
Lecture 3 Handout: Time Observables, and Classical Mechanics III

Bryan W. Roberts

1. Time Observables, Introduced

Is time a real-number parameter that serves to index physical quantities? Or,
is it a physical quantity that can be measured? We seem to have measuring
devices to measure quantities like duration, time of arrival, or the expected time of a
particle jet. And yet, time does not appear to be an observable in quantum physics.
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Figure 1. Why no time observables?

Pauli claimed that this was actually a novel requirement of the new quantum
theory, in his influential quantum mechanics textbook:

“In the older literature on quantum mechanics, we often find the oper-
ator equation

Ht− tH = ~
i
I

... It is generally not possible, however, to construct a Hermitian op-
erator [t] (e.g. as function of P and Q) which satisfies this equation.”
(Pauli; 1980, p.63)

Are the technical details of this statement correct? Do we really need quantum
mechanics in order to discuss the possibility of time observables? The answers are no
and no. A little philosophical clarity is needed in order to see this. But, before we get
to that, we should first motivate the classical framework in which we can discussion
time observables, which is classical Hamiltonian mechanics.

2. Hamiltonian Mechanics

When you first learn Hamiltonian mechanics, it’s often from an extremely
practical physics perspective: when you’re analysing a tricky system like the
motion of a double-pendulum, it’s just easier to model with a different formalism. You
begin by describing the kinematics of a system in terms of position q = (q1, q2, . . . , qn)
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and momentum p = (p1, p2, . . . , pn). Then you write down a system of differential
equations called Hamilton’s equations, which describe how those quantities change
over time:

d

dt
qi(t) =

∂h(q,p)

∂pi
,

d

dt
pi(t) =

∂h(q,p)

∂pi
,

where h is a real-valued function called the Hamiltonian, usually of the form,

h(q,p) =
n∑

i=1

1
2mi

p2i + V (q1, . . . , qn),

for some set of real numbers mi > 0 and some real-valued function V of the qi
variables, which is related to the forces in the system by the relation, F = ∇ · V .

Work by 20th century mathematicians brought a significantly richer perspec-
tive on what this framework is, why it works, and what it says about the
world.

2.1. Phase space. Hamiltonian mechanics begins by writing down a space represent-
ing all possible states that a physical system can occupy in a particular structured
way. We assume this space of states has the structure of a smooth manifold M , with
each point p ∈ M representing one possible state of the world. That we assume this
space is a manifold encodes the facts that,

• (coordinates) The state of the system can be described using a (possibly
infinite-dimensional) local coordinate system; and
• (smoothness) It is possible to pass smoothly from one state to another.

We next assume that the space of physical states has a symmetry structure that
is captured by a mathematical object called a ‘symplectic form’. A symplectic form
is a 2-form on M , denoted ω; that is, ω is a bilinear mapping from pairs of vectors
on M to R which skew-symmetric (i.e. ω(X, Y ) = −ω(Y,X) for vector fields X and
Y ). It is also closed (dω = 0) and non-degenerate (i.e. ω(X, Y ) = 0 for all Y only if
X = 0). The pair (M,ω) is called a symplectic manifold. When it used to represent
mechanical systems, it is often also called a phase space.

Why do we introduce some tricky gadget as a symplectic form for representing
physical states? One reason is that it allows us to build in an assumption about
symmetries that is deep in the practice of physics. That assumption, in rough form,
is the following:

(symmetry-observable correspondence) Every observable admits a con-
tinuous group of symmetries along which it is conserved, and vice versa:
every continuous group of symmetries generates an observable that it
conserves.

This statement expresses a Noether-like idea. It is built into the fabric of Hamil-
tonian mechanics through the use of the symplectic form.
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To make the statement above meaningful, we need to make precise what we
mean by observables and by symmetries. Suppose we identify observables with
a smooth assignment of a real-number values to each state of the world. That is,
an observable is a smooth function f : M → R. This is standard practice: such a
function can be used in an obvious way to represent a physical quantity (like total
energy, angular momentum, etc.) associated with each possible state of the system.

We take a continuous “symmetry” to be represented by a diffeomorphism t 7→ ϕ

that preserves the symplectic form, in that ϕ∗tω = ϕ for all t ∈ R, where ϕ∗ is the
pushforward of ϕ. Such a map is called a symplectomorphism, and is the basic concept
of isomorphism for a symplectic manifold. This allows us to express our Noether-like
assumption above in precise form.

