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1. Overview

The geometric approach to quantum theory is a natural extension of the Bloch

sphere, in which the pure states of a quantum system are expressed as points on a real

2-sphere (Figure 1. But it can be generalised to arbitrary dimensions. And it can go

much further than a typical Bloch sphere analysis, to include seemingly all aspects of a

quantum system: Schrödinger evolution, uncertainty, and even entanglement have all

been naturally expressed using a symplectic form, a metric, and a complex structure

on a real manifold, which together form what is known as a Kähler manifold. This

approach was first discovered by Kibble [5], developed by local hero Gary Gibbons

[4], and rediscovered and further developed by Ashtekar and Schilling [1], forming the

basis for Schilling’s dissertation at Penn State [8]. The latter two references are an

excellent introduction.

Figure 1. States as points on the Bloch sphere manifold

One advantage of geometric quantum mechanics that it provides controlled

context in which to study linear and non-linear extensions of quantum theory [1, 3,

6, 2]. Another is that it allows one to naturally compare quantum structures to those

in other geometric theories [9, 7].

2. Geometrising Hilbert space

2.1. Projective manifolds. We want to make quantum theory look like symplectic

mechanics. To achieve this, we first need a manifold. Happily, quantum theory has

an obvious manifold built into it. You may be familiar with this in the Bloch sphere
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for two-dimensional Hilbert space, where the points on the surface of a sphere are

identified with rays on a Hilbert space. This manifold idea can be generalised to

arbitrary Hilbert spaces.

Let H be a separable Hilbert space (i.e. one with a countable basis); a ray is

an equivalence Ψ of elements of H such that,

ψ, ψ′ ∈ Ψ iff ψ = cψ′ for some c ∈ C.

The set of rays of H has a natural manifold structure, known as the projective space

PH, where each point p ∈ PH is a ray in H, p = Ψ. To see the manifold structure,

we need an atlas of charts. Let S⊥ψ ⊆ H be the subspace of vectors orthogonal to ψ;

that is, φ ∈ S⊥ψ iff 〈ψ, φ〉 = 0. Now, for each unit vector |φ| = 1, define a coordinate

region Uφ := H− S⊥Φ , together with a coordinate chart πφ : UΦ → S⊥Φ given by,

πφ(ψ) =
1

〈φ, ψ〉
ψ − φ.

This is a surjective map onto S⊥Φ , with a rescaling factor that guarantees that vectors

on the same ray all get mapped to the same point, i.e., πψ(φ) = πψ(φ′) only if Φ = Φ′.

So, it induces a bijection: it takes each ray that is non-orthogonal to φ onto a unique

vector in S⊥Φ . This induced bijection on the region UΦ of rays non-orthogonal to φ

can then be checked1 to satisfy the manifold axioms with underlying set PH.

This manifold is complex, since the charts are elements of a vector space over

C. However, it can easily be made into a real-manifold. In any basis {ϕi}, we associate

each Hilbert space vector ψ =
∑

k(ak+ ibk)ϕk (with ak, bk ∈ R) with a pair of vectors,

ψ1 =
∑
k

akϕk ψ2 =
∑
k

bkϕk.

The result is a real vector spaceHR of twice the dimension ofH, related to the original

by ψ = ψ1 + iψ2. Using this canonical separation of vectors into pairs ψ1 =
∑

k akϕk
and ψ2 =

∑
k bkϕk, we now define a canonical complex structure J : HR → HR, given

by the linear extension of the map,

J(ψ1) = ψ2 J(ψ2) = −ψ1.

This J is a linear operator on HR with the property that J2 = −1. So, although HR

is a real-vector space, J gives it some structure usually associated with a complex

manifold (hence the name, ‘complex structure’).

So, in just the way that the rays of H thus give rise to a complex manifold

PH, the rays of HR give rise to a real manifold P with a complex structure J . In

summary, we have the following:

1Exercise: Check this, by showing that i)
⋃

Φ∈PH
UΦ = PH; ii) πφ is a bijection onto an open subset

of S⊥Φ ; iii) πφ(UΦ ∩ UΦ′) is open in S⊥Φ ; and iv) πφ′ ◦ π−1
φ is smooth.
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Fact. The rays on a Hilbert space H form complex manifold PH of dimension n ∈
[2,∞], which can be viewed as 2n-dimensional real manifold P with a complex struc-

ture J .

2.2. Symplectic form and Riemannian metric. The Hilbert space inner product

is a function from pairs of vectors to the complex numbers, 〈,̇〉̇ : H × H → C. Just

as a complex number can be separate into two real numbers, we can separate 〈,̇〉̇ into

two real-valued functions g and ω:

〈ψ, φ〉 = 1
2
g(ψ, φ) + i

2
ω(ψ, φ),

for all ψ, φ ∈ H. The letters for these functions have been chosen for a reason: they

have properties that are strikingly similar to a Riemannian metric and a symplectic

form.

