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We criticise claims (found in many expositions) that the time-energy uncertainty principle
allows both a violation of energy conservation, and particle creation, provided that this happens
for a sufficiently short time. But we agree that there is a grain of truth in these claims: which
we make precise and justify using perturbation theory.

1 Introduction

A popular dogma about quantum theory is that energy conservation can be violated, and that
particles can ‘pop in to existence’ out of nowhere, thanks to a time-energy uncertainty principle.
Thus:

“a consequence of the Heisenberg Uncertainty Principle is that we can take seriously
the possibility of the existence of energy non-conserving processes—provided the
amount by which energy is not conserved, Eviolation, exists for a time less than
t = ~/2Eviolation” Jones, 2002, p. 226

“Even when there is not enough energy or pair creation, multiparticle states appear,
for example, as intermediate states in second-order perturbation theory. We can
think of such states as existing only for a very short time, according to the uncertainty
principle ∆E ·∆t = ~. As we go to higher orders in perturbation theory, arbitrarily
many such ‘virtual’ particles can be created.” Peskin and Schroeder 1995 p. 13.

We will criticise this. And indeed, not every textbook is so unwise! Thus Griffiths says

“It is often said that the uncertainty principle means that energy is not strictly
conserved in quantum mechanics-that you’re allowed to ‘borrow’ energy ∆E, as long
as you ‘pay it back’ in a time ∆t ∼ ~/2∆E; the greater the violation, the briefer the
period over which it can occur. There are many legitimate readings of the energy-
time uncertainty principle, but this is not one of them. Nowhere does quantum
mechanics license violation of energy conservation”. (1995, p. 115)

But we will also argue that the dogma contains a grain of truth: which we will make precise and
justify using perturbation theory. We will focus on three ideas, which we will interpret using
the tools of perturbation theory:

1. (non-conservation) There is some sense in which ‘energy’ associated with a perturbed
system is not conserved; and

2. (particle creation) There is some sense in which that non-conservation allows the non-
conservation of particle-number.

3. (shorter times) There is some sense in which more particle creation occurs during shorter
times.
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We will make these statements precise, and verify them. Our lesson will be that, in each case,
it is not a time-energy uncertainty relation that provides the wiggle-room to create particles:
hence our title, “time-energy uncertainty does not create particles.” Instead, the particles are
best viewed as artefacts of the shifted perspective one adopts when approximating a physical
system using perturbation theory.

1 The perturbation view of virtual states

Perturbation theory uses a quantum system that is in some way tractable to approximate a
quantum system that is not. We begin with a a quantum system (H,A, t 7→ Ut) and a set of
operators in {Aλ} ⊂ A parametrised by a positive real number λ, one value of which gives the
correct/physically real operator of interest:

Aλ = A0 + Vλ. (1)

This set is constructed in such a way that Aλ → A0 in the operator norm as λ→ 0. Then A0 is
called the ‘unperturbed’ operator, and the set Aλ is called a ‘perturbation’. The hope is both
that a physical system can be correctly described by Aλ for some value of λ, and also that its
properties can be accurately approximated using known facts about the more tractable operator
A0.

We assume that the operator Aλ can be represented in a power series expansion around
λ = 0. That is, one seeks an expression of Aλ for which one can write,

Aλ = A0 + λ

(
d

dλ
Vλ

) ∣∣∣
λ=0

+
λ2

2!

(
d2

dλ2
Vλ

) ∣∣∣
λ=0

+ · · · (2)

The nth-order approximation of Aλ is by definition the sum of the first n terms in this series. As
n→∞, it follows that the series approaches Aλ in the operator norm. A wide class of problems
can be solved by adopting the simple approximation where only the first two terms are calculated.

