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This document, and its succcessor on the Quantization of Linear Dynamical Systems with
Infinitely many degrees fo freedom, expound a rigorous quantization procedure developed by
Irving Segal and others in the 1960s. This means we postpone to the second half of term, cov-
erage of algebraic quantum theory; which will include e.g. inequivalent representations, ‘getting
out of Fock space’, Haag’s theorem etc. (cf. eg Emch 1972). But the present material:

(i) gives a strong grip on the first (forbiddingly concise!) third of Wald 1994, which is
the basis for the rest of that book on QFT in curved spacetime and thus e.g. the Unruh effect
(an essay!);

(ii) is of intrinsic interest... though please be warned that here you will find: no La-
grangian, no path integrals, no renormalization, no gauge theory, no curved spacetime, no
gravitation; indeed, no interactions, and overall, not much physics ... we will focus on the har-
monic oscillator (!),the free KG field and spin-chains (and without putting a Hamiltonian on the
chain...). Nor will you find much straight-up philosophy ... but perhaps the light here shed on
field /wave vs.particle counts as philosophy, since wave vs.particle is, like continuum vs. discrete,
a perennial dichotomy of natural philosophy...

In this document, we consider only finitely many degrees of freedom, and lead up to the Stone-
von Neumann Theorem, which essentially guarantees that the quantization of point particles in
R™ is unique. We begin by introducing the Weyl form of the CCRs; and posing the quest for
its representations (Section 1). Then we present the complexification and realification of vector
spaces, complex structures etc. (Section 2); and symplectic vector spaces and manifolds (Section
3). Then we present linear systems, both classical and quantum; and thus the harmonic oscillator
(Section 4). With all this in hand, we can then see the task of quantization as “unitarizing”
a Hamiltonian evolution in a symplectic space so as to give an evolution in a complex Hilbert
space. This gives the idea of a one particle structure, both in general and for the harmonic
oscillator as an example (Section 5). The key to successful quantization, which see at work in
the harmonic oscillator example, turns out to be the two out of three property of the unitary
group: which concerns its relation to certain orthogonal and symplectic groups (Section 6)).
Then we treat the case of finitely many harmonic oscillators, and so the occupation number
representation: which can be described in a “Fock-space way” (Section 7). Finally, we state (i)
the Stone-von Neumann Theorem; and (ii) an analogous theorem (the Jordan-Wigner theorem)
about the uniqueness of the representation of the CARs (as against CCRs) of a finite system,
such as a spin chain (Section 8).

Mottoes:
Let us try to introduce a quantum Poisson Bracket which shall be the analogue of the classical

one....we are thus led to the following definition for the quantum Poisson Bracket of any two
variables v and v: uwv — vu = ihfu,v]. Dirac (1930/1958, Section 21)

There is thus a complete harmony between the wave and light-quantum descriptions of the
interaction. (Dirac, 1927, p. 245).

First quantization is a mystery, but second quantization is a functor. (E.Nelson).

Probably all these connections would have been clarified long ago, if quantum physicists had
not been hampered by a prejudice in favor of complex and against real numbers. (Freeman
Dyson)



The life of a theoretical physicist consists of solving harmonic oscillator at ever higher levels
of abstraction. (S. Coleman)
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1 Canonical quantization introduced
1.1 Commutation relations: from Heisenberg to Weyl

The idea of canonical quantization is familiar from elementary quantum mechanics: to “promote”
the classical Poisson bracket relations

{¢. ¢} =1{pip;} =0;  {d',pj} =0, (1)
where 4,5 € {1,2,...n}, to the Heisenberg relations (CCRs)
Q' Q'] =[P, Pj]=0;  [Q' P} =ihéi1; (2)

(we will usually set & := 1). This Poisson bracket-commutator correspondence originated with
Dirac (cf. his Principles of Quantum Mechanics 1958, Section 21f.) The standard representation
of eq. (2) is the familiar Schroedinger representation: namely, for n configurational degrees of
freedom, e.g. a spinless particle in Euclidean n-space, or n such particles on a line:

ith 0

Qv=qy, FPp=-g- 5o forycliR"dg). (3)
J

This prompts four main topics. They are of increasing scope, and we will consider only the
first.