Fact 1. Let (M,ω) be a symplectic manifold. Then for every smooth function h, there
exists a smooth vector field X saisfying,1

(1) dh = ιXΩ.

When this is true, the family of integral curves t 7→ ϕt are a group of symplectomor-
phisms (symmetries) that preserve h, i.e. h ◦ ϕt(p) = h(p) for all t. Conversely, for
every smooth 1-parameter group of symplectomorphisms t 7→ ϕt there exists a smooth
function h (unique up to addition by a constant) for which Equation 1 is true.

The vector field X associated with a smooth function in this way is sometimes
called the symplectic flow associated with h, and h is called Hamiltonian generator
of the vector field X. Note that this symmetry is not necessarily associated
with a dynamics; it could be interpreted as spatial translation, momentum boosts,
rotations, etc. Nevertheless, his is one of the driving ideas in Hamiltonian mechanics:
functions generate flows, and flows are generated by functions, via Equation
(1).

Like in quantum theory, it is often of interest to examine how an observable
f : M → R changes along the flow ϕt generated by h. This is given by, f(t)f ◦ϕt. To
express this as a local differential equation, we can thus write,

d
dt
f(t) = d

dt
f ◦ ϕt = {f, h},

where the bracket {, } : C∞(M) × C∞(M) → C∞(M) is by definition the derivative
of f in the direction of the flow generated by h, and is known as the Poisson bracket.
In geometric terms, it can also be written {f, h} = Xhdf , where Xh is the vector field
generated by h. When put in terms of standard coordinate form (discused below), it

1Here, d is the exterior derivative for M , and ιXΩ denotes the contraction of the vector field X
with the first index of Ω. This latter statement in Penrose notation is expressed dbh = XaΩab, or
equivalently, Xa := Ωabdbh, where Ωab is the inverse of Ωab (i.e. ΩabΩbc = δac ). These definitions are
discussed in more detail in any differential geometry textbook, although the notation (sadly!) varies
dramatically from book to book.
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takes the form,

{f, h} =
∂f

∂q

∂h

∂p
− ∂h

∂q

∂f

∂p
.

2.2. Hamiltonian dynamics. Although it might not look like it, the statement of
Equation (1) above is actually the familiar Hamilton’s equations in disguise. Seeing
this requires two observations.

2.2.1. Time translation symmetry. First, note that most fundamental physical sys-
tems are assumed to admit a continuous time-translation symmetry. This cap-
tures the assumption that time is continuous, and that experiments can be repeated
day to day: apply the same conditions tomorrow, and you will get the same experi-
mental results. In the context of Hamiltonian mechanics, this means that we can view
the passage of time as a 1-parameter group of symplectomorphisms. By the
discussion above, this 1-parameter group has a generator; when the group is inter-
preted as time-translation, the generator is called the Hamiltonian or the Hamiltonian
function h : M → R for the physical system.

In practice, the vector field associated with time translation is usually assumed
to be complete, meaning that its integral curves can be simultaneously parametrised
by the entire real line R. This is in fact an empirical assumption, which encodes the
statement that time is not finite to the past or future on any dynamical trajectory.
We will adopt this assumption for most purposes here.

Thus, for the purposes of modelling dynamical systems, we will take a Hamil-
tonian system is a triple (M,ω, h), where the symplectic manifold (M,ω) is interpreted
as representing the possible states of a system, and h : M → R generates a complete
vector field interpreted as representing time translation.

2.2.2. Darboux’s theorem. Second, it turns out that if (M,ω) is a symplectic manifold,
then M has even dimension 2n. And, a basic theorem of symplectic mechanics
makes it is possible to define a special local coordinate system around every point
p ∈M , using a binary operator ∧ on forms called the wedge product.2

Fact 2 (Darboux’s Theorem). Let (M,ω) be a symplectic manifold of dimension
2n. Every point x ∈ M admits a neighbourhood U with a local coordinate chart
(q1, q2, . . . , qn, p1, p2, . . . , pn) centred at x, called a local Darboux coordinate system,
such that,

ω = (dq1 ∧ dp1) + (dq2 ∧ dp2) + · · ·+ (dqn ∧ dpn).