Begin with g. It is obviously bilinear, and also symmetric, g(ψ, φ) = g(φ, ψ).

It is also non-degenerate, in that g(ψ, φ) = 0 for all φ only if ψ = 0. This function

is not a tensor, so it is not technically a metric. But, it can be ‘lifted’ to a (0, 2)

tensor on the real manifold P associated with H, where it turns out to be a full-

fledged Riemannian metric. Here we use the fact that P as we have defined it has

an underlying linear structure. The canonical linear lift of a linear manifold P maps

each point p ∈ P to a vector Xp in the tangent space of every other point p′; this

vector a mapping on smooth functions f given by,

Xp(f) := d
ds
f(p′ + sp)

∣∣
s=0

.

This association allows us to lift function g to a real-valued function on pairs of vectors

in the tangent space at any point. That is, it is a rank-(0,2) tensor. It inherits the

properties of being bilinear, symmetric and non-degenerate, which means that it is a

full-fledged Riemannian metric.

A similar exercise can be carried out to lift the function ω to a symplectic

form. As a function on H, it is obviously bilinear. It is also skew-symmetric, since,

ω(ψ, φ) = Im (〈ψ, φ〉) = −Im (〈φ, ψ〉) = −ω(φ, ψ).

I leave the remaining properties of a symplectic form for you to check.2

2.3. The quantum Kähler manifold. ur complex structure J lifts to a rank-(1,1)

tensor that maps each vector in the tangent space at a point to another vector. Using

the definitions of J , g and ω, it is a straightfoward exercise3 to show that they satisfy

the relation,

g(X, Y ) = ω(X, J(Y )).

2Exercise: Check that the canonical lift of ω is a symplectic form, in that it is: i) a rank-(0,2) tensor;
ii) skew symmetric ω(X,Y ) = −ω(Y,X); iii) closed, dω = 0; and iv) non-degenerate, ω(X,Y ) = 0
for all Y only if X = 0.
3Exercise: check it for yourself! Hint: use the fact that, viewed as an operator on H, J satisfies
〈ψ, Jφ〉 = i〈ψ, φ〉.
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A manifold P with a Riemannian metric, symplectic form, and complex structure

satisfying this relation is called a Kähler manifold. The development above shows

that this structure is built naturally into every separable Hilbert space.

3. Observables and Schrödinger Evolution

An quantum observable for Kähler quantum mechanics is a function f : P → R
of the form,

fA(ψ) = 〈ψ,Aψ〉 = 1
2
g(ψ,Aψ),

where ψ ∈ Φ = p is any unit-norm vector associated with the point p ∈ P , and

A : H → H is a densely-defined self-adjoint operator. Not every smooth function on

P can be written in this way; so, the observables of quantum mechanics are in a sense

more restrictive than the observables of symplectic mechanics.

To define the dynamical evolution generated by an observable fH , we now have

two choices, which turn out to be equivalent.

In the first place, can define the symplectic evolution associated with the ob-

servable fH . This is given in the usual way by the vector field Xf that satisfies,

df = ιXf
ω.

In the second place, we can define the Schrödinger evolution associated with fH to be

the one that is induced by the unitary operator Ut = e−itH on H. This gives rise to a

vector field YH on P ; to define it at a point p ∈ P (containing a unit vector ψ ∈ H),

we take the canonical linear lift (see above) of the function YH given by,

YH(ψ) = −J(Hψ).

Remarkably, these two notions of dynamical evolution are the very same: symplectic

evolution is just Schrödinger evolution for smooth functions fH associated with a

self-adjoint operator H.

This can be quickly verified: let YH be the tangent vector at ψ associated

with Schrödinger evolution generated by fH . And, let Z be any tangent vector at ψ,

associated Hilbert space vector ζ ∈ H, so at the point ψ, Z(fH) = d
dt
fH(ψ + tζ)|t=0.

Then,

(dfH)(Z) = Z(fH) = d
dt
fH(ψ + tζ)

= d
dt
〈ψ + tζ,H(ψ + tζ)〉

∣∣
t=0

= 〈ψ,Hζ〉+ 〈ζ,Hψ〉

= g(Hψ, ζ)

= ω(−JHψ, ζ) (Kähler property)

= ω (YH(ψ), ζ) (Schrödinger ev.)

= ιY ω(Z).
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This means that the Schrödinger vector field YH is the very same one that is given by

symplectic evolution generated by fH .