(a): To examine canonical quantization as just described for position and momentum in
IR™. The big positive result here is the Stone von Neumann theorem, stating (roughly) that for
IR™ as the configuration space, the Schroedinger representation of (2) is unique up to unitary
equivalence. Cf Section 8. But so as to set the scene for quantum field theory, and more
generally so as to get materials useful for contexts other than IR", we will lead up to this slowly.
This will mean expounding some ideas of Segal quantization, which is the most straightforward
generalization of the above ideas. In short: it replaces IR™ as the classical configuration space,
by an arbitrary n-dimensional manifold.

(b): To extend quantization to other quantities, in particular functions (polynomial, or
even “arbitrary”, functions) of position and momentum.

(c): To consider other methods of quantization.

(d) To pursue the pure mathematical interest of quantization. For a glimpse of this,
cf. Folland (2008, p. 49; and Vogan 2005, cited there). In short: the interest lies in how
it helps one find all the irreducible unitary representations of a connected Lie group G: i.e.
in physical language, finding all quantum systems in which Gacts irreducibly as a symmetry
group. The corresponding classical problem is to find all symplectic manifolds on which G acts
transitively as a group of canonical transformations (symplectomorphisms), i.e. all symplectic
homogeneous G-spaces. But this classical problem is “under good control”. For the orbits of
the co-adjoint action of G on g* are symplectic homogeneous G-spaces; and furthermore, all
symplectic homogeneous G-spaces can be, more or less, built from orbits of such co-adjoint
action. (Here, “more or less” signals issues about central extensions and covering spaces). Thus
a “good” quantization procedure for such spaces is likely to be illuminating finding all the
irreducible unitary representations of G.

Of course, we foreswear (d); and for the most part, we foreswear (b) and (c). For an
introduction to both, and of course (a), we recommend: .

(i): N Landsman, Between Classical and quantum, especially Section 3; in J Butterfield

and J Earman eds, Handbook of Philosophy of Physics (2006) and: quant-ph:0506082; and for



more details:
(ii): S Ali and M Englis, Quantization methods: a guide for physicists and analysts,
Reviews in Mathematical Physics 2005, math-ph: 0405065.

In particular, as to (b): Ali and Englis Section 1 review the obstructions confronting quan-
tization of (even just a “handful” of polynomial) functions of position and momentum. These
obstructions concern ambiguities of operator-ordering. That is: natural general constraints on
the quantization map @ (“adding a hat”) that sends a classical (real-scalar) quantity f : IR*"—IR,
to a quantum quantity, i.e. to a self adjoint operator Qs : L*(IR")—L?*(IR™), lead to contra-
dictions. This topic originates in papers by Groenewold and van Hove. Recent developments
include: Gotay et al. Obstructions in quantization theory, Journal of Nonlinear Science, volume
6, p. 469-498, 1996; and Gotay, On the Groenewold-van Hove Problem, Journal of Mathematical
Physics 1999.

As to (c): Ali and Englis review (Section 3f.) geometric quantization, deformation quan-
tization etc. But even their Section 2 gives details of e.g. the inequivalent quantizations involve
din the Aharonov Bohm effect.

But the four topics are of course closely related. For example, these obstructions mean that
a main motivation to pursue (c)’s other methods of quantization is to extend quantization to as
many quantities as possible.

For us, concentrating on (a): the main point about (b), i.e. the obstructions, will be that

(cf. Wald 1994, Section 2.2 , pp. 17-18): Segal quantization “works” for:

(i) a classical configuration space that is an arbitrary n-dimensional manifold M (so that
classical quantities are real functions of the cotangent bundle T*M); provided that

(ii) we restrict consideration to quantities that are at most linear in the momentum (i.e.
the momentum canonically conjugate to an arbitrary configurational coordinates ¢ on M).
Here, the word “works” means that the quantization map Q maps Poisson brackets into com-
mutators, divided by if: (in more formal jargon: @ respects Lie algebra structure). That is: @
obeys, for classical quantities f,g: T*M—IR that are appropriately restricted by (ii):

[Q(f), Q9)] = ih Q({f, 9}) (4)

In this sense, Segal quantization is a good framework for the quantization of finite-dimensional
Systems.

