be
literal identity – of symbols, axioms, etc.

Conservative views of theoretical equivalence tend to align with “realist” views about
science or metaphysics. Roughly speaking, if you think that the world has real struc-
ture, then you’ll think that a good theory has to represent the structure that is out
there. If two theories disagree about that structure, then they cannot be equivalent.
Going in the opposite direction, liberal views of theoretical equivalent tend to align
with “antirealist” views about science and metaphysics. We see this tendency with
Nelson Goodman in the 1960s and with Hilary Putnam in the 1970s. Putnam’s move
toward antirealism was augured by his giving many examples of theories that he says
are equivalent, but which realists regard as being inequivalent. For example, Putnam
claims that Euclidean geometry based on points is equivalent to Euclidean geome-
try based on lines – even though the models of these two theories can have different
cardinalities.

Long before Putnam turned in this direction, the connection between antirealism and
liberal views of theoretical equivalence had already been established. I’m thinking here
of the logical positivists and their infamous notion of empirical equivalence. The idea
here is that two theories T1 and T2 are empirically equivalent just in case they share the
same observable consequences – and regardless of what else these might say. So, to take
an extreme example, if T2 is T1 plus the sentence, “there is a new unobservable particle,”
then T1 and T2 are empirically equivalent.

Now, for the logical positivists – or at least, for some of them – empirical equivalence
is equivalence enough. For they identified the content of a proposition with that propo-
sition’s empirical consequences; and it follows from this that if two propositions φ and
ψ have the same empirical consequences, then they have the same content – i.e., they
are the same proposition. Stepping back up to theories, as collections of propositions,
the positivist view of content entails that two theories are equivalent tout court if they
are empirically equivalent.

The positivist view of theoretical equivalence is quite liberal, and certainly unaccept-
able to scientific and metaphysical realists. Most of us have the intuition that theories
can say different things about unobservable things, even if those theories agree in all
their observational consequences. In this case, we have to reject empirical equivalence
as a sufficient condition for theoretical equivalence.

A case can be made that Putnam’s view of theoretical equivalence eventually
became – at least tacitly and in practice – even more liberal than empirical equivalence.
In putting forward the model-theoretic argument, Putnam essentially makes an argument
for the following claim:
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If T is consistent (and has other virtues such as completeness), then T ought to be taken as true.

Now, in application to two consistent theories T and T ′, we have the following result:

If T and T ′ are consistent (and have other virtues such as completeness), then T and T ′ ought
both to be taken as true.

In other words, consistent, ideal theories are true in all conditions, hence in all the same
conditions, and so they are equivalent. That is a radically liberal view, almost Zeno-like
in its implications. For in this case, there is only one equivalence class of consistent
theories.

What I’ve left out from this story so far are all the intermediate (and more plausible)
views of theoretical equivalence – views that we have been discussing throughout this
book, such as definitional equivalence or Morita equivalence. To put everything together,
consider the diagram that follows, which places the different views of theoretical equiv-
alence on a one-dimensional spectrum from maximally liberal (Zenonian) to maximally
conservative (Heraclitean).

Zeno ← categorical ← w-intertranslatable ↔ Morita ← s-intertranslatable ↔ CDE ← logical
← Heraclitus

So, given this wide range of different notions of equivalence, how are we to choose
among them? And do we need to choose among them? I would say that we don’t have
to explicitly choose among them – but that our attitudes toward them mirror our attitudes
toward real life cases, or at least to cases that come up in other philosophical discussions.
Consider, for example, North’s (2009) argument for the inequivalence of Hamiltonian
and Lagrangian mechanics. She says, “Hamiltonian and Lagrangian mechanics are not
equivalent in terms of statespace structure. This means that they are not equivalent,
period.” In other words, she’s putting a model of Hamiltonian mechanics next to a
model of Lagrangian mechanics and comparing structure. Seeing that these structures
are not “equivalent,” she declares that the theories are not equivalent. We see then
that, at the very least, North adopts a criterion that is more conservative than categori-
cal equivalence, which is blind to the internal structure of individual models. (In fact,
Barrett [2018a] shows that Hamiltonian and Lagrangian mechanics are categorically
equivalent.) Most likely, North’s criterion is further to the right than even Hudetz’s defin-
able categorical equivalence (see Hudetz, 2018a), for she doesn’t consider questions as
to whether Lagrangian structure can be defined in terms of Hamiltonian structure, and
vice versa.

