
On Spacelike Correlations in Algebraic Quantum Field
Theory

J. Butterfield: for Philosophical Aspects of QFT on 4 Feb 2020 ...

I will review some conceptual aspects of non-local correlations in algebraic quan-
tum field theory (AQFT) on Minkowski or curved spacetime: viz. some aspects of
the violation of the Bell inequality in AQFT. This summary will involve:

1. Reviewing a few very basic ideas of AQFT, emphasising the three conditions
of relativistic causality which have been much studied in Minkowksi spacetime;
viz. primitive causality, spacelike commutativity, and the spectrum condition;
(Section 1).

2. Discussing how these conditions can be adapted to a curved spacetime. Here the
main topic is the spectrum condition, and I shall report a recent development
about it by Hollands and Wald; (Section 2).

3. Reviewing the generic violation of Bell inequalities in AQFT. I will confine
myself to reporting some results up to 2000 by physicists (especially Landau,
Summers and Werner) and philosophers (Clifton and Halvorson). The broad
picture is that for most algebraic quantum field theories on Minkowski space-
time, maximal violations of the Bell inequality are endemic (Section 3).

4. Making some remarks about the prospects for “peaceful co-existence” between
relativity and quantum theory. In particular, this will include some discussion of
how Section 3’s results relate to the assumptions of Bell-type theorems; (Section
4).

Some references (among many possible!):— Landsman’s review of Haag’s book, [1],
supplements Section 1. Section 3.2 of my paper, [2], supplements Section 2. Pa-
pers [3,4] by Clifton and Halvorson, which are reprinted as Chapters 6 and 7 of his
posthumous Quantum Entanglements: Selected Papers, supplement Sections 3 and 4.
Landsman’s [5], and Section 4 of my paper, [6], also helps to supplement Section 4.

1 AQFT introduced

The basic idea of AQFT is to associate with each bounded region O of Minkowski
spacetime an algebra A(O) subject to certain axioms. Observables are self-adjoint
elements of these algebras. The basic idea of the association of an observable A with
a region O is that A is a physical quantity pertaining to that part of the field system
lying in O, and so is measurable by a procedure confined to O. On the other hand:
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a state is taken as an expectation functional on all the algebras. (We can recover
Hilbert space representations from this abstract setting, primarily by the GNS con-
struction.) Thus in a sense states are global, while observables are local; the global
nature of states will be further emphasized in 1.2 below.

The first thing to say about this basic idea is some anxious warnings!: as follows.
(1): Not the commitment to the framework applying to arbitrarily small length

scales: O can be arbitrarily small. One might say: this hardly fits with the EFT
vision we learnt from e.g. Ken Wilson...

(2): A ∈ A(O) is to mean that we could measure A by a procedure confined to
O. But: the association of quantities with regions is vague, and operationalist—and
Bell would say that it is using the unspeakable word ‘measurement’ ...

(3): Note that the apparatus is not represented explicitly. Agreed; that is hardly
surprising! We do not have a rigorous Lorentz-invariant interacting quantum field
theory in 4 spacetime dimensions: let alone a relativistic account of measurement ...
No one knows whether there is a real ‘collapse of the wave packet’; and if so, whether
it somehow happens ‘along the light-cone’ ... .

(4): Relatedly: nothing that follows will really address the subtleties of ‘improper
mixtures’: i.e. the troubled interpretation if the reduced states of component systems
whose composite system is in a pure state.

(5): We accept the product of arbitrary non-commuting operators: pace those au-
thors who restrict products to commuting operators (cf. the partial Boolean algebra
approach of e.g. Kochen and Specker (1967)).

(6): We impose that expectation functionals are linear on any pair of quantities.
That is of course true of quantum expectations in elementary quantum mechanics,
and the algebraic approach is to that extent at liberty to retain it in its generalized
quantum theory. But recall Bell’s (1966), and the pilot-wave theory’s, animadversions
against it ...

This framework is far from that of usual ‘textbook’ QFT; and as [1] describes,
much effort has been devoted to developing the framework, and to linking it to usual
QFT. But in this paper, we can specialize somewhat: for the most part, we can
assume that the algebras are concrete von Neumann algebras acting on a separable
Hilbert spaceH, and subject to a relatively standard list of axioms. These require, for
example: that the structure of the algebras mesh with the Poincare group symmetries
of Minkowski spacetime; and that there is a unique state Ω, called the vacuum, that
is invariant under all translations.