And Segal quantization has other merits. We will also see that for linear classical systems, it
“respects” the dynamics. That is: the Segal quantization of the classical Hamiltonian (which is
essentially like that of a harmonic oscillator: “p? + ¢”) is the “correct” quantum Hamiltonian.
Besides, we will eventually see that it works for (some!) quantum field theory: specifically, for
the quantization of the free bose field (e.g. De Faria and De Melo, Section 6.3. Furthermore, it
does this in a manner that generalizes readily to constructing quantum field theories on curved
spacetimes (Wald 1994, p. 31 and Section 3.2).

For our topic ((a)above): the first point to address is that since the classical position and
momentum quantities, for a phase space IR?", are unbounded, we expect the quantum position
and momentum Q?, P;j to also be unbounded, indeed to have all of IR as their spectra—so that,
if they are to be self-adjoint, they cannot be defined on all of L?(IR™).

Indeed, setting aside the physical desideratum that the spectra should be unbounded: there
is a simple theorem that if two bounded self-adjoint operators ), P have a commutator that is
proportional to the identity, they must commute. That is: If [Q, P] = ol for some « € C, then
a = 0. (De Faria and De Melo, Lemma 2.11; Jauch 1968, p. 205, Problem 4).
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In short: we face issues of domains. We remedy this by formulating to the Weyl form of
the CCRs. These govern unitary exponentiations of linear combinations of the position, and
similarly, of the momentum operators.

Thus we define, for any a,b € R",
U(a) := e—iaP/h : V(b) = efib.Q/h; (5)

Since the Us and V's are both families of unitaries, their spectra are bounded, and are defined
everywhere on L?(R™). In the Schroedinger representation, we have

(U(@)g)(x) =d(x—a) ; (V(b)y)(x) = P*M(x) (6)

so that U represents translations in space, and V represents translations in momentum-space.

We have, of course, commutation for each of position and momentum, alone:
U(@U(b)=UDd)U(a)=U(a+Db); V(a)V(b) =V(b)V(a) =V(a+Db) (7)

To deduce the commutation relations of U and V operators, we need the Campbell-Baker-
Hausdorff formula for products of exponentials of non-commuting operators. Given a self-adjoint
operator A, we say that a vector ¢ € H is analytic if for all n, A™(z) is defined, and so is e4).
Then the version of the Campbell-Baker-Hausdorff formula which is appropriate here (De Faria
and De Melo, Lemma 2.12) says that if:

(i) A, B and A+ B have a common dense domain D of analytic vectors, and

(ii) [A,B] commutes with A and with B:
then in D:

1 1
eAeB _ €A+B+§[A,B] = eA+Be§[A’B] (8)

To apply (8) to (5), we set A := —ia.P/h and B := —ib.Q/h, to deduce that
1
U(a)V(b) = exp(ii(a -b)/h).exp(—i(a.P/h+b.Q/h)) ; (9)
and mutatis mutandis, we set A ;= —ib.Q/h and B := —ia.P /h, to deduce that

V(b)U(a) = exp(—%i(a -b)/h). exp(—i(a.P /i + b.Q/H)). (10)

Combining these immediately gives the Weyl commutation relations:*

U(a)V (b) = e2P/"V (b)U(a). (11)

'Beware: (i) many authors ‘flip’ the notation of U and V, so that V represents translations in space; and
(ii) some authors (even rigorous ones e.g. Prugovecki 1981, Chapter IV, Sections 6.2, 6.4!) also put the h
in the numerator of the exponent, so that the exponent is in dire danger of having dimension action-squared!
Besides, (iii): various texts also get the sign of the exponent in (11) wrong. (See later for discussion of different
choices of sign in the two definitions of (5).) I am following S. Summers (2001: in John von Neumann and the
Foundations of quantum mechanics, ed. M. Redei and M. Stoeltzner). Summers puts the % in the denominator
of the exponent, is perfectionist about signs; and his use of U for translation in space, is like Weyl himself (1932,
Chapter IV, Section 14, building on Chapter II, Section 11): this last text being no doubt correct, but—with all
due respect!—incomprehensible.




