On Spacelike Correlations in Algebraic Quantum Field
Theory

J. Butterfield: for first session of Philosophical Aspects of QFT on Curved
Sapcetimes on 26 January 2021 ...

This handout tries to address two diverse interests: how quantum non-locality
plays out in rigorous, in particular algebraic, QFTs; and how to write QFTs on a
curved spacetime. The material is needed for the Unruh and Hawking effects, as
treated by e.g. Wald 1994. (...And the handout aims to orient you to the Part III
essay on limits of measurement ...: a fine essay based on a predecessor of this handout
is by Thiang, available at: http://philsci-archive.pitt.edu/8689/)

So I will review some conceptual aspects of non-local correlations in algebraic
quantum field theory (AQFT) on Minkowski or curved spacetime: viz. some aspects
of the violation of the Bell inequality in AQFT. This summary will involve:

1. Reviewing a few very basic ideas of AQFT, emphasising the three conditions
of relativistic causality which have been much studied in Minkowksi spacetime;
viz. primitive causality, spacelike commutativity, and the spectrum condition;
(Section 1).

2. Discussing how these conditions can be adapted to a curved spacetime. Here the
main topic is the spectrum condition, and I shall report a recent development

about it by Hollands and Wald; (Section 2).

3. Reviewing the generic violation of Bell inequalities in AQFT. I will confine
myself to reporting some results up to 2000 by physicists (especially Landau,
Summers and Werner) and philosophers (Clifton and Halvorson). The broad
picture is that for most algebraic quantum field theories on Minkowski space-
time, maximal violations of the Bell inequality are endemic (Section 3).

4. Making some remarks about the prospects for “peaceful co-existence” between
relativity and quantum theory. In particular, this will include some discussion of
how Section 3’s results relate to the assumptions of Bell-type theorems; (Section
4).

Some overall references (among many possible):— Landsman’s review of Haag’s book,
and Swanson’s survey, [1], supplements Section 1. Section 3.2 of my paper, [2],
supplements Section 2. Papers [3,4] by Clifton and Halvorson, which are reprinted
as Chapters 6 and 7 of his posthumous Quantum Entanglements: Selected Papers,
supplement Sections 3 and 4. For Section 4: Landsman’s [5], Hofer-Szabo et al. [6],
and Section 4 of my [7], supplement subsections B, C and D respectively.



1 AQFT introduced

The basic idea of AQFT is to associate with each bounded region O of Minkowski
spacetime an algebra A(Q) subject to certain axioms. Observables are self-adjoint
elements of these algebras. The basic idea of the association of an observable A with
a region O is-that A is a physical quantity pertaining to that part of the field system
lying in O, and so is measurable by a procedure confined to @. On the other hand:
a state is taken as an expectation functional on all the algebras. (We can recover
Hilbert space representations from this abstract setting, primarily by the GNS con-
struction.) Thus in a sense states are global, while observables are local; the global
nature of states will be further emphasized in 1.2 below.

The first thing to say about this basic idea is some anzious warnings!: as follows.

(1): Note the commitment to the framework applying to arbitrarily small length
scales: O can be arbitrarily small. One might say: this hardly fits with the EFT
vision we learnt from e.g. Ken Wilson... In the philosophical literature, this was a
focus of the debate between D. Fraser and D. Wallace ca. 2011 about the merits of
AQFT; a judicious discussion of the debate is in Section 3 of Swanson’s survey paper
[1].

(2): A € A(O) is to mean that we could measure A by a procedure confined to O.
But this association of quantities with regions is rather vague, and operationalist—and
Bell would say that it is using the unspeakable word ‘measurement’ ... In particular:

(3): Note that in almost all AQFT work, the apparatus is not represented explic-
itly. (Recent exceptions include the papers in [9].) Agreed; that is hardly surprising!
We do not have a rigorous Lorentz-invariant interacting quantum field theory in 4
spacetime dimensions: let alone a relativistic account of measurement (cf. A. Kent’s
proposals discussed in [8]). ... No one knows whether there is a real ‘collapse of the
wave packet’; and if so, whether it somehow happens ‘along the light-cone’ ... .

(4): Relatedly: nothing that follows will really address the subtleties of ‘improper
mixtures’: i.e. the troubles about how to interpret the reduced states of compo-
nent systems whose composite system is in a pure state, troubles first emphasised by
Schroedinger in his monumental ‘cat’ paper of 1935.

(5): We accept the product of arbitrary non-commuting operators: pace those
authors who restrict products to commuting operators (cf. e.g. the partial Boolean
algebra approach of Kochen and Specker (1967)).

