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This document, and its succcessor on the Quantization of Linear Dynamical Systems with
Infinitely many degrees fo freedom, expound a rigorous quantization procedure developed by
Irving Segal and others in the 1960s. This means we postpone to the second half of term, cov-
erage of algebraic quantum theory; which will include e.g. inequivalent representations, ‘getting
out of Fock space’, Haag’s theorem etc. (cf. eg Emch 1972). But the present material:

(i) gives a strong grip on the first (forbiddingly concise!) third of Wald 1994, which is
the basis for the rest of that book on QFT in curved spacetime and thus e.g. the Unruh effect
(an essay!);

(ii) is of intrinsic interest... though please be warned that here you will find: no La-
grangian, no path integrals, no renormalization, no gauge theory, no curved spacetime, no
gravitation; indeed, no interactions, and overall, not much physics ... we will focus on the har-
monic oscillator (!),the free KG field and spin-chains (and without putting a Hamiltonian on the
chain...). Nor will you find much straight-up philosophy ... but perhaps the light here shed on
field/wave vs.particle counts as philosophy, since wave vs.particle is, like continuum vs. discrete,
a perennial dichotomy of natural philosophy...

In this document, we consider only finitely many degrees of freedom, and lead up to the Stone-
von Neumann Theorem, which essentially guarantees that the quantization of point particles in
Rn is unique. We begin by introducing the Weyl form of the CCRs; and posing the quest for
its representations (Section 1). Then we present the complexification and realification of vector
spaces, complex structures etc. (Section 2); and symplectic vector spaces and manifolds (Section
3). Then we present linear systems, both classical and quantum; and thus the harmonic oscillator
(Section ??). With all this in hand, we can then see the task of quantization as “unitarizing”
a Hamiltonian evolution in a symplectic space so as to give an evolution in a complex Hilbert
space. This gives the idea of a one particle structure, both in general and for the harmonic
oscillator as an example (Section 5). The key to successful quantization, which see at work in
the harmonic oscillator example, turns out to be the two out of three property of the unitary
group: which concerns its relation to certain orthogonal and symplectic groups (Section 6).
Then we treat the case of finitely many harmonic oscillators, and so the occupation number
representation: which can be described in a “Fock-space way” (Section 7). Finally, we state (i)
the Stone-von Neumann Theorem; and (ii) an analogous theorem (the Jordan-Wigner theorem)
about the uniqueness of the representation of the CARs (as against CCRs) of a finite system,
such as a spin chain (Section 8).

Mottoes:
Let us try to introduce a quantum Poisson Bracket which shall be the analogue of the classical
one....we are thus led to the following definition for the quantum Poisson Bracket of any two
variables u and v: uv − vu = i~[u, v]. Dirac (1930/1958, Section 21)

There is thus a complete harmony between the wave and light-quantum descriptions of the
interaction. (Dirac, 1927, p. 245).

First quantization is a mystery, but second quantization is a functor. (E. Nelson).

Probably all these connections would have been clarified long ago, if quantum physicists had
not been hampered by a prejudice in favor of complex and against real numbers. (Freeman
Dyson)
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The life of a theoretical physicist consists of solving harmonic oscillator at ever higher levels
of abstraction. (S. Coleman)
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1 Canonical quantization introduced

1.1 Commutation relations: from Heisenberg to Weyl

The idea of canonical quantization is familiar from elementary quantum mechanics: to “promote”
the classical Poisson bracket relations

{qi, qj} = {pi, pj} = 0; {qi, pj} = δij , (1)

where i, j ∈ {1, 2, . . . n}, to the Heisenberg canonical commutation relations (CCRs)

[Qi, Qj ] = [Pi, Pj ] = 0; [Qi, Pj ] = i~δij1; (2)

(we will usually set ~ := 1). This Poisson bracket-commutator correspondence originated with
Dirac (cf. his Principles of Quantum Mechanics 1958, Section 21f.) The standard representation
of eq. (2) is the familiar Schroedinger representation: namely, for n configurational degrees of
freedom, e.g. a spinless particle in Euclidean n-space, or n such particles on a line:

Qiψ = qiψ, Pjψ = − ih
2π

∂ψ

∂qj
for ψ ∈ L2(IRn, dq). (3)

This prompts four main topics. They are of increasing scope, and we will consider only the
first.

(a): To examine canonical quantization as just described for position and momentum in
IRn. The big positive result here is the Stone von Neumann theorem, stating (roughly) that for
IRn as the configuration space, the Schroedinger representation of (2) is unique up to unitary
equivalence. Cf Section 8. But so as to set the scene for quantum field theory, and more
generally so as to get materials useful for contexts other than IRn, we will lead up to this slowly.
This will mean expounding some ideas of Segal quantization, which is the most straightforward
generalization of the above ideas. In short: it replaces IRn as the classical configuration space,
by an arbitrary n-dimensional manifold.

(b): To extend quantization to other quantities, in particular functions (polynomial, or
even “arbitrary”, functions) of position and momentum.

(c): To consider other methods of quantization.
(d) To pursue the pure mathematical interest of quantization. For a glimpse of this, cf.

Folland (2008, p. 49; and Vogan 2005, cited there). In short: the interest lies in how it helps
one find all the irreducible unitary representations of a connected Lie group G: i.e. in physical
language, finding all quantum systems in which G acts irreducibly as a symmetry group. The
corresponding classical problem is to find all symplectic manifolds on which G acts transitively as
a group of canonical transformations (symplectomorphisms), i.e. all symplectic homogeneous G-
spaces. But this classical problem is “under good control”. For the orbits of the co-adjoint action
of G on g∗ are symplectic homogeneous G-spaces; and furthermore, all symplectic homogeneous
G-spaces can be, more or less, built from orbits of such co-adjoint action. (Here, “more or
less” signals issues about central extensions and covering spaces). Thus a “good” quantization
procedure for such spaces is likely to be illuminating for the task of finding all the irreducible
unitary representations of G.

Of course, we foreswear (d); and for the most part, we foreswear (b) and (c). For an
introduction to both, and of course (a), we recommend:

(i): N Landsman, Between Classical and quantum, especially Section 3; in J Butterfield
and J Earman eds, Handbook of Philosophy of Physics (2006) and: quant-ph:0506082; and for
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more details:
(ii): S Ali and M Englis, Quantization methods: a guide for physicists and analysts,

Reviews in Mathematical Physics 2005, math-ph: 0405065.

In particular, as to (b): Ali and Englis Section 1 review the obstructions confronting quan-
tization of (even just a “handful” of polynomial) functions of position and momentum. These
obstructions concern ambiguities of operator-ordering. That is: natural general constraints on
the quantization map Q (“adding a hat”) that sends a classical (real-scalar) quantity f : IR2n→IR
to a quantum quantity, i.e. to a self adjoint operator Qf : L2(IRn)→L2(IRn), lead to contra-
dictions. This topic originates in papers by Groenewold and van Hove. Recent developments
include: Gotay et al. Obstructions in quantization theory, Journal of Nonlinear Science, volume
6, p. 469-498, 1996; and Gotay, On the Groenewold-van Hove Problem, Journal of Mathematical
Physics 1999.

As to (c): Ali and Englis review (Section 3f.) geometric quantization, deformation quan-
tization etc. But even their Section 2 gives details of e.g. the inequivalent quantizations involved
in the Aharonov Bohm effect.

But the four topics are of course closely related. For example, these obstructions mean that
a main motivation to pursue (c)’s other methods of quantization is to extend quantization to as
many quantities as possible.

For us, concentrating on (a): the main point about (b), i.e. the obstructions, will be that
(cf. Wald 1994, Section 2.2 , pp. 17-18): Segal quantization “works” for:

(i) a classical configuration space that is an arbitrary n-dimensional manifold M (so that
classical quantities are real functions of the cotangent bundle T ∗M); provided that

(ii) we restrict consideration to quantities that are at most linear in the momenta (i.e.
the momenta canonically conjugate to arbitrary configurational coordinates q on M).

Here, the word “works” means that the quantization map Q maps Poisson brackets into
commutators, divided by i~. (In more formal jargon: “Q respects Lie algebra structure”). That
is: Q obeys, for classical quantities f, g : T ∗M→IR that are appropriately restricted by condition
(ii) above:

[Q(f), Q(g)] = i~ Q({f, g}) (4)

In this sense, Segal quantization is a good framework for the quantization of finite-dimensional
systems.

And Segal quantization has other merits. We will also see that for linear classical systems, it
“respects” the dynamics. That is: the Segal quantization of the classical Hamiltonian (which is
essentially like that of a harmonic oscillator: “p2 + q2”) is the “correct” quantum Hamiltonian.
Besides, we will eventually see that it works for (some!) quantum field theories. Specifically,
it works for the quantization of the free bose field (e.g. De Faria and De Melo, Section 6.3).
Furthermore, it does this in a manner that generalizes readily to constructing quantum field
theories on curved spacetimes (Wald 1994, p. 31 and Section 3.2).

So much by way of preamble. For our main topic, i.e. (a) above, the first job is to pass
from the Heisenberg CCRs to the Weyl form of the CCRs. The point here is that since the
classical position and momentum quantities, for a phase space IR2n, are unbounded, we expect
the quantum position and momentum Qi, Pj to also be unbounded, indeed to have all of IR as
their spectra—so that, if they are to be self-adjoint, they cannot be defined on all of L2(IRn).