1.2 The Weyl algebra

So from now on, we take as our CCRs, not the Heisenberg form (2), but (11) together with the
trivial commutations of Us and V's alone i.e. (7).

We have so far built the Us and Vs concretely from given Q,P. But in the usual tradition

of physics, we can:

(i) consider an abstract algebra of Us and Vs subject to the relations (11) and (7); any
such algebra is called the Weyl algebra; and then

(ii) try to classify the representations of this algebra, especially the unitary representa-
tions on some Hilbert space. Recall the pure mathematical topic (d) in Section 1.1.
As already announced, the main result about (ii), for finite-dimensional systems, will be the
Stone-von Neumann uniqueness theorem.

Now, we first make two comments about this endeavour (in order of increasing importance
for us); and then develop a more abstract formulation of the Weyl relations, which will be central
in all that follows.

(1): The relation between the Heisenberg and Weyl forms— The Weyl form of the CCRs
implies the Heisenberg form, and so a representation of the Weyl form is also a representation
of the Heisenberg form. But uniqueness (up to unitary equivalence) of a representation of the
Weyl form does not imply uniqueness of the implied representation of the Heisenberg form. The
reason lies in the simple theorem above, that two bounded self-adjoint operators @), P cannot
obey the Heisenberg form. In fact, the Heisenberg form does not imply the Weyl form, even if )
and P are essentially self-adjoint on their respective domains; though conditions can be added
that make the implication go through (e.g. Dixmier’s condition (1958: in French!), discussed by
Jauch (1968, p. 204-205)).

(2): Allowing for projective unitary representations— Of course, the quantum state is non-
redundantly represented by a ray rather than a unit vector. This motivates considering projective
representations of groups, rather than “true” representations. Such representations allow a phase
to occur in equations stating the group composition law for the representing operators. Indeed,
we see this even for elementary abelian groups, like the phase-space translation groups we are
concerned with: cf. the phase in (11), and in in (13) below.

Equation (11) can be given a more abstract formulation, which both:
(i) brings out the role being played by the symplectic structure in the underlying frame-
work of Hamiltonian mechanics, and
(ii) underpins how Segal quantization succeeds in quantizing linear classical systems,
both finite-dimensional and infinite-dimensional.

Setting z := (a,b) € R?", we define the family of operators
W (z) := e2@PU(a)V (b). (12)

Then the Weyl form of the CCRs, i.e. (11) and and (7), are equivalent to the following, which
is thus also called the Weyl algebra: for all z, 21, zo € R?™,

W(z1)W(z) = €%iQ(Z1’Z2)W(21+22);

Wie) = W(-2) (13)

where (Q is the symplectic product:

Q(Zl, ZQ) = az.bl — a1.b2, (14)



The symplectic meaning of €2 will be explained in Section 3. But as a preliminary to that,
we spell out some elementary ideas and results about complexification and complex structures:
which are often treated very concisely if at all, (e.g. Wald 1994, p. 190).

2 Complexification, complex structures—and all that

There is a circle of ideas which can be traversed starting from almost any point... We begin
with complexification, then describe complex structures, then complex conjugation of spaces,
and then the compatibility of a complex structure with a bilinear form, such as an inner product
or symplectic form.