We can see a similar thought process going on with critics of quantifier variance.
Indeed, we can think of debates about quantifier variance as debates about which notion
of theoretical equivalence to adopt. The opponents of quantifier variance insist that
equinumerosity of models is a necessary condition for theoretical equivalence. Thus,
they draw the line short of Morita equivalence, which allows that equivalent theories
can have models of different cardinalities. In contrast, defenders of quantifier variance
claim that theories can be intertranslatable even if they violate that cardinality constraint.
The question boils down to which criterion of theoretical equivalence is the better one
to adopt.
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I believe that this is one of the most interesting questions that philosophers can ask,
precisely because it’s a non-factual question. Or, to put it more accurately, the answer
that one gives to such a question determines what one thinks is a factual question –
and so it’s not the kind of question that two parties can easily resolve by appeal to a
shared stock of facts. Nonetheless, we’ve made a lot of progress on the technical side,
so we now have a much more clear sense of what’s at stake and the price we must pay
for adopting some particular formal notion of equivalence as an intuitive guide to our
practice of judging between theories.

Consider, for example, the distinction between definitional equivalence and Morita
equivalence – or what is the same, between strong and weak intertranslatability. The
line between these two notions of equivalence seems to correspond pretty well to the
distinction between metaphysical realists and, well, those who aren’t quite metaphysical
realists. (The metaphysical realist might insist that if theories are equivalent, then their
models have the same number of objects.) However, we shouldn’t forget that Morita
equivalence isn’t all that liberal. It’s certainly far more conservative than what Putnam
was suggesting in the model-theoretic argument.

We can also see that the ontology of Morita equivalent (i.e., weakly intertranslatable)
theories can never be radically different from each other. If F : T → T ′ is a homotopy
equivalence (between single-sorted theories), then for each model M of T ′, there is a
model F ∗M of T , whose domain is explicitly constructed by the recipe:

(F ∗M)(σ) = M(σ′) × · · · × M(σ′)/ ∼,

where ∼is an equivalence relation defined by the theory T ′. There are a couple of impor-
tant points here. First, the ontology of F ∗M results from simple logical constructions
of the ontology of M . Borrowing terminology from Bertrand Russell, we could say that
the elements of F ∗M are logical constructs of elements of M . Second, the recipe for
constructing F ∗M from M is uniform – i.e., it doesn’t depend on M . In other words,
it’s not just that each model of T consists of logical constructs of elements of a model
of T ′; it’s that the type of construction is uniform. It’s in this extended and, nonetheless,
quite strong sense that T has the same ontology as T ′.

Moreover, since F is assumed to be a homotopy equivalence, we can say the same
thing in reverse order: each model of T ′ consists of logical construct of elements of
a model of T , and this construction is uniform on models. One bonus insight here is
seeing how the relation “being a logical construct of” differs from the mereological
parthood relation. Consider the specific example of the point and line formulations of
affine geometry (see Section 7.4). Here the points are logical constructs of lines, and the
lines are logical constructs of points. It’s tempting to think then that points are logical
constructs of points – but that would be incorrect. The reason that inference doesn’t
go through is that “being a logical construct of” is not like the mereological notion of
parthood. To get a line, we don’t simply take two points; we take an equivalence class of
two points. Thus, there is no sense here in which a line results from taking a composite
of points. The opposite direction is even more clear. We can construct points from lines,
but certainly a point is not made out of lines.
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The upshot of these considerations is that moving from definitional equivalence to
Morita equivalence is not as radical a generalization (or liberalization) as it might seem
at first. Even for the ontological purists, a case could be made that Morita equivalence
involves only the slightest relaxation of the constraint that equivalent theories should
have equinumerous domains.

In contrast, categorical equivalence is extremely liberal from an ontological point of
view. It’s possible, indeed, to have categorically equivalent theories where there is no
reasonable sense in which the ontology of the first’s models can be constructed from the
ontology of the second’s models.