Indeed, setting aside the physical desideratum that the spectra should be unbounded: there
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is a simple theorem that if two bounded self-adjoint operators Q,P have a commutator that is
proportional to the identity, they must commute. That is: If [Q,P ] = αI for some α ∈ |C, then
α = 0. (De Faria and De Melo, Lemma 2.11; Jauch 1968, p. 205, Problem 4).

In short: we face issues of domains. We remedy this by formulating to the Weyl form of
the CCRs. These govern unitary exponentiations of linear combinations of the position, and
similarly, of the momentum operators.

Thus we define, for any a,b ∈ Rn,

U(a) := e−ia.P/~ ; V (b) := e−ib.Q/~; (5)

Since the Us and V s are both families of unitaries, their spectra are bounded, and are defined
everywhere on L2(Rn). In the Schroedinger representation, we have

(U(a)ψ)(x) = ψ(x− a) ; (V (b)ψ)(x) = e−ib.x/~ψ(x) (6)

so that U represents translations in space, and V represents translations in momentum-space.

We have, of course, commutation for each of position and momentum, alone:

U(a)U(b) = U(b)U(a) = U(a + b) ; V (a)V (b) = V (b)V (a) = V (a + b) (7)

To deduce the commutation relations of U and V operators, we need the Campbell-Baker-
Hausdorff formula for products of exponentials of non-commuting operators. Given a self-adjoint
operator A, we say that a vector ψ ∈ H is analytic if for all n, An(ψ) is defined, and so is eAψ.
Then the version of the Campbell-Baker-Hausdorff formula which is appropriate here (De Faria
and De Melo, Lemma 2.12) says that if:

(i) A,B and A+B have a common dense domain D of analytic vectors, and
(ii) [A,B] commutes with A and with B:

then in D:
eAeB = eA+B+ 1

2
[A,B] ≡ eA+Be

1
2

[A,B] (8)

To apply (8) to (5), we set A := −ia.P/~ and B := −ib.Q/~, to deduce that

U(a)V (b) = exp(
1

2
i(a · b)/~). exp(−i(a.P/~ + b.Q/~)) ; (9)

and mutatis mutandis, we set A := −ib.Q/~ and B := −ia.P/~, to deduce that

V (b)U(a) = exp(−1

2
i(a · b)/~). exp(−i(a.P/~ + b.Q/~)). (10)

Combining these immediately gives the Weyl commutation relations:1

U(a)V (b) = eia.b/~V (b)U(a). (11)

1Beware: (i) many authors ‘flip’ the notation of U and V , so that V represents translations in space; and
(ii) some authors (even rigorous ones e.g. Prugovecki 1981, Chapter IV, Sections 6.2, 6.4!) also put the ~
in the numerator of the exponent, so that the exponent is in dire danger of having dimension action-squared!
Besides, (iii): various texts also get the sign of the exponent in (11) wrong. (See later for discussion of different
choices of sign in the two definitions of (5).) I am following S. Summers (2001: in John von Neumann and the
Foundations of quantum mechanics, ed. M. Redei and M. Stoeltzner). Summers puts the ~ in the denominator
of the exponent, is perfectionist about signs; and his use of U for translation in space, is like Weyl himself (1932,
Chapter IV, Section 14, building on Chapter II, Section 11): this last text being no doubt correct, but—with all
due respect!—incomprehensible.
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1.2 The Weyl algebra

So from now on, we take as our CCRs, not the Heisenberg form (2), but (11) together with the
trivial commutations of Us and V s alone i.e. (7).

We have so far built the Us and V s concretely from given Q,P. But in the usual tradition
of physics, we can:

(i) consider an abstract algebra of Us and V s subject to the relations (11) and (7); any
such algebra is called the Weyl algebra; and then

(ii) try to classify the representations of this algebra, especially the unitary representa-
tions on some Hilbert space.
As already announced at the start of Section 1.1, the main result about (ii), for finite-dimensional
systems, will be the Stone-von Neumann uniqueness theorem. But as that discussion also sug-
gested: the Weyl algebra, and Segal quantization, will also be centre-stage for quantizing fileds
(including on curved spacetime) and for the pure mathematical topic (d) of Section 1.1.

Now, we first make two comments about this endeavour (in order of increasing importance
for us); and then develop a more abstract formulation of the Weyl relations, which will be central
in all that follows.

(1): The relation between the Heisenberg and Weyl forms:– The Weyl form of the CCRs
implies the Heisenberg form, and so a representation of the Weyl form is also a representation
of the Heisenberg form. But uniqueness (up to unitary equivalence) of a representation of the
Weyl form does not imply uniqueness of the implied representation of the Heisenberg form. The
reason lies in the simple theorem above, that two bounded self-adjoint operators Q,P cannot
obey the Heisenberg form. In fact, the Heisenberg form does not imply the Weyl form, even if Q
and P are essentially self-adjoint on their respective domains; though conditions can be added
that make the implication go through (e.g. Dixmier’s condition (1958: in French!), discussed by
Jauch (1968, p. 204-205)).

(2): Allowing for projective unitary representations:— Of course, the quantum state is non-
redundantly represented by a ray rather than a unit vector. This motivates considering projective
representations of groups, rather than “true” representations. Such representations allow a phase
to occur in equations stating the group composition law for the representing operators. Indeed,
we see this even for elementary abelian groups, like the phase-space translation groups we are
concerned with: cf. the phase in (11), and in (63) below.

Equation (11) can be given a more abstract formulation, which both:
(i) brings out the role being played by the symplectic structure in the underlying frame-

work of Hamiltonian mechanics, and
(ii) underpins how Segal quantization succeeds in quantizing linear classical systems,

both finite-dimensional and infinite-dimensional.

Setting z := (a,b) ∈ R2n, we define the family of operators

W (z) := e
1
2
ia.bU(a)V (b). (12)

Then the Weyl form of the CCRs, i.e. (11) and and (7), are equivalent to the following, which
is thus also called the Weyl algebra: for all z, z1, z2 ∈ R2n,

W (z1)W (z2) = e
1
2
iΩ(z1,z2)W (z1 + z2);

W †(z) = W (−z);
(13)
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where Ω is the symplectic product :

Ω(z1, z2) := a2.b1 − a1.b2, (14)

The symplectic meaning of Ω will be explained in Section 3. But as a preliminary to that,
we spell out some elementary ideas and results about complexification and complex structures:
which are often treated very concisely if at all, (e.g. Wald 1994, p. 190).

2 Complexification, complex structures—and all that

There is a circle of ideas which can be traversed starting from almost any point... We begin with
complexification, then describe complex structures, then the compatibility of a complex structure
with a bilinear form, such as an inner product or symplectic form. This will give us a glimpse of
how we can “go back and forth” between certain classical phase spaces (viz. symplectic vector
spaces) and Hilbert spaces. It will also give us a glimpse of (i) Kahler manifolds, and (ii) how in
a quantum theory different choices of a complex structure are associated with different splittings
of positive and negative frequencies, and thereby (iii) the Unruh effect.The Section ends with
discussion of the complex conjugation of spaces.

2.1 Complexification

2.1.A Complexification as tensor product:— The complexification V
|C of a real vector space

V is defined as the tensor product of V with the complex numbers C

V C := V ⊗ |C . (15)

Here we think of |C as a copy of IR2, with a basis {(1, 0), (0, i)}. So far, this is just a real vector
space. Every vector in V

|C can be written uniquely as

v = v1 ⊗ 1 + v2 ⊗ i (16)

and the (real) dimension of V
|C is twice the dimension of V . But we make it into a complex

vector space, by defining complex scalar multiplication by

α(v ⊗ β) = v ⊗ (αβ) for all v ∈ V and α, β ∈ |C ; (17)

where we also of course require scalar multiplication to distribute over addition, i.e. we ‘extend
by linearity’:

α(v ⊗ β + u⊗ γ) := α(v ⊗ β) + α(u⊗ γ) ≡ v ⊗ (αβ) + u⊗ (αγ) . (18)

Since every vector in V
|C can be written uniquely as v = v1 ⊗ 1 + v2 ⊗ i, it is usual to drop the

tensor product symbol and just write

v = v1 + iv2. (19)

One then checks that the definition eq. 15, equivalently eq. 16, implies that the complex scalar
multiplication defined by eq. 17, can be written in the usual-looking form. Namely: for a
complex number α = a+ ib with a, b ∈ IR

(a+ ib)(v1 + iv2) = (av1 − bv2) + i(bv1 + av2). (20)
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So we regard V
|C as the direct sum of two copies of V , equipped with a complex scalar multipli-

cation defined by eq. 20 .

There is a natural embedding of V in to V
|C given by

v 7→ v ⊗ 1 . (21)

V may thus be regarded as a real subspace of V
|C. If V has a basis {ei} over IR then a cor-

reponding basis for V
|C is given by {ei ⊗ 1} over |C. The complex dimension of V

|C is therefore
equal to the real dimension of V :

dim|CV
|C = dimIRV. (22)

2.1.B Complexification as direct sum:— Alternatively, we can define the complexifica-
tion of V as the direct sum

V
|C := V ⊕ V (23)

equipped with a complex structure (cf. below for details) given by the operator J : V
|C→V |C,

where J is defined by
J(v, w) := (−w, v) . (24)

Here J encodes multiplication by i in the sense that setting a = 0, b = 1 in eq. 20 yields

i(v1 + iv2) = −v2 + iv1 = −v2 ⊗ 1 + v1 ⊗ i (25)

where the last expression on the right is in the notation of eq. 16.

