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This document, and its predecessor on the Quantization of Linear Dynamical Systems with
Finitely many degrees fo freedom, expound a rigorous quantization procedure developed by Irv-
ing Segal and others in the 1960s. This means we postpone to the second half of term, coverage
of algebraic quantum theory; which will include e.g. inequivalent representations, ‘getting out
of Fock space’, Haag’s theorem etc. (cf. eg Emch 1972). But the present material:

(i) gives a strong grip on the first (forbiddingly concise!) third of Wald 1994, which is
the basis for the rest of that book on QFT in curved spacetime and thus e.g. the Unruh effect
(an essay!);

(ii) is of intrinsic interest... though please be warned that here you will find: no La-
grangian, no path integrals, no renormalization, no gauge theory, no curved spacetime, no
gravitation; indeed, no interactions, and overall, not much physics ... we will focus on the har-
monic oscillator (!),the free KG field and spin-chains (and without putting a Hamiltonian on the
chain...). Nor will you find much straight-up philosophy ... but perhaps the light here shed on
field /wave vs.particle counts as philosophy, since wave vs.particle is, like continuum vs. discrete,
a perennial dichotomy of natural philosophy...

The ‘bottom-line’ for Parts I and II together is that we have a procedure for constructing
a representation of the Weyl algebra for any of a special class of classical systems. The simple
harmonic oscillator and the free real bosonic field both belong to this class, but only in the case
of the simple harmonic oscillator does this construction pick out a unique representation.

We begin in Section 1 by recalling from Part I:
(i) quantization as the construction of a representation of the Weyl algebra associated
with some classical system’s phase space; and as “unitarizing” a Hamiltonian evolution in a
symplectic space so as to give an evolution in a complex Hilbert space;
(ii) the idea of a one particle structure;
(iii) the Stone-von Neumann Theorem, which essentially guarantees that the quantization
of the paradigm finite system, viz. point particles in R™, is unique (up to unitary equivalence).

Then we work up slowly to the free real bosonic field. We first look at ways the premises of

the Stone-von Neumann Theorem can fail: viz. with

(a) failure of weak continuity (Section 2);

(b) a classical configuration space other than R", e.g. the circle S (Section 3).
Besides, while we saw in Part I that if we wish to represent the CARs, not the CCRs, on a finite
system, for example on a finite spin chain, then there is uniqueness (up to unitary equivalence):
for an infinite system, e.g. an infinite spin chain, one can easily show by construction that
uniqueness fails (Section 4).

In the last two Sections we describe the free real bosonic field. Section 5 describes the free
boson field on any one particle structure. In effect, this is an exposition of symmetric Fock space
without regard to the details of dynamics. Finally, section 6 focusses exclusively on the free real
bosonic field, subject to the Klein-Gordon equation, and various interpretative issues, including
particle localization and the interpretation of the local field operators ®(x).



Mottoes:
There is thus a complete harmony between the wave and light-quantum descriptions of the
interaction. (Dirac, 1927, p. 245).

First quantization is a mystery, but second quantization is a functor. (E.Nelson).

The life of a theoretical physicist consists of solving the harmonic oscillator at ever higher
levels of abstraction. (S. Coleman)
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1 Canonical quantization of finite systems: recalled
1.1 Quantization as representations of the Weyl algebra

A familiar way of developing elementary quantum mechanics is to “promote” the classical Poisson
bracket relations

{¢ .’y ={pip} =0, {d'.p;j} =5, (1)
where i, 7 € {1,2,...n}, to the Heisenberg relations (CCRs)

(where h := 1) and to seek a representation of these quantities as self-adjoint operators on a
Hilbert space. However, in hindsight, we know to expect the Q’s and Pjs to have unbounded
spectra, and therefore to not be fully defined on the space L?(R™) of square-integrable functions.
This nuisance can be remedied by instead turning to the Weyl form of the CCRs.

Define, for any a,b € R",
Ua) := e 2Q; V(b) := e~ PP, (3)
Then, given (2), we have .
U(a)V(b) = e PV (b)U(a). (4)

Since the Us and Vs are both families of unitaries, their spectra are bounded, and are defined
everywhere on L?(R™). We may take (4) as the primitive CCRs; our task is then to find
representations of the Us and Vs. But we are only halfway to our intended framing of the
representation problem.

TALK ABOUT projective unitary representations. The motivation for projective represen-
tations comes through the fact that the quantum state is non-redundantly represented by a ray
rather than a unit vector. But why are the U(1) factors constrained as in equation (4)?

Equation (4) can be given a more abstract presentation, which unifies the quantization of
particles and bosonic fields. Setting z := (a,b) € R?", we define the family of operators

W (z) i= e2®PU(a)V (b). (5)
Then the Weyl form of the CCRs (4) are equivalent to the Weyl algebra

W(Zl)W(ZQ) = e%iQ(z1,22)W(zl+Zz); (6)
Wiz) = W(-2);

for all z, 21, 2o € R?", where Q is the symplectic product:
Q(Zl, 22) = a2.b1 — al.bg, (7)

to be explained shortly. Importantly, the Weyl algebra (6), though abstract, may successfully
be extended to bosonic fields.



1.2 Symplectic vector spaces, linear systems

If we are lucky enough for our classical phase space to be vector space (as when S = R?"), then
we can make it a symplectic vector space, which is a pair (5, (2), where S is a phase space—also
a vector space—and 2 is a symplectic product. The symplectic product € : § x S — R is,
by definition, anti-symmetric, linear and non-degenerate (i.e. if (z1,22) = 0 for all zy, then
Z1 = 0).

We define the symplectic product on S = R?" 3 z1, 29 as in (7). Note that Q(z,:) : S = R
is a real-valued function on S, and so a classical observable. In particular, (z,-) = ¢* iff z has
(n+1)th component b; = 1 and the rest 0, and Q(z, -) = p; iff z has ith component a* = —1 and
the rest 0. In general, Q(z,-) is some linear combination of p;s and ¢’s. In this formulation, the
classical Poisson bracket relations (1) may be written

{Q(Zl>')79(22>')} = _Q(Zla'z?)v (8)

the corresponding Heisenberg form of the CCRs are
[Q(zlv')7Q(Z27')] = _19(21722)]17 (9)

where (in the sought representation) the map z — Q(z, -) takes elements of S to self-adjoint
operators, and the Weyl unitaries are defined by

W (z) := e*¥=), (10)

This is Wald’s presentation: see Wald (1994, Ch. 2). Later we will use field operators ®, for

which ®(Jz) = Q(z,-), or ®(z) = —Q(Jz,-) = Q(-, J2).
Symplectic manifolds, more generally

In the case where the classical phase space S is not a vector space, we must resort to a
longer route. In this case, we seek a group whose action on S is transitive and preserves the
symplectic form w := ) dp; A dq’. (In the case that S is a vector space, this group is just the
(abelian) additive group of translations in S, which is isomorphic to S. That is what allowed
us to treat S as a symplectic vector space above.) For illustration, taking the case S = R?",
the group action is a 2n-parameter family of diffeomorphisms associated with the vector fields
(with constant coefficients)

9,0
XZ_;biaqi—a o (11)

for any z := (a,b) € R?". We may now act on any two such vector fields with the symplectic
form w with which S, being a classical phase space, is equipped. This yields

w(le7XZQ) = as.b; —aj.bs. (12)

Our quantization problem then becomes the search for continuous families of unitaries z — W (z)

which respect this symplectic structure, as expressed in the Weyl algebra (6), setting 38U z1.22)

e2™(X:1.X5) - Since the Weyl algebra (6) is unitary up to the phase factor e3w(Xz X=2) it is a

projective unitary representation of the group of symplectomorphisms on S.



1.3 One-particle structures
1.4 The Stone-von Neumann uniqueness theorem

The following theorem guarantees that, in certain cases, the representation of the Weyl algebra
is effectively unique (i.e., unique up to unitary equivalence). Therefore there is a reasonable
sense in which, in these cases, there is only one quantization of a classical system.

Theorem 1.1 (Stone-von Neumann Uniqueness Theorem). Let (5,€2) be a symplectic vector
space, with S = R?". Every weakly continuous irreducible representation of the Weyl algebra
over (.5,€2) is unitarily equivalent to the Schrédinger representation, in which, for all ¥(x) €
L*(R™),

(W (a, b)) (x) = e~ 2Py (x — b). (13)

Note as special cases that (W (a,0)y)(x) = (U(a))(x) = e~@%)(x) and (W (0,b)y)(x) =
(V(b)Y)(x) = ¢¥(x—Db). In fact, the Schrédinger representation is strongly continuous, so
by Stone’s Theorem there are 2n self-adjoint operators, Q" and P;, such that U(a) = ™" Q,
V(b) = =P and for all ¢)(x) € L?(R") in suitable domains,

(QY)(x) =x¢(x);  (PY)(x) = —iVih(x). (14)

MENTION HERE that the “real wave” and “particle” pictures arise even here. The “real
wave” picture corresponds to the Schrodinger representation; the various “particle” pictures
correspond to various choices for the infinite matrices in the Heisenberg representation. There
are various particle pictures here, since the infinite matrices can be constructed on a variety
of choices for w; but each such choice is tantamount to expressing the quantum state as a
superposition of s.h.o. quanta. Thus, there is one real wave picture and infinitely many particle
pictures, but they are all unitarily equivalent.