There are, however, some intermediate cases that are worth considering. Some of
these are discussed by Hudetz (2018a). Here we just look at one example that will be
familiar from Chapter 3. Consider the categories Bool, of Boolean algebras, and Stone,
of Stone spaces. As we proved, Bool is equivalent to the opposite of Stone, where
the arrows have been flipped. Moreover, the functors relating these two categories do
have a strongly constructive flavor. The functor F : Bool → Stoneop is the repre-
sentable functor hom(−,2), where 2 is the two-element Boolean algebra. The functor
G : Stoneop → Bool takes the clopen subsets. In both cases, the functor involves
construction of an object of one category out of an object of the second category, and
possibly some reference object, such as 2.

Could these latter sorts of functors be taken as representing genuine theoretical equiv-
alences? There are two clarifications we need to raise for that question. First, the ques-
tion doesn’t even make sense until we say something more about how a category,
which may not be of the form Mod(T ) for a first-order theory, can represent a theory.
Second, for many physical theories – and pace Quine – the elements of a mathematical
domain X are not necessary meant to represent objects in the physical world. Consider
the following example, which – besides being extremely interesting in its own right –
illustrates several of these points.

General relativity (GTR), qua mathematical object, can roughly be taken to be the
category Lor of Lorentzian manifolds, equipped with an appropriate collection of
smooth mappings between them. There has been a longstanding debate – stimulated,
no doubt, by Quine’s criterion of ontological commitment – about whether accepting
GTR demands that one accept the existence of spacetime points. Perhaps partially in
response to that claim, Earman noted that GTR could also be formulated in terms of
mathematical objects called “Einstein algebras.” The relationship between Lorentzian
manifolds and Einstein algebras is suggestively parallel to the relationship between
Stone spaces and Boolean algebras. This parallel was confirmed by Rosenstock et al.
(2015), who showed that Lor is dual to the category EAlgof Einstein algebras.

If one takes categorical equivalence as the criterion for theoretical equivalence, then
the Einstein algebra formulation of GTR is no better nor worse than the Lorentzian
manifold formulation. However, one might also wish to draw a stronger conclusion: one
might wish to say that Rosenstock et al.’s proof shows that accepting GTR does not
involve ontological commitment to spacetime points.

However, that conclusion would be hasty. The implicit argument pattern here would
run as follows:
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Let T be a theory with a sort σ. If T is equivalent to T ′, and T ′ doesn’t quantify over σ, then to
accept T cannot involve ontological commitment to things of type σ.

To see that this inference pattern proves too much, we can consider some simple exam-
ples. First, consider the example of the theory T in sort ! = {σ} that says there are
exactly two things, and consider the theory T ′ in sort !′ = {σ′} that says there are
exactly two things. By the preceding inference rule we would have to conclude that
accepting T does not demand ontological commitment to things of type σ, merely
because there is another sort symbol σ′. This is silly. The difference between σ and
σ′ could be simply notational.

Perhaps then the argument pattern is meant to be a bit more nuanced.

Let T be a theory with sort σ. If T is equivalent to a theory T ′, and T ′ has no sort σ′ that is
“isomorphic” to σ, then accepting T does not involve ontological commitment to things of type
σ.

The word “isomorphic” was put into quotes because we would still need to explicate
what we mean by it. But that could be done; e.g., we might say that an equivalence
F : T → T ′ shows that σ and σ′ isomorphic if F (σ) = σ′ and Ex,y ≡ (x =σ y) for
variables x,y of sort σ. But in this case, the proposed criterion simply begs the question
against the idea that Morita equivalent theories can have the “same ontology.” To take
Morita equivalence seriously as a criterion of theoretical equivalence means simply that
there is no cross-theoretical reference point for counting objects or quantifying over
them.

8.5 Flat versus Structured Views of Theories

For the past fifty years, philosophers’ discussions of the nature of scientific theories
has been dominated by the dilemma: are theories sets of sentences, or are theories
collections of models? But the point of this debate has become less and less clear. Most
of us these days are non-essentialists about mathematical explications. For example,
most of us don’t think that scientific theories really are sets of axioms or collections
of models. Instead, we think that different explications are good for different purposes.
There is, nonetheless, a big question lurking in the background – viz. the question of
whether we should conceive of theories as “flat,” or whether we should conceive of
them as “structured.” And this question comes up whether one thinks that theories are
made of sentences or whether one thinks that they are made of models.