Let dimIRV = n. Then in matrix form, J is given by a 2n× 2n matrix J , viz.

J =

(
0 −1V

1V 0

)
. (26)

where −1V is the identity map on V . Thus V
|C can be written as V ⊕ JV or as V ⊕ iV , so as

(i) to avoid the tensor product notation, and (ii) to signal the fact that the direct sum in eq. 23
is endowed with J . J swaps the summands in the sense that J(v, 0) = (0, v).

Examples: (i) the complexification of IRn is |Cn; (ii) if V is the m × n matrices with real
entries, then V

|C is the m× n matrices with complex entries.

Again we have (cf. eq. 22): the complex dimension of V
|C is equal to the real dimension of

V , which is half the real dimension of V ⊕ V :

dim|CV
|C = dimIRV =

1

2
dimIR(V ⊕ V ) . (27)

2.1.C A matter of convention:— The above discussion (in 2.1.A and 2.1.B) has an
obviously conventional aspect. Suppose that in 2.1.A, we had taken the basis of |C as a copy of
IR2, to be in the opposite order, i.e. {(0, i), (1, 0)}. Then eq. 16 would become

v = v1 ⊗ i+ v2 ⊗ 1 (28)
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Then the definition of complex scalar multiplication, eq. 17 and 18, remain as they are. But
the notation that drops the tensor product, i.e. eq. 19, becomes

v = iv1 + v2 ; (29)

and the usual-looking form of the complex scalar multiplication that we now deduce is the
following analogue of eq. 20: for a complex number α = a+ ib with a, b ∈ IR

(a+ ib)(iv1 + v2) = (av2 − bv1) + i(av1 + bv2). (30)

Similarly, for the alternative direct sum approach of 2.1.B. Instead of eq. 24, we define the
complex structure J on the direct sum V ⊕ V by

J(v, w) := (w,−v) . (31)

Then, setting a = 0, b = 1 in eq. 30 yields

i(iv1 + v2) = −v1 + iv2 = iv2 − v1 = v2 ⊗ i− v1 ⊗ 1 (32)

where the last expression on the right is in the notation of eq. 28. This J as defined by eq. 31
is of course just minus the J defined by eq. 24. The matrix form of J as defined by eq. 31 is
thus the negative of eq. 26. That is:

J =

(
0 1V

−1V 0

)
. (33)

This last equation will give us, shortly, an obvious comparison with the matrix expression of a
symplectic form.

2.2 Complex structures

2.2.A Basics:— A complex structure on a real vector space V is an automorphism J of V that
squares to minus the identity map, - I. That is: J2 = −1 ≡ - I. Such a structure on V allows
one to define multiplication by complex scalars in a canonical fashion so as to regard V as a
complex vector space. Namely:

(x+ iy)v := xv + yJ(v) for all v ∈ V and x, y ∈ IR ; (34)

which (check!) makes V into a complex vector space, denoted VJ .

If V is any real vector space, there is a canonical complex structure J on the direct sum
V ⊕V : namely, the complex structure on the complexification V

|C of V , i.e. on the tensor product
V ⊗ |C, written as V ⊕ JV or as V ⊕ iV . That is, J is given by J(v, w) := (−w, v), i.e. by eq.
24, ; and the matrix form of J is as in eq. 26. In this notation for complexification—i.e. the
notation, V ⊕JV or V ⊕ iV—we can write: V ⊕JV = (V ⊕V )J or similarly V ⊕ iV = (V ⊕V )J .

One can go in the other direction. Any complex vector space W is also a real vector space,
with the same vector addition and real scalar multiplication. On this underlying real vector
space, one defines a complex structure J by J(w) := iw for all w ∈ W ; where the right-hand-
side is given us by W being a complex vector space. With this complex structure defined, we of
course get back the original complex vector space W .

In fact, if VJ has complex dimension n, then V must have real dimension 2n. That is, a
finite-dimensional real space V admits a complex structure only if it is even-dimensional. If
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{v1, ..., vm} is a basis of the complex vector space VJ , then {v1, J(v1)..., vm, J(vm)} is a basis of
the underlying real vector space V .

Every even-dimensional real vector space V admits a complex structure. Indeed, many. For
any basis {e1, e2, . . . , e2n} of V can be divided in to n pairs, say {e1, e2}, . . . , {e2n−1, e2n}, and
then one can define J as the ‘swap with a minus’ on each such pair, i.e. J(e1) := e2, J(e2) :=
−e1, . . . , J(e2n−1) := e2n, J(e2n) := −e2n−1, and then one extends by linearity to all of V . So
J2 = −1.

Suppose that we are given a real linear transformation A : V→V on a real vector space V ,
and that V admits a complex structure J . Then A defines a complex linear transformation of
the complex space VJ if and only if A commutes with J , i.e. if and only if AJ = JA: (trivial
check, cf. eq. 34).

Likewise, a real subspace U of V is a complex subspace of VJ (i.e. is closed under complex-
linear combinations) if and only if J preserves U , i.e. if and only if J(U) < U ; (trivial check).

2.2.B: Basic example:— Obviously, the main example of a complex structure is the struc-
ture on IR2n coming from the complex structure on |Cn. That is, the complex n-dimensional
space |Cn is also a real 2n-dimensional space. Here, one uses the same vector addition and real
scalar multiplication: while multiplication by the complex number i is not only a complex linear
transform of the space, thought of as a complex vector space, but also a real linear transform of
the space, thought of as a real vector space. This is just because scalar multiplication by i:

(a) commutes with scalar multiplication by real numbers, i.e. i(λv) = (iλ)v = (λi)v =
λ(iv), and

(b) distributes across vector addition.
As a complex n× n matrix, this complex structure is simply the diagonal matrix with i on the
diagonal. The corresponding real 2n × 2n matrix is denoted J . What this matrix J looks like
will depend on how we order the basis: cf. eq. 36 and 37 in (1) and (2) below.

Again, there is the general equation that counts dimensions, with V
|C = (V ⊕ V )J (cf.

eq. 27):
1

2
dimIR(V ⊕ V )J = dim|C(V ⊕ V )J = dimIRV =

1

2
dimIR(V ⊕ V ) . (35)

And in this example, with V = IRn: these numbers are all n.

2.2.C: The “look” of J :— Suppose given a complex vector space, of complex dimension
n, and a basis {e1, e2, . . . , en}. This set, together with these vectors multiplied by i, namely
{ie1, ie2, . . . , ien}, form a basis for the underlying real vector space. (Cf. 2.2.A, paragraph 4,
above.) There are two natural ways to order this basis.

(1): If one orders the basis as {e1, ie1, e2, ie2, . . . , en, ien}, then the matrix for J takes the

following block-diagonal form, where the blocks are the 2 × 2 matrix J2 :=

(
0 −1
1 0

)
. That

is: J is (with subscript 2n added, so as to indicate dimension):

J2n :=


J2 0 . . . 0
0 J2 . . . 0

. . .

0 0 . . . J2

 . (36)

(2): If one orders the basis as {e1, e2, . . . , en, ie1, , ie2, . . . , ien}, then the matrix for J is
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block-antidiagonal:

J2n :=

(
0 −1n

1n 0

)
: (37)

This is more natural when one thinks of the real space as a direct sum of real spaces, as in the
second, alternative, approach to complexification at the end of Section 2.1. Thus eq. 37 is the
same as eq. 26.

2.3 Compatibility of a complex structure with bilinear forms

2.3.A: Basics:— Later we will be much concerned with vector spaces that have: either an inner
product (like a Hilbert space) or a symplectic product (as in Hamiltonian mechanics; cf. Section
3). So we here consider, in general, the “meshing” of a complex structure with bilinear forms.
This will lead, in 2.3.B and 2.3.C, to “building a Hilbert space”, and to the construction in the
reverse direction, from a Hilbert space to a symplectic space.

If B is a bilinear form on a real vector space V , i.e. B : V × V→ IR, then we say that J
preserves B if for all u, v ∈ V

B(Ju, Jv) = B(u, v) . (38)

Recall that since J is an automorphism with J2 = −1, we have J−1 = −J . This implies that
eq. 38 is equivalent to J being skew-adjoint with respect to B. That is:

B(Ju, v) = −B(u, Jv) . (39)

Examples of bilinear forms are inner products and symplectic products. If g is an inner product
on V then J preserves g if and only if J is an orthogonal transformation. Likewise, J pre-
serves a non-degenerate, skew-symmetric form ω, i.e. a symplectic product, if and only if J is
a symplectic transformation, i.e. ω(Ju, Jv) = ω(u, v). If ω and J obey, for all non-zero u ∈ V ,
ω(u, Ju) > 0, we say that J tames ω.