A further observation: since unitary evolution preserves the inner product,

it preserves both the symplectic form and the metric: that is, Schrödinger evolution

generates a Killing vector field on the Kähler manifold. The reverse is also true: every

Killing vector field is generated by a quantum observable of thee form fA(ψ) = 〈ψ,Aψ〉
for some self-adjoint operator A on H. A straightforward corollary of this is that P
is geodesically compleete with respect to gab [1, Theorem II.2]

4. Time observables

4.1. Review of Pauli’s theorem. We have seen two theorems governing the exis-

tence of time observables in symplectic mechanics and quantum theory. The quantum

result is:

Proposition 1 (Pauli’s theorem). Let H be a Hilbert space, let H be a self-adjoint

operator with a half-bounded spectrum. For any ψ ∈ H, let ψ(t) = e−itHψ for all

t ∈ R. Then there exists no self-adjoint operator T such that, writing 〈ψ, Tψ〉 = t0,

we have for all t ∈ R that,

〈ψ(t), Tψ(t)〉 = t0 + t.

In symplectic mechanics there is a local existence result for time observables.

There is also a ‘loophole’ allowing global time observables in a situation that is not

available in quantum mechanics.

Proposition 2 (Symplectic Paul’s theorem). Let (P , ω) be a symplectic manifold, and

let h : P → R be a smooth function with a half-bounded range. For any p ∈ P, let p(t)

denote an integral curve of the canonical vector field generated by h with p0 = p(0).

Then there exists no smooth τ : P → R such that, writing τ(p) = t0, we have for all

t ∈ R that,

τ(p(t)) = t0 + t,

unless the canonical vector field generated by τ is incomplete.

These statements are analogous in structure and so in one sense are easy to

compare: symplectic mechanics allows global time observables in a situation that

quantum theory does not, namely, when that observable generates an incomplete

vector field.

However, it would be nice to make this comparison more rigorous. One way

to do this would be to reformulate quantum theory on symplectic manifolds. This is

exactly what geometric quantum theory allows us to do.

4.2. Kähler time observables. We have seen that, when quantum theory is formu-

lated on a Kähler manifold, the following facts hold:

• symplectic evolution and Schrödinger evolution are one and the same;
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• this symplectic evolution is a Killing vector field; and

• the manifold P is geodesically complete.

Now, it turns out that every Killing field on a geodesically complete Riemannian

manifold is a complete vector field; an easy corollary of this fact is the following [7]:

Proposition 3 (Kähler Pauli theorem). Let (P , ω, g, J) be the Kähler manifold associ-

ated with a Hilbert space H, and let h be the smooth half-bounded function associated

with a self-adjoint operator H. Then there exists no smooth τ : P → R such that

{τ, h} = 1. Thus, for any p ∈ P, let p(t) denote an integral curve of the canonical

vector field generated by h with p0 = p(0). Then there is no τ such that, writing

τ(p) = t0, we have for all t ∈ R that,

τ(p(t)) = t0 + t.

A Kähler manifold is of course just a symplectic manifold, with a little extra

structure. That extra structure helps to show exactly how time observables end up

being prevented in quantum theory: they can exist in the class of general smooth

functions, but not when associated with a self-adjoint operator. This also suggests

a way that time observables can be recovered in quantum theory: by relaxing the

definition of an observable.

4.3. Time observables in extensions of quantum theory. Suppose we relax the

requirement that an observable be self-adjoint, by allowing observables to include any

smooth function that generates a vector field that covers the phase space. This class

of functions has been studied by Ashtekar and Schilling [1, §III.A], who show that

they characterize a class of non-linear extensions of quantum theory proposed by [10].

For this reason, they refer to these functions as Weinberg functions.

Unlike orthodox quantum observables, the Weinberg functions can be timely.

Let us illustrate with a different example due to John D. Norton4. Consider the man-

ifold P = R2 with a Cartesian coordinate system (q, p) and the standard symplectic

form, together with the (half-bounded) Hamiltonian h(q, p) = ep. The integral curves

generated by h can be written (qt, pt) = (ep0t + q0, p0) for an arbitrary initial point

(q0, p0). In this system, the smooth function τ(q, p) = q/ep is a time observable:

τ(qt, pt) = qt/e
pt = (ep0t+ q0)/ep0 = q0/e

p0 + t = τ(q0, p0) + t.

The Hamiltonian vector field generated by the timely function τ has integral

curves given5 by qs = q0(1 − s/ep0) and ps = log(ep0 − s). The vector field tangent

to these curves is incomplete, because the curve with the initial point (q0, p0) =

(0, 0) cannot be extended beyond s = 1 where p(s) = log(1 − s) becomes undefined.

However, it is smooth and defined on the entire manifold, and therefore counts as a

Weinberg function on the definition of Ashtekar and Schilling [1, §III.A].

4Private communication.
5Check: dq/ds = ∂τ/∂p = −q/ep and dp/ds = −∂τ/∂q = −1/ep. One can easily see by differentia-
tion that these equations are satisfied by qs = q0(1− s/ep0) and ps = log(ep0 − s).
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