In the rest of this Section, I will, first, briefly state three of these standard axioms,
namely three which are expressions of the idea of relativistic causality. (It is of course
part of the subtlety of the subject that these are independent of one another ... even
in the context of the other axioms!) Then I will briefly report three theorems that
bring out the ‘global nature’ of states in AQFT.
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1.1 Three formulations of relativistic causality:
(1): The first of our three formulations expresses the Lorentz invariance of the dy-
namical evolution of the field system. We begin by observing that in a heuristic
quantum field theory, using the Heisenberg picture, operators indexed by spacetime
points are subject to Heisenberg equations of motion, while the state is fixed once for
all. But these equations are hyperbolic, on analogy with classical field theories using
hyperbolic dynamical equations; this means one can show, at least unrigorously, that
for any state, all expectation values are determined subluminally, in that the state’s
restriction to the field operators in a region O determines all its expectation values
for operators in the future domain of dependence D+(O). In AQFT, this idea is made
precise as

(i): Primitive causality; the Diamond axiom: We require that A(D(O)) =
A(O). The idea is: if O1 ⊂ D+(O), O1 ∩ O = ∅, i.e. O1 lies in the top half of the
“diamond” D+(O), and A ∈ A(O1), so that we could measure A by a procedure
confined to O1, then we could also instead measure A by a procedure confined to O.
For thanks to the hyperbolic time-evolution, “the facts in O1” are already determined
by “the facts in O”.

(2): The second formulation expresses the physical idea that observables associated
with spacelike-related regions should be co-measurable; (especially since in AQFT
‘associated with’ is meant to imply ‘measurable by a procedure confined to’). Ele-
mentary quantum theory suggests that co-measurability requires that the observables
commute.

This last is of course made a bit more precise in elementary quantum measurement
theory: where the no-signalling theorem says that a non-selective Lüders rule mea-
surement of A cannot affect the measurement probabilities of B, provided [A,B] = 0.
But we should recall:

(a) warning (4) above, about the subtleties of ‘improper mixtures’: and
(b) how the violation of the Bell inequality suggests there is indeed case-by-

case ‘spooky action at a distance’—cf. also below ....
Anyway: we have

(ii): Spacelike commutativity (also called micro-causality): Observables asso-
ciated with spacelike-related regions commute. In heuristic quantum field theory,
treating fermions requires one to also allow anti-commutation; but in AQFT, one
distinguishes field algebras and observable algebras, and for the latter imposes only
spacelike commutativity. Thus one requires: if O1, O2 are spacelike, then for all
A1 ∈ A(O1), A2 ∈ A(O2) : [A1, A2] = 0.

(3): The third formulation is perhaps the most direct expression of the prohibition of
spacelike processes. It says:

(iii): Spectrum: The field system’s energy-momentum operator has a spectrum
(roughly: set of eigenvalues) confined to the future light-cone.
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1.2 Three theorems reflecting the global nature of states:
(1): The first, and fundamental, result is:

Theorem (Reeh-Schlieder): Let O be an open bounded set in spacetime.
Then Ω is a cyclic vector for A(O); i.e. the set of vectors A(O)Ω is dense in H. Also,
any state with bounded energy is cyclic.

Remark: So even with O a tiny neighbourhood of some point p, we can approx-
imate an arbitrary state of the field by acting on Ω with elements of A(O): even a
state which, far way from (spacelike to) p, is quite unlike Ω. Very surprising! Cf
comment (A) in Section 4.

(2): A closely related result is (Haag, Local Quantum Physics, Thm II.5.3.2):
Theorem: If O has non-empty causal complement, then A(O) does not con-

tain an operator that annihilates the vacuum: that is, if AΩ = 0 for some A ∈ A(O)
then A = 0. (Nor does it contain an operator that annihilates any state vector with
bounded energy.)

So if (A1−A2)Ω = 0 then A1 = A2. So Ω is able to ‘discriminate’ elements of any
local algebra (and is therefore called a ‘separating vector’). Furthermore, it follows
immediately (assuming the usual Born rule for qauntum probability) that:–

Any possible outcome of any possible local measurement procedure has non-
vanishing probability in the vacuum.

For: with P ∈ A(O) representing the outcome of the procedure, P 6= 0 implies
that PΩ 6= 0, so that || PΩ ||2 6= 0.

(3): Finally, a result about how the vacuum encodes strict correlations, in the same
manner as the singlet state in EPR discussions. For the result, and the analogy
with the singlet state, cf. Redhead (Foundations of Physics, 25, 1995, pp. 123-137;
Theorem 4’):

Theorem For any two spacelike separated bounded open regions O1and O2:
∀ε > 0, ∀ projectors P1 ∈ A(O1), ∃ a projector P2 ∈ A(O2), s.t. Ω(P1P2) >
(1− ε)Ω(P2).