2.3.B: From symplectic form and compatible J to real-valued inner product:— A
symplectic form ω on a real vector space V , together with a complex structure J that preserves
ω, define: a symmetric bilinear form gJ on the complex vector space VJ . Namely, by:

gJ(u, v) := ω(u, Jv) . (40)

This is called the Kähler condition. We note that gJ is symmetric because J being skew-adjoint
with respect to ω, i.e. eq. 39, implies that the rhs of eq. 40, i.e. ω(u, Jv) = −ω(Ju, v) ≡
ω(v, Ju) =: gJ(v, u). One similarly checks trivially that: (i) J preserves gJ ; (ii) if J tames ω,
then gJ is positive-definite, i.e. an inner product.

One also checks trivially that on the complex vector space VJ : gj is complex-linear, even
though gJ is real-valued. Thus, applying the initial definition of complex scalar multiplication
for VJ , eq. 34, we write:

gJ((x+ iy)u, v) := ω((x+ iy)u, J(v)) ≡ ω((xu+ yJ(u)), J(v)) (41)

≡ ω(xu, J(v)) + ω(yJ(u), J(v)) ≡ xω((u, J(v)) + yω(J(u), J(v))

≡ xgJ(u, v) + ygJ(Ju, v) .

11



2.3.C: Defining a complex-valued inner product:— From 2.3.B, we assume we are
given: (i) a real vector space V with (ii) a symplectic form ω, and (iii) a complex structure J
that preserves and tames ω; and thereby (iv), on the complex vector space VJ , a positive-definite
real-valued inner product gJ : namely as defined by the Kähler condition, eq. 40.

Now let us define a complex-valued function on V × V in terms of gJ and ω by

〈u, v〉 ≡ 〈u, v〉ω,J := gJ(u, v) + iω(u, v) (42)

where the subscript shows the dependence on the given ω and J . It is trivial that this function
is additive in each argument, i.e. 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉 and similarly for additivity of the
second argument. One checks (exercise!) that it is sesquilinear. That is: it is complex-linear in
the second argument, but antiinear in the first argument. That is, with x, y ∈ IR:

〈(x+ iy)u, v〉 = x〈u, v〉 − iy〈u, v〉 and 〈u, (x+ iy)v〉 = x〈u, v〉+ iy〈u, v〉 . (43)

The check of eq. 43 uses most of the properties we have postulated. Namely: the definition eq.
40 of gJ in terms of ω and J ; the antisymmetry of ω and the symmetry of gJ ; and the fact that
J preserves ω.

Besides, recall that we assumed that J tames ω, so that gJ is positive-definite, i.e. a real-
valued inner product (cf. 2.3.B). Then since ω is also non-degenerate, one checks (exercise!)
that 〈·, ·〉 is positive-definite. To conclude: 〈·, ·〉 is a complex inner product in the usual sense:
sesquilinear and positive-definite.

We recall that a (complex) Hilbert space is a a complex inner product space, that is complete
in the norm induced by the inner-product. That is: Cauchy sequences, in the norm, converge to
a vector in the space. This completeness does not follow from the above assumptions, unless the
given real vector space V is finite-dimensional. (Thus a complex inner product space is often
called a pre-HIlbert space.) But even if V is infinite-dimensional, and not complete in the norm,
there is a canonical construction of a Hilbert space from it. This is like the canonical construc-
tion, for an arbitrary metric space (X, d), of a complete metric space (X̄, d̄), into which (X, d)
can be isometrically embedded. Namely, the points of X̄ are appropriately defined equivalence
classes of Cauchy sequences in X. For details, cf. e.g. Prugovecki (REF).

2.4 A compatible J is not unique—and encodes some dynamics

There are three remarks to make at this point, about this development from 2.2.A to 2.3.C.
They all concern the non-uniqueness of J , and they give a glimpse of further, more physical,
developments, including the Unruh effect—glimpsed in 2.4.C below.

2.4.A: On the non-uniqueness of J :— We stressed in 2.2.A that an even-dimensional real
vector space V admits many complex structures. For any basis {e1, e2, ..., e2n} can be divided
into n pairs (in many ways), with J can then defined as the ‘swap with a minus’ on each such
pair, extended by linearity.

But in this Subsection, since 2.3.B, we have assumed that a symplectic form ω is given, and
that J is compatible with it. So does fixing ω and requiring compatibility still leave freedom in
the definition of J? In fact, it does.

Fixing ω defines (by an analogue of the Gram-Schmidt diagonalization of a bilinear form)
bases such that ω’s matrix form is that of J in eq. 26 (cf. Section 2.1, and eq. 58 in Section
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3.1 below, about symplectic structure). This is best understood in terms of how Hamiltonian
mechanics defines a symplectic form on the phase space “of qs and ps”, i..e. of positions and
momenta. This naturally associates each q one-to-one with a p, and so the basis of 2n vectors
breaks down in to n pairs. We might write the basis as {q1, q2, ..., qn, p1, p2, ...pn}, with each
(qi, pi) forming a pair that J is to “swap with a minus”. (Cf. the discussions above about the
direct-sum way of thinking about complexification and complex structure.) The J thus defined
will be, by construction, compatible with the given ω. So does compatibility with this fixed ω
also fix, i.e. determine, J?

No. For we must remember that our vector space has no concept of length of vectors: it
has only a concept of area given by the symplectic form (cf. the discussion in Section 3.1). So
for each i = 1, ..., n, and each qi in the basis yielding the matrix form in eq. 26, there is a
positive-real-parameter family of vectors pi, any one of which can be chosen while preserving
ω’s form in eq. 26. So with dim(V ) = 2n, there is an entire (IR+)n ‘hyperquadrant’ in IRn of
choices of the n vectors pi. (Note that this freedom in J is not just a choice of sign, as discussed
for complexifications in Section 2.1.C.)

We will see later a physical rationale for this: elegant and helpful, since it concerns the simple
harmonic oscillator (SHO). In one spatial dimension, the SHO has a phase space IR2 3 (q1, p1),
with the system’s possible trajectories (histories) being ellipses. But this copy of IR2 has no
concept of length, but only of area. A choice of J will thus encode facts about the eccentricity of
the ellipses, and thus about the dynamics (the Hamiltonian). (The image J((q1, p1)) of a point
(q1, p1) under the action of J will lie on the same ellipse as (q1, p1).)

The idea that J—and a closely associated map K that “maps from the (complex!) classical
solution space to the quantum Hilbert space”—encode facts about the dynamics will be impor-
tant in the sequel: also for understanding the Unruh effect. Cf. 2.4.C below.

2.4.B: From vector space to manifold:— In Hamiltonian mechanics, the phase space is
in general a manifold, not a vector space. Namely, a symplectic manifold. Usually, this is the
cotangent bundle of the configuration space. But if it is not, Darboux’ theorem secures that
locally it can be written as a cotangent bundle, and so has a canonical decomposition in to qs
and ps, that associates each q one-to-one with a p.

However, in the sequel, we will be mostly concerned with the “happy” case of a phase space
that is a vector space. It may be infinite-dimensional, as for classical fields; or it may be finite-
dimensional, as for n uncoupled SHOs. In either case, a linear combination of solutions is itself a
solution. For classical fields on a spatial manifold, e.g. IR3, we add—or more generally, linearly
combine—the field configurations and the momenta pointwise. For n uncoupled SHOs, we add
(linearly combine) for each SHO independently. If we are given two solutions for the ith SHO
(with a frequency ωi say), labelled by their amplitude and phase (i.e. amplitude at time t = 0),
we just add the two amplitudes and the two phases.

For any symplectic manifold M , we can of course rehearse for the tangent space TpM at
each point p ∈ M , and for its dual space T ∗pM , the development above from 2.2.A to 2.3.C.
This means that given a symplectic form ω that smoothly varies across a local neighbourhood
U ⊂ M , the bases it defines as in (1) above, i.e. the bases of TpM at each point p ∈ U such
that ω’s matrix is as in eq. 26 (cf. Section 2.1), also vary smoothly. And so the expression of J
varies smoothly. In short, the local constructions presented above, from 2.2.A to 2.3.C, can be
smoothly meshed with each other at the points in a local neighbourhood U ⊂M .
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But this still leaves open the question of global existence of a smooth J compatible with
the global smooth ω. There can be obstructions to global existence. (Wald’s exposition (1994)
assumes there are none.) So when we do the local construction of J at each point p ∈ M , as
above, we say there is an almost complex structure. For details of this, cf. e.g. Ana da Silva,
Lectures on Symplectic Geometry.

2.4.C: Complexifying the classical solution space; and then splitting the frequen-
cies in different ways:— When we study linear systems (Section ??), we will see that a
complex structure J corresponds to a splitting of the frequencies of complex classical solutions
into positive and negative frequencies; and we will later see that having more than one complex
structure J underlies the Unruh effect. The idea will be that in the Unruh effect, there are two
different notions of time-evolution (two different Killing fields, two different Hamiltonians), that
determine different one particle structures (cf. Section 5), and so different complex structures
J . The general ideas are as follows; (cf. Wald 1994, (i) p. 24-29, for finite systems; and (ii) pp.
35-43, especially 39-41, for infinite systems, i.e. the Klein-Gordon field).

We first take the complexification of the solution space of the classical linear system. Here, we
identify the solutions with the initial states, thanks to the determinism of the classical equations
of motion. So writing S for the real symplectic vector space of solutions, the complexification is
S

|C (cf. Section 2.1).