In this local Darboux coordinates, the statement of Equation (1) about time
translation symmetry is then equivalent to the usual expression of Hamilton’s
equations given at the outset of this section, with t interpreted as time.

2For simplicity, I’ll define the wedge product here only for the relevant case of two 1-forms alpha
and β: then their wedge product is the 2-form defined by (α ∧ β)(X,Y ) := α(X)β(Y )− α(Y )β(X).
For the general definition, see Marsden and Ratiu (2010, §4.2).
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2.2.3. Systems of standard form. Like Lagrangian and Force mechanics, Hamiltonian
mechanics has a standard form associated with the Hamiltonian h. In coordinates
interpreted as canonical position q and momentum p, that form is,

h(q, p) = 1
2m
p2 + v(q)

for some real-valued function v. There are various ways to motivate this. For example,
given a Hamiltonian system (M,ω, h) and a local coordinate system (q, p), suppose it
is the case that,

1
m
p = q̇,

wherem > 0 and q̇ := (d/dt)q(t) along integral curves. From Hamilton’s equations we
know that q̇ = ∂h/∂p. Combining these two we get 1

m
p∂p = ∂h. Partial integration

thus gives us,

h(q, p) = 1
m

∫
p∂p = 1

2m
p2 + v(q)

for some function v(q, p) = v(q) of the q variable alone. So, an assumption about
velocity along integral curves here gives rise to a constraint on the Hamiltonian
that generates those curves, which in this case yields its standard form. This kind of
thinking can be used to get an even more general result due to the Swiss mathemati-
cian Josef Jauch: that an assumption of symmetry under the action of the Galilei
group of non-relativistic boosts, translations and rotations can be used to constrain
velocity in a similar way, and derive a similarly general form of the Hamiltonian. This
is known as Jauch’s theorem. Although Jauch originally proved this theorem for
quantum mechanics, a Hamiltonian mechanical generalisation exists as well; see the
“Jauch’s theorem” note posted on the website for this course.3

There is also a “standard form” of the manifold itself in Hamiltonian mechanics,
which is the case that there exists a manifold Q such thatM = T ∗Q, where T ∗Q is the
cotangent bundle overQ. Note that this is not necessarily the case. It is only true given
an empirical assumption, that it is possible to globally separate the canonical position
and momentum variables associated with M so that it can be written as a cotangent
bundle. However, it is quite standard to use Hamiltonian mechanics in situations
where this is the case. And, when it is the case, there exists an isomorphism (called
the Legendre transformation) which transforms between Lagrangian and Hamiltonian
mechanics. It is thus thus exactly in this case that the two are empirically equivalent.
For a discussion of the details of this equivalence, see Marsden and Ratiu (2010).

2.2.4. Noether’s theorem. Although our thinking above about conserved quantities
and symmetries is reminiscent of Noether’s theorem, it is only “Noether-like”, and not
quite Noether’s theorem. There is a more complete statement of Noether’s theorem
in Hamiltonian mechanics, which is the following.

3http://personal.lse.ac.uk/robert49/teaching/partiii/

http://personal.lse.ac.uk/robert49/teaching/partiii/
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Fact 3 (Noether’s theorem). Let (M,ω, h) be a Hamiltonian system. If the vector
field X is a symmetry, i.e., its integral curves are h-preserving symplectomorphisms,
then X admits a generator f : M → R satisfying df = ιXω and which is preserved
under the flow generated by h. And conversely: if f : M → R is preserved under the
flow generated by h, then the vector field X that it generates is a symmetry.

Further discussion and interpretation of Noether’s theorem in this context can
be found in Butterfield (2007).

2.3. Time observables, Again. Let (M,ω, h) be a Hamiltonian system. We defined
an observable above to be a smooth function f : M → R. So, let us simply suppose
that time is represented by one such smooth function τ : M → R. We interpret
this as the assignment of real-number values to each state in M by an appropriate
measuring device, like a clock. What would the properties of such an assignment be
like?