The Stone-von Neumann theorem fails to apply if either of its antecedent conditions fail;
i.e. if either the classical phase space is not R?", or else the representation of the Weyl algebra
is not weakly continuous. Following Ruestche (2011, Ch. 3), it is helpful to break the various
possible failures into three cases:

(i) weak continuity fails;
(i) classical phase space is finite-dimensional, but not R?";

(iii) classical phase space is infinite-dimensional.

In each of these cases, we have no guarantee that the quantization of our classical system is
unique. In fact, for each of these cases we know that the quantization is not unique. We'll
investigate case (i) in Section 2 case (ii) in Section 3, and case (iii) in Sections 4 and 6. After
some extra exposition in Sections 7?7 and 5 we consider the bosonic field in Section 6.

2 Suspending weak continuity: position or momentum eigenstates

One understandable reason to suspend weak continuity is that it is necessary to do so when
constructing a representation of the Weyl algebra for which either position eigenstates or mo-
mentum eigenstates exist. (It turns out that one cannot have both.) Such representations
require non-separable Hilbert spaces.



Let us construct a representation with position eigenstates, guided by the Schrodinger rep-
resentation. Unlike the latter, our representation will be carried by the Hilbert space I2(R) of
all square-summable functions ¢ : R — C. Such a function ¢(x) satisfies

Y @) <oo (15)
rea(v)

for some countable subset o(1)) C R. (Note right away why non-separable Hilbert spaces are
undesirable: summability can only be defined for sets that are at most countably infinite!) The
space [2(R) is spanned by continuum-many states of the form

n@={ 4} 22N (16)

We define the representations of the Weyl unitaries using these basis states, and guided by the
Schrédinger representation, as follows:

(U(a)yn)(z) == e "y (z) = e “Mp(2); (V(O)va)(2) == va(x — b) = agp(z).  (17)
It can now be checked that weak continuity fails for the Vs, since

v ={ g 150 18)

and so V(b) is not weakly continuous at b = 0. It follows that Stone’s Theorem does not apply,
and we have no self-adjoint operator, the would-be momentum, to generate spatial translations.
The Us are nevertheless strongly continuous, and so by Stone’s Theorem we have a self-adjoint
operator @ such that U(a) = e~%Q. Tt satisfies

(QYa)(z) = Aa(z). (19)

Alternatively, we could build a momentum representation on [?(R). The situation is then
reversed: the Us fail to be weakly continuous, and so fail to yield a self-adjoint generator, the
would-be position operator; while the Vs are generated by a momentum operator satisfying the
expected eigenvalue equation.

These two representations on (?(R), the position and momentum representations, are not
unitarily equivalent. This can be seen immediately: no unitary A exists such that AQAT, with
@ as defined in (19), is the position operator in the momentum representation—mno such operator
exists!

3 Nontrivial configuration spaces: a particle on the circle

For a particle on the circle, the configuration space is S*, coordinatized by ¢ € [0,27) and the
phase space is S = S! x R, coordinatized by (¢,1) € [0,27) x R. This phase space cannot be
a symplectic vector space, since S! is not a vector space. But it is a symplectic manifold, with
symplectic form w = dI A d¢. Therefore we have to look for the group of symplectomorphisms
on S. This is a 2-parameter family, generated by the vector fields

0 0
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where z := (a,b) € R?. As discussed in Section ??, this parameter space can be given the
structure of a symplectic manifold by defining

Q(Zl, Zg) = w(XZl,XZ2) = a2b1 — albg. (21)

Inspired by the Schrédinger representation on L?(R), we might want to define the Weyl
unitaries on L2(S') 3 v(¢), according to:

(U(a)y)(9) = e *P(e);  (V(b))(9) :=1(¢ —b). (22)

But now we face the problem that 1 is only defined on [0, 27), while b may be any real number.
The standard solution (see Morandi 1992, Ch. 3) is to seek representations not in the space of
square-integrable functions on S!, but rather on its universal covering space, R, coordinatized
by é. The states i) € L2 (R) are then required to satisfy

D[] 9) = al()d(9), (23)

where a : 71(S') — U(1) is a 1-dimensional unitary representation of the group of homotopy
classes [y] on S'. Note that 71 (S?) = Z.

Let [+1] be the class of loops circling S' once clockwise, and let a([+1]) =: €, where
0 € [0,2m). This suffices to determine a([k]) = ¢, where k € Z and [k] is the class of loops
circling S! |k| times, clockwise if k > 0 and anti-clockwise if & < 0. It follows that

(V(2km))(9) = e~ (9) - (24)

It may be checked that

(U@P)(B) = e ™%(@);  (Vo(b))(@) = e "3 3( — b); (25)
satisfy the required Weyl relations and condition (24).

The self-adjoint generator of the Vys is the angular momentum operator

d 0

Ly=—i—+ —
0 Zd¢+27r

: (26)

which, due to (24), has the discrete spectrum {k + % | k € Z}. Since the spectra of any two
Ly, , Lg,, where 61 # 09, are disjoint, no two representations are unitarily equivalent. But the
value of 6 has empirical consequences, as illustrated by the related examples: (i) the Aharonov-
Bohm effect; and (ii) anyons. In both of these cases the configuration space’s first homotopy
group is m(Q) = Z, like the particle on the circle.

4 Infinite degrees of freedom 1: the infinite spin chain

RECALL FROM PART I!! THAT IS SHORTEN WHAT IS BELOW!!

consider first a series of quantum theories, each corresponding to a chain of Spin—% systems. The
first theory describes a single spin-3 system, with observables {o(z),o(y),o(2)}, which satisfy
the Pauli relations

[o(x),0(y)] = 2io(z) and cyclic perms; o? =)’ +o)? +o(z)? =31 (27)



This is equivalent to satisfying the canonical anti-commutation relations (CARs; see Ruetsche
(2011, pp. 60-62))

42 = (dT)2 =0, [ddly=1; (28)

where

o(z)=d+d; o(y)=—i (d - dT) . o(2) = ddt — dfd. (29)

We now consider a theory describing a linear chains of n spin—% systems, with observables
{Uk(x)vak(y)vak(z)| ke {1,27...n}},saﬁsﬁdng

[0(z),01(y)] = 2i0,0k(2) and cyclic perms; o} = op(2)® + on(y)® + on(2)® = 31. (30)

Now, our theory falls outside the scope of the Stone-von Neumann theorem, because it is
characterized by CARs, rather than CCRs. However, there is an analogous uniqueness theorem:

Theorem 4.1 (Jordan-Wigner Uniqueness Theorem). For each finite n, every irreducible rep-
resentation of the CARs (equivalently, the Pauli relations) is unitarily equivalent to the Pauli
representation, in which

0 1
of () = ]1®...®]1®(1 0)@]1@...@]1;
k—1 n—k
P 0 —i
o.(y) = 1®..01l® i 0 R1®...01; (31)
k—1 n—k
1 0
of(z) = ]1®...®]1®<0 _1>®11®...®11.
k—1 n—k

An alternative, though by the above equivalent, representation S (for ‘switch’) defines the
spin matrices according to

oR(@) =0 (y); R =0k () oR(2) = o (a); (32)

i.e. the switch representation of o (z) in Hg has the same matrix elements as the Pauli represen-
tation of oy (x) in Hp, etc. Now let U : C% — C% be the unitary such that Uof (z)UT = o7 (z),
etc. Then the unitary ®"U : Hp — Hg establishes the unitary equivalence between the switch
and Pauli representations.

This equivalence extends to all operators in B(Hs) and B(Hp). In particular, let {f;({c} (i)})}
be a sequence of linear functions of the {0 (i)} which converges in Hp’s weak topology to the
operator Fp. Each f;({of(i)}) € B(Hp) and B(Hp) is closed under weak convergence; so
Fp € B(Hp). Similarly, let {f;({c5(i)})} be a sequence of linear functions of the {o} (i)}, where

filloR @} = Ufi{ef G)HUT. (33)

Weak convergence is preserved under unitary transformations, so the {fi({o% (i)})} converge in
Hs’s weak topology to some operator Fs € B(Hs), and Fg = UFpUT.

In the Pauli representation Hp = C2", we may define the polarization observable !’ :=

(m?L, mfj, m?L’), where

8y

Z of (x), etc. (34)



Clearly, m? € B(Hp), and the spectrum of m?’ is parametrized by points on the unit sphere.
From the above considerations, we know that the similarly defined polarization observable m® :=

(m?, m‘y9 ,m?) in the switch representation satisfies

m® = Um?’UT, (35)

and so expectation values in S are identical to corresponding (given U) expectation values in P.

Now consider the theory of the infinite spin-chain, in which we have a spin—% system for every
integer in Z. This theory has observables satisfying the Pauli relations (30). Representations
of the Pauli relations in such a theory will be carried by a separable Hilbert space only if we
make some hard choices about which of the uncountably many prima facie possible states are
to be excluded. (The natural proposal to set % = the infinite tensor product of C? leads to a
non-separable Hilbert space, since it has 280 dimensions.)

One way to construct a separable Hilbert space is to pick a single-site state-vector |6, ¢)
to favour. [0, ¢) represents the eigenstate (with eigenvalue 1) for the spin vector’s being @ ¢),
which is the unit vector intersecting the unit sphere characterized at latitude § —6 and longitude
¢. Our Hilbert space H g 4) is then constructed as follows. First, it contains the state in which
every spin-site has state |0, ¢); call this state €2 4. Then we generate Hg 4) by taking the
closed linear span of all states obtained from g 4) by SU(2) rotations on any finite number of
the spin sites.