We then define a ‘positive frequency’/‘positive energy’ Hilbert space H by its being spanned
by (as the span of) the complex classical solutions that oscillate with purely positive frequency
(NB: also written ω!). For the simple harmonic oscillator, this means the complex classical
solutions: q(t) = α exp(−iωt), α a constant in |C. (Think of the momentum information being
in the imaginary part.) For n uncoupled simple harmonic oscillators with frequencies ω1, ..., ωn,
this means: qj(t) = αj exp(−iωjt) with j = 1, ....n. So for the latter case, H has complex
dimension n.

Then the ‘negative frequency’/‘negative energy’ Hilbert space H̄ is the span of the complex
classical solutions that oscillate with purely negative frequency. In Section 2.5, just below, we
will see that H̄ can be taken as the complex conjugate of H, as defined there.

S
|C is then the direct sum of the positive and negative frequency Hilbert spaces: S

|C = H⊕H̄.
This direct sum structure means that there is a real-linear one-to-one onto “projection map”
K : S→H that extracts the positive frequency part of any real classical solution. This map K
“maps from the (complex!) classical solution space to the quantum Hilbert space”. It is the
(main part of the definition of) one particle structure, which wil be central in the sequel, both
for quantization in general (obviously!) and for e.g. the Unruh effect. Cf. Section 5.

The Unruh effect then arises in a scenario (defined on Minkowski spacetime!) in which two
different notions of time-evolution (two different Killing fields, two different Hamiltonians) yield:
two different frequency-splittings in (two different direct sum decompositions of) S

|C, and so two
different Js; and so two different maps K; and thus two different vacua (ground states), and
two different Fock spaces built from these vacua.

Besides: the failure of the Stone von Neumann theorem for infinite systems, means that here,
‘different’ means ‘unitarily inequivalent’. That is: the two different Fock spaces built from the
two vacua give unitarily inequivalent representations of the Weyl algebra.

Incidentally, Wald points out (p. 29 paragraph 2) that also for finite systems, e.g. n uncou-
pled time-independent simple harmonic oscillators, one can choose a different frequency-splitting
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than the usual one, and so define a different vacuum (ground) state, which is usually called a
squeezed vacuum. But here, there is unitary equivalence of representations.

There is a general philosophico-mathematical theme hereabouts: singular limits. That is:
for every finite n, we have unitary equivalence; but for n = ∞, there is unitary inequivalence.
We will see exactly the same for spin-chains. There, the canonical anti-commutation relations
(CARs)—rather than CCRs—have for finite spin chains a unique representation upto unitary
equivalence (the Jordan-Wigner theorem). But for infinite spin chains there are countless uni-
tarily inequivalent representations.

2.5 Complex conjugation of spaces

2.5.A: Basics:— The complex conjugate of complex vector space W is the complex vector space
W that has the same elements and additive group structure asW , but whose scalar multiplication
involves conjugation. That is: we define the scalar multiplication ∗ in W in terms of the scalar
multiplication · in W by:

α ∗ w := α · w , for all α ∈ |C, w ∈W (44)

Various properties and results ensue!

(1) W = W .

(2) W and W have the same complex dimension. Note that the identity map id : W→W
is an antilinear map, since

id(α · w) = α · w ≡ α ∗ w = α ∗ id(w) (45)

and id maps any basis of W into a basis of W . So id is an anti-isomorphism from W to W . It is
a “canonical” one in the sense that its definition needs no choice of basis. That is: it is defined
in terms of the underlying identity of vectors.

But of course, there are countless anti-isomorphisms defined in terms of such bases (just
like there are countless isomorphisms!). For given any two bases, {ei} and {fi}, of W and W
respectively, the map Θ : ei→fi can be extended by antilinearity to be an antilinear map, an
anti-isomorphism, from W to W .

(3) If W and U are complex vector spaces, an antilinear map f : W→U can be regarded
as an ordinary linear map f : W→U , since:

f(α ∗ w) = f(α · w) = α · f(w) = α · f(w) ; (46)

where in the last two expressions, α · f(w) and α · f(w), the · is of course scalar multiplication
in the codomain space U .

Conversely, any linear map g defined on W , g : W→U , gives rise to an antilinear map from
W to U , which again we write with a g. That is, we write: g : W→U . For if we write the
scalar multiplication in W as · (as before) and the scalar multiplication in U as ··, then the map
g : W→U obeys:

g(α · w) ≡ g(α ∗ w) = α · ·g(w) , (47)
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since g : W→U is linear. So the defined map g : W→U is antilinear.

(4) A linear map between complex vector spaces, f : W→U , gives rise to a corresponding
also! linear map f : W→U which has the same action as f . For f preserves scalar multiplication,
since

f(α ∗ w) := f(α · w) = α · f(w) = α ∗ f(w) . (48)

If W,U are finite-dimensional, and the matrix of f with respect to bases {ei} of W and {gj} of
U is (cij), i.e. f(ei) = cijgj , then the matrix of the linear map f : W→U with respect to the
same (as regards the underlying identity of vectors!) bases, i.e. {ei} of W and {gj} of U , is the
matrix whose entries are the complex conjugates of the cij . For in U , cijgj is short for cij · gj .
But cij · gj = cij ∗ gj . In short: to get the matrix of f from the matrix of f , we take complex
conjugates of entries—but we do not transpose!

(5) The complex conjugate of a Hilbert space. That a Hilbert space H has extra structure
additional to being a vector space, viz. the inner product, implies that there is a canonical aka
natural, i..e basis-independent, isomorphism between H and H.

Indeed, recall Riesz’ theorem: for a separable Hilbert space H, every continuous linear func-
tional F : H→ |C is given by taking the inner product with a unique vector ψF ∈ H. That is:
F (·) = (ψF , ·). Since this inner product is sesquilinear, i.e. (αψ, βφ) = αβ(ψ, φ), there is natural
antilinear bijection between continuous linear functionals and vectors in H: F 7→ ψF . This is
antilinear because (αF ) 7→ ψ(αF ) ≡ α.ψF . (Here, the . is good old scalar multiplication in H!).

So there is natural linear bijection—i.e. an isomorphism!—between continuous linear func-
tionals and vectors in the complex conjugate Hilbert space H. That is the dual space of linear
functionals, H∗ can be identified with H. It then follows that if we identify H∗∗ with H, there
is natural isomorphism between H∗∗ ≡ H and (H)∗.

Exercise! : Is there a natural isomorphism between (H)∗ and H∗?
(6) The relation of complexifications to complex structures.

YET TO DO
(a) general ideas then (b) physics, i.e. about the complexification of classical solutions as direct
sum of positive-frequency and negative frequency subspaces, with the J thus encoding a choice
of positive-frequency.

3 Symplectic structure

We first recall elements of the symplectic structure underlying Hamiltonian mechanics (Section
3.1). This will show us how to write the classical Poisson brackets in terms of the symplectic
product (Section 3.2). Thus we will return to the ideas of the Weyl algebra (cf. Section 1.2), in
the form using operators W—which combine the translations in position and in momentum that
were given separately by the operators U and V . Then we generalize to symplectic manifolds
(Section 3.3).

3.1 Symplectic vector spaces

We will rewrite the classical Poisson brackets, eq. 1, but repeated here:

{qi, qj} = {pi, pj} = 0 ; {qi, pj} = δij (49)
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in terms of a symplectic product on a vector space.

We begin with Hamilton’s equations

dpi
dt

= −∂H
∂qi

;
dqi

dt
=
∂H

∂pi
. (50)

Defining
ξα = qα, α = 1, ..., n ; ξα = pα−n, α = n+ 1, ..., 2n (51)

Hamilton’s equations become

ξ̇α =
∂H

∂ξα+n
, α = 1, ..., n ; ξ̇α = − ∂H

∂ξα−n
, α = n+ 1, ..., 2n . (52)

Writing 1 and 0 for the n × n identity and zero matrices respectively, we define the 2n × 2n
symplectic matrix ω by

ω :=

(
0 1
−1 0

)
. (53)

ω is antisymmetric, and has the properties, writing ˜ for the transpose of a matrix, that

ω̃ = −ω = ω−1 so that ω2 = −1 ; also det ω = 1. (54)

Using ω, Hamilton’s equations eq. 52 get the more symmetric form, in matrix notation

ξ̇ = ω
∂H

∂ξ
. (55)

In terms of components, writing ωαβ for the matrix elements of ω, and ∂α := ∂ /∂ξα, eq. 52
become

ξ̇α = ωαβ∂βH. (56)

Eq. 55 and 56 show how ω forms, from the naive gradient (column vector) ∇H of H on the phase
space Γ of qs and ps, the vector field on Γ that gives the system’s evolution: the Hamiltonian
vector field, often written XH . At a point z = (q, p) ∈ Γ, eq. 55 can be written

XH(z) = ω∇H(z). (57)

Interpretation in terms of areas: Let us begin with the simplest possible case: IR2 3 (q, p),
representing the phase space of a particle constrained to one spatial dimension. Here, the 2× 2
matrix

ω :=

(
0 1
−1 0

)
(58)

defines the antisymmetric bilinear form on IR2:

A : ((q1, p1), (q2, p2)) ∈ IR2 × IR2 7→ q1p2 − q2p1 ∈ IR (59)

since

q1p2 − q2p1 =
(
q1 p1

)( 0 1
−1 0

)(
q2

p2

)
= det

(
q1 q2

p1 p2

)
. (60)

It is easy to prove that A((q1, p1), (q2, p2)) ≡ q1p2 − q2p1 is the signed area of the parallelogram
spanned by (q1, p1), (q2, p2), where the sign is positive (negative) if the shortest rotation from
(q1, p1) to (q2, p2) is anti-clockwise (clockwise).
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Similarly in IR2n: the matrix ω of eq. 53 defines an antisymmetric bilinear form on IR2n

whose value on a pair (q, p) ≡ (q1, ...qn; p1, ..., pn), (q′, p′) ≡ (q′1, ...q′n; p′1, ..., p
′
n) is the sum of

the signed areas of the n parallelograms formed by the projections of the vectors (q, p), (q′, p′)
onto the n pairs of coordinate planes labelled 1, ..., n. That is to say, the value is:

Σn
i=1 q

ip′i − q′ipi . (61)

3.2 Returning to the Weyl algebra

If we are lucky enough for our classical phase space to be vector space (as when S = R2n), then
we can make it a symplectic vector space, which is a pair (S,Ω), where S is a phase space—also
a vector space—and Ω is a symplectic product. The symplectic product Ω : S × S → R is,
by definition, anti-symmetric, linear and non-degenerate (i.e. if Ω(z1, z2) = 0 for all z2, then
z1 = 0).

We define the symplectic product Ω on S = R2n 3 z1, z2 as in (14): which we repeat here:

Ω(z1, z2) := a2.b1 − a1.b2, (62)

Then as we saw in Section 1.2, the Weyl form of the CCRs, i.e. (11) and (7), are equivalent to
the following: for all z, z1, z2 ∈ R2n,

W (z1)W (z2) = e
1
2
iΩ(z1,z2)W (z1 + z2);

W †(z) = W (−z) .
(63)

Note that Ω(z, ·) : S → R is a real-valued function on S, and so a classical observable. In
particular, Ω(z, ·) = qi iff z has (n+ i)th component bi = 1 and the rest 0, and Ω(z, ·) = pi iff z
has ith component ai = −1 and the rest 0. In general, Ω(z, ·) is some linear combination of pis
and qis.

In this formulation, the classical Poisson bracket relations (1: repeated as 49) may be written

{Ω(z1, ·),Ω(z2, ·)} = −Ω(z1, z2) . (64)

So the corresponding Heisenberg form of the CCRs are

[Ω̂(z1, ·), Ω̂(z2, ·)] = −iΩ(z1, z2)1 . (65)

Thus we seek a representation in which the map z 7→ Ω̂(z, ·) takes elements of S to self-adjoint
operators, and in which the Weyl unitaries defined by

W (z) := eiΩ̂(z,·). (66)

obey the Weyl algebra, eq. 63.

This is Wald’s presentation: see Wald (1994, Ch. 2). Later we will use field operators Φ, for
which Φ(Jz) = Ω̂(z, ·), or Φ(z) = −Ω̂(Jz, ·) = Ω̂(·, Jz).

3.3 Symplectic manifolds, more generally

In the case where the classical phase space S is not a vector space, we must resort to a longer
route. In this case, we seek a group whose action on S is transitive and preserves the symplectic
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form ω :=
∑

i dpi ∧ dqi. (In the case that S is a vector space, this group is just the (abelian)
additive group of translations in S, which is isomorphic to S. That is what allowed us to treat S
as a symplectic vector space above.) For illustration, taking the case S = R2n, the group action
is a 2n-parameter family of diffeomorphisms associated with the vector fields (with constant
coefficients)

Xz =
n∑
i=1

bi
∂

∂qi
− ai ∂

∂pi
, (67)

for any z := (a,b) ∈ R2n. We may now act on any two such vector fields with the symplectic
form ω with which S, being a classical phase space, is equipped. This yields

ω(Xz1 , Xz2) = a2.b1 − a1.b2. (68)

Our quantization problem then becomes the search for continuous families of unitaries z 7→
W (z) which respect this symplectic structure, as expressed in the Weyl algebra (63), setting

e
1
2
iΩ(z1,z2) = e

1
2
iω(Xz1 ,Xz2 ). Since the Weyl algebra (63) is unitary up to the phase factor

e
1
2
iω(Xz1 ,Xz2 ), it is a projective unitary representation of the group of symplectomorphisms on S.

4 Linear systems

THIS Section to be expanded! The Section 4.2 is half-written as for classical field
theory

4.1 Classical linear dynamics

The dynamics are linear if they obey the superposition principle. We use lowercase Fraktur
letters z to denote point sin the phase space Γ. The Hamiltonian is given by

H(z) =
1

2
(zT ,Hz) (69)

4.2 The simple harmonic oscillator

The Hamiltonian is given by

H(z) =
1

2
(zT ,Hz) (70)

We will specifically focus on systems for which

H(q, p) =
1

2

[
(q, ω2q) + (p, p)

]
, (71)

and so

H =

(
ω2

1

)
, (72)

where ω2 is some strictly positive and self-adjoint operator on the configuration space L2(M,V, µ) 3
q. Since it is strictly positive, we can express it as the square of a self-adjoint operator ω with
dimensions of angular frequency. This Hamiltonian is associated with the following action:

S =

∫
d4x

1

2

(
q̇2(x)− q(x)(ω2q)(x)

)
, (73)
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which gives the field dimensions of [action]
1
2 [length]−

3
2 [time]

1
2 , and the field momentum dimen-

sions of [action]
1
2 [length]−

3
2 [time]−

1
2 . In natural units, these yield mass dimensions 1 and 2,

respectively.

Write the symplectic product as

Ω(z1, z2) =: (zT1 ,Ωz2) (74)

where we introduce the symplectic matrix

Ω =

(
1

−1

)
. (75)

The equations of motion are then given by

ż = ΩHz

(q̇, ṗ) = Ω(ω2q, p)

= (p,−ω2q) (76)

(a linear equation). It follows that the field configuration q obeys the second-order differential
equation

q̈ + ω2q = 0 . (77)

5 One-particle structures

5.1 The general idea

We begin with a symplectic vector space (S,Ω,Φt), where Φt is the one-parameter family of
symplectomorphisms generated by the Hamiltonian vector field Dt. Note now the presence of
dynamics, indicated by Dt. We find the single-particle Hilbert space by “Hilbertizing” S and
“unitarizing” Dt to obtain a one-particle structure (H, 〈·, ·〉, U(t)), i.e. a Hilbert space equipped
with an inner product and a one-parameter family of unitaries, representing the quantum dy-
namical evolution.

The one-particle structure is related to our original symplectic vector space by the map
K : S → H such that:

(i) ran(K) is dense in H;

(ii) 2=m〈Kz1,Kz2〉 = Ω(z1, z2);

(iii) U(t)K = KΦt, where U(t) = e−itA and A is a positive operator.

(See Weinless 1969; and Halvorson 2001 for an application.) If a one-particle structure exists,
it is unique; see Kay (1979).

S is a vector space over the reals. Key to defining the map K is finding some way to make
sense of complex multiplication of the elements of S: i.e. we seek a complex structure J : S → S.
Recall Section 2.2! Then for any a, b ∈ R we may define, for any z ∈ S:

(a+ ib)K(z) = K(az) +K(bJz). (78)
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We may then write (iii) in infinitesimal form to derive a “Schrödinger equation”

AK(z) = iKDt(z) = KJDt(z). (79)

(In some casesK will be the embedding map, which simplifies the equation above to Az = JDtz.)

Recall from Section 2.2 that J must satisfy three conditions:

(a) J is a symplectomorphism; i.e. Ω(Jz1, Jz2) = Ω(z1, z2); (compatibility with Ω: cf. Section
2.3.A);

(b) J2 = −1; (cf. Section 2.2.A);

(c) Ω(z, Jz) > 0, for all z 6= 0 (‘taming’: cf. Section 2.3.A).

It follows from (iii) and (a) that [J,Φt] = 0, i.e. J is equivariant under the classical dynamics.

Given J , we may define a complex inner product on (S,Ω,Φt, J):

〈z1, z2〉S =
1

2
Ω(z1, Jz2) +

1

2
iΩ(z1, z2), (80)

Here we recall: from 2.3.B: the definition of the complex-linear but real-valued symmetric bilinear
form gJ on the complex vector space VJgJ by eq. 40. It was

gJ(u, v) := ω(u, Jv) . (81)

and from 2.3.C: the definition of the sesquilinear, complex-valued function on V ×V , i.e. complex
inner product, in terms of gJ and ω, by eq. 42. It was

〈u, v〉 ≡ 〈u, v〉ω,J := gJ(u, v) + iω(u, v) . (82)

The definition eq. 80 guarantees (ii).

We can then demand that 〈Kz1,Kz2〉 = 〈z1, z2〉S on K[S]. By completing K[S] in the norm
induced by this inner product (if required), we obtain H.

5.2 Example: the simple harmonic oscillator

Perhaps surprisingly, the above strategy works where (S,Ω,Φt) is the theory of the classical
simple harmonic oscillator. We will see that, bizarrely enough, a single-particle Hilbert space
with unitary dynamics corresponds to this theory.