2.1 Complexification

The complexification VC of a real vector space V' is defined as the tensor product of V' with the
complex numbers C
v =vecC. (15)

So far, this is just a real vector space. Every vector in VC can be written uniquely as
v=v1®14+v®i (16)

and the (real) dimension of V€ is twice the dimension of V. But we make it into a complex
vector space, by defining complex scalar multiplication by

alvepf)=v® (af) forallveV and a,f €C; (17)

where we also of course require scalar multiplication to distribute over addition, i.e. we ‘extend
by linearity’:

av@B+u®y)=ae8)+tau®y)=v® (af)+u® (ay) . (18)

Since every vector in VC can be written uniquely as v = v1 ® 1 + v2 ® 1, it is usual to drop the
tensor product symbol and just write

v = v1 + 2. (19)

One then checks that the definition eq. 15 implies that the complex scalar multiplication defined
by eq. 17, can be written in the usual-looking form. Namely: for a complex number a = a + ib
with a,b € IR

(a + ib) (v + ive) = (avy — bve) + i(bvy + ave). (20)

So we regard VC as the direct sum of two copies of V', equipped with a complex scalar multipli-
cation defined by eq. 20 .

There is a natural embedding of V in to Ve given by
v o1, (21)

V may thus be regarded as a real subspace of VE. If V has a basis {e;} over IR then a cor-
reponding basis for V€ is given by {e; ® 1} over C. The complex dimension of V® is therefore
equal to the real dimension of V:

dimeVC = dimg V. (22)



Alternatively: We can define the complexification of V' as the direct sum
Vve=vaev (23)

equipped with a complex structure (cf. below for details) given by the operator J : veve,
where .J is defined by
J(v,w) = (—w,v) . (24)

Here J encodes multiplication by ¢ in the sense that setting a = 0,b =1 in eq. 20 yields
i(U1 +i1)2) =—Vy+i1v] =—1R01+v]®1 (25)

where the last expression on the right is in the notation of eq. 16.

Let dimprV = n. Then in matrix form, J is given by a 2n x 2n matrix J by

J = ( 1(:/ _(1)") . (26)

where —1v is the identity map on V. Thus VC can be written as V& JV or as V & 1V, so as
(i) to avoid the tensor product notation, and (ii) to signal the fact that the direct sum in eq. 23
is endowed with J. J swaps the summands in the sense that J(v,0) = (0,v).

Examples: (i) the complexification of IR™ is C™; (ii) if V' is the m x n matrices with real
entries, then VC is the m x n matrices with complex entries.

Again we have (cf. eq. 22): the complex dimension of Ve is equal to the real dimension of
V', which is half the real dimension of V@V :

1
dimeVE = dimgV = Sdimm(V e V). (27)

2.2 Complex structures

A complex structure on a real vector space V is an automorphism J of V' that squares to minus
the identity map, - I. That is: J? = —1 = - 1. Such a structure on V allows one to define
multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector
space. Namely:

(x +iy)v:=zv+yJ(v) forallv eV and z,y € R ; (28)

which (check!) makes V' into a complex vector space, denoted V.

If V is any real vector space, there is a canonical complex structure J on the direct sum
V@V namely, the complex structure on the complexification VC of V', i.e. on the tensor product
V ®C, written as V @& JV or as V @ iV. That is, J is given by J(v,w) := (—w,v), i.e. by eq.
24, ; and the matrix form of .J is as in eq. 26. In this notation for complexification—i.e. the
notation, V@ JV or V@iV—we can write: V@ JV = (V@ V)  or similarly V@iV = (VaV);.

One can go in the other direction. Any complex vector space W is also a real vector space,
with the same vector addition and real scalar multiplication. On this underlying real vector
space, one defines a complex structure J by J(w) := iw for all w € W; where the right-hand-
side is given us by W being a complex vector space. With this complex structure defined, we of
course get back the original complex vector space W.

In fact, if V; has complex dimension n, then V must have real dimension 2n. That is, a
finite-dimensional real space V admits a complex structure only if it is even-dimensional. And



every even-dimensional real vector space V admits a complex structure. Indeed, many. For

any basis {e1,ea,...,e2,} of V can be divided in to n pairs, say {e1,ea},...,{ean—1,€2m}, and
then one can define J as the ‘swap with a minus’ on each such pair, i.e. J(e1) := ea, J(e2) :=
—e1,...,J(ea—1) := eap, J(e2n) := —ean—1, and then one extends by linearity to all of V. So
J?=—1.