We can do this as follows. First define H g 4) as a fermionic Fock space on 12(Z):
Hg =3 [P(2)]) =Cal*(Z)e A [P(Z) 0P (Z)] ®... (36)

The subspace An [®N IQ(Z)] corresponds to arbitrary superpositions of states in which exactly N
spin sites are in an eigenstate of pointing in the direction —G(g,¢) = U(r_g,¢+) and all remaining
spin sites are in an eigenstate of pointing in the familiar direction G g)-.

We define the “vacuum” state {2 4) by
Qop=160000... (37)

We now define fermionic creation and annihilation operators dL,dk for each spin site k € Z.
H(g,¢) is the closed linear span of arbitrary combinations of these acting on {2 4). First we
define the operators déN)T : @N"N2(Z) — @NI2(Z) and d,(CN) : @NI2(Z) — @N7U2(Z) for all
NeN: ;

dl(cN) (1 ®...@YNn-1) = k@Y1 ®...09PYN_ (38)

d;(gN) (1 @Ya®@...0YN) = Yi(k) V2 ®...0 YN
where xx(j) = ;5. Now we may define d}, dy : §— [12(Z)] — - [1(Z)] by

f f f
4t = dV e V2Ad? e VBAdY' e (30)
& = 0 o 4V e v2d? e V3P e ..
It may be checked that
(dj, de+ = [d,df]y =05 [d,dl]y =5 . (40)



We may now define

o' w) = U0,0) (di+d}) Ur(6, )"
A Ng) = —iU0,0) (s — df) V(0. 0)1 “y
U,(f’d))(z) = U(8,9) (dkdl—dldQ Uk(e’@T;
where
N S N A g Ly to, ot Lpe—togt
Ur(0,¢) := smiﬁe 2 dk—i—sm§9@2 dk+COS§9€2 dydy, — cos 596 2%dy di- (42)

Intuitively, think of each Ug(f, ¢) as rotating eigenstates of spin-direction Uy ¢) to eigenstates
of spin-direction Z := Qg o) at spin-site k.

The significant result is now that different choices for (6, ¢)—and therefore for g 4)—lead
to unitarily inequivalent representations of the Pauli relations. This can be seen informally by
considering that the inner product between any state from Hg ) and any state from Hg 4,
where (6, ¢) # (0/,¢), involves infinitely many factors of the kind (6, ¢|¢’, ¢'), each of which is
strictly less than one. Therefore, the inner product is zero. This is an instance of representations
which are called disjoint; we will return to this idea below.

Alternatively, note that, for finite spin-sites, the unitary connecting (the analogues of) Q)
and g ) could be implemented by

n 1 l¢ 1 ,ld,
[Tuso.0) =" 30 smafer (43)
pabe sin 50e2?  —cos 50e”2

on ®VC?. But we cannot make sense of the infinite-site counterpart [re_._ Ux(6,¢) on a
separable Hilbert space.

We can see the unitary equivalence more rigorously by noting that the observables

1 n
(6,9) . (6,6)
Mym =507 g o (), etc. (44)

k=—n

defined on H g 4) converge in the weak topology, as n — oo, to the global polarization rhc(z’(z)),

where
n

1

07 _ . A _ A
(o0 MG Vo)) = lim 5= k; U(0,9) = U(o.9)- (45)
Similarly, we can define the global polarization m£@"¢" in Hg ), where
<Q(9/7¢/), m(()z/’¢,)Q(9/7¢/)> = ﬁ(gl@/). (46)

But g 4) # Qg ,¢), S0 these two representations must be unitarily inequivalent.

We can see this unitary inequivalence as arising from “vacuum” polarization. l.e., the states
on which we build each representation differ “infinitely” from each other, and since any two
states in the same representation are accessible by a finite number of transformations, any state
in one representation will be inaccessible to any state in the other.

ADD HERE from my spin-chain emergent superselection notes
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5 The free bosonic field on any one-particle structure
5.1 The general idea

Once we have our one-particle system (H, (-,-,),U(t)), we may define the free boson field over
it. This quantum theory will provide a representation of our Weyl algebra. (The following
prescription is unique, up to unitary equivalence; see Baez et al 1992, pp. 49-56, Theorem 1.10.)
The free boson field over H is the system (§(H), W,T',v) where

Fi(H) = @ Sn (®"H) (47)
n=0

is the Hilbert space of all symmetric tensors on #H, and for any linear operator @ € B(H),

NQR)=12Q0(Q@RQ)2(Q®QXQ) .. |5, ) - (48)

We assume a strongly continuous one-parameter family U(¢) of unitaries on #H, which is generated
by some self-adjoint operator A. The corresponding family I'(U(t)), is generated by a self-adjoint
operator which we call dI'(A). It satisfies

F(U(f)) _ F(eitA) _ 6z'tdl"(A) (49)
and
dF(A)::OEBA@(A®]I+]I®A)€B...]S+(H). (50)
Finally, the vacuum state v is defined by
v=100000... (51)
Note that it then satisfies
LUt))v =v. (52)

The free bosonic field (F4(H),W,T,v) provides a representation for the Weyl algebra as
follows. We need to define, for every ¢ € H, creation and annihilation operators af(¢),a(€);
§+(H) is the closed linear span of arbitrary combinations of these acting on v. To this end we
define the operators al . (¢) : @V 1H — @NH and avy(§) : NH — @N~1H for all N € N:

()
aJ(rN)(f) (1 ®...0YN_1) = EQUMI®...Q0¢YN_1 (53)
an)(§) (1 @2 @...@YN) = (§¢1) P2 @... QYN
where X (j) = 6. Now we may define a'(€),a(¢) : §+(H) — F+(H) by
al(€) = afy(©) & V2Say(©) @ V3Sialy(©) @ . (54
a@) = 0 @ apé) © V2 & Vg o ...
It may be checked that
[a(é1),a(&2)] = [a¥(&1),a"(&)] = 0 [a(é1),a’(&2)] = (&1, &2); (55)
this will be crucial for representing the Weyl algebra. We also have, for any projector P on H,
dr(P) =) dT(II(&)) = Y al (&)a(&), (56)

11



where the &; are an orthonormal basis for ran(P) and II(§;) projects onto the ray spanned by &;.

We now define the (unbounded) field operators for all z € S:
®(2) = a(K(2)) + ol (K(2)), (57)

where K : S — H is our map from the classical phase space to the single-particle Hilbert space.
It follows from (64) that, for all z1, 22 € S in a dense domain,

[@(21), D(22)] = [a(K (1)), al (K (22))] + [a' (K (21)), a(K (22))]
—2iSm(K (z1), K(22)) = —i€(z1, 22), (58)

Equation (58) is none other than our Weyl relations in infinitesimal form. The representation
WS — B[§+(H)] of the Weyl algebra is then provided by

W(z) = e®U2), (59)

The “particle picture”

For any projector P on H, the operator dI'(P) is the particle number operator associated with
P. The total particle number operator is N := dI'(1). Eigenstates of N are states of the field
with definite particle number.

The “real wave picture”

For each z € S, the field operator ®(Jz) is the unique self-adjoint operator which generates the
strongly continuous one-parameter family of unitaries W (¢z), where ¢ € R. Eigenstates of ®(Jz)
do not, strictly speaking, exist, but ®(Jz) admits of a spectral decomposition, in analogy with
Q and P in elementary nonrelativistic quantum mechanics.

The “complex wave picture”
Here the relevant operators are the creation and annihilation operators, for any z € S:

(@(2) —i®(Jz));  a(K(2)) = . (®(2) +i®(J2)) (60)

ol (K (2)) = :

N | =

The relevant “eigenstates” are of a(K(z)) (a misleading term, since a(K(z)) is not a normal
operator). These are coherent states.

Note that there is a natural sense in which the field operator is a function over the classical
phase space S, while the creation and annihilation operators are functions over the quantum
one-particle Hilbert space H.

5.2 Example: the simple harmonic oscillator again

Here we simply apply the above general prescription to the case where H = C, (£1,&2) = £7&
and the unitary evolution is generated by the Hamiltonian A = w. Our Fock space is

S+((C):éé‘n(@NC):C@C@C@...:P(N) (61)
n=0

Unitary evolution is governed in this Fock space by

DleT™) =1@e ™ e g, | (62)
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which is generated by the Hamiltonian
dl'w) =0Pwd2wd.... (63)

For each ¢ € C, the creation and annihilation operators af(¢),a(€) : 12(N) — 1?(N) satisfy

[a(61),a(&)] = [a'(&1),al (&)] = 0;  [a(&),al(&)] = &y (64)

Since af(€) is complex-linear and a(€) is complex-antilinear, we may define a' := a'(1),a := a(1),
and then af(¢) = &a' and a(¢) = ¢*a, and [a,a’] = 1. The operator a'a is a number operator—
in fact, the only number operator, up to a complex constant—and it may be checked that
dI'(w) = wa'a. (Note: no zero-point energy!)

Self-adjoint field operators over S = R? 5 (o, 3) are then defined by

o(J(a,B) = a(KJ(a,f))+al(KJ(a,B))
= iK(a,B)al —iK(a,B)%a

- A a+a) =iy a(a—af
= —e—(ata) —iy/ T ala ). (65)

We now recover the familiar self-adjoint operators

Q = (J(0,-1)) = A?Twmm*); (66)

P = @(J(Lo)):—z‘,/%(a—af); (67)

from which we recover the familiar Heisenberg relation [Q, P] = i.

