
Lecture 2 Handout: Classical Mechanics II

Bryan W. Roberts

1. Lagrangian mechanics

The Force Mechanics picture of particles pushed around by forces in the
voidmight be called the “Ruđer Bošković” picture in honour of the Croatian polymath
who advocated it. The picture faces some deep foundational problems that
troubled natural philosophers throughout the 17th and 18th centuries. For example,
it appears to entirely ignore how such particles interact with each other! Is it through
some strange “action at a distance”? And, how do we deal with continuum quantities,
their boundaries, and how they interact?

The Lagrangian approach to mechanics addresses (or at least brackets)
some of these problems. It extends the reach of what kinds of systems mechanics
can discover, while at the same time restricting certain pathological examples in force
mechanics. It also introduces several methodological techniques that are of indepen-
dent interest in both physics and philosophy. The locus classicus for these lessons is
Butterfield (2004).

In the 18th century Lagrange realised that much of classical mechanics could
be derived from a simple principle, that there is a special quantity called “action”
associated with the trajectory of a physical system, and that the only possible tra-
jectories are those along which the action is “stationary”. We shall build up all these
ideas systematically.

1.1. Families of curves in configuration space. Lagrangian Mechanics takes
place on a slightly different “space” than Force Mechanics. We will similarly posit
a manifold M with a (Riemannian) metric, called the configuration space, and
take the state of a system to be represented by a point on that manifold. But we
will now view that state more broadly, to represent the state of the entire system as
a whole. This means that, to describe a single particle in Euclidean space, we use
M = R3, whereas for two particles we useM = R3×R3. The configuration can also be
interpreted quite broadly to represent other quantities, such as the angles of a double
pendulum, or many more abstract things. It can even capture the configuration of
continuous fields, in which case M will be infinite dimensional.

To explain the motion of a system, Lagrangian mechanics asks a slightly dif-
ferent question than we did in Force Mechanics. Instead of beginning with an initial
position and velocity in space and asking what trajectory follows, we ask what curve
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through configuration is travelled to go from one point to another in con-
figuration space. In order to do this, we must first identify the set of all possible
configurations of a system, the configuration space — a dramatically different starting
point from Force mechanics. We will also need some powerful language for talking
about a family of smooth curves between two points in configuration space, and its
properties.

We begin by assuming that the curve that a particle will actually travel is one
member of a smooth one-parameter family of curves, indexed by a parameter
λ ∈ R (Figure 1). Let xλ(t) denote an arbitrary member of the family of curves. Let
us also assume that the function λ 7→ xλ(t) is smooth.

2. Lagrangian mechanics

“Perhaps the most significant conceptual advance [of Lagrangian mechanics] is that
we treat the mechanical system as a whole.”

— Hand and Finch (1998, p.23)

In the 18th century Lagrange realised that much of classical mechanics could
be derived from a simple principle, that there is a special quantity called “action”
associated with the trajectory of a physical system, and that the only possible
trajectories are those along which the action is “stationary”. We shall build up all
these ideas systematically.

2.1. One-parameter families of curves

Lagrangian mechanics asks a slightly di↵erent question about particle motion than
Newtonian force mechanics. Instead of beginning with an initial position and velocity
and asking what trajectory follows, Lagrangian mechanics asks what curve a particle
would have to travel to go from a given point to another given point. In order to
do this, we must first develop some powerful language for talking about a family of
smooth curves between two points and its properties.

We begin by presuming that the curve that a particle will actually travel is an
element of a smooth one-parameter family of curves, indexed by a parameter � 2 R.
Let x�(t) to denote an arbitrary member of the family of curves. Let us also presume
that the function � 7! x�(t) is smooth.

Figure 2.1.: A one-parameter family of curves with common endpoints.

Let C be the set of all curves with compact support1; this is our way of expressing
a sense in which each curve has finite length. A functional on curves is a function
F : C ! R, which assigns a number to each curve. Because functionals are actually

1A subset S ✓ M is called compact if every open cover of M has a finite subcover; the compact
sets on R3 are the closed and bounded regions. A curve � : I ! M has compact support i↵ the
set {�(t) | t 2 I} is empty outside of a compact subset of M .

9

Figure 1. A one parameter family of curves between two endpoints.

Let C be a set of curves with compact support1; this is our way of expressing
a sense in which each curve has finite length. A functional on curves is a function
F : C → R, which assigns a number to each curve. Because functionals are actually
functions of functions, they may seem abstract at first. But you are already famil-
iar with concrete examples of functionals. If you think of smooth curves each
associated with a curved pieces of string, then the length of the string is a functional.
This length functional Λ : C → [0,∞] assigns a length Λ(γ) ∈ R to each curve γ.