The syntactic view of theories is usually formulated as follows:

A theory is a set of sentences.

This formulation provides a flat view: a theory consists of a collection of things, and
not in any relations between those things or structure on those things. In contrast, a
structured view of theories says that scientific theories are best represented by structured
mathematical objects. For example, a structured syntactic view of theories might say that
a theory consists of both sentences and inferential relations between those sentences.
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A flat version of the semantic view might be formulated as

A theory is a set (or class) of models.

In contrast, a structured version of the semantic view will say that a theory consists of
a structured collection of models. For example, a theory might consist of models with
certain mappings between these models (such as elementary embeddings), or a theory
might consist of models and certain “nearness” relations between those models.

Both the syntactic and the semantic views of theories are typically presented as flat
views. In the latter case, I suspect that the flat point of view is accidental. That is, most
proponents of the semantic view are not ideologically committed to the claim that a
theory is a bare set (or class) of models. They may not have realized the implications of
that claim or that there is an alternative to it.

In contrast, in the case of syntactically oriented views, some twentieth-century
philosophers were ideologically committed to a flat view – perhaps due to their worries
about intensional and/or normative concepts. The main culprit here is Quine, whose
criticism of the analytic–synthetic distinction is directed precisely against a structured
view of theories. On a structured syntactic view of theories, the essential structure of
a theory includes not just some number of sentences, but also the logical relations
between those sentences. In this case, commitment to a theory would involve claims
about inferential relations – in particular, claims about which sentences are logical
consequences of the empty set. In other words, a structured syntactic view of theories
presupposes an analytic–synthetic distinction.

Quine’s powerful criticisms of the analytic–synthetic distinction raise worries for a
structured syntactic picture of theories. But is all well with the unstructured, or flat, syn-
tactic view? I maintain that the unstructured view has severe problems that have never
been addressed. First of all, if theories are sets of sentences, then what is the criterion
of equivalence between theories? A mathematically minded person will be tempted to
say that between two sets, there is only one relevant condition of equivalence, namely
equinumerosity. But certainly we don’t want to say that two theories are equivalent if
they have the same number of sentences! Rather, if two theories are equivalent, then
they should have some further structure in common. What structure should they have in
common? I would suggest that, at the very least, equivalent theories ought to share the
same inferential relations. But if that’s the case, then the content of a theory includes its
inferential relations.

8.6 Believing a Scientific Theory

The difference between scientific realists and antirealists is supposed to be that the for-
mer believe scientific theories, and the latter do not – or at least they don’t believe every-
thing that these theories say. For example, constructive empiricists like van Fraassen
don’t necessarily believe what scientific theories say about unobservable things. This
classification is based on a presupposition, viz. that we understand what it means to
“believe everything a scientific theory says.” But there is something wrong with these
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presupposition. On none of the reasonable analyses is a scientific theory nothing more
than some claims about the world. If that’s right, then the appropriate attitude to a
successful scientific theory cannot be exactly the same thing as simple belief.

To see what’s at issue here, it will be helpful to revisit an old objection to the semantic
view of theories. According to the semantic view of theories, a scientific theory is a class
of models. Now, the objector to the semantic view points out that there is a grammatical
problem: in the phrase “S believes that X,” the second argument X needs to be filled
by something toward which a person can bear a propositional attitude. The argument
X cannot be replaced by a name such as “Thor,” or predicate such as “purple,” much
less by a name for a class of things, such as “the set of . . . ” In particular, it makes no
grammatical sense to say that “S believes that M ,” where M is a class of models.

The semanticists have a ready reply to this objection:

Semantic Analysis of Belief (SAB): When a theory T is given by means of a class M of models,
then belief in T means belief that the world is isomorphic to one of the models in M .