1 2 3 4

Figure 2. A time observable for a free particle

One seemingly necessary assumption is to suppose that, as we move along a
trajectory p(t) =

(
q(t), p(t)

)
, the value assigned by the time observable τ changes in

a way that is compatible with the parameter t associated with the dynamics. One
might take this to be the defining property of a time observable: for any integral curve
p(t) of the dynamics generated by h and for all t ∈ R,

(2) τ
(
p(t)

)
= τ
(
p(0)

)
+ t.

This property, which is called “timeliness” by Roberts (2014), captures the idea that
the measuring device associated with τ appropriately “tracks” the time param-
eter associated with the dynamics of the physical system: whatever the assignment
τ(p(0) is given to the initial state, a general state p(t) on the trajectory will be assigned
that value plus t.

Note that the time observable statement of Equation (2) implies4 a local state-
ment in terms of the Poisson bracket, which is that,

{h, τ} = 1.

4Proof: by definition of the bracket, {h, τ} = d
dtτ(p(t)) = d

dt (p(0) + t) = 1.
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at every point p ∈M .
Do time observables satisfying Equation (2) exist? They obviously cannot at

any stationary point p(t) = p. However, they are known to locally exist around every
non-stationary point (Roberts; 2014, Prop. 1); there is also a uniqueness result about
them (Prop. 2 of the same paper):

Fact 4 (Time observable existence). If (M,ω, h) is a Hamiltonian system, then there
exists a neighbourhood U around every non-stationary point p that admits a time
observable, i.e. a smooth function τ satisfying Equation (2).

Do time observables exist globally? Here the answer is more subtle. First,
we assume (as we did in Lagrangian mechanics) that energy is bounded from below.
Then it turns out that, if a time observable for this Hamiltonian exists, then the vector
field it generates is an incomplete vector field. This is just a formal property in
Hamiltonian mechanics; but, it has “no-go” implications for time observables in quan-
tum mechanics. In Hamiltonian mechanics, the statement is the following (Roberts;
2014, Prop. 3):

Fact 5 (Hamiltonian Pauli theorem). Let (M,ω, h) be a Hamiltonian system, with
the range of h bounded from below. If τ : M → R is a smooth function that satisfies
{h, τ} = 1, then the vector field generated by τ is incomplete.

Proof. Let {h, τ} = 1. Then, by the skew-symmetry of the bracket, {τ, h} = −1.
Let cs be an integral curve of the Hamiltonian vector field generated by τ , and define
h(s) := h(cs). Then −1 = {τ, h} = d

ds
h(s), and so,

h(s)− h(0) =

∫ s

0

d

ds
h(s)ds = −

∫ s

0

ds = −s.

If τ were to generate a complete Hamiltonian vector field, then s could take any real
value, and we would have h(s) = h(0) − s for all s ∈ R. This would imply that the
range of h is the entire real line, contradicting the assumption that h is half-bounded.
Therefore, the vector field generated by τ is incomplete. �

The possibility of generating an incomplete vector field, it turns out, is im-
possible in quantum mechanics when observables are restricted to self-adjoint
operators. For any self-adjoint Hilbert space operator T , Stone’s theorem implies
that for every state ψ and for all s ∈ R, there exists φ := e−isTψ. The “integral curve”
through Hilbert space φ(s) is therefore defined for all real numbers s, no matter what.
It cannot arise that s is only defined for some part of the real line if T is self-adjoint.

This suggests that, in the context of quantum mechanics, the result above has
the character of a “no-go theorem” precluding the existence of time observables. There
is a precise sense in which this is indeed the case; see Roberts (2014) for details.5

5Quantum enthusiasts are also encouraged to try to prove for themselves this fact: if H is a Hilbert
space, and H is a self-adjoint operator on H whose spectrum is bounded from below, then the “time
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However, there are also senses in which time observables are possible in quan-
tum mechanics, which simply requires extending the orthodox conception of an ob-
servable. We will discuss this more when we turn to the foundations of quantum
theory.

3. Some philosophical questions

• Compare how the frameworks of Force Mechanics, Lagrangian Mechanics, and
Hamiltonian mechanics expand or restrict what is physically possible.
• How can the standard form of a Hamiltonian system be motivated?
• What is the appropriate definition of a time observable? In what sense do
time observables exist?
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observable” equation,
eitHTe−itH = T + tI for all t ∈ R

cannot be satisfied by any self-adjoint operator T on H. (Hint: This equation is equivalent to the
Weyl form of the CCRs.)
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