Recalling that states are linear functionals on observables and that the projectors
P1 and P2 commute since their regions are spacelike, we see that this is a statement of
strict correlation between the projectors (apart from the ‘epsilonics’). Two remarks
about this result:

(i): again, the vacuum could be replaced by any state with bounded energy;
(ii): for the analogy between the vacuum—or any state with bounded energy—and

the singlet state in Bell discussions, i.e. its violation of a Bell inequality, cf. Section
3.
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2 Formulating relativistic causality in curved space-

time

Broadly speaking, by the mid 1990s quantum field theory on curved spacetime could
be formulated in as satisfactory a manner as heuristic quantum field theory on
Minkowski spacetime, subject to three conditions. (Cf Wald, Quantum field the-
ory on curved spacetime (1994).) These conditions are:

(a): The curved spacetime is fixed, i.e. there is no back-reaction of the field on
the spacetime geometry; (though the curvature can be non-constant).

(b): The field is linear (i.e. not self-interacting).
(c): The spacetime is such that the corresponding classical field theory has a

well-posed initial value problem. For our purposes, we take this to mean that the
spacetime is globally hyperbolic. (This means there is a Cauchy surface, i.e. a space-
like slice Σ whose domain of dependence D(Σ) is the whole spacetime; this is a strong
condition of causal “good behaviour”.) Besides, this success was based on adapting
the algebraic approach to curved spacetimes (Wald, p. 74f, 84). Thus we naturally
hope to carry over directly to such spacetimes 1.1’s three Minkowski formulations,
(i) to (iii), of relativistic causality.

Indeed, there is no problem about (i) and (ii), primitive causality and spacelike
commutativity. Global hyperbolicity prevents any “funny business” in the causal
structure, such as closed causal curves, so that these conditions can be carried over
word for word: ‘domain of dependence’, ‘spacelike’ etc. now just refer to the curved
spacetime’s structure. Besides, the same considerations apply to the case of interact-
ing fields, i.e. to the effort to overcome the limitation (b) above. Thus recent for-
mulations of interacting quantum field theory on curved spacetimes use the algebraic
approach, and again there is nothing to prevent carrying over these two conditions
intact.

But there is a problem about the spectrum condition, (iii): though it is a problem
that has recently been largely solved. Since the solution is important, and bears on
the project of formulating interacting quantum field theory in curved spacetime, I
will give some details. (Section 3.2.2 of my [2] gives some references—and thanks to
Wald for teaching!)

In effect, the problem was that no one knew how to define the spectrum condition’s
topic, i.e. the energy-momentum operator, in a curved spacetime: all one knew
was how to define a class of physically reasonable states that gave a well-defined
expectation value. But in recent years, the problem has been solved by exploiting a
mathematical theory, microlocal analysis. The problem of definability arises from the
fact that the energy and momentum of the field are encoded in the stress-energy tensor
T̂ , which involves the square of the quantum field φ̂. But φ̂ is a distribution, and the
product of distributions at a single spacetime point is mathematically undefined; so
that some prescription is needed in order that T̂ make sense.

Until about 2000, it was not known how to do this “directly”, i.e. by enlarging the
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algebra of observables to include some suitably smeared version of T̂ ; so one aimed
only to characterize a class of physically reasonable states ω for which the expecta-
tion value < T̂ >ω was well-defined. (This was work enough since, in particular, the
standard prescription for Minkowski spacetime (normal ordering, which corresponds
to subtracting off the infinite sum of the zero point energies of the oscillators com-
prising the field) depends on a preferred vacuum—which is generally unavailable in a
globally hyperbolic spacetime.) In fact, there is a compelling characterization of such
states. Since it builds on Hadamard’s work on distributional solutions to hyperbolic
equations, they are called ‘Hadamard states’.

But in recent years, various authors have exploited microlocal analysis so as to
achieve the original goal (“direct” in the above paragraph). Indeed, they have defined,
not just the energy-momentum, and stress-energy operators, and so the spectrum
condition, our (iii); but also the other products of field operators and their derivatives,
and polynomials of such products, and time-ordered products, that are crucial in order
to formulate the perturbation theory of an interacting quantum field theory.

