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This document, and its predecessor on the Quantization of Linear Dynamical Systems with
Finitely many degrees fo freedom, expound a rigorous quantization procedure developed by Irv-
ing Segal and others in the 1960s. This means we postpone to the second half of term, coverage
of algebraic quantum theory; which will include e.g. inequivalent representations, ‘getting out
of Fock space’, Haag’s theorem etc. (cf. eg Emch 1972). But the present material:

(i) gives a strong grip on the first (forbiddingly concise!) third of Wald 1994, which is
the basis for the rest of that book on QFT in curved spacetime and thus e.g. the Unruh effect
(an essay!);

(ii) is of intrinsic interest... though please be warned that here you will find: no La-
grangian, no path integrals, no renormalization, no gauge theory, no curved spacetime, no
gravitation; indeed, no interactions, and overall, not much physics ... we will focus on the har-
monic oscillator (!),the free KG field and spin-chains (and without putting a Hamiltonian on the
chain...). Nor will you find much straight-up philosophy ... but perhaps the light here shed on
field/wave vs.particle counts as philosophy, since wave vs.particle is, like continuum vs. discrete,
a perennial dichotomy of natural philosophy...

The ‘bottom-line’ for Parts I and II together is that we have a procedure for constructing
a representation of the Weyl algebra for any of a special class of classical systems. The simple
harmonic oscillator and the free real bosonic field both belong to this class, but only in the case
of the simple harmonic oscillator does this construction pick out a unique representation.

We begin in Section 1 by recalling from Part I:
(i) quantization as the construction of a representation of the Weyl algebra associated
with some classical system’s phase space; and as “unitarizing” a Hamiltonian evolution in a
symplectic space so as to give an evolution in a complex Hilbert space;
(ii) the idea of a one particle structure;
(iii) the Stone-von Neumann Theorem, which essentially guarantees that the quantization
of the paradigm finite system, viz. point particles in R", is unique (up to unitary equivalence).

Then we work up slowly to the free real bosonic field. We first look at ways the premises of

the Stone-von Neumann Theorem can fail: viz. with

(a) failure of weak continuity (Section 2);

(b) a classical configuration space other than R™, e.g. the circle Sy (Section 3).
Besides, while we saw in Part I that if we wish to represent the CARs, not the CCRs, on a finite
system, for example on a finite spin chain, then there is uniqueness (up to unitary equivalence):
for an infinite system, e.g. an infinite spin chain, one can easily show by construction that
uniqueness fails (Section 4).

In the last two Sections we describe the free real bosonic field. Section 5 describes the free
boson field on any one particle structure. In effect, this is an exposition of symmetric Fock space
without regard to the details of dynamics. Finally, section 6 focusses exclusively on the free real
bosonic field, subject to the Klein-Gordon equation, and various interpretative issues, including
particle localization and the interpretation of the local field operators ®(x).



Mottoes:
There is thus a complete harmony between the wave and light-quantum descriptions of the
interaction. (Dirac, 1927, p. 245).

First quantization is a mystery, but second quantization is a functor. (E.Nelson).

The life of a theoretical physicist consists of solving the harmonic oscillator at ever higher
levels of abstraction. (S. Coleman)
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Sections 1 to 4 owe much to Chapters 2 and 3 of Ruetsche (2011). Sections 5 and 6 are based
on Baez et al (1992, Section 1) and Halvorson (2001).