(6): We impose that expectation functionals are linear on'any pair of quantities.
That is of course true of quantum expectations in elementary quantum mechanics,
and the algebraic approach is to that extent at liberty to retain it in its generalized
quantum theory. But recall Bell’s (1966) stunning critique of it as an assumption of
the “no hidden variables” theorems of von Neumann and others; and the pilot-wave
theory’s escaping it ...



This AQFT framework is far from that of usual ‘textbook’ QFT; and as both
Landsman and Swanson [1] describe, much effort has been devoted to developing the
framework, and to linking it to usual QFT. But in this handout, we can specialise
somewhat. For the most part, we can assume that the algebras are concrete von
Neumann algebras acting on a separable Hilbert space H, and subject to a relatively
standard list of axioms. These require, for example:

Isotony: If O; C Oy, then A(O;) C A(Oy);

Poincaré covariance: There is a representation a of the Poincaré group on the
algebras, in that: If g € P, then a,(A(O)) = A(g(O)); thus the structure of the
algebras meshes with the Poincare group symmetries of Minkowski spacetime; and

Vacuum: among the states on the net of algebras, there is a unique one €2,
called ‘the vacuum’, that is invariant under the Poincaré group.

In the rest of this Section, I will, first, briefly state three of these standard axioms,
namely three which are expressions of the idea of relativistic causality. (It is of course
part of the subtlety of the subject that these are independent of one another ... even
in the context of the other axioms.) Then I will briefly report three theorems that
bring out the ‘global nature’ of states in AQFT.

1.1 Three formulations of relativistic causality:
(1): The first of our three formulations expresses the Lorentz invariance of the dy-
namical evolution of the field system. We begin by observing that in a heuristic
quantum field theory, using the Heisenberg picture, operators indexed by spacetime
points are subject to Heisenberg equations of motion, while the state is fixed once for
all. But these equations are hyperbolic, on analogy with classical field theories using
hyperbolic dynamical equations; this means one can show, at least unrigorously, that
for any state, all expectation values are determined subluminally, in that the state’s
restriction to the field operators in a region O determines all its expectation values
for operators in the future domain of dependence D+ (O).

Ve

In AQFT, this idea is made precise as

(i): Primitive Causality; the Diamond Aziom: A(D(O)) = A(O).
The idea is: if O; C DT (0),0:NO =, i.e. O lies in the top half of the “diamond”
D*(0), and A € A(O,), so that we could measure A by a procedure confined to Oy,
then we could also instead measure A by a (no doubt different!) procedure confined
to 0. For thanks to the hyperbolic time-evolution, “the facts in O;” are already



determined by “the facts in O”.

(2): The second formulation expresses the physical idea that observables associated
with spacelike-related regions should be co-measurable; (especially since in AQFT
‘associated with’ is meant to imply ‘measurable by a procedure confined to’). Ele-
mentary quantum theory suggests that co-measurability requires that the observables
commute.

This last is of course made a bit more precise in elementary quantum measure-
ment theory: where the no-signalling theorem says that a (NB! non-selective) Liiders
rule measurement of A cannot affect the measurement probabilities of B, provided
[A, B] = 0. But we should recall:

(a) warning (4) above, about the subtleties of ‘improper mixtures’: and

(b) how the violation of the Bell inequality suggests there is indeed case-by-
case ‘spooky action at a distance’—cf. also Section 4 below ....
Anyway: we have

(i): Spacelike commutativity (also called micro-causality): Observables asso-
ciated with spacelike-related regions commute. In heuristic quantum field theory,
treating fermions requires one to also allow anti-commutation; but in AQFT, one
distinguishes field algebras and observable algebras, and for the latter imposes only
spacelike commutativity. Thus one requires: if O,y are spacelike, then for all

A1 € .A(Ol), A2 S .A(OQ) . [Al,AQ] =0.

(3): The third formulation is perhaps the most direct expression of the prohibition of
spacelike processes. It says:

(iii): Spectrum: The field system’s energy-momentum operator has a spectrum
(roughly: set of eigenvalues) confined to the future light-cone.

1.2 Three theorems reflecting the global nature of states:

The broad idea is that the quantum fields degrees of freedom are encoded in the
algebras, that are local. But a state assigns expectation values to all elements of all
local algebras, and so a state is global.

(There is a philosophical literature, mostly 1nsp1red by the Everett tradition, of
taking the state as the primary physical reality. It goes mostly under the label
‘wave-function realism and is mostly developed just for non-relativistic many particle
systems. But in 2010, Wallace and Timpson sketched how to be a “state-space realist
for quantum field theory. They proposed to factorize the universal Hilbert space with
factors associated to different spacetime regions, and that the primary physical real-
ity be density matrices on these factors. An assessment, indeed critique, by Swanson
is in British Journal of Philosophy of Science for 2020: its Section 1 to 3 helpfully
expound, including about different Types of von Neumann algebras.)