Now consider an arbitrary functional Φ : C → R. Whenever we are considering
a family of curves xλ(t), this family will give rise to a family of real numbers in the
range of Φ, namely Φ (xλ(t)). This language allows us to ask questions like which curve
in the family xλ(t) has the shortest length, i.e. the smallest value of Λ (xλ(t)). We
can also talk about quantities such as the rate of change dΦ (xλ(t)) /dλ of a function
with respect to the parameter λ in a family of curves. This tells us about how quickly
the value of Φ is changing from one curve to the next. Given a one-parameter family
of curves xλ(t), a function Φ : C → R of the set of curves on a manifold is said to

1A subset S ⊆ M is called compact if every open cover of M has a finite subcover; the compact
sets on R3 are the closed and bounded regions. A curve γ : I → M has compact support iff the set
{γ(t) | t ∈ I} is empty outside of a compact subset of M .
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be stationary or extremal2 at xλ0(t) if and only if the the value of Φ is constant at
xλ0(t), in that,

(1)
d

dλ
Φ (xλ(t))

∣∣∣∣
λ=λ0

= 0.

As a shorthand, this condition is sometimes written δΦ = 0. Notice that being
stationary is not a property of any individual curve x(t). It is property of a curve
with a family of curves, which describes how a particular curve xλ0(t) is changing
with respect to the entire family. This will be the essential property that we will
shortly use to determine how a system changes.

1.2. Action, Lagrangians, Lagrangian systems. Lagrangian mechanics uses the
concept of a stationary functional introduced above to determine what the path of a
system will be. It does this using the concepts of action and of a Lagrangian.

An action functional for a manifold is any functional Φ : C → R on the set of
curves for which there exists a smooth function L such that,

Φ(x(t)) =

∫ t2

t1

L (x(t), ẋ(t)) dt

where x(t1) and x(t2) are endpoints of a curve x(t). The function L is then called the
Lagrangian associated with Φ.

Why are we concerned with this particular kind of functional? One significant
reason is that it encodes the empirical assumption that action is defined by “local”
facts about a curve. Written as an integral in this way, it consists in “adding up”
the values of some quantity (the Lagrangian) that is locally defined on the basis of
the configuration and velocity variables. In this sense the Lagrangian L is “local”: it
depends on facts at a point. Thus, although the action is a global property of a curve
as a whole, the fact that we express it as the integral of a Lagrangian means it is still
the sum of its locally-defined parts.

Another observation is the space on which the Lagrangian is defined.
The variable x is a point in the configuration space M . But the velocity ẋ is a vector
at that point. The set of all vectors at a point x is called the tangent space TxM

at x. To collect together all the vectors at all the points, we take the disjoint union
of all the tangent spaces of M , which is called the tangent bundle TM . It is itself a
manifold. Formally speaking, the Lagrangian L is a smooth function on the tangent
bundle, L : TM → R.

Just as there was an important, very common class of force in Newtonian force
mechanics, so there is an important and common class of Lagrangian. Suppose that
we are describing a particle in space, and take the configuration space M to be the

2Many texts also use the phrase extremal as a synonym for stationary, and write that a curve xλ0(t)
extremises Φ with respect to the family xλ(t). This is because a zero derivative on a curve means
that Φ achieves a (local) maximum or minimum, i.e. an extremum.
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Euclidean manifold R3. A Lagrangian on such a space is said to have standard-form
if it can be written as,

L(x, ẋ) = m
2
ẋ · ẋ− U(x),

where m > 0 is a real number and U(x) is a function that depends only on position3.
The most common Lagrangian mechanical descriptions in classical mechanics have
this form. Note that we are also using a dot-product; this is thus a place where the
fact that M is equipped with a Riemannian metric (often assumed to be Euclidean)
is needed.

1.3. Stationary action and the Euler-Lagrange equations. Dynamical motion
in a Lagrangian system is underpinned by the following simple principle. Let M be
a manifold, let L : TM → R be a Lagrangian, and let Φ be the associated action
functional. Hamilton’s principle of stationary action4 says that the possible motion
of a system from one point in M to another is given by a curve xλ0(t) for which
the action is stationary, δΦ = 0, i.e. Equation (1). Such curves are sometimes
said to extremise action. Curves with this property are the possible trajectories in
Lagrangian mechanics.

To make practical calculation easier, it turns out that a curve extremises action
if and only if it satisfies the Euler-Lagrange equations, in that,

∂L(x, ẋ)

∂xi
=

d

dt

∂L(x, ẋ)

∂ẋi

for each i = 1, 2, 3, ... (up to n for an n-dimensional manifold). The Euler-Lagrange
equations are the “differential form” of the principle of least action5. In practice it is
usually easier to find solutions to these, as opposed to seeking direct solutions to the
principle of stationary action.