There are many problems with SAB, most notably the opacity of the notion of a model
being isomorphic with the concrete world (see, e.g., Van Fraassen, 2008). However,
there is another problem with SAB that we find even more serious, because it bears
directly on questions of a normative nature, e.g., to what one commits oneself when one
accepts a scientific theory. In particular, believing a theory involves further commitments
beyond those that are expressed by SAB.

Consider a specific example. Let T be Einstein’s general theory of relativity (GTR).
According to SAB, a person believes GTR iff she believes that the world is isomorphic to
one of the models of GTR. But that analysis is inaccurate in both directions: it captures
both more and less than physicists actually believe when they accept GTR. First, it
captures more, because it seems to commit physicists to the belief that there is some
privileged model of GTR that gives the best overall picture of the physical world. If
you know how GTR works, then you might laugh at that thought. Just imagine two
relativists – say, a cosmologist and a black hole theorist – sitting down to argue over
whose model gives a more perspicuous representation of reality. They won’t do that,
because they are well aware that these models are accurate representations for certain
purposes and not for others. And what’s more, it’s we – the users of physics – who
choose the intended application of the theory. Thus, SAB says more than physicists will
actually want to say about their theories.

Second, the semantic analysis of belief (SAB) also omits some of the content that
physicists pack into their theories. Indeed, SAB locates the content of a theory in one or
other particular model, ignoring the fact that physicists routinely invoke the existence
of other models, not to speak of a rich system of relations between models. Indeed,
if a model M is removed from its context in Mod(T ), then it can no longer do the
representational and explanatory work that it’s expected to do. Consider again the case
of GTR. As we noted before, GTR is a powerful theory not because it is overly specific,
but because it is widely applicable – offering different, but related, models for a wide
variety of situations. GTR finds the unity between these situations, including counter-
factual situations. (David Lewis said that a good theory balances informativeness and
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simplicity. However, there are different ways of being informative: saying what is unique
about your situation or saying what is common among many different situations.)

Furthermore, some of the most powerful explanations in GTR draw on facts about
how a model sits inside the space of all models, some of which we know not to represent
the actual world. For example, what explains the fact that our universe began in a
singularity? According to GTR, singular spacetimes are generic, i.e., they densely pack
the space of cosmological solutions to Einstein’s field equations; hence, the reason our
universe begins in a singularity is because most nomologically possible universes begin
this way.

The fact that GTR uses all of its models, and the relations between them, is only
reinforced by looking at simple examples from first-order logic. If we take a first-order
theory T , then typically a single model M of T does not contain enough information
to reconstruct T . In other words, if you give me a model M of T , I couldn’t reliably
reconstruct the theory T of which it was a model. What that means is that M contains
less information than the theory T itself. The content of the syntactic object T is not
contained in a single model M , but in the structured collection Mod(T ) of all its models.
What this means in turn is that accepting T cannot be reduced to a claim about one of
the models in Mod(T ); instead, accepting T must involve some sort of attitude toward
the entire collection Mod(T ).

The point we are making here ties all the way back to the preface of the book, where
we tried to justify our omission of modal logic. There we claimed that accepting a first-
order theory – with no explicit modal operators – involves modal commitments. We’re
making the same point here. To accept a theory T isn’t just to take a stand on how the
world is; it is also to take a stand on how the world could be. More is true. To accept a
theory T involves choosing a language !, and this language determines how we parse
the space of possibilities – e.g., which possibilities we consider to be isomorphic, and
which we consider not to be isomorphic. (If you’ve read the previous chapters carefully,
you’re also aware that the language ! determines the topological structure of Mod(T ).)
In short, the syntactic approach to theories had the advantage (largely unnoticed by
its proponents) that the syntactic object T packs in a lot of information about what is
possible and about how to classify possibilities. One of the dangers of the semantic view
is forgetting how much scientific theories say.

The fault here doesn’t lie completely with the semantic view of theories. In fact,
there’s an analogous problem for those, such as Quine, who accept a flat syntactic view
of theories (see Section 8.5). According to the flat syntactic view, a theory T is a set of
sentences. Indeed, Quine – among other flat syntacticists – sometimes equates belief in
T with belief in a set of sentences. But that cannot be quite right, as we can see again
from actual scientific theories, as well as from simple examples from first-order logic.