(1): The first, and fundamental, result is:



Theorem (Reeh-Schlieder): Let O be an open bounded set in spacetime.
Then  is a cyclic vector for A(O); i.e. the set of vectors A(O)S is dense in H. Also,
any state with bounded energy is cyclic.

Of the three results, this is the fundamental one. It says: even with O a tiny
neighbourhood of some point p, we can approximate an arbitrary state of the field by
acting on Q with elements of A(Q): even a state which, far way from (spacelike to)
p, is quite unlike Q. Very surprising! Cf. comment (A) in Section 4.

Intermezzo: There is an easy but important relation between a vector being cyclic
for an algebra, and it being separating for the commutant of the algebra. A vector 1
is called ‘separating’ for an algebra of operators A iff for any A € A: Ay = 0 implies
A = 0. The label ‘separating’ alludes to the fact that if v is separating, then for any
Ay, A € A: (A) — Ay)yp = 0 implies A; = As—so that indeed ¢ “can discriminate”
between any two A;, A; € A.The ideas of being cyclic and being separating generalise
readlily from a single vector in a Hilbert space H to a set of vectors K C ‘H. We say
that:
(i): K C H is cyclic for A if AK) := {¢p € H : ¢ = A(¢),for some A €
A and some ¢ € H } is dense in H; that is: the closure of A(K) is H.
(ii): K C H is separating for A iff for any A € A: if Ay = 0 for all ¥ € K, then
A = 0. (So the idea is that K is “collectively/working as a team” able to discriminate
elements of A.)
Then we have: (Bratteli and Robinson, Operator Algebras and Quantum Statistical
Mechanics, volume 1, Prop. 2.5.3, p. 85):
If A is a von Neumann algebra on a Hilbert space H, and K C H, then:
(i) K is cyclic for A iff (ii) K is separating for the commutant .A.
Proof: (i) = (ii): Choose A’ € A’ such that A’(K) = {r}. Then for any B € A, any
¥ € K, we have A'Byp = BA'Y =0. So A'(A(K)) = {0}. So A'(H)=10. So A’ = 0.
(ii) = (i): Let P’ be the projector onto the closure of (the span of) A(K). Then P’ is
a projector in A’ and (1 — P')(K) = {0}. So since K is separating for A, (1—-P') =0,
i.e. P'=1, and so the closure of A(K) is H.
With this Intermezzo, we get ...

(2): A closely related result (Haag, Local Quantum Physics, Thm 11.5.3.2):
Theorem: If O has non-empty causal complement, then .A(Q) does not con-

tain an operator that annihilates the vacuum: that is, if AQ = 0 for some A € A(O)
then A = 0. (Nor does it contain an operator that annihilates any state vector with
bounded energy.)

So if (A; — A2)2 = 0 then A; = Ay. So  is able to ‘discriminate’ elements of any
local algebra; and so, again: the vacuum is called a ‘separating vector’.

Furthermore, it follows immediately (assuming the usual Born rule for qauntum
probability) that:—



Any possible outcome of any possible local measurement procedure has non-
vanishing probability in the vacuum.

For: with P € A(O) representing the outcome of the procedure, P # 0 implies
that PQ # 0, so that || PQ ||*# 0.

(3): Finally, a result about how the vacuum encodes strict correlations, in the same
manner as the singlet state in EPR discussions. For the result, and the analogy
with the singlet state, cf. Redhead (Foundations of Physics, 25, 1995, pp. 123-137;
Theorem 4):
Theorem For any two spacelike separated bounded open regions Ojand Os:

Ve > 0, V projectors P, € A(O,), 3 a projector P, € A(O,), st. QP P) >
(1—€e)QUPR).

Recalling that states are linear functionals on observables and that the projectors
P; and P, commute since their regions are spacelike, we see that this is a statement of
strict correlation between the projectors (apart from the ‘epsilonics’). Two remarks
about this result:

(i): again, the vacuum could be replaced by any state with bounded energy;

(ii): for the analogy between the vacuum—or any state with bounded energy—and
the singlet state in Bell discussions, i.e. its violation of a Bell inequality, cf. Section

3.

