
Lecture 1 Handout: Classical Mechanics

Bryan W. Roberts

1. The Classical World

“Theoretical physicists live in a classical world, looking out into a

quantum-mechanical world. The latter we describe only subjectively, in terms of

procedures and results in our classical domain.” (Bell; 2004, p.29)

How we understand classical mechanics (or the “classical domain”) depends on how

we answer a number of subtle questions. Some of them worth thinking about as we

proceed are the following.

• What kinds of things make up the “classical domain”?

• If it contains forces, can those forces depend on higher derivatives than veloc-

ity? Can fundamental forces be non-conservative?

• Is the “classical world” deterministic?

• Must the things that make up the classical world be in some sense “locally”

defined?

• Must the things that make up the classical world be “definite” in some meaning

of the word?

In physics, classical mechanics consists in a collection of mathematical

tools, laws, and interpretation schemes that allow one to represent and make

predictions about the world. Beginning its life around the early 17th century with

the work of Galileo, and continuing through the seminal works Newton and Leibniz

in the late 17th century, and developed Lavoisier, Lagrange, Legendre, Hamilton,

Jacobi, and many others all the way through to the present day. Much of our deepest

knowledge about classical mechanics was developed in fact developed in the second

half of the 20th century, and indeed our understanding of the theory is still developing.

Viewed in this way, contrary to how Kuhn (1962) and other “revolutionary”

philosophers of science narrate theory change, classical mechanics is not an ar-

chaic or “false” theory that was overthrown in light of the modern para-

digm. There are indeed some senses in which some of the original uses of the theory,

such as Newton’s description of gravitation, are now known to be mere approxima-

tions of what actually occurs in nature. However, in many other senses, the techniques

of classical mechanics are still thought to be correct today, having simply been ab-

sorbed into modern physical theories like general relativity and quantum mechanics.

For example:
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• F = ma exists in general relativity, It describing the force needed for a test

particle to deviate from a geodesic trajectory: F a = m (ξn∇nξ
a).

• Action principles and the Euler-Lagrange equations are used in a variety of

modern extremisation problems: to calculate geodesics in general relativity,

dynamical evolution in quantum field theory, and many other things.

• Hamiltonian mechanics contains the essential structure of quantum mechanics,

through appropriate quantisation, and other ways.

Classical mechanics remains alive and well in our most modern approaches to fun-

damental physics. It is sometimes even treated as the conceptually clear touchstone

against which we can interpret the conceptually messy quantum mechanics. So, we

had better do our best to make it so!

2. Force mechanics

2.1. Particles in space. When Newtonian mechanics was first formulated, it was a

theory about forces pushing particles around in space1. It is helpful to begin by

thinking in this way. Take a particle’s position in space to be described as a point in

a smooth n-dimensional manifold2. Often we take that manifold to be R3, when we

imagine that the particle could occupy any point in 3-dimensional space. But really

this space could be any smooth manifold M . For example, if we are considering

the position of an object constrained to the surface of the earth, then we could take

M = S2 to be a 2-sphere. Multiple particles in space will then be expressed in terms

of multiple points in M .

For the sake of simplicity, our discussion will involve just a single particle.

And, we will take our manifold to be the familiar M = R3, in which the position of

the particle can be described by a vector x = (x1, x2, x3) in Euclidean coordinates,

keeping in mind that more general manifolds are possible as well.

A curve in a manifold M is a smooth function γ : I →M of some open interval

I ⊆ R. A curve can be used to describe how the position of a particle changes over

time, by associating each time t ∈ I with a position γ(t). In this case it is often called

a trajectory. Since our manifold in this section is M = R3, we will denote curves

in this section as x(t). We use the “x-dot” notation to describe the velocity of a

curve, writing ẋ(t) := d
dt

x(t) as shorthand for the triple, ( d
dt
x1(t),

d
dt
x2(t),

d
dt
x3(t). We

similarly write the acceleration “x-double-dot” as, ẍ(t) := d2

dt2
x(t).

1We will soon see some problems with this picture; for more, see Butterfield (2004).
2Manifolds are a central concept of physics and of differential geometry. We first define an n-chart
on a point set M to be an injective mapping ϕ from a subset U ⊆ M to an open subset of Rn.
This allows one to assign “coordinates” to subsets of the set M . Two n-charts ϕ1 and ϕ2 are called
compatible if either their intersection U = U1 ∩ U2 is empty, or else it is an open subset of Rn such
that ϕ1 ◦ ϕ−1

2 : ϕ2(U)→ Rn and ϕ2 ◦ ϕ−1
1 : ϕ1(U)→ Rn are both smooth (infinitely differentiable).