Pause for a moment to consider the identity P = ®(J(1,0)). Recall that ®(J-) is a function
from the classical phase space S to (unbounded) operators on the “field” Hilbert space §4(H).
But remember that elements of S are “really” proxies for vectors which determine vector fields
over S. (We are lucky enough that S is a symplectic vector space, so this use of proxies is
possible.) The vector (1,0) determines the vector field 8%, i.e. translations in the position ¢. We
know that these translations are generated by momentum, so it is fitting that P = ®(J(1,0)).
Similarly, the vector (0, —1) determines the vector field _8%7 i.e. negative translations in the
momentum p, which we know are generated by position; so it is fitting that Q = ®(J(0, —1)).
Quite generally, the self-adjoint operator ®(Jz) is the quantum observable corresponding to the
classical generator of phase space translations in the direction z. This identification will be
important in identifying the local field operators for the quantum field, in section 6.

We may also express the a,al in terms of Q and P:

a:,/n/;w<Q+min>; aT:”n;w(Q—min>; (68)

allowing us to similarly re-express the field operators, for any (a, 3) € R?:

g
o(J =0 (— =aP - Q. 69
(a8 =@ (= mwa ) = ap - 50 (69)
In terms of Q and P, the (normal-ordered!) Hamiltonian for the bosonic field is
2 . .
—wala =™ v tpyo Lpr L epe L
dl'(w) = wa'a 5 <Q me) <Q+ me) 2mP + 5w Q W (70)
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The “particle picture”
There is only one non-zero projector on C, and the operator dI'(1) is the total particle number
operator N = a'a. Eigenstates of N are states of the field with definite particle number.

The “real wave picture”
Eigenstates of ®(J(a, 8)) = aP — BQ do not, strictly speaking exist, but it is familiar that we
may define spectral resolutions for () and P.

The “complex wave picture”
The annihilation operator, for any a has the “eigenstates”

€) i e HEP (@), _ o~ HIeP kot (71)

for any & € C, using the complex-linearity of a'. We have that al¢) = L
e~ 3 lel? (eﬁaTa—kﬁeﬁ“T) v = fe*%mze&”zj = £|¢). The most familiar coherent state is |0) = v
(i.e. when & = 0), the “Fock space vacuum”, which yields probability distributions in both @
and P that are gaussians centred at zero. And in general it may be checked that

W(2)[0) := e"*V2)|0) = |K(2)). (72)

The state |K(z)) yields probability distributions in ¢ and P that are both gaussians, centred at
a and f respectively, where z = (a, ). These states are crucial to defining the classical limit of
the theory: specifically, as & — 0, the behaviour of |K(z)) approaches that of the classical state
z.

5.3 (Apparently) rival quantizations

The story just given for the simple harmonic oscillator may be run again, this time starting with
a classical system with a different Hamiltonian:
1 1
Hy = —p* + ~mwiq®. 73

2 2mp 9 24 (73)
(Set w1 = w, etc. in the above discussion.) The new classical dynamics induced by this new
Hamiltonian results in a different map K : R? — C, different complex structure Jo and different
quantum Hamiltonian Ay = wy. A shortcut to the new “bosonic field” is to transform

Q /ﬂQ; P 2P (74)
w1 w9

This gives rise to new creation and annihilation operators CL;,CLQ, related to the previous ones

al(=al),a1(= a) by
1 w9 w1 1 w2 w1 t
= 5\\/ \/ = 5 ”7_”7 ; 75
@2 2< w1+ (/.)2>a1+2< w1 u@)al’ ( )
R B Ry 1 1( fwa Jor) s
2 ( w1 (,UQ> “ + 2 < w1 + WQ> al' (76)

a, =
It follows from these relations that the vacuum for A = w; is not the vacuum for A = wo;
specifically,

(w1 — wa)?

7
4(4)1602 ( )

(1, Nov1) = (v1, abagry) =
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We know from the Stone-von Neumann theorem that, since the w; representation and the wy
representation both provide a representation of the Weyl algebra over R?, they must be unitarily
equivalent. In fact, the equations (75) & (76) specify the unitary which intertwines them.

In the position representation, the unitary transformation between the two representations
is implemented by
1
wo \ 4 wo
v o (2) 0 (| 20). (78)
w1 w1

6 Infinite degrees of freedom 2: the free real boson field
6.1 Classical field theory in general

It may be deemed unsatisfactory to being an introduction to quantum field theory with clas-
sical field theory. After all, classical field theory is properly seen as an approximation of the
corresponding quantum theory, not the other way around. However, as we shall see, the charac-
terisation of quantum field theory on the approach I am considering here, which is broadly the
approach found in REFS (inc. Segal), makes essential reference to the classical theory. That is
because the quantum theory, just as the classical theory, is characterised in terms of representa-
tions of a certain algebra, the Weyl algebra; this algebra is essentially tied to an understanding
of the field, whether classical or quantum, as a Hamiltonian dynamical system.

In fact, it will emerge that Weyl algebras not only provide a characterisation of the quantum
field, they also provide our best characterisation of particles—at least in the case where particles
have nonzero mass. In fact, the characterisation of particles in terms of some Weyl algebra
extends even to the case where the field is fully regularised on a lattice, where obviously the
familiar Lie groups associated with spacetime symmetries do not apply.

The classical field is given by (I",€2), where I' is a phase space and {2 a symplectic product.
Suppose field configurations as given by ¢* : M — V', for some measure space (M, i) and vector
space V. We then begin with C§°(M, V') as our space of field configurations. Let g4, be an inner
product defined on V'; then we can define the inner product on C§°(M, V') (indicated by round
brackets):

(01,2 = [ An(o) gn}" (03 (@) (79)
We may then close C5°(M,V) in the norm induced by this inner product to obtain the real
Hilbert space £L2(M,V, ).

Field momenta are given by points in the associated space £2(M,V*, i), and so we may take
I'=L2(M,V,u) @ L2(M,V*, ). We will use lowercase Fraktur letters 3 to denote points in T’;
so 3 is shorthand for the pair (¢%, py), where ¢*(z) is a classical field configuration and py(z) is
a classical field momentum. I will usually drop the abstract indices when they are not needed.

The resulting phase space I' is also a vector space. The significance of this is that its
elements 3 represent not only instantaneous states but also vectors in I'; this is important for
the interpretation of the field quantities.

The symplectic product is given by

Q(1,32) = (a1, "), (q2,0%) = (q1,0%) — (q2.p") (80)

! As we shall see, crucial here is that there are discrete versions of the Weyl algebra; such versions have no
associated Heisenberg algebra. So the Weyl algebras really do provide a general characterisation.

15



where
(4i.0) = / du(x) ph(2)q" (2) (81)

(So I use round brackets both for the inner product on pairs of ¢;s and for ¢;, p; pairs.) We can
see that, for any 3 € I', Q(3, - ) is a real-valued function on I', and so a classical quantity; let
us call it the field quantity associated with 3, and denote it by ®(3). Choosing ¢;(z), 7/ (z) as
canonical coordinates on I', we can see that

®(3) = QG - ) =g, p), - ) = (¢,7) = (¢,p) = 7(q) — &(p) (82)
We have the following Poisson bracket relations between the field quantities ®(3):
{®(1), 2(2)} = {201, - ), 232, )} = Q1,52) (83)
This is just a concise encapsulation of the familiar Poisson bracket relations:
{0(01), ¢(q2)} = {7 (p1), m(p2)} =05 {o(p), (@)} = (¢,p) - (84)

For each 3, the field quantity ®(3) has a simple physical interpretation, both as a quantity
and as a generator of a family of transformations. Qua quantity, ®(3) is a linear combination
of spatially smeared field configuration and momentum quantities. Qua generator, it is the
generator of translations in phase space along the vector 3. Particularly salient cases are given
(informally) as

dr(z0) ¢(8eo0i) = (0, =bzo0ik) ; (85)
Te(z0) = T(0uebik) = P(0z,0ik,0) ; (86)

where 0, is a Dirac delta distribution centred at zo € M and d;; is a Kroenecker delta on the
indices i, k for some basis for V.

Ezamples:

e M =R3and V = R; g = 1. This describes a real scalar field on 3-space.

e M = {o} (i.e. the base space is just a one-membered set) and V' = R?; g = the Euclidean
metric. This describes a Euclidean-3-vector-valued “field” on a single point, which is the
position of a classical point particle. (We must imagine that physical space has a privileged
origin, giving it the structure of a vector space.)

e M = {o} and V = R; g = 1. This describes the simple harmonic oscillator, and is probably
the simplest non-trivial example.