3 AQFT violates the Bell Inequality

Let us return to Minkowski spacetime. The non-local correlations encoded in the vac-
uum (and many other states) of AQFT have been shown, by authors such as Landau,
Summers and Werner, to support a violation of Bell-type inequalities. This violation
is endemic in the sense that it occurs for generic obervables (with the right spectrum)
on generic (sorts of) regions for generic states, in most rigorous AQFTs. This Section
gives a few details about this.

First, there is a sense in which it is endemic that the violation is maximal. To
explain this, we first recall that it is convenient to consider a local ‘classical’ or ‘hidden
variable’ model of a correlation experiment that uses ‘left observables’ A1, A2 and
‘right observables’ B1, B2 that are, not projectors, but rather self-adjoint contractions.
Thus given a projector E, we define A := 2E−1, so that −1 ≤ A = A∗ ≤ 1. Then the
Bell inequality, for a state φ taken (as in algebraic quantum theory) as an expectation
functional, and for left and right algebras of observables A,B, says:— For any self-
adjoint contractions Ai ∈ A, Bj ∈ B, i, j = 1, 2: | φ(A1(B1 +B2) +A2(B1−B2)) |≤ 2.
Then the maximal correlation of A and B in the state φ is defined to be:

β(φ,A,B) := sup
1

2
φ(A1(B1 +B2) + A2(B1 −B2))

where the supremum is taken over all self-adjoint contractions Ai ∈ A, Bj ∈ B. So
the Bell inequality is: β(φ,A,B) ≤ 1. In fact, for any state φ on any C∗-algebra with
commuting subalgebras A and B, there is a more permissive bound (Cirel’son 1980):
β(φ,A,B) ≤

√
2.
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So in the context of AQFT, we say that a state φ and two algebras A(O1), A(O2)
maximally violate the Bell inequality if β(φ,A(O1),A(O2)) =

√
2. We can now state

how this maximal violation is endemic in AQFT. Namely: Summers and Werner
show that for most rigorous AQFTs, for all pairs of regions, O1,O2 that have a cer-
tain shape (e.g. each is a double cone) and a certain spatiotemporal relationship (e.g.
they are tangent to each other), there is maximal violation of the Bell inequality for
all normal states. (Roughly speaking: a normal state is a density operator.)

Furthermore: If we do not require a maximal violation, then violation is endemic
in two other senses. The first relates to which quantities give the violation; the second
to which states, i.e. how generic a state, gives a violation.

(1): Roughly: Landau (1987) shows that we can be ‘as choosy as we please’ about
which quantities give the violation. That is: it follows from his results (Prop 3 and
5 of Physics Letters 120A,pp. 54-56) that for O1,O2 strictly spacelike, and any
quantities Ai ∈ A(O1) and Bi ∈ A(O2) (with [A1, A2] 6= 0 6= [B1, B2], and each with
spectrum ±1), there is a state violating the Bell inequality.

(2): Roughly: Clifton and Halvorson (2000) show that once we pick a Hilbert
space H carrying a representation of a AQFT, either on Minkowski spacetime or on
any globally hyperbolic spacetime, and any two open spacelike-related regions O1,O2:
there is an open dense subset of the unit ball of H, i.e. a set of unit vectors of H,
each of which, considered as a state, violates the Bell inequality. That is, writing φ
for the state: β(φ,A(O1),A(O2)) > 1. (This summarizes Propositions 1, 3, 4 of their
[3].)

4 Peaceful co-existence: some themes

I confine myself to making four points, labelled (A) to (D). All are supportive of
the broad idea that there is “peaceful co-existence” between AQFT and the idea of
relativistic causality—but I admit, there are plenty of issues yet to explore! The first
three points are important. The fourth is my personal perspective on a line of work,
principally by Redei, about the fate, within AQFT, of Reichenbach’s Principle of the
Common Cause.

The first two points bear more on “separability” than “locality”. The first (due
to Clifton and Halvorson [4]) is about the Reeh-Schleider theorem, and the impossi-
bility of destroying entanglement. The second point, due to Landsman [5], is rather
different: it uses the apparatus of algebraic quantum theory to argue for “peaceful
co-existence” between Bohr and Einstein!

The third and fourth are each about the relations between AQFT’s Bell inequality
violation, and the assumptions of Bell-type theorems; and so bear more on “locality”
than “separability”.
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(A): Reeh-Schleider and the indestructibility of entanglement:— Part (1) of Section
1.2 stated the Reeh-Schleider theorem. At first sight, it suggests action-at-a-distance,
as follows: for any given state φ—perhaps specified in terms of its expectation values
for observables in a region spacelike to a point p—there is an arbitrarily close state
that one can “produce” by acting on the vacuum Ω with some element A of the
algebra A(O) associated with a tiny neighbourhood O of p. That is: A can be chosen
to make AΩ arbitrarily close to φ.