Why do Lagrangians generally take this standard form? They don’t always —
but one can still seek to explain why so many of them do. One approach to this is
to use Jauch’s theorem, which shows a sense in which Galilei invariance guarantees
that the Hamiltonian a standard form. One can then use the relationship between
Lagrangian and Hamiltonian mechanics (given by the Legendre transformation) to
argue for the standard form of the Lagrangian on this same basis.

1.4. Why position and velocity? Most differential equations representing funda-
mental quantities in physics or either first order, like the Schrödinger equation and

3The first term represents the kinetic energy of motion of a single particle. When considering multiple
particles, this term is replaced by the sum of each such energy for each particle.
4This is sometimes referred to as Hamilton’s principle after William Rowan Hamilton’s essentially
modern application of it in 1834. However, a similar version was stated in the 18th century by
Lagrange, and there are other proto-versions that date back to the 17th century.
5Proving the equivalence of these statements is a good exercise. There is only one non-trivial part
of the proof that you may assume, which is called the fundamental lemma of the calculus of varia-
tions; the rest is standard multivariate calculus. The proof may be found in (Arnold; 1989, §12) or
(Goldstein et al.; 2002, §2.2).



Lecture 2 Handout: Classical Mechanics II 5

Hamilton’s equations, or second order, like F = mẍ and Lagrange’s equations, when
the Lagrangian depends only on position and velocity. That’s curious: if writing
action in terms of a Lagrangian just captures the fact that physics is local, then
one might expect L to depend on higher order derivatives as well. So, why do we
only use position and velocity? And more generally, Why are the differential
equations in physics so low order?

Some have argued that the answer lies in a complex metaphysical story about
the nature of forces and accelerations of point particles (Easwaran; 2013). This ac-
count has all the problems associated with the Force-particle picture of reality, and
more. I will not go into it here, but you are encouraged to read the debate for yourself.

Alternatively, Swanson (2019) pointed out that one can view low-order differ-
ential equations as a consequence of energy being bounded from below. Consider a
local coordinate system (x1, . . . , xn) for some region of a manifold M of dimension
n. This gives rise to an “induced” local coordinate system on the tangent bundle
TM , denoted by (x1, . . . , xn, ẋ1, . . . , ẋn). The local energy function h associated with
a Lagrangian L : TM → R is then defined by,

(2) h :=
n∑
i=1

ẋi
∂L

∂ẋi
− L.

In most uses of Lagrangian mechanics to represent a physical system, this function
corresponds to the system’s local energy. For most physical systems, energy has a
lower bound. This captures the empirical fact that known physical systems have
a (lowest-energy) ground state. If they did not, then one could extract unbounded
work from a system, and it would just keep dropping down into lower and lower energy
states, which appears not to happen in our world. With this in mind, we can now
state:

Fact 1 (Ostrogradski’s Theorem). Let L(x, . . . , x(n)) be a non-degenerate6 Lagrangian.
If the associated local energy function h is bounded from below, then L = L(x, ẋ) is a
function of x and ẋ.

Thus, the fact that the Lagrangian has this particular functional dependence
can be viewed as arising out of the fact that energy is bounded from below. There
are of course some further subtleties to this argument; see Swanson (2019) for further
discussion.

1.5. Lagrangian Mechanics vs Force Mechanics. The mathematical relationship
between Lagrangian and Force mechanics is filled with subtleties, many of which can
be found in Butterfield (2004), and most of which I will not go into here. Let me
instead restrict attention to one special case:

6A Lagrangian is called non-degenerate or regular if the determinant of the Hessian is non-vanishing,
det[∂2L/∂ẋ2] 6= 0. It is equivalent to the condition that the Legendre transformation for L is a local
diffeomorphism from TM to T ∗M (Marsden and Ratiu; 2010, §7.2).



6 Bryan W. Roberts

(1) Every Lagrangian in standard form admits a Force analogue;
(2) Not every Force mechanical system admits a Lagrangian analogue in standard

form; but,
(3) Every conservative Force mechanical system admits a Lagrangian analogue in

standard form.

(1): It is geometrically intuitive that this is always possible. Lagrangian me-
chanics allows one to define a family of curves x(t) that “cover” the configuration
space M . This in particular assigns a value to the second derivative of ẍ of these
curves at each point in M , by defining the force F to be proportional to ẍ, we arrive
at a Newtonian system that predicts the same curves through M as our Lagrangian
system does.