6.2 Classical Klein-Gordon theory

In classical field theory, the real boson field is represented by a real-valued field on Minkowski
spacetime ¢ : R* — R. However, in the Hamiltonian theory—even in relativistic field theory—
we envisage the field as a collection of systems parametrized by a spatial (not spatiotemporal)
location x, whose degree of freedom at time ¢ is given by ¢(x,t). So ¢(x,t) is to be thought of in
analogy with q;(¢) in classical particle mechanics. The passage to field theory is characterized by
the heuristic that particle labels go over to spatial co-ordinates: ¢ — x and position quantities
go over to field quantities: q;(t) — @(x,t).
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We being with a configuration space and a Lagrangian density £. The configuration space
contains states given pairs of the form (¢(x), #(x)), and the Lagrangian density is

L(8(x), 0u0(e)) = 50"0(2)Dud(x) — 5m*0()’ (57)

(where ¢(x) = 8:¢(x,0)) To move to the Hamiltonian formalism, we first define, for each x, the
conjugate momenta

oL
¢
The phase space S = C§°(R?) & C5°(R?) is populated by the pairs (¢(x), 74(x)). The Hamilto-
nian is given by

mo(x) = = = ¢(x). (83)

(60, ms(x) = [ @ (ra(x)ima(x)) = L0000, dm(x))) (59)
- [ é( o(x)? + V6(x).Vo(x) + m*6(x)?) (90)

Note that H will be non-negative for all states. We can integrate the second term in (90) by
parts, assuming ¢(x) — 0 at spatial infinity, to yield

1
H(o(x),m4(x)) = /d3X 5 (16(%)” = 6(x) V6 (x) + m*6(x)?) (91)
Dynamical solutions are then given by
. 0H ) . _ oH 2 .
¢(X t) (57T¢( ) - 7T¢>(X7t)7 7T¢(X, t) - (5(;5(X) =V d)(X?t) m d)(xat)a (92)
giving rise to the second-order equation

&(Xa t) = V2¢(X, t) - m2(;5(x, t)v (93)

which may be expressed as a sum over “on-mass-shell” plane waves (cf. (77)):

(a(k)ei(k.x—w(k)t) +a* (k)e—i(k.x—w(k)t)) (94)

3k 1
v 2w(k)

where w(k) := k? +m?. (The reason for the factor —=

will become clear later.)

v 2w(k)
The symplectic product on S is given by
Q00) = [ dx (m00x) - (). (95)

In terms of plane waves, the symplectic form takes the elegant form (cf. Geroch 2005, p. 79):

o, ¢) = —i/d3k (a"(k)e(k) — a(k)c"(k)), (96)

1

v/ 2w(k)

where c(k) are the momentum amplitudes for . (Here we see convenience of the factor

1 (94)).
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6.3 The one-particle structure

Frequency-splitting
Any state (¢(x), my(x)) may be decomposed into positive-frequency and negative-frequency com-
ponents, according to which

d(x) = ¢ (x) + ¢ (x). (97)

This is standardly done as follows (see e.g. Wallace (2009, 13)). First, as we have seen, given
the Hamiltonian H, any state (¢(x),m4(x)) defines a unique trajectory ¢(x,t). Taking the
frequency-time Fourier transform of this function, we recover a function ¢(x,w). We may then

define
0o 0
(Hx:: w~xw' (*)x:: w~xw.
000 = [Cdwitxe) 006 = [ dw i) (98)

—0o0
Define A := v/—V?2 + m? as an operator on C$°(R3) functions. Then the classical equations of
motion may be written
: 0H 0H

QS(X’ t) = 57’[‘¢(X = 7T¢(Xa t); 7%¢(X7t) = _W(X) = _A2¢(X7t)' (99)

~—

It may then be checked that

A’k

H(x) = } X 1A  Tme(x)) = a(k)e™*.
606 = (000 AT m) = [ Eos et (100)
=) x) = 1 x) — 1A (% — d3k a* e—ik.x
6969 = (069 i my0) = [ s e e (101)

Note that ¢(*) (x)* = ¢(7)(x). The fact that ¢(x) and 74(x) are real-valued functions and A is a
real operator means that the real (resp. imaginary) parts of ¢(*)(x) and ¢(~)(x) are determined

by ¢(x) (resp. my(x)).
The complex structure
Define the complex structure J : S — S as follows:

T (6(x), mp(x)) = (=A™ my(x), Ap(x)) ; (102)

this is equivalent to
T(™ (x), 67 (x)) := (10 (x), =g (x)). (103)

It may be checked that J satisfies the conditions for a complex structure. We now have a
classical “Schrodinger equation”:

TR = TG 1), Fox, ) = T < 5;5}(),— 55)1(1 )> — T (malx, 1), —A2(x, 1)

= (Ag(x,t), Amg(x,t)) = Ap(t). (104)

This equation diagonalizes, by splitting frequencies, into two “Schrédinger equations”:
g (x,t) = (A ) (x,1); =il (x,1)) = (4¢!7))(x, ). (105)

The second equation is just the complex conjugate of the first.
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The inner product
Our inner product in C§°(R3) is given by

(6,005 = 206,6) + 516, ) (106)
= [ @ [0V ) + mo((A ) ) i (mo(300(0) — () ()] (107
- / Bk a* (K)e(k) (108)

Using the frequency splitting prescription (97) and my(x) = —iA(¢F) (x) — ¢(7)(x)), and after
some laborious calculation, (107) may be written in terms of the positive- and negative-frequency
components:

(0. 0)s = / d*x |00 (30) (A0 ) (x) + 00 () (A9 (x0) (109)
) / dx 6 (%) (ApD) (x) (110)
- / d3x i¢<—>(x,t)<5§¢<+>(x,t), (111)

g
where f(x,t) 0: g(x,t) := f(x,1)0:g(x,t) — g(x,t)0: f(x,t). Strictly speaking, (111) only makes
sense for solutions, since only then do we have any time-dependence; (109) and (110) make sense
for instantaneous states, regardless of dynamics.

The map K may be defined in three natural ways (see Halvorson (2001) for a comparative
discussion of the phase-space and Newton-Wigner representations, as they relate to particle
localizability):

Phase-space representation

In the phase-space representation we take the map Ky : C§°(R3) @ C§°(R3) — Ho to be the
embedding map; i.e., we treat C§°(R3?) & C5°(R3) 2 (¢(x), T(x)) as a pre-Hilbert space (“pre-”
because it is not complete in the inner product norm). We complete the first C§°(R?) in the
norm defined by the real inner product

1
(06 v = 5 [ dPx 6(x)(Av) ) (112)
call the resulting space L1 (R?). We complete the second C§°(R?) in the norm defined by the

real inner product .
(o) w00 = [ € 7o) (A~ ) (0 (113)

call the resulting space £~ (R3). Thus the one-particle Hilbert space in this representation is
Ho = LT(R3) @ L7 (R3). We define the complex inner product in this Hilbert space following
(107); ie. (,9) := (,¥)s = (G(x), Y (X))1 + (s (x), Ty (x))2 + U, ¥).

Positive-frequency representation

In the positive-frequency representation, we let the positive frequency component ¢(*) (x) be the

quantum representative of the classical wave. So we define the map K : C5°(R3) @ C§°(R3) —
H+ by

(6(x) +iA ™ my(x)) = ¢ (x). (114)

N =

K (¢(x), mp(x)) =
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The inner product is defined according to (109):
0.0) =2 [ @ 660 (Av ) ). (115)

By completing in the norm, we obtain the Hilbert space H, = L?*(R3).

Newton- Wigner representation

In the Newton-Wigner representation, which has clear analogies to our treatment above of the
simple harmonic oscillator (cf. (??)), we define the map Kyw : C°(R?) & C°(R?) — Hyw as
follows:

B
V2

where ¢yw : R® — C is the complez wave associated with (¢(x), m4(x)). This allows us to write
the inner product in C§°(R3) & C§°(R?) (107) in the elegant form

Knw(6(x). mo(x)) = —= (A36(x) +i4 dm(x)) = bww(x) = VA4 6D) (), (116)

(9. 0)s = /d3x Knw (¢)" Knw (¥) = /d3x Pnw (X)Unw (%), (117)

and so we may define the inner product in Hyw by setting
0.6) = [ @ S (v (). (1)
By completing in the norm, we find that Hyw = L?(R3?). The classical two-component

“Schrodinger equation” is mapped under Ky to the single equation

Z'QZBNW(th) = (A¢NW)(Xa t)' (119)

Given (94) and (116), solutions take the form

dnw (x,t) = / d’k a(k)ekx—wxt), (120)

Happily, all three representations are unitarily equivalent: Kyw o K 1 Ko K;l, and
Ko KX,%,V all extend uniquely to unitary operators. This is because all three Hilbert spaces’
completions followed the same inner product defined in C§°(R3) & C§°(R3). (But they sug-
gest rival ways to “localize” a state: see Halvorson 2001.) Thus we can pick a one-particle
state in any one of three different position representations: (i) by specifying two real functions
(p(x),my(x)) € LT(R?) @ L~ (R3); (ii) by specifying a complex function ¢(*)(x) € L%(R3); or
(iii) by specifying a complex function ¢nw (x) € L?(R?).

6.4 Eigenstates of momentum—and position?

Recall from our treatment of the simple harmonic oscillator that the map K : S — H may
obscure which classical states in S lead to which single-particle states in the quantum field.
Therefore it is important now to identify familiar eigenstates—particularly of momentum (and
position, if possible!)—in the one-particle structure. Only then, when we finally consider the
quantum field, will we know which creation and annihilation operators are creating and annihi-
lating which single-particle states.
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Phase-space representation:
(Improper) eigenstates of momentum (¢, mg, ) are of the form

1 ; ; 2
k(x) = —— (eZk'x + eﬂk'x> = cos(k.x);
: W(k) ik.x —ik.x .
T (X) = —i 5 (e X —e ) = /2w(k)sin(k.x).
Positive-frequency representation:
(Improper) eigenstates of momentum ¢1({+) are of the form
(+) L ik
X) = ————=¢€ . 122
o= (122)
Newton- Wigner representation:
(Improper) eigenstates of momentum ¢V are of the form
W (x) = ekx (123)

Each representation represents momentum according to the familiar prescription (Py)(x) =
—iV1(x); so we may write A = VP2 + m?2. And it may be checked that, for each representation,

(P, 1) = % (\/:;)((ll{)) + \/c:}((l;))) 5(3)(k -1) = 5(3)(1{ -1); (124)

i.e. the eigenstates are orthonormal. Similarly, it may be checked that, for each representation,
(¢, Py) = (P, v); i.e. P is self-adjoint. (It is crucial here that [A,P] = 0.)