Recall that for the simple harmonic oscillator, S = R2 3 (q, p), Ω is defined as usual, i.e.

Ω((q1, p1), (q2, p2)) = q1p2 − q2p1, (83)

and Φt is generated by the Hamiltonian

H =
1

2m
p2 +

1

2
mω2q2. (84)

Hamilton’s equations yield

q̇ =
∂H

∂p
=

p

m
; ṗ = −∂H

∂q
= −mω2q; (85)
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and so q̈ + ω2q = 0. Solutions take the form

q =
1√

2mω

(
ae−iωt + a∗eiωt

)
, p = −i

√
mω

2

(
ae−iωt − a∗eiωt

)
, (86)

which defines trajectories in the phase space which are ellipses centred at (0, 0). (The reason for
our choice of constants will be clear soon.) These trajectories already look almost like unitary
evolution in C; i.e. circular motion centred at (0, 0). Heuristically, we need to rescale q and p to
send these ellipses to circles. One way of doing so is to define the map K : R2 → C by

K(q, p) =

√
mω

2
q +

i√
2mω

p =: ξ(q,p). (87)

Solutions in C are then defined by K(q(t), p(t)) = ae−iωt. This suggests that the quantum
Hamiltonian A = ω, which determines the complex structure

J(q, p) =
(
− p

mω
,mωq

)
; (88)

for then we have

JDt(q, p) = J(q̇, ṗ) = J
( p
m
,−mω2q

)
= (ωq, ωp) = ω(q, p), (89)

which is the classical counterpart of our “Schrödinger equation” in S.

It is interesting to note that if we define the “positive frequency” component of (q(t), p(t)):

q(+)(t) :=
1√
2

(
q(t) +

i

mω
p(t)

)
=

1√
mω

ae−iωt; (90)

p(+)(t) :=
1√
2

(p(t)− imωq(t)) = −i
√
mωae−iωt = −imωq(+)(t); (91)

then

J
(
q(+)(t), p(+)(t)

)
= J (1,−imω) q(+)(t) = (i,mω) q(+)(t) = i

(
q(+)(t), p(+)(t)

)
; (92)

i.e., J acts as multiplication by i; while for the “negative frequency” component:

q(−)(t) :=
1√
2

(
q(t)− i

mω
p(t)

)
=

1√
mω

a∗eiωt; (93)

p(−)(t) :=
1√
2

(p(t) + imωq(t)) = i
√
mωa∗eiωt = imωq(−)(t); (94)

we have

J
(
q(−)(t), p(−)(t)

)
= J (1, imω) q(−)(t) = (−i,mω) q(−)(t) = −i

(
q(−)(t), p(−)(t)

)
; (95)

i.e., J acts as multiplication by −i. This a toy analogue of the solution to the “negative energy
problem” in quantum field theory: for negative-frequency solutions, the complex structure has
the opposite sign, allowing for positive-energy solutions in all cases.
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Our inner product in S is given by

〈(q1, p1), (q2, p2)〉S =
1

2
Ω ((q1, p1), J(q2, p2)) +

1

2
iΩ ((q1, p1), (q2, p2)) (96)

=
1

2
Ω
(

(q1, p1),
(
− p2

mω
,mωq2

))
+

1

2
iΩ ((q1, p1), (q2, p2)) (97)

=
p1p2

2mω
+

1

2
mωq1q2 +

i

2
(q1p2 − q2p1) (98)

=

(√
mω

2
q1 −

i√
2mω

p1

)(√
mω

2
q2 +

i√
2mω

p2

)
(99)

= K(q1, p1)∗K(q2, p2), (100)

so our inner product in C is just
〈ξ1, ξ2〉 = ξ∗1ξ2. (101)

This elegant form for the inner product is a consequence of our particular choice of the map K.

6 “Unitarization”: complex structures, metrics, and the 2-out-of-3 property

“Unitarization” of linear Hamiltonian systems appeals to the “2-out-of-3” property of the group
U(n) of unitary transformations in n complex dimensions:

U(n) = Sp(2n,R) ∩GL(n,C) ∩O(2n) (102)

The identity above continues to hold for any two of the three groups on the righthand side:
i.e. Sp(2n,R) ∩GL(n,C) = GL(n,C) ∩O(2n) = O(2n) ∩ Sp(2n,R) = U(n).

• Sp(2n,R) is the symplectic group in 2n dimensions, the group of automorphisms of the
symplectic vector space 〈R2n,Ω〉, the linear symplectic transformations, and so is the most
general group of symmetries pertaining to a linear Hamiltonian system. It is the group
of linear transformations A : R2n → R2n which preserve some symplectic product Ω,
according to Ω(Au,Av) = Ω(u, v) for all u, v ∈ R2n. The symplectic product Ω is any
bilinear, alternating and non-degenerate map Ω : R2n × R2n → R. If Ω is represented as
a matrix Ω, so that Ω(u, v) ≡ uTΩv, then this condition is equivalent to ATΩA = Ω.
(The bilinearity of Ω is baked in, since it is a matrix; the non-degeneracy of Ω means that
Ω−1 exists; Ω’s being alternating means that uTΩv = −vTΩu for all u, v ∈ Rn, which is
equivalent to ΩT = −Ω.) By means of some similarity transformation the matrix Ω may
be brought to the form

Ω =

(
1

−1

)
. (103)

All symplectic matrices A ∈ Sp(2n,R) have unit determinant, which means that they pre-
serve area in the symplectic vector space—the specialisation of preserving the symplectic
form to vector spaces. In the case n = 1 the elements of Sp(2,R) just are all and only the
area-preserving 2× 2 matrices.

• GL(n,C) is the group of general linear transformations on Cn, i.e. the group of all invertible
n × n matrices with complex entries. This group is isomorphic to the group of invertible
2n × 2n matrices A with real entries which commute with some complex structure J :
R2n → R2n, so that AJ = JA. The complex structure J here is some 2n× 2n matrix such
that J2 = −1, so that J−1 = −J . J allows us to pass from the real vector space R2n to
the complex vector space Cn, where J takes the role of multiplication by i.
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• O(2n) is the group of orthogonal transformations on R2n, which can be thought of as
the group of real 2n × 2n matrices A such that A−1 = AT . More generally, given some
positive-definite, symmetric bilinear form M : R2n×R2n → R, O(2n) is the group of linear
transformations A : R2n → R2n such that M(Au,Av) = M(u, v) for all u, v ∈ R2n. If M
is represented as a matrix M, so that M(u, v) ≡ uTMv, then this condition is equivalent
to ATMA = M. (The bilinearity of M is baked in, since it is a matrix; the positive-
definiteness of M means that M has only positive eigenvalues; M ’s being symmetric means
that uTMv = vTMu for all u, v ∈ Rn, which is equivalent to MT = M.) By means of some
similarity transformation the matrix M may be brought to the form 1; then we recover
the condition AAT = ATA = 1, i.e. A−1 = AT . The crucial idea is that the elements of
O(2n) preserve the lengths of all vectors in R2n according to some metric, given by M .

The intersection of any two of these groups generates a subgroup of the third by means of
the identification M(·, ·) = Ω(·, J ·), or M = ΩJ , with the crucial compatibility requirement that
Ω(J ·, J ·) = Ω(·, ·), or JTΩJ = Ω; equivalent to JTMJ = M and M−1Ω = −Ω−1M. It may
then be checked that any two of: (i) ΩT = −Ω; (ii) J−1 = −J ; and (iii) MT = M implies the
third. For example: MT = (ΩJ)T = JTΩT = −JTΩ = JTΩJ2 = ΩJ = M, where we use the
identification M = ΩJ , the property ΩT = −Ω, the property J2 = −1 and the compatibility
condition JTΩJ = Ω, respectively.

Starting with any linear Hamiltonian system, we are given Sp(2n,R) and Ω at the outset.
Our goal is U(n). The “2-out-of-3” identity above entails that we can get there so long as we
can find some metric M or some complex structure J obeying the compatibility conditions (and,
if we can find one of these, then we automatically have the other). In other words, if we can
find some natural way to give the symplectic vector space 〈R2n,Ω〉 the structure of a real inner-
product space 〈R2n,M〉 or the structure of the complex vector space Cn ∼= 〈R2n, J〉, then we
will end up with the Hilbert space 〈Cn, 〈·, ·〉〉 and its associated group of automorphisms U(n).

It turns out that the metric M is determined by the classical Hamiltonian so long as the
associated Hamiltonian matrix H is positive-definite (it is already symmetric and bilinear). This
corresponds to the existence of a unique global vacuum at 0 in the symplectic vector space. The
compatibility requirement relies on the dynamics decomposing into normal modes. For then we
can find some invertible symmetric matrix A, diagonalised in the normal-mode basis, such that
[A,H] = [A,Ω] = 0 and such that we can set M = HA−1. It follows that J = Ω−1HA−1 and
[A, J ] = 0. It turns out that A is proportional to the quantum Hamiltonian of the resulting
quantum theory.