Defining V := d
dtVλ

∣∣∣
λ=0

this gives an approximation known as a ‘linear’ perturbation:

Aλ ≈ A0 + λV. (3)

The eigenvalue problem for an operator expressed by as a linear perturbation can typically be
given an approximate analysis, thanks to classic results in perturbation theory. (Kato 1995)

Virtual states arise out by applying perturbation theory to dynamical evolution. Let (H,A, t 7→
Ut) be a quantum system, and consider a second one-parameter unitary representation t 7→ U0

t .
We write H and H0 for their respective Hamiltonian generators, and refer to the former as
the ‘perturbed’ (or ‘interaction’ or ‘correct/physically real’) Hamiltonian, while the the latter is
the ‘unperturbed’ Hamiltonian. We define V := H − H0 and refer to it as the ‘perturbation’.
Writing Ut = U0

t (U0
−tUt), we now can expand the term in parentheses as a power series around

t = 0,

Ut = U0
t

(
I + t

d

dt
(U0
−tUt)

∣∣∣
t=0

+
t2

2!

d2

dt2
(U0
−tUt)

∣∣∣
t=0

+ · · ·
)
. (4)

To the extent that t is close to zero and V = H − H0 is small (in the operator norm), the
dynamics Ut is approximated by summing the first n terms in this series and cutting off the
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remainder. Writing Unt to denote the sum of the first n terms in the series, the first few orders
of approximation can be calculated by applying the Leibniz rule to the derivatives:

U0
t = U0

t

U1
t = (I − itV )U0

t

U2
t =

(
I − itV + t2

2! ([V,H0] + V 2)
)
U0
t .

(5)

The virtual state picture arises from thinking of each contribution as a separate ‘event’. For
example, suppose ψa and ψb are orthogonal eigenvectors of the unperturbed Hamiltonian H0,
and that we wish to approximate the amplitude 〈ψb, Utψa〉 associated with a transition during
time t from ψa to ψb. In the first-order case, we can replace Ut with its approximate counterpart
U1
t to get,

〈ψb, U1
t ψa〉 = 〈ψb, (U0

t − itV U0
t )ψa〉

= e−ita 〈ψb, ψa〉︸ ︷︷ ︸
0

−ite−ita〈ψb, V ψa〉 (6)

where a is the ψa eigenvalue of H0. The first term does not contribute to the amplitude because
the two states are orthogonal. However, the second term does. So we say: first the state ψa
evolves freely as a stationary state; then an interaction V is turned on that allows it to ‘deflect’
to ψb.

Virtual states arise as ‘intermediate states’ in this kind of analysis. In our example of the
transition 〈ψb, Utψa〉, they begin to appear in the second-order case, U2

t . To simplify discussion,
consider just the final term in that series, ([V,H0] + V 2)U0

t . Writing a and b for the respective
eigenvalues of ψa and ψb, we find its contribution to the amplitude is given by,

(a− b)〈ψb, V ψa〉+ 〈ψb, V 2ψa〉. (7)

The first of these two terms is a contribution just like we saw in the first-order case. The second
term can be written,

〈ψb, V 2ψa〉 = 〈ψb, V ψ′〉〈ψ′, V ψa〉, (8)

where ψ′ = 1
|V ψa|V ψa is a normalised vector satisfying 〈ψ′, ψ′〉 = 1. So, instead of viewing

the transition from ψa to ψb in the potential V 2, we can view it as consisting an intermediate
transition from ψa to ψ′ in V , followed by a transition from ψ′ to ψb in V . The intermediate
state ψ′ is an example of a virtual state.

As expected, in third-order transitions, the presence of a V 3 term gives rise to a pair of
virtual states, and so on up the series. There is a Feynman diagram associated with each
contribution that illustrates the interaction in terms of these intermediate states; as a result,
the nth-order amplitude can be calculated by the summing the contributions from each of the
nth-order Feynman diagrams.

2 The appearance of energy non-conservation

To sum up: the perturbation view of a quantum system is one of shifting perspectives. We
approximate a system from the perspective of some low-n-order dynamics Unt , recognising that
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from this vantage point, the world will sometimes deviate from its ‘true’ behaviour according to
the perturbed dynamics Ut, as well as from its ‘idealised’ behaviour according to U0

t .