Note: some authors favour eigenstates gz;k with a Lorentz-covariant normalization, in which
(d1, d1) = 2w(k)d®) (k — 1); see e.g. Duncan (2012, Section 5.2). To obtain this we set, in each
representation, ¢ := \@A%dj (meaning, for the momentum eigenstates, @y := V2w(k)pk). The
rival choices of normalization may be inter-translated, of course. But we anticipate that, in the
field theory, the creation and annihilation operators will satisfy [a(¢), a’(1))] = ($,), and it is
only when [a(¢y),al(¢r)] = 6@ (k — K') that these are plausibly construed as ladder operators
for the states {¢y}—i.e. in which af(¢y) creates, and a(¢y) annihilates, a particle in the state
¢x. Therefore we ought to stick with non-covariant normalization when talking about creating
or annihilating particles.

Position eigenstates?

Surprisingly enough, position is a more complicated matter. To summarize: (i) the prescrip-
tion (Qu)(x) = x1(x) does not lead to the same operator Q in each representation; (ii) in
some representations this prescription does not even lead to a self-adjoint operator; and (iii) in
the one representation in which we do obtain a self-adjoint operator (viz. the Newton-Wigner
representation), we run into various troubles with relativity.

In fact, the phase-space and positive-frequency representations give rise to the same position
operator on the usual prescription, so let us concentrate on the positive-frequency interpretation
because it is simplest. In this representation,

6.Qu) = 2 / dx ) (x) Axyp™ () (125)
=<Q¢w+2/&x¢>@»amwﬂw> (126)
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By expanding A = m + ﬁP2 + ..., it may be checked that [4,Q] = —iA~!P. So

(6, QY) — (Qo,v) = —(6,iAT*Py), (127)

which in general is non-zero, so Q is not self-adjoint. Accordingly, it may be checked that the
“eigenstates” 5&? := §3)(x — xg) are not orthogonal:

(€D, Py =2 / 43z 6@ (z — x)As®) (z — y) = 246®) (x — y) = 2 / Pk w(k)e™ ¥ (128)
However, we may contrive a self-adjoint operator by defining

Qnw == Q + %A*QP. (129)

This ensures that (¢, QNW¢> (QnNw P, 1/1> since [A,P] = 0 and A and P are self-adjoint. It
may also be checked that [A2 ,Ql=—-1A" 3P. Using this, we find that
1 1 1 1
ATIQAY = Q+AH(Q Al
- Q+ %A‘QP
= Qwnw. (130)

Qnw is called the Newton-Wigner position operator for the very good reason that, in the
Newton-Wigner representation,

(QNwYNw)(x) = xYnw (%), (131)

as per the usual prescription. Accordingly, the (improper) eigenstates of Qnw are Dirac delta
functions in the Newton-Wigner representation. In the phase-space representation, they are
given by (¢x,, Tx,), where mx, = 0 and

1
txo (X) = /d3k T(k) (ek(x x0) 4 ik (x= xo) /d3 1/ Cosk xp). (132)

In the positive-frequency representation, we have (;Sxo = A’k —L_etk-(x—x0)

\/2w(k)
Despite its obvious attractions, the Newton-Wigner standard of localization raises a handful
of worries with regard to its appropriateness for a relativistic theory.

(i) The Newton-Wigner position eigenstates have infinite tails in the other two representations.

(ii) Even in the Newton-Wigner representation, states localized at one time become unlocalized
arbitrarily soon, due to A’s being an anti-local operator. (An anti-local operator B is one
such that, for any 0 # ¢nw(x) € L?(R?) and any open region O C R3, if supp(¢nw (x)) N
O = @, then supp(Boyw(x)) N O # &.) Paradoxically, the Newton-Wigner velocity
operator nevertheless satisfies

Qnw = —i[Qnw, A = i[A, Q] = A™'P, (133)

whose spectrum is the interior of the unit ball (the velocity never reaches or exceeds 1).
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(iii) Relatedly, Newton-Wigner localization is not Lorentz-covariant. Specifically, any state
which is localized at some time in the Newton-Wigner position associated with one inertial
frame is unlocalized at all times in the Newton-Wigner position associated with any other
inertial frame. This gives rise to the failure of projectors associated with spatial regions
which are spacelike-separated but nonsimultaneous to commute.

It is worth emphasizing that it was never guaranteed that a position operator would be
found on the one-particle structure, and it is no paradox if there isn’t one. We are seeking
a representation of the Weyl algebra over the space of classical field configurations C§°(R3) @
(Of (R3), not a representation of the Weyl algebra over the classical particle phase space RS.

6.5 The free bosonic field

By picking one of our three one-particle structures (H, (-, -), U(t)), we may define the free boson
field, which will provide a representation of the Weyl algebra over S = C§°(R?) @ C§°(R3). (I
emphasize: any two choices lead to equivalent theories.) The free boson field over H is the
system (§+(H), W,T',v) where

3+ (H) = D Sa (2"H). (134)
n=0
T is defined, for any linear operator Q € B(H), by
NQR)=12Q0(Q@RQ)®(QR®QXQ)D...[5, 3 - (135)

Dynamical evolution is governed by the strongly continuous one-parameter family of unitaries
['(U(t)), which is generated by the self-adjoint operator

dM(A) =00 A (AR L+1®A) ®.. |5, 4 - (136)

The vacuum state v is defined by
v=160406... (137)
so that T'(U(t))v = v.

We define the creation and annihilation operators a',a : H — B(F,(H)) in the usual way
(see Section 5.1), and we have, for any &1,&2 € H,

[a(é1),a(&2)] = [a¥(&1),a"(&)] = 0, [a(é),a!(&)] = (&1, &) (138)
A very important property of I' is that
L@ (@)~ =d'(Q€);  T(Qa(Or(Q) " = a(QE) (139)

for any invertible operator ) and state £ in the one-particle structure H. We are interested in
the creation and annihilation of momentum eigenstates, for which

ik.x

2 . € ik.x
af(k) == al; ( o) cos(k.x), v/2w(k) sm(k.x)) = a](LH () =aly <e k > ., (140)

2w(k)

where the subscripts ‘S, ‘(4+)” and ‘NW’ correspond to the phase-space, positive-frequency and
Newton-Wigner representations, respectively. It may be checked that

la(k), a()] = [a'(k),a’ )] = 0;  [a(k),a’ ()] = 6@ (k- 1). (141)



We now define the (unbounded) field operators for all z € S:
O(2) 1= ax(K(2)) + aje(K(2)), (142)

where K : S — H defines our representation; i.e. the map from the classical phase space to
the single-particle Hilbert space. Note that, since ® is a function over S, it is representation-
independent. We can expand any field operator in terms of momentum ladder operators in a
way that is independent of representation. Going via the positive-frequency representation for
convenience, any state ¢(*)(x) is mapped to the field operator

@ (K3 (6960)) =aiy) (69x)) +al) (6) - (143)
We may express ¢(*)(x) in terms of plane waves:

¢(+) (x) d3k C(k)eik'x

B V2u(k)

and use the complex linearity (resp., complex anti-linearity) of a' (resp., a) to obtain

i (K;l (¢(+)(x)>) = /d3k [c*(k)a(ﬂ (j::k)) +c(k)a}+) <e;:z(k)>] (145)
= / P’k [c*(k)a(k) + c(k)aT(k)} . (146)

This holds also for the other two representations. In particular, we may interpret
(k) = B (K~ () = alk) + a' () (147)

(where ¢ is the improper momentum eigenstate associated with the eigenvalue k) as the quan-
tum observable corresponding to the amplitude of the k momentum mode. It may be checked
that [®(k), ®(1)] = [a(k), al ()] + [al (k), a(1)] = 0.

Finally, the representation W : S — B [§4+(H)] of the Weyl algebra on S is provided, as
usual, by

W(z) := e'®2), (148)
Given the definitions above, we also have that (see Baez at al 1992, pp. 34-35)

(v, W (2)p) = em2l4I%, (149)
where ||z]|? := (z, z)g is the squared norm of z in the one-particle structure. We use the fact
that the ®(z) are self-adjoint and that, for any operators A and B which commute with their
commutator [A, B], ¢A+B — ¢=3[ABlgAB  Thig result is extremely helpful, since for each

z €8, (v, W(tz)v) = (v,e*®@) (with t € R), known in the theory of random variables as
the characteristic function of the random variable ®(z), completely determines the probability
distribution of ®(z) in the vacuum state v (it is its inverse Fourier transform).

The “particle picture”

For any projector II on H, the operator dI'(II) is the particle number operator associated with
I1. The total particle number operator is N := dI'(1). Eigenstates of N are states of the field
with definite particle number. The Hamiltonian for the field is

H :=dl(A) = dT (\/PQ + m2) —dr (/ 43k w(k)H(k)) , (150)
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where II(k) is the (improper) projector onto the (improper) momentum eigenstate ¢x. Using
the fact that dI' is linear, we obtain the familiar result

H= /d3k w(k)dT (TI(k)) = /d3k w(k)a' (k)a(k). (151)

The “real wave picture”

For each z € S, the field operator ®(Jz) is the unique self-adjoint operator which generates the
strongly continuous one-parameter family of unitaries W (tz), where t € R. Eigenstates of ®(.Jz)
do not, strictly speaking, exist, but ®(Jz) admits of a spectral decomposition, in analogy with
Q and P in elementary nonrelativistic quantum mechanics. In the next section we will discuss
“local” field operators (i.e. field operators associated with spatial or spacetime points) in detail.