Suppose that we are given a real linear transformation A : V—V on a real vector space V/,
and that V' admits a complex structure J. Then A defines a complex linear transformation of
the complex space Vj if and only if A commutes with J, i.e. if and only if AJ = JA: (trivial
check, cf. eq. 28).

Likewise, a real subspace U of V is a complex subspace of V; (i.e. is closed under complex-
linear combinations) if and only if J preserves U, i.e. if and only if J(U) < U; (trivial check).

Basic example:— Obviously, the main example of a complex structure is the structure on IR?"
coming from the complex structure on C". That is, the complex n-dimensional space C" is also a
real 2n-dimensional space. Here, one uses the same vector addition and real scalar multiplication:
while multiplication by the complex number i is not only a complez linear transform of the space,
thought of as a complex vector space, but also a real linear transform of the space, thought of
as a real vector space. This is just because scalar multiplication by i:

(a) commutes with scalar multiplication by real numbers, i.e. i(Av) = (i\)v = (Ai)v =
A(iv), and

(b) distributes across vector addition.
As a complex n X n matrix, this complex structure is simply the scalar matrix with 7 on the
diagonal. The corresponding real 2n x 2n matrix is denoted J.

Again, there is the general equation that counts dimensions, with V€ = (V @& V) (cf.
eq. 27):

1 1
§dim]R(V [e2) V)J = dich(V [S2) V)J = dim]RV = idim]R(V (2] V) . (29)
And in this example, with V' = IR": these numbers are all n.
Suppose given a complex vector space, of complex dimension n, and a basis {e1,e2,...,e,}.
This set, together with these vectors multiplied by i, namely {ie1, e, ..., ie,}, form a basis for

the underlying real vector space. There are two natural ways to order this basis.

(1): If one orders the basis as {ey,ier, ea,iea, ..., en,ie,}, then the matrix for J takes the
following block-diagonal form, where the blocks are the 2 x 2 matrix Jy := ( (1) Bl ) That
is: J is (with subscript 2n added, so as to indicate dimension):

J 0 ... 0
o J ... 0
J2n = . . (30)
o 0 ... J
(2): If one orders the basis as {e1,eq,...,en,i€1,,0€9,...,ie,}, then the matrix for J is

block-antidiagonal:

o = < 10n _;“> : (31)

This is more natural when one thinks of the real space as a direct sum of real spaces, as in the
second, alternative, approach to complexification at the end of Section 2.1. Thus eq. 31 is the
same as eq. 26.



2.3 Complex conjugation of spaces, and the relation of complex structures to com-
plexifications

The complex conjugate of complex vector space W is a complex vector space W that has the
same elements and additive group structure as W, but whose scalar multiplication involves con-
jugation. That is: we define the scalar multiplication * in W in terms of the scalar multiplication
-in W by:

axw:=a-w, foralla €C,weW (32)

Properties:
(HW=Ww.
(2) W and W have the same complex dimension. Indeed the identity map id : W—W is
an antilinear map, since
ida-w)=a -w=a*xw=ax*id(w) (33)

and id maps any basis of W into a basis of W. And given any two bases, {e;} and {f;}, of W
and W respectively, the map f : e;— f; can be extended by antlinearity to be an antilinear map,
an anti-isomorphism, from W to W. Thus there is no canonical isomorphism between W and
w.

(3) If W and U are complex vector spaces, an antilinear map f : W—U can be regarded
as an ordinary linear map f : W—U, since:

flaxw) = f@ w) =& f(w) =a- f(w). (34)

Conversely, any linear map ¢ defined on W, g : W—U, gives rise to an antilinear map from
W to U, which again we write with a ¢g. That is, we write: g : W—U. For if we write the
scalar multiplication in W as - (as before) and the scalar multiplication in U as --, then the map
g : W—U obeys:

gla-w) = g@sw) =a--g(w), (35)

since g : W—U is linear. So the defined map g : W—U is antilinear.

(4) A linear map between complex vector spaces, f: W—=U , gives rise to a corresponding
also! linear map f : W—U which has the same action as f. For f preserves scalar multiplication,
since

Flaxw) = f@ w) =a- f(w) = ax f(w) (36)
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