As for examples from first-order logic, let !1 be the empty signature, and let T1

be the theory in !1 that says there are exactly two things. Let !2 = {c}, where c

is a constant symbol, and let T2 be the theory in !2 that says there are exactly two
things. Here T1 and T2 share the same axiom, but they aren’t equivalent theories by any
reasonable standard – not even by categorical equivalence. The first theory’s model has
automorphism group Z2, whereas the second theory’s model has trivial automorphism
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group (since the denotation of c is fixed). Nonetheless, T1 and T2 agree on the statements
that they make about any particular model: they both say that there are two things. The
user of T2 has an extra name c, but her using this name does not amount to any claim
about how things are. Thus, we have a puzzle: on a world-by-world basis, T1 and T2 say
the same thing; and yet, it’s not reasonable to think that T1 and T2 say the same thing.

The solution to this little puzzle is to recognize that believing a theory cannot be
reduced to believing that a certain collection of sentences is true. At the very least,
believing a theory also requires that we adopt a language – or an “ideology,” as Quine
liked to call it. However, Quine wasn’t completely clear on what the reasons might be
for accepting an ideology. The issues became slightly clearer when Lewis suggests that
our choice of ideology corresponds to our beliefs about which properties are “natural,”
and when Sider (2013) suggests that choice of ideology is tantamount to assertion that
the world has a certain structure. While we don’t necessarily agree with this way of
describing the situation, we agree that ideology plays a theoretical role.

If we claim that a theory is a collection of sentences, then we ought also to accept
the claim that theories are equivalent only if they contain the same sets of sentences.
Or, to be more accurate, two theories are equivalent just in case each sentence in the
first is equivalent to a sentence in the second, and vice versa. But now, what standard
of equivalence should we use for the sentences? The only reasonable standard – two
sentences are equivalent if they express the same proposition – is of no use in comparing
actual scientific theories. Thus, the only reasonable account of the identity of scientific
theories treats theories as a structured objects, in which case equivalence means having
the same structure. And then we have a challenge question: what does it mean to believe
or accept a structured object?

It might be illuminating to compare a scientific theory with the kinds of beliefs for
which people live and die – e.g., religious beliefs. As you know, many western religions
have creeds that are supposed to capture the key tenets of the system of belief. Now,
suppose that you were to try to write down the central tenets of a scientific theory as a
creed. For example, you might take a copy of Robert Wald’s General Relativity and start
searching through it for the basic “truth claims” of the theory. However, you’ll quickly
grow frustrated, as it doesn’t seem to make any specific claims. GTR doesn’t say what
happened on December 7, 1941, nor does it say how many planets are in our solar
system, nor does it say (before one selects a particular model for application) how old
the universe is. Instead, GTR consists of some mathematics and some recommendations
about how to apply this mathematics to various situations. And yet, there is never any
hint that GTR is a bad theory because it’s not specific enough. Quite to the contrary,
GTR is a good theory precisely because it is so general.

One might be tempted to think that the creed of GTR is summed up in its basic
equation, Einstein’s field equation (EFE). In this case, to accept GTR would be to say:

(†) I believe that Rab −1
2gab R = Tab.

This is an interesting possibility to consider, and there are two attitudes we could take
to it. I will call these two attitudes the physicist’s attitude, and the metaphysician’s
attitude (almost certainly caricaturing both). In my experience, physicists don’t say
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things like (†). Certainly, they write down EFE, and they use it to generate descriptions
of situations that they take to be accurate. But I’ve never heard a physicist say, “I believe
that Einstein’s field equation is true.” These physicists seem to have a positive attitude
toward EFE – perhaps we should call it “acceptance,” but I don’t think we could call it
“belief.”

In contrast, the naive scientific realist might say something like: “The success of GTR
gives us reason to think that EFE is true.” In order to make sense of EFE being true, these
realists will then cast about for referents for the terms that occur in it. For example, in the
spirit of David Armstrong, they might say something like, “The symbols Rab and Tab

refer to natural properties, and EFE is the statement that a second-order relation holds
between these properties.” This kind of realist seems to think that there aren’t enough
mundane physical objects to account for the meaning of the abstract statements of
science. Accordingly, he makes up names for new things that can serve as the referents
for the symbols in scientific statements such as EFE. After some subtle wordplay, we’re
supposed to be able to feel what it means to really believe that EFE is true.