An important theorem applies here (see Baez, Segal & Zhou 1992, p. 57):

Theorem 6.1 (“Wave-particle duality”). Let Hg be the real subspace of the one-particle Hilbert
space H. The bosonic Fock space § (H) is unitarily equivalent to the space L?(M), where M
2

is the tensor product of dim(Hg) copies of (R, g.), where dg. := \/zlﬁef%dx (known as the

isonormal distribution).

In the case where H = L%(R3), the space of classical waves M is L?(R3, R, g.); i.e. real-valued
functions over R3.

6.6 What are the “local” field operators?

In standard presentations, one finds the “local” field operator ®(x), which one is encouraged
to interpret as the quantum observable associated with the amplitude of the field at x. We are
now in a position to identify these operators. Recall that for the simple harmonic oscillator,
Q = ®(J(0,—1)) = ®(-=,0). For a system of coupled harmonic oscillators, this generalizes to
Qi = ®(J(0,—6i1)) = ®(A 6, 0), where A := \/—0,0_ + m? is the discrete analogue of A.
So in the field theory (the continuum limit of the series of coupled oscillators), we should expect
that (e.g. in the positive-frequency representation)

B(xg) = D(J(0,—0%)(x —x0)) = D(A16®) (x — x¢),0) (152)
1 1
= ag §A*15(3) (x — xo)} + aJ(r+) [2A16(3) (x — Xo)] (153)
— [ d’k ik.(x—xq) T d’k ik.(x—x%0)
= o) / W) } T [/ 2wk ] (154)
_ [ () T (+)
= a) _@Z’(tho)(x, to)} + agy [@ZJ(XO’tO)(X, to)} , (155)

where

Pk
—ifw(k)(t—to)—k.(x—x0)]
201 (156)

Wt = [
= /d4k 5(kE — w(k)?)O (ko)e k- (@==0) (157)
= T (m)6W(x —z0) = AP (z — 20), (158)

using [ dko §(kE —a?)O (ko) = i, and where IT" (m) is the projector onto the positive-frequency

mass shell, defined by k? = k2 —k? = m? and ko > 0, and A (x) is the positive-frequency Pauli-
Jordan function, which has spacelike tails. (For a full discussion of this and related functions,
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see Greiner & Reinhardt (1996, Section 4.6).) Using (154) and the fact that eigenstates of

momentum in the positive-frequency representation are 21 o eik'x, we see that
w

_ [k
V2w(k)

which is the expression for the local field operators found in textbooks.

d(xo) [a(k)eikxo + aT(k)e—ikxo] , (159)

What is potentially confusing about this result is that, although (159) gives the right ex-
pression for the local field operators, its positive- and negative-frequency parts are not ladder
operators associated with a localized state in the one-particle structure. Let’s investigate this
further in each of the three representations (this time I will take the positive-frequency repre-
sentation first).

Positive-frequency representation
Given (155) and (158), the ladder operators a4 (wéﬁ)), aer)(z/J;(Eg)) associated with the local field

operator ®(x() create or annihilate a single particle in the state wxzr)(x) = iA) (z — x0). This
function is a solution to the positive-frequency representation’s Schrédinger equation:

i AN (2 — 20) = AAD (2 — x0). (160)

Phase-space representation
In the phase-space representation, this state is given by (v (x,,t,) (X, 1), T(xo,t0) (X, 1)), where

Doy (X,1) = / Ak <ef‘[w(k)(t—to)—kxx—x())] n ei[w(k)(t—to>—k.(x—xO)1> (161)

(0,503 2w(k)
_ / A 6(2 — w(k)2)e—ik-@-m0) (162)
= HO(m)éW(x —z) = iA(z — 20) (163)

and

Tixoto) (X t) = _i/di”k % (e—i[w(k)(t—to)—k-(x—xo)] _ ei[W(k)(t—to)—k-(x—XO)]) (164)
= / Atk AS(k2 — w(k)?)O (ko )e (@0 (165)
S (H+(m)5<4> (z — o) — II~ (m)d™ (z — 1:0)) (166)
= OII(m)éW(z —2) = AA(z — x0), (167)

where TI(m) = I (m) + I1~ (m) projects onto the full k? = m? mass-shell, I~ (m) projects onto
the negative-frequency mass-shell, the real-valued function A(z) = A (z) + A (x) (where
A (z) == AH)(2)*) is the Pauli-Jordan function, and the pure-imaginary-valued function
Ai(z) = AN (z) — A (2) is the Pauli-Jordan anticommutator (see Greiner & Reinhardt
(1996, Section 4.6)). The functions A(z) and A;(x) are related by

10 A(x) = AN (z); 10iA1(z) = AA(x); (168)
and are connected by the complex structure J according to

J(A(z), —iAA(z) = (iDi(x), AA(2)); (169)
J(iA(2), AA(z)) = (=A(z),iAA (2)). (170)
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Ai(z), like A (z), has spacelike tails, but we can use the fact that A(—z) = —A(z) and
A(z) is Lorentz-invariant to show that A(z)’s support is confined within the past and future
light cones; it is singular on the light cones themselves (see Greiner & Reinhardt 1996, Section
4.4). Tt may be checked that both (A(x — z¢), A(x — z0)) and (iA1(x — xg),i0:A1(x — x0))
are solutions to the phase-space representation’s Schrodinger equation:
JO (A(x — x0), A(x —xg)) = A(A(x — x0),0A(x — x0)) ; (171)
J&t (’LAl(fL' - .’Eo), z’@tAl(:r - .’Eo)) = A (ZA1($ - 170), iatA1($ - 170)) . (172)
The one-particle state 1, associated with the local field operator ®(xp) = ®(¢s,), in the phase-
space representation, is then

(Yo (), Tz (x)) = (A1 (x — 20), AA( — 20)) = J(A( — 20), —1AA (T — 20)). (173)

Newton- Wigner representation )
We follow the usual prescription W (z) = v/2(A2¢1))(z) to obtain

NW () = V2iA2 AV (2 — x0) =: iAnw (z — o) (174)

where we have baptized the Newton- Wigner free propagator

3
Anw () = —i / A%k \/2kod (kG — w(k)?)O (ko)e *® = —i K —ilwk)i=kx) - (175)

= —1 7T(k)€

which satisfies the Newton-Wigner representation’s Schrodinger equation

10 ANw (x — z9) = AANw (x — x0). (176)
In all representations, any two “local” states 1), 1, have the inner product

() = 1A (@ — ) = Lita(z —y) + LA~ y), (1)

where the last expression separates the inner product into its real and imaginary parts, respec-
tively. And so

[@(z), P(y)] = iQ(¢x, @by) = 2iSm (s, pr) = iA(z —y), (178)
which entails commutativity of the local field operators at spacelike separation.

Noncommuting “local” number operators

The fact that position eigenstates don’t exist in the one-particle structure, and the consequent
fact that we can’t create or annihilate localized particles—even though we may interpret ®(x)
as a genuinely local field operator—, serve to explain an otherwise puzzling fact, namely that
apparently “local” number operators fail to commute at spacelike separation. From the fact
that the “local” ladder operators a(z) := a(v,),al (z) := al(1,) satisfy

(a(z), @' (y)] = (e, ) = iAH (@ — ), (179)
it follows that (see also Duncan 2012, p. 161)
[a(2)a(x),a’(y)aly)] = d'(@)la(x),a(y)aly)] + [ (2),a'(y)aly)]a(z) (180)
= al(2)al(y)[a(2), a(y)] + ol (2)[a(2),a’(y)la(y)
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and since A(Y)(z) and A()(z) have spacelike tails, we have apparent interference between
particle numbers at spacelike separation (though not for the vacuum state of course, which is
an eigenstate of all number operators, associated with eigenvalue zero).

Spacetime localization?
Returning to the local field operators ®(x,t), now explicitly including time-dependence, we find
that (where x := (x,t))

B(x) = @(vh) = @ (T (M)&) (184)

where we introduce the (improper) position-time eigenstate &, to be associated with the eigen-
value z = (x,t), and now treat ® as a function on #H rather than S. We can naturally extend
our three representations to investigate the form of &,. In the phase-space representation, this
extension leads to

Eo(z) = 26D (2 — 20); e, (€) =0 . (185)

In the positive-frequency representation, we have
$(@) = 6 (x — ao). (186)

Both are tantalizing in their elegance! Clearly, the position-time eigenstates take the interpreta-
tion suggested by their name in the phase-space and positive-frequency representations. In the
Newton-Wigner representation,

NW () = V2476 (2 — ) = / Atk \/2kge™ k- (@=20) (187)

The state ¢ ) = ) (m)&, is the projection of the position-time eigenstate &, onto the one-
particle structure associated with the Hamiltonian A = v/P2 + m?2. We may wonder whether
there might be a spacetime representation (F4(H),W,I',v) of the free bosonic field in which
H = L*(R*) and we can make sense of the field operators ® (£,). This possibility will be
explored another time.