One example of this is energy conservation. Thus we can now interpret the claim from the
introduction:

1. (non-conservation) There is some sense in which ‘energy’ associated with a perturbed
system is not conserved

On the perturbation scheme above, the ‘true’ energy eigenstate of a perturbed dynamics Ut is
not conserved under any n-order approximation; and neither is the ‘idealised’ energy eigenstate
of the unperturbed dynamics U0

t . This can be formulated as a simple proposition. Formally:

Proposition 1. Let (H,A, t 7→ Ut) be a quantum system with Hamiltonian H. Let t 7→ U0
t be

a second unitary representation with Hamiltonian H0, and let Unt be the nth-order approxima-
tion of Ut in terms of U0

t (i.e. Unt is the nth-order cutoff of Ut = U0
t (U0

−tUt) with the factor
U0
−tUt expanded around t = 0). Then neither H nor H0 are conserved under Unt , provided that

[H,Unt ] 6= 0 and [H0, U
n
t ] 6= 0.

However, there is a sense in which energy for the ‘true’ perturbed dynamics Ut becomes
closer to being satisfied the higher the order n of approximation. As we add more terms, the
resulting approximate dynamics Unt approximates better the true dynamics Ut; that is, Unt → Ut
in the ooperator norm as n becomes arbitrarily large. And this implies,1

[Unt , H]→ 0 as n→ +∞. (1)

This is ironic: Peskin and Schroeder (p. 13) write that, “As we go to higher orders in pertur-
bation theory, arbitrarily many such ‘virtual’ particles can be created”, suggesting that energy
conservation gets worse with higher order terms’. Agreed: there is more room for virtual states
in higher-order terms. But energy conservation does not get worse — it gets better! The
‘true’ perturbed energy just becomes more distant (in the operator norm) from the idealised,
unperturbed description of the system.

3 Particle creation

We now turn to the statement of (ii), the particle-number claim. For this we need to add
some notion of particle number to our description. This will consist in a representation of
annihilation (ai) and creation (a∗i ) operators on H for i ∈ Z+, which satisfy [ai, a

∗
j ] = δij and

[ai, aj ] = [a∗i , a
∗
j ] = 0. Let N =

∑
i a
∗
i ai be the ‘particle number’ operator. Interpreting H0 now

as the ‘free’ Hamiltonian associated with no interactions, we assume that [N,H0] = 0, and hence
that a free system is one in which particle-number is conserved. However, if [N,Hλ] 6= 0, then
particle number will not be conserved along the ‘true’ particle dynamics, and as a consequence
it will not be conserved under the dynamics generated by any of the n-order perturbation
Hamiltonians Hλ,n. That is, we have,

2. (particle-creation) The unitary dynamics generated by the nth order approximation Hλ,n

of the Hamiltonian Hλ does not conserve particle number N .
1In general, ‖An − B‖ → 0 implies ‖[An, B]‖ → 0, since ‖[An, B]‖ = ‖(An − B)B + B(B − An)‖ ≤ ‖An −

B‖‖B‖+ ‖B‖‖B −An‖ = 2‖B‖‖An −B‖.

4



4 Shorter times

We finally turn to the shorter-time claim (iii). Here at last, we are in the realm of the time-
energy uncertainty principle—or, rather, principles—that are invoked by the cavalier textbook
tradition with which we began. These are surveyed by Busch (1990, 1990a, 2008). For us,
there are two main points to make, corresponding to two broad understandings of time-energy
uncertainty. The second will be more positive, in that it will vindicate the shorter-time claim
(iii).

The first concerns what Busch (2008) suggests we call ‘external time’ (or in his 1990: ‘prag-
matic time’): namely, time as measured by clocks that are not coupled to the objects studied in
the experiment. So in this role, time specifies a parameter or parameters of the experiment: e.g.
an instant or duration of preparation or of measurement, or the time-interval between prepara-
tion and measurement. In this role, there seems to be no scope for uncertainty about time. And
indeed, our first point here is a warning—following Busch (1990a).