One can also see this in a more concrete way by considering a standard-form
Lagrangian L(x, ẋ) = m

2
ẋ · ẋ−U(x). Then the right-hand-side of the Euler-Lagrange

equations becomes,

d

dt

∂L

∂ẋi
=

d

dt

(
m

2

∂ẋ2i
∂ẋi

)
=

d

dt
(mẋi) = mẍ,

for each i = 1, 2, 3, . . . . Meanwhile, the left-hand-side of the Euler-Lagrange equations
becomes,

∂L

∂xi
=

∂

∂xi
U(x).

Thus, by defining F := −∇ · U = ∇ · L we obtain a force satisfying F = mẍ for each
curve x(t) in M .

(2): The argument above runs both ways: if F is not conservative, i.e. not
expressible as the gradient of a potential U , then a standard form Lagrangian cannot
be used to capture it.

(3): Suppose the force is conservative, i.e. F = ∇ · U(x). Then there exists
a Lagrangian system that describes the same possible particle trajectories, in that a
curve x(t) satisfies Newton’s equation if and only if it also satisfies the Euler-Lagrange
equations. Namely, define L to have its standard form with this U . Then the previous
calculation shows that L satisfies the Euler-Lagrange equations. Note that we have
also now shown that the conservative-force Newtonian systems correspond precisely
to the standard-form Lagrangians and vice versa.

When a Newtonian force system is not conservative, it does not necessarily
admit a description in terms of Lagrangian mechanics. These are known as non-
holonomic systems. There are ways of dealing with them in Lagrangian mechanics,
but they escape the scope of these notes; see Butterfield (2004).

2. Hamiltonian Mechanics

When you first learn Hamiltonian mechanics, it’s often from an extremely
practical physics perspective: when you’re analysing a tricky system like the
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motion of a double-pendulum, it’s just easier to model with a different formalism. You
begin by describing the kinematics of a system in terms of position q = (q1, q2, . . . , qn)

and momentum p = (p1, p2, . . . , pn). Then you write down a system of differential
equations called Hamilton’s equations, which describe how those quantities change
over time:

d

dt
qi(t) =

∂h(q,p)

∂pi
,

d

dt
pi(t) =

∂h(q,p)

∂pi
,

where h is a real-valued function called the Hamiltonian, usually of the form,

h(q,p) =
n∑
i=1

1
2mi

p2i + V (q1, . . . , qn),

for some set of real numbers mi > 0 and some real-valued function V of the qi
variables, which is related to the forces in the system by the relation, F = ∇ · V .

Work by 20th century mathematicians brought a significantly richer perspec-
tive on what this framework is, why it works, and what it says about the
world.

2.1. Phase space. Hamiltonian mechanics begins by writing down a space represent-
ing all possible states that a physical system can occupy in a particular structured
way. We assume this space of states has the structure of a smooth manifold M , with
each point p ∈ M representing one possible state of the world. That we assume this
space is a manifold encodes the facts that,

• (coordinates) The state of the system can be described using a (possibly
infinite-dimensional) local coordinate system; and
• (smoothness) It is possible to pass smoothly from one state to another.

We next assume that the space of physical states has a symmetry structure that
is captured by a mathematical object called a ‘symplectic form’. A symplectic form
is a 2-form on M , denoted ω; that is, ω is a bilinear mapping from pairs of vectors
on M to R which skew-symmetric (i.e. ω(X, Y ) = −ω(Y,X) for vector fields X and
Y ). It is also closed (dω = 0) and non-degenerate (i.e. ω(X, Y ) = 0 for all Y only if
X = 0). The pair (M,ω) is called a symplectic manifold. When it used to represent
mechanical systems, it is often also called a phase space.

Why do we introduce some tricky gadget as a symplectic form for representing
physical states? One reason is that it allows us to build in an assumption about
symmetries that is deep in the practice of physics. That assumption, in rough form,
is the following:

(symmetry-observable correspondence) Every observable admits a con-
tinuous group of symmetries along which it is conserved, and vice versa:
every continuous group of symmetries generates an observable that it
conserves.
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This statement expresses a Noether-like idea. It is built into the fabric of Hamil-
tonian mechanics through the use of the symplectic form.

To make the statement above meaningful, we need to make precise what we
mean by observables and by symmetries. Suppose we identify observables with
a smooth assignment of a real-number values to each state of the world. That is,
an observable is a smooth function f : M → R. This is standard practice: such a
function can be used in an obvious way to represent a physical quantity (like total
energy, angular momentum, etc.) associated with each possible state of the system.