Clifton and Halvorson (Section 3 of [4]) reply to this threat, essentially by empha-
sising that in general A will represent a selective operation. I take it that this reply
is orthodox. In any case, it assimilates the situation to the familiar one, whereby the
no-signalling theorem is considered compatible with the change in statistics arising
from a selective projective measurement. (And so it leads to the themes in (C) and
(D) below.)

Clifton and Halvorson go on (Section 4 of [4]) to discuss:
(i) how local operations in a region O cannot disentangle the field system’s

state in O from that in O’s spacelike complement; (this follows from the type III1
structure of local algebras, especially in the light of a characterization of type III1 by
Connes and Størmer); but also

(ii) how the indestructibility of entanglement in (i) is not a practical problem.

(B): Bohr vs Einstein Revisited:— Following [5], I will: (i) state a theorem (due to
Raggio and Bacciagaluppi), and (ii) urge the sense in which it makes peace between
Bohr and Einstein.

Beware, on both counts! (i): The statement is rough: I will not specify that a
state being separable requires only that it be in the w∗ closure of the convex hull of
the product states; nor that the tensor product used should be the projective one.
(ii): As Landsman discusses, the peace is not complete ...

(i): Theorem: The following three conditions on two C∗-algebras A,B are equiv-
alent:

(a): each state on A⊗ B is separable i.e. a mixture of product states;
(b): A or B (or both) is commutative;
(c): each state on A⊗ B satisfies the Bell inequality.

(ii): Now recall Einstein’s belief that (roughly speaking!) physics requires each
subsystem to have its own real state (Trennungsprinzip), and Bohr’s belief that
(roughly speaking!) physics requires a classical description of the measurement ap-
paratus. It is natural to translate these beliefs, respectively, into:

(1): For each pure state of a joint system, its restriction to a subsystem is
pure;

(2): The algebra of observables of a measurement apparatus is commuta-
tive; while a quantum system has a non-commutative algebra.

Punchline:— Now let us apply the Theorem to a joint system comprising a mea-
sured quantum object A, and a measurement spparatus B. Imposing (2), we infer
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that condition (b) holds; and therefore, so do (a) and (c). In particular: (a) implies
(1). Thus in this framework, “Bohr implies Einstein”.

Similarly conversely, “from Einstein to Bohr”. that is: Imposing (1), and so (a),
we infer (b); and so, assuming A is non-commutative, we infer (2).

(C): Outcome dependence in AQFT:— In discussions of quantum non-locality, it is
usual to say that the assumption of a Bell theorem that is shown false by the violation
of the Bell inequalities is (in Shimony’s jargon) outcome independence, rather than
parameter independence. (‘Usual’ in the sense of ‘orthodox’ ! That is: We here
set aside the pilot-wave (causal) interpretation of quantum theory: for which the
“culprit” assumption would instead be parameter independence.)

As I see matters, AQFT does not change this situation. That is: this usual/orthodox
verdict against outcome independence can be maintained, also in AQFT. (In fact,
AQFT encodes parameter independence in the fact that different local algebras have
a common unit.)

(D): SEL in AQFT:— Finally: my own wee contribution (cf. [6], Section 4) relates
to (C). More specifically, it relates to a line of work (principally by Redei) about the
fate, within AQFT, of Reichenbach’s Principle of the Common Cause (which is close
to the outcome independence of the Bell theorem).

(1) I consider a precise formulation suitable for AQFT of a physical locality
condition, called ‘stochastic Einstein locality’ (SEL), which was introduced in the
Bell theorem literature as suiting Minkowski spacetime. The intuitive idea of SEL is
that for an event E occurring in a spacetime region R, the probability at an earler
time (spacelike hypersurface) t that E occurs should be determined by history (i.e.
the events that occurred) within that part of the backward light cone of R that lies
before t; i.e. by history within C−(R) ∩ C−(t). More precisely, it turns out that this
intuitive idea has two inequivalent formulations; both generally and in the versions
suitable for AQFT.

(2) I argue that one of these formulations follows from the AQFT axioms
(especially Isotony and Diamond); that the second is endemically violated by AQFT,
as a result of the strong non-local correlations coded in the vacuum state (or any
vector state of bounded energy); and that this violation corresponds to the endemic
outcome dependence discussed in (C) above.
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