For as Busch discusses, there is tradition (deriving from the founding fathers of quantum
theory) of an uncertainty principle between:

(i) the duration of an energy measurement, and
(ii) either the range of an uncontrollable change of the measured system’s energy or the

resolution of the energy measurement or the statistical spread of the system’s energy.
To give a little more detail: Busch (1990a, Sections 1 and 2) describes how various authorities
(Landau and Peierls, Landau and Lifshitz, ...) endorse either of the following:

(P): An energy measurement of duration ∆t leads to an uncontrollable and unpredictable
change of the (previously sharply defined) energy by an amount of the order ∆E such that
∆E.∆t ≥ ~; so that there is no short-time reproducible (first kind) energy measurement.

(P’): An energy measurement of duration ∆t must carry an inaccuracy ∆E such that the
uncertainty relation ∆E.∆t ≥ ~ is satisfied.

Busch argues, and we agree, that Aharonov and Bohm (1961) refute this tradition; (Busch
1990a, especially Section 4; 2008 Section 3.1). They give a simple model of an arbitrarily ac-
curate and arbitrarily rapid energy measurement. In short: two particles are confined to a line
and are both free, except for an impulsive measurement of the momentum and so energy of the
first by the second, with the momentum of the second being the pointer-quantity. (Note that
Busch argues that a proper analysis and vindication of Aharonov and Bohm’s refutation uses
POVMs, i.e. the notion of physical quantity that generalizes PVMs.)

Our second, more positive, point concerns what Busch (2008) suggests we call ‘intrinsic
time’ (or in his 1990: ‘dynamical time’): namely, a dynamical variable of the studied system,
that functions to measure the time. For example: the position of a clock’s dial relative to the
clock’s face. Busch suggests that in principle every non-stationary quantity A defines for any
quantum state ρ a characteristic time τρ(A) in which 〈A〉 changes ‘significantly’. For example:
if A = Q, and ρ is a wave packet then τρ(A) could be defined as the time for the bulk of the
wave packet to shift by its width—in some sense of ‘width’.

So we need some measure of temporal duration associated with the particle number operator
N . Various are available; we choose what is sometimes called the ‘characteristic time’ associated
with the dispersion of an operator-state pair. This obeys what is probably the best-known time-
energy uncertainty principle for intrinsic times: the Mandelstam-Tamm uncertainty principle.
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They combine (a) the Heisenberg equation of motion of an arbitrary quantity A

i~
dA

dt
= [A,H] (1)

with (b) the Heisenberg-Robertson uncertainty principle, that for any quantities A,B, and
quantum state (density matrix) ρ:

∆ρA∆ρB ≥
1

2
|〈[A,B]〉ρ| ; (2)

and (c) the definition of a characteristic time

τρ(A) := ∆ρA / | d〈A〉ρ /dt | ; (3)

i.e. as the time it takes for the expectation value of A to change by its standard deviation. They
deduce

τρ(A)∆ρ(H) ≥ 1

2
~. (4)

To apply these ideas to our particle number operator N : let H be the Hamiltonian generator
of a perturbed (‘correct’) unitary dynamics t 7→ Ut, and let N be the ‘free’ number operator
satisfying, as in Section 3, [H0, N ] = 0—but also [H,N ] 6= 0. For any state ψ ∈ H evolving
unitarily according to ρt = UtρU

∗
t , the Ut-characteristic time τH (with respect to ρ) of N is,

τH(N)ρ :=
∆ρN

| ddtTr(ρN)|
. (5)

Or one might speak of the H-characteristic time τH (with respect to ρ) of N .

We can replace Ut with an nth-order cut-off Unt and its generator Hn, giving us a sequence of
Unt -characteristic times ( a sequence of Hn-characteristic times) indexed by n = 0, 1, 2, . . . . For
n → 0, we have that N(n) → N , which is time-independent, and hence the characteristic time
diverges to infinity. Conversely: if the degree of non-commutativity of N and Ut is monotonically
increasing in n, then the characteristic time gets smaller as n→ +∞. That is, we get a version
of statement (iii) above:

3. (shorter times) If ||[Hn, N ]|| is monotonically increasing in n, then the Unt -characteristic
time (the Hn-characteristic time) of N decreases monotonically as n→ +∞.

That is, the characteristic time of the particle number operator decreases as one approaches the
‘true’ (perturbed) Hamiltonian Hλ by considering higher and higher order perturbative terms.
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