Newton- Wigner localization

If we adopt the Newton-Wigner standard of localization, with (improper) position eigenstates
®x,, then we can make sense of the creation or annihilation of genuinely localized single-particle
states. The field operators associated with these ladder operators are (using the positive-
frequency representation)

VM (x0) = @ (K7'eld)) = ag (o)) +al,, (61)) (188)
_ 3 1 ik.x ik.xg t 1 ik.x —ik.xg
= /d k !a(+) <2w(k)€ ) e +agy <2w(k)e > e ] (189)
_ / 0¥k [a () ™ 1 af (k) =] (190)
= o (Vaarkie)) (191)
= Var (A%) ®(x0,0) I (A%yl = V2 (-V2, +m?)T ®(x0,0). (192)

These field operators also commute at spacelike separation; we use (178) and the fact above
that ®(NVW)(x) and ®(x) are related by a unitary transformation. Since local interactions are
implemented by polynomials in ®(K ~'4,) # ®(K~'¢,), interactions cannot be interpreted as
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strictly local (in space) if we take ®(N"W)(x) and not ®(x) as our local field operators. We’ll see
this explicitly in the Hamiltonian, below.

The momentum field operators
We can similarly reverse-engineer the momentum field operators Ilg(x,t). We find that, in the
positive-energy representation (and similarly for the others),

Ho(z0) = Od(zo) = —i / &3k “’(Qk) [a(k)e*“f'xo—aT(k)e“ﬂ'xOLO:w(k) (193)

= a z’A/d3k ghlomea) +al z‘A/dSk g tlome0) (194)
= 4 2w(k) ) 2w (k)

ko=w(k) ko=w(k)
- @[K;l (—AAH)(x—xO)ﬂ (195)
_ 1 (g
- <I>[K+1 (qu,z)(xmtO)(x,t))} (196)
— T(A)® [K;l (iw((:(ito)(x,t))]F(A)_l (197)

= /=V2, +m? @K (itxou))] - (198)

We may also infer from (196), the definition of the positive-frequency map K., and the fact
that 1/1((:;) to)(x,to) = %A‘lé(‘g) (x — xq), that

s (xo) = ® (o, A6 (x — xo)) : (199)

which we would be led to believe by analogy with the simple harmonic oscillator (for which
P =®(J(1,0)) = ®(0,mw)). It may now be checked that

[@(2), g (y)] = Oy [B(2), D(y)] = i0p Az —y), (200)
so that for 2° = y° =: ¢, we have the familiar equal-time CCRs:
[B(x, 8), o (y, £)] = i A(x — y,0) = 6P (x — y). (201)

The Newton-Wigner “local” field operators also have associated momentum field operators.
These are given by

T (x0) = Ta(K  ay) = 0P (K o) (202)
T(A)® (K (igx,)))T(A) 7, (203)

which, it may be checked, are related to the standard momentum field operators Ilg(xg,0) by

1

6™ (xp) = VAT (43 ) Ty (x5, O)T (Aa)*l . (204)

It is important to note that, according to (192) and (204), the Newton-Wigner “local” field and
momentum field operators are related to the standard local field and momentum field operators,

respectively, in the same way; viz. by I' (A%) If follows from this that a transformation between

the standard local and Newton-Wigner “local” field operators does not mix creation and anni-
hilation operators. The upshot is that the Newton-Wigner vacuum is the same as the standard
vacuum, and so (as we would expect) the standard and Newton-Wigner Fock representations are
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unitarily equivalent. (See Halvorson 2001 for a discussion of some apparent advantages of the
Newton-Wigner representation, such as the fact that, for any compact region G C R3, the Fock
space factorizes: F4(L?(R?)) = §+(L*(G)) ® F+(L?(G)), where G is the complement of G.) As
we shall below, the same cannot be said for two standard Fock representations associated with
different rest masses—precisely due to the fact that the local field operators and momentum
field operators transform differently.

The free field Hamiltonian
In terms of momentum ladder operators, we have already seen that the free field Hamiltonian is

H= / d*k w(k)a'(k)a(k). (205)

We may re-express H as a function of ladder operators associated with the states 1y,. First
notice that the momentum eigenstates satisfy

A = e = [y VEARAD) x . 0)ee. (206)

It follows that

S

2w(k)al(k) =

" <\/2w ) ) (207)

d3y 21AA<+) (x—y, O)) iky (208)

APy 2I' (A) o (y)T (4) 7 Y (210)

[dva
= [ @y ar e, (A - y.0) T ()t (209)
/

where we use the shorthand af(x) := az ) (1&,& )) And so

w(k)al(k)a(k) = / d*x / Ay 20 (4) af (x)a(y)[ (A) 7 e =Y, (211)
from which it follows that
H= /d3k w(k)al(k)a(k) = /d3X oI (A) af (x)a(x)I (A) 1. (212)

We now note that (using (152) and (197))

al(x) = % @ (Kel) —ie (K7 tiwl”)| (213)
_ % [®(x) — iD(A) " Ta(x)T(4)] (214)

to obtain )
al (x)a(x) = 1 ®(x)? +T'(A) Mg (x)’T(A) : (215)

where we impose normal ordering to avoid an infinite additive constant. By substitution, we
obtain

H= /d3 :7H 2+ F(A)@(X)ZP(A)”:. (216)
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But
P(A)2(x)T (4) " = (D(A)2()T (A7) =@ (K (Au))” = (V-v2+ m(x) . (217)
and we use the fact that

/d3x (x/—VQ + m2<I>(X))2 - /d3x O(x) (—V2 +m?) B(x) (218)

to finally obtain the familiar expression

H= /d3x : %Hq)(xf _ %@(x)v%(x) + %m2<19(x)2 . (219)

The equation of motion for the quantum field |¥)(¢) is given, as usual, by
0)(t) = e~ o 40T ) (0) = ¢ s O o), (220)

where the Hamiltonian density H(zx) is defined as

H(z) = %Hcp(x)Z — %@(x)VZCI)(x) + %mQCD(a:)Q . (221)

We can also express the Hamiltonian in terms of the Newton-Wigner “local” field and mo-
mentum field operators. We find, using (192), (204) and (216), that

H = / d3x 1:F(A%)—lrIEI,NW’(><)2r(A%) + D(A2)WN™)(x)20(A2) ! (222)

1

both terms of which describe interactions Wthh are nonlocal according to the Newton-Wigner
standard of localization. This is down to A% and A~2 both being anti-local operators.

IR

6.7 Inequivalent representations

Unitarily inequivalent representations arise from two sources: choosing a different vacuum state
and imposing a different dynamics.

Alternative choices for the vacuum
Choose any orthonormal basis {;} for the one-particle structure . Then the vacuum v chosen
above satisfies, for all 7,

dr(I1(&))v = a' (&)a(&)v = 0; (224)

i.e. we have no particles in any state. We can write v in terms of occupation numbers for the &;:
Vv = |01,02,03,...>, (225)

where ‘0;” indicates that d['(I1(&;))v = 0. The expression (225) suggests Ngo = continuum-many
alternative states, yet we know that the Fock space §4(H) has a countable basis. So, like
the infinite spin-chain, we can only represent countably many of continuum-many prima facie
possible states in the same separable Hilbert space.

31



An alternative “vacuum” v’ may be defined by choosing a natural number n € N such that
V' =ny,ne,ns,...). (226)

(We also have to define rather strange ladder operators such that a(&;)r’ = 0.) Any state acces-
sible from ¢/ with arbitrarily many finite applications of ladder operators will remain orthogonal
to r—indeed to any state in the Fock space defined above. Therefore the Fock space defined on
V' provides a representation which is disjoint from the Fock space defined on v.

Alternative dynamics

The fact that the field with nontrivial dynamics cannot be represented in the corresponding
free field’s Fock space is the upshot of Haag’s Theorem; but we needn’t even consider nontrivial
dynamics here. Consider instead a simple change in the single particle’s rest mass my — mo
(see Duncan 2012, SEction 10.5). In the one-particle structure, this corresponds to a change in
the single-particle Hamiltonian:

Ay i=\/=V2+m? > A = /=V2 + mi, (227)

which, we might think, in analogy with the simple harmonic oscillator, may be implemented in
the field theory by the transformations

B(x) F<A2A é) ()F<A§A15)_l;

Mo(x) = F<A§AIQ)IH¢( )T <A Ay 2>

az(k) = % (\/ZTEE > a1 (k) —|—% <\/$Et \/ ; ) aj(k);  (229)
ab(k) = % (\/Z?Et > az (k) +% Q/Z?Et \/ ) . (230)

Clearly, the vacuum v, for the a; (k), aq 1(k) is not a vacuum for the as(k ), ay 1(k), since az(k)v1 # 0
for all k. In fact, we are led to believe that the first vacuum vy contains infinitely many of the
particles associated with the second vacuum s, and vice versa. We find that

(w1 (k) — wa(k))?
4LL)1 (k)WQ (k)

(228)

-
-

This leads to the new momentum ladder operators

1(k

N w
wo(k
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) ) ) (k)
) ) ) (k)
) ) ) (k)
) ) )\ (i)

(v1,dDy(k)vy) = §3(0). (231)

The factor 63 (0) is due to our using ladder operators of improper eigenfunctions; by putting the
field in a box and imposing periodic boundary conditions, this factor becomes L3, the volume
of the box. But still this entails that

) = Y Qi) =1 Y, Bl o o
4w1
ke 73 ke 773

even for finite L. In perturbation theory, this is expressed by an ultraviolet divergence in the
contribution provided by Ho — Hy = (m% m1 ) [ d>x ®(x)? to the vi-to-v; vacuum transition.
(These show up in the Feynman path integral as a divergent series of bubble diagrams.) But all
states accessible from vy and all states accessible from v, have finite energy (albeit arbitrarily
large). Therefore we must conclude that 11 and v5 belong to disjoint representations.
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