These conditions on A give us a recipe for finding it. For in coordinates such that Ω−1 =
ΩT = −Ω (which we can always find) we have (ΩH)2 = ΩHΩH = ΩAMΩAM = AΩMΩMA =

AΩ2A = −A2. We may therefore set A := (−(ΩH)2)
1
2 . Crucial here is that H is at least

positive-semi-definite; otherwise A is not a real matrix. We now rely on the fact that we can
find coordinates in which not only Ω takes the standard form in which Ω−1 = ΩT = −Ω, but
also H takes the form

H =

(
B

C

)
(104)

(so that there are no q-p cross terms), and where [B,C] = 0. (Usually we expect C = 1.) In
this case we find that

A =

(
(BC)

1
2

(BC)
1
2

)
. (105)
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It may now be verified that [A,H] = [A,Ω] = 0. The metric M then takes the form

M =

(
B

1
2C−

1
2

B−
1
2C

1
2

)
, (106)

and it may be checked that the compatibility requirement M−1Ω = −Ω−1M = ΩM is satisfied.
Crucial here is that H is not only positive-semi-definite but positive-definite: for, both B

1
2 and

C
1
2 must exist and be invertible; otherwise M is not well defined. The complex structure J then

takes the form

J =

(
−B−

1
2C

1
2

B
1
2C−

1
2

)
. (107)

In the case B = ω2, C = 1, we have

H =

(
ω2

1

)
; A =

(
ω

ω

)
; M =

(
ω

ω−1

)
; J =

(
−ω−1

ω

)
. (108)

We may then define the inner product

〈·, ·〉 = λ (M(·, ·) + iΩ(·, ·)) , (109)

where λ is some constant. Since Ω(z1, z2) has units of action, it seems sensible to set λ ∼ 1
~ . The

standard choice is λ = 1
2~ (this will end up yielding the usual ladder operators in the case of of

the s.h.o.).

7 Many simple harmonic oscillators: the occupation number representation

THIS Section to be expanded!

Many SHOs: even with time dependent Hamiltonians, and interactions between the SHOs.
(Cf. Wald 1994 SEction 2.3, and e.g. Coleman Lectures on Quantum Field Theory, Lecture 2,
pp. 17-30)

Occupation number representation for fixed number N of SHOs. Fock space way of saying
it: ie the number operator counts excitations and so has all positive integers as spectrum even
for N particles /oscillators (This is in Wald of course, though he does not call it Occupation
number representation! Cf. his p. 25, with the naive N-fold tensor product construction on p.
24.)

8 The Stone-von Neumann uniqueness theorem

8.1 Weak continuity

The Stone-von Neumann uniqueness theorem applies to weakly continuous representations of
the Weyl algebra. A representation on some Hilbert space H, with inner product 〈·, ·〉, is weakly
continuous iff it is continuous in the weak topology provided by 〈·, ·〉. I.e. for all ψ ∈ H, z1, z2 ∈ S
and ε ∈ R+,

〈ψ,W (z1 + εz2)ψ〉 → 〈ψ,W (z1)ψ〉 as ε→ 0. (110)
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8.2 The theorem

The following theorem guarantees that, in certain cases, the representation of the Weyl algebra
is effectively unique (i.e., unique up to unitary equivalence). Therefore there is a reasonable
sense in which, in these cases, there is only one quantization of a classical system.

Theorem 8.1 (Stone-von Neumann Uniqueness Theorem). (Prugovecki, p. 371 ; Wald p. 20)
Let (S,Ω) be a symplectic vector space, with S = R2n. Every weakly continuous irreducible
representation of the Weyl algebra over (S,Ω) is unitarily equivalent to the Schrödinger repre-
sentation, in which, for all ψ(x) ∈ L2(Rn),

(W (a,b)ψ)(x) := e−ia.(x−
1
2
b)ψ(x− b). (111)

Note as special cases that (W (a,0)ψ)(x) ≡ (U(a)ψ)(x) = e−ia.xψ(x) and (W (0,b)ψ)(x) ≡
(V (b)ψ)(x) = ψ(x− b). In fact, the Schrödinger representation is strongly continuous, so
by Stone’s Theorem there are 2n self-adjoint operators, Qi and Pi, such that U(a) = e−ia.Q,
V (b) = e−ib.P and for all ψ(x) ∈ L2(Rn) in suitable domains,

(Qψ)(x) = xψ(x); (Pψ)(x) = −i∇ψ(x). (112)

The Stone-von Neumann theorem fails to apply if either of its antecedent conditions fail;
i.e. if either the classical phase space is not R2n, or else the representation of the Weyl algebra
is not weakly continuous. Following Ruestche (2011, Ch. 3), it is helpful to break the various
possible failures into three cases:

(i) weak continuity fails;

(ii) classical phase space is finite-dimensional, but not R2n;

(iii) classical phase space is infinite-dimensional.

In each of these cases, we have no guarantee that the quantization of our classical system is
unique. In fact, for each of these cases we know that the quantization is not unique. This is
considered in Part II.

8.3 The CARs; the Jordan-Wigner theorem

Now consider first a sequence of quantum theories, each corresponding to a chain of spin-1
2

systems. The first theory describes a single spin-1
2 system, with observables {σ(x), σ(y), σ(z)},

which satisfy the Pauli relations

[σ(x), σ(y)] = 2iσ(z) and cyclic perms; σ2 := σ(x)2 + σ(y)2 + σ(z)2 = 31. (113)

This is equivalent to satisfying the canonical anti -commutation relations (CARs; see Ruetsche
(2011, pp. 60-62))

d2 =
(
d†
)2

= 0; [d, d†]+ = 1; (114)

where
σ(x) = d+ d†; σ(y) = −i

(
d− d†

)
; σ(z) = dd† − d†d. (115)
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We now consider a theory describing a linear chains of n spin-1
2 systems, with observables

{σk(x), σk(y), σk(z) | k ∈ {1, 2, . . . n}}, satisfying

[σj(x), σk(y)] = 2iδjkσk(z) and cyclic perms; σ2
k := σk(x)2 + σk(y)2 + σk(z)

2 = 31. (116)

Now, our theory falls outside the scope of the Stone-von Neumann theorem, because it is
characterized by CARs, rather than CCRs. However, there is an analogous uniqueness theorem:

Theorem 8.2 (Jordan-Wigner Uniqueness Theorem). For each finite n, every irreducible rep-
resentation of the CARs (equivalently, the Pauli relations) is unitarily equivalent to the Pauli
representation, in which

σPk (x) = 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−1

⊗
(

0 1
1 0

)
⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

n−k

;

σPk (y) = 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−1

⊗
(

0 −i
i 0

)
⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

n−k

;

σPk (z) = 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−1

⊗
(

1 0
0 −1

)
⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

n−k

.

(117)

An alternative—though by the Jordan-Wigner theorem: unitarily equivalent—representation
S (for ‘switch’) defines the spin matrices according to

σSk (x) = σPk (y); σSk (y) = σPk (z); σSk (z) = σPk (x); (118)

i.e. the switch representation of σk(x) in HS has the same matrix elements as the Pauli represen-
tation of σk(x) in HP , etc. Now let U : C2

P → C2
S be the unitary such that UσPk (x)U † = σSk (x),

etc. Then the unitary ⊗nU : HP → HS establishes the unitary equivalence between the switch
and Pauli representations.

This equivalence extends to all operators in B(HS) and B(HP ). In particular, let {fi({σPk (i)})}
be a sequence of linear functions of the {σPk (i)} which converges in HP ’s weak topology to the
operator FP . Each fi({σPk (i)}) ∈ B(HP ) and B(HP ) is closed under weak convergence; so
FP ∈ B(HP ). Similarly, let {fi({σSk (i)})} be a sequence of linear functions of the {σSk (i)}, where

fi({σSk (i)}) = Ufi({σPk (i)})U †. (119)

Weak convergence is preserved under unitary transformations, so the {fi({σSk (i)})} converge in
HS ’s weak topology to some operator FS ∈ B(HS), and FS = UFPU

†.

In the Pauli representation HP ∼= C2n, we may define the polarization observable m̂P :=
(mP

x ,m
P
y ,m

P
z ), where

mP
x :=

1

n

n∑
k=1

σPk (x), etc. (120)

Clearly, m̂P ∈ B(HP ), and the spectrum of m̂P is parametrized by points on the unit sphere.
From the above considerations, we know that the similarly defined polarization observable m̂S :=
(mS

x ,m
S
y ,m

S
z ) in the switch representation satisfies

m̂S = Um̂PU †, (121)

and so expectation values in S are identical to corresponding (given U) expectation values in P .
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In Part II, we consider the theory of the infinite spin-chain, in which we have a spin-1
2

system for every integer in Z. This theory has observables satisfying the Pauli relations (116).
Representations of the Pauli relations in such a theory will be carried by a separable Hilbert
space only if we make some hard choices about which of the uncountably many prima facie
possible states are to be excluded.

We will see that with the obvious ferromagnetic (“neighbours like to be aligned”) Hamil-
tonian, we get a ground state for each spatial direction (unit vector) u in IR3. Namely: the
state in which all the spins are aligned in the direction u. On each such ground state, we build
a representation. But they are unitarily inequivalent. Thus we return to general philosophico-
mathematical theme mentioned at the end of Section 2.4 (end of 2.4.C): singular limits. That
is: for every finite n (the length of the spin-chain), we have unitary equivalence; but for n =∞,
there is unitary inequivalence.
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