We take a continuous “symmetry” to be represented by a diffeomorphism t 7→ ϕ

that preserves the symplectic form, in that ϕ∗
tω = ϕ for all t ∈ R, where ϕ∗ is the

pushforward of ϕ. Such a map is called a symplectomorphism, and is the basic concept
of isomorphism for a symplectic manifold. This allows us to express our Noether-like
assumption above in precise form.

Fact 2. Let (M,ω) be a symplectic manifold. Then for every smooth function h, there
exists a smooth vector field X saisfying,7

(3) dh = ιXΩ.

When this is true, the family of integral curves t 7→ ϕt are a group of symplectomor-
phisms (symmetries) that preserve h, i.e. h ◦ ϕt(p) = h(p) for all t. Conversely, for
every smooth 1-parameter group of symplectomorphisms t 7→ ϕt there exists a smooth
function h (unique up to addition by a constant) for which Equation 3 is true.

The vector field X associated with a smooth function in this way is sometimes
called the symplectic flow associated with h, and h is called Hamiltonian generator
of the vector field X.

2.2. Hamiltonian dynamics. Although it might not look like it, this statement
is actually the familiar Hamilton’s equations in disguise. Seeing this requires two
observations.

First, note that most fundamental physical systems are assumed to admit a
continuous time-translation symmetry. This captures the assumption that time
is continuous, and that experiments can be repeated day to day: apply the same con-
ditions tomorrow, and you will get the same experimental results. In the context of
Hamiltonian mechanics, this means that we can view the passage of time as a 1-
parameter group of symplectomorphisms. The associated vector field is usually
assumed to be complete, to capture the assumption that time can be parametrised

7Here, d is the exterior derivative for M , and ιXΩ denotes the contraction of the vector field X
with the first index of Ω. This latter statement in Penrose notation is expressed dbh = XaΩab, or
equivalently, Xa := Ωabdbh, where Ωab is the inverse of Ωab (i.e. ΩabΩbc = δac ). These definitions are
discussed in more detail in any differential geometry textbook, although the notation (sadly!) varies
dramatically from book to book.
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by the entire real line. By the discussion above, this 1-parameter group has a gen-
erator; when the group is interpreted as time-translation, the generator is called the
Hamiltonian or the Hamiltonian function h : M → R for the physical system.

Second, it turns out that if (M,ω) is a symplectic manifold, then M has even
dimension 2n. And, a basic theorem of symplectic mechanics makes it is possible
to define a special local coordinate system around every point p ∈M , using a binary
operator ∧ on forms called the wedge product.8

Fact 3 (Darboux’s Theorem). Let (M,ω) be a symplectic manifold of dimension
2n. Every point x ∈ M admits a neighbourhood U with a local coordinate chart
(q1, q2, . . . , qn, p1, p2, . . . , pn) centred at x, called a local Darboux coordinate system,
such that,

ω = (dq1 ∧ dp1) + (dq2 ∧ dp2) + · · ·+ (dqn ∧ dpn).

In this local Darboux coordinates, the statement of Equation (3) about time
translation symmetry is then equivalent to the usual expression of Hamilton’s
equations given at the outset of this section, with t interpreted as time.

Like Lagrangian and Force mechanics, Hamiltonian mechanics has a standard
form associated with the Hamiltonian h. In coordinates interpreted as canonical
position q and momentum p, that form is,

h(q, p) = 1
2m
p2 + v(q)

for some real-valued function v.
There is also a “standard form” of the manifold itself in Hamiltonian mechanics,

which is the case that there exists a manifold Q such thatM = T ∗Q, where T ∗Q is the
cotangent bundle overQ. Note that this is not necessarily the case. It is only true given
an empirical assumption, that it is possible to globally separate the canonical position
and momentum variables associated with M so that it can be written as a cotangent
bundle. However, it is quite standard to use Hamiltonian mechanics in situations
where this is the case. And, when it is the case, there exists an isomorphism (called
the Legendre transformation) which transforms between Lagrangian and Hamiltonian
mechanics. It is thus thus exactly in this case that the two are empirically equivalent.

3. Some philosophical questions

• Compare how the frameworks of Force Mechanics and Lagrangian Mechanics
expand or restrict what is physically possible.
• In what sense (if any) does nature always respect a stationary action principle?
• In what sense (if any) should action be expressible in terms of a Lagrangian,
and one that depends only on position and velocity?

8For simplicity, I’ll define the wedge product here only for the relevant case of two 1-forms alpha
and β: then their wedge product is the 2-form defined by (α ∧ β)(X,Y ) := α(X)β(Y )− α(Y )β(X).
For the general definition, see Marsden and Ratiu (2010, §4.2).
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• How can the standard form of the Lagrangian (or the Hamiltonian) be moti-
vated?
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