However, this naive realist way of looking at EFE doesn’t capture the way that
these kinds of equations function in physics. As with any other differential equation
in physics, EFE is used as a guide for differentiating between what is nomologically
possible and what is not. A differential equation doesn’t say how things are; it says how
things could be.

It might sound like I’m simply endorsing instrumentalism, i.e., saying that the the-
oretical statements of science are mere instruments from which to derive predictions.
But that accusation depends on a false dilemma between naive realism and instrumen-
talism – a dilemma that is sadly reinforced by formal semantics. In formal semantics we
have a simple, black-and-white distinction between interpreted and uninterpreted terms.
Accordingly, we’re tempted to think that the terms of EFE are either interpreted (hence
EFE is either true or false) or uninterpreted (hence EFE is just an instrument). But this
is the wrong way to think about things. The symbols in EFE in themselves are neither
interpreted nor uninterpreted. It is we, users of the theory, who endow these symbols
with an interpretation. What’s more, we might well want to interpret the symbols differ-
ently for different applications.

The existence of more than one model – or, to speak more accurately, of more than
one application – is not a bug of scientific theories; it is a feature. What is lost in informa-
tiveness is gained in applicability. But the more flexible a theory is in its applications, the
less sense it makes to think of our attitude toward that theory as simple “belief.” Perhaps
this is one reason why we need another word, such as “acceptance.” As van Fraassen
pointed out long ago, to accept a theory cannot be reduced to an attitude that the theory
somehow mirrors the world. Acceptance of a theory involves a sort of appropriation,
where the theory serves as a guide to future action.

I’ve been considering the question, “what does it mean to accept a scientific theory?”
and have found ample reason to reject the idea that it’s nothing more than a special case
of belief. Accepting a scientific theory may involve believing that some things are true,
but it also involves a more complex set of attitudes – such as adopting certain standards
for explanation, certain rules for reasoning about counterfactual scenarios, etc.
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8.7 Notes

• For more technical details on second-order logic, see Shapiro (1991); Manzano
(1996). Philosophers have argued quite a bit about the advantages and disadvan-
tages of second-order logic. For example, Quine argued that second-order logic
is “set theory in sheep’s clothing.” See, e.g., Bueno (2010).

• Carnap gives his mature view of Ramsey sentences in Carnap (1966). For more
on the role of Ramsey sentences in Carnap’s philosophy of science, see Psillos
(2000, 2006); Friedman (2011); Demopoulos (2013).

• For more on the Ramsey sentence functionalism, see Shoemaker (1981).

• For a detailed, but older, discussion of the technical issues surrounding Ramsey
sentences, see Tuomela (1973, chapter 3). For a recent discussion of the prospects
of Ramsey sentence structuralism, see Ketland (2004); Melia and Saatsi (2006);
Ainsworth (2009); Dewar (2019).

• For general surveys of structural realism, see Frigg and Votsis (2011); Ladyman
(2014). The idea behind structural realism goes much further back than the 1980s.
Something similar had been proposed by Poincaré and Russell in the early 1900s,
and then again by Grover Maxwell in the 1960s. What’s new about the 1990s
reincarnation of structural realism is (1) the explicit claim that it can solve the
pessimistic metainduction and (2) the explication of structure in terms of Ramsey
sentences. Needless to say, the idea behind structural realism could survive, even
if – as we’ve argued – Ramsey sentences don’t provide a useful explication of the
structure of a theory.

• My view on counting possibilities was influenced by Weatherall (2016b).

• Putnam’s model-theoretic argument first appeared in Putnam (1977, 1980), with
antecedents in Quine’s permutation arguments for ontological relativity. The most
influential response to Putnam is Lewis’ (1984), which is the locus classicus
of his version of metaphysical realism which emphasizes the notion of natural
properties. That torch has been taken up by Sider (2013). The response we gave
to Putnam’s argument follows the spirit of Van Fraassen (1997). For an excellent
overview of Putnam’s arguments, see Button (2013).