A smooth, n-dimensional manifold M is then a point set M together with a set of n-charts C such
that, (1) any two n-charts are compatible; (2) the domains of the n-charts cover M ; (3) (Hausdorff)
distinct points p1 and p2 admit charts containing them such that U1 ∩ U2 is non-empty; and (4)
(maximal) every n-chart that is compatible with all the charts in C is an element of C.
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2.2. Forces and potentials. To introduce forces, a little more mathematical struc-

ture is needed. The bare manifold M does not have a notion of length associated

with it; but we represent the strength of a force using the length of a vector. So, a

manifold with a metric is needed. We will adopt the manifold R3 with the Euclidean

metric.

As a simple example of forces in action: a particle above the earth is postulated

to be “pulled” towards the centre of the earth by the force of gravity F(x, ẋ) with

magnitutde −1/x2, where x2 := x · x is the square of the radial vector x from the

centre of the earth in the Euclidean metric. A force at a point is represented

by a vector: its strength is characterised by the vector’s norm, and its direction is

characterised by the vector’s angle.

A few comments on subtleties: first, what would the gravitational force on a

particle as it approaches the centre of the earth, x = 0? By the definition above, it

would diverge to infinity. This is not allowed by our convention that F take finite

values in R3×R3. Thus, in practice, infinite forces are often removed by removing

the point-particle idealisation, and instead representing the earth and particle as hard

spheres. This also has the advantage of capturing the fact that electromagnetic forces

that eventually overcome gravity at short distances and “push” the two particles

apart. That said, it may still of some philosophical interest to see what happens

when we allow a force F to be infinite. One effect, it turns out, is that it allows for

the appearance of rampant indeterminism through ‘space invaders’; but, there are

ways for indeterminism to occur with finite forces too.3

Second, the postulate that a force depends only on position and velocity

is an empirical postulate, sometimes taken to be a basic presumption of classical

mechanics. However, it too can be relaxed: nothing prevents us from considering

forces that depend on higher derivatives and on time as well, and indeed this is

sometimes done. However, it is also possible to motivate the standard convention

that forces depend on velocity from below: once we come to define energy, it is

possible to show that it is required by the assumption that energy be non-negative,

or at least bounded from below.4

There is one very important class of force that we must introduce in order

to understand how forces relate to other concepts in classical mechanics. A force F

is called conservative if there exists a function U : R3 → R (or more generally from

an arbitrary manifold M to R) such that,

F = −∇ · U

3See Earman (1986) for an overview of some ways that indeterminism can happen in classical
force mechanics, including space invaders; it is freely available here: http://pitt.edu/~jearman/

Earman_1986PrimerOnDeterminism.pdf. See Norton (2008) for another (particularly simple) of de-
terminism’s failure on a dome in a gravitational potential. A quick overview of this example is here:
http://www.pitt.edu/~jdnorton/Goodies/Dome/.
4This is a consequence of what is known as “Jauch’s theorem”. See Jauch (1968, §12.5 and §13.5).

http://pitt.edu/~jearman/Earman_1986PrimerOnDeterminism.pdf
http://pitt.edu/~jearman/Earman_1986PrimerOnDeterminism.pdf
http://www.pitt.edu/~jdnorton/Goodies/Dome/
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The function U is then called the (scalar) potential associated with F.

Not all forces are conservative. For example, notice that any force that de-

pends on velocity or time cannot be conservative. However, many Newtonian systems

do have this property. A conservative force turns out to imply that no “free work”

can be extracted from a system.5 But more importantly for our purposes, we will

soon see that a conservative system in Force Mechanics is one that can be expressed

in Lagrangian or Hamiltonian form too.

3. Some philosophical questions

• How can an infinite force lead to indeterminism? What (if anything) does this

say about the possibility of infinite forces?

• How can one motivate the assumption that forces depend only on position and

velocity?

• What reasons can (and cannot) be given to motivate the assumption that a

force is conservative?
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5The work along a curve γ in R3 is the sum of the forces along that curve, given by the path integral
W (γ) =

∮
γ
F · dx. If a system is conservative, then one can show that for a closed curve C (i.e. a

smooth map from the circle to R3), the work W (C) vanishes whenever C is a closed curve. This
says that if you complete a circuit that brings you right back to where you started, you will not
have extracted any work in the end. In this sense, being conservative means that there is “no free
work” available. The converse fails: note that a force given by F = ẋ × x) leads to vanishing work
on closed paths, but is not conservative. See Roberts (2013) discussion.

http://philsci-archive.pitt.edu/1937/
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