2 Formulating relativistic causality in curved space-
time

Broadly speaking, by the mid 1990s quantum field theory on curved spacetime could
be formulated in as satisfactory a manner as heuristic quantum field theory on
Minkowski spacetime, subject to three conditions. (Cf Wald, Quantum field the-
ory on curved spacetime (1994).) These conditions are:

(a): The curved spacetime is fixed, i.e. there is no back-reaction of the field on
the spacetime geometry; (though the curvature can be non-constant).

(b): The field is linear (i.e. not self-interacting).

(c): The spacetime is such that the corresponding classical field theory has a
well-posed initial value problem. For our purposes, we take this to mean that the
spacetime is globally hyperbolic. (This means there is a Cauchy surface, i.e. a space-
like slice ¥ whose domain of dependence D(X) is the whole spacetime; this is a strong
condition of causal “good behaviour”.) Besides, this success was based on adapting
the algebraic approach to curved spacetimes (Wald, p. 74f, 84). Thus we naturally
hope to carry over directly to such spacetimes 1.1’s three Minkowski formulations,
(1) to (iii), of relativistic causality.

Indeed, there is no problem about (i) and (ii), primitive causality and spacelike
commutativity. Global hyperbolicity prevents any “funny business” in the causal



structure, such as closed causal curves, so that these conditions can be carried over
word for word: ‘domain of dependence’, ‘spacelike’ etc. now just refer to the curved
spacetime’s structure. Besides, the same considerations apply to the case of interact-
ing fields, i.e. to the effort to overcome the limitation (b) above. Thus recent for-
mulations of interacting quantum field theory on curved spacetimes use the algebraic
approach, and again there is nothing to prevent carrying over these two conditions
intact.

But there is a problem about the spectrum condition, (iii): though it is a problem
that has recently been largely solved. Since the solution is important, and bears on
the project of formulating interacting quantum field theory in curved spacetime, I
will give some details. (Section 3.2.2 of my [2] gives some references—and thanks to
Wald for teaching!)

In effect, the problem was that no one knew how to define the spectrum condition’s
topic, i.e. the energy-momentum operator, in a curved spacetime: all one knew
was how to define a class of physically reasonable states that gave a well-defined
expectation value. But in recent years, the problem has been solved by exploiting a
mathematical theory, microlocal analysis. The problem of definability arises from the
fact that the energy and momentum of the field are encoded in the stress-energy tensor
T , which involves the square of the quantum field ngS But q3 is a distribution, and the
product of distributions at a single spacetime point is mathematically undefined; so
that some prescription is needed in order that T make sense.

Until about 2000, it was not known how to do this “directly”, i.e. by enlarging the
algebra of observables to include some suitably smeared version of T'; so one aimed
only to characterize a class of physically reasonable states w for which the expecta-
tion value < 7' >, was well-defined. (This was work enough since, in particular, the
standard prescription for Minkowski spacetime (normal ordering, which corresponds
to subtracting off the infinite sum of the zero point energies of the oscillators com-
prising the field) depends on a preferred vacuum—which is generally unavailable in a
globally hyperbolic spacetime.) In fact, there is a compelling characterization of such
states. Since it builds on Hadamard’s work on distributional solutions to hyperbolic
equations, they are called ‘Hadamard states’.

But in recent years, various authors have exploited microlocal analysis so as to
achieve the original goal (“direct” in the above paragraph). Indeed, they have defined,
not just the energy-momentum, and stress-energy operators, and so the spectrum
condition, our (iii); but also the other products of field operators and their derivatives,
and polynomials of such products, and time-ordered products, that are crucial in order
to formulate the perturbation theory of an interacting quantum field theory.

For more up-to-date details about this, indeed about AQFT in general (but not
the topics of Sections 3 and 4), cf. e.g. the October 2020 course of lectures for the
“AQFT in the UK” network, by Siemsen and Capoferri: sponsored by the London
Mathematical Society. So go to:

https://www.lms.ac.uk/grants/joint-research-groups-uk-scheme-3/online-lectures



and click low down on: AQFT in the UK, to get to:
https://www.youtube.com/playlist ?list=PLsDn5JyJXoYIEeyBx0F2Apee0O4underlineTRkGt

3 AQFT violates the Bell Inequality

Let us return to Minkowski spacetime. The non-local correlations encoded in the vac-
uum (and many other states) of AQFT have been shown, by authors such as Landau,
Summers and Werner, to support a violation of Bell-type inequalities. This violation
is endemic in the sense that it occurs for generic obervables (with the right spectrum)
on generic (sorts of) regions for generic states, in most rigorous AQFTs. This Section
gives a few details about this.

First, there is a sense in which it is endemic that the violation is mazimal. To
explain this, we first recall that it is convenient to consider a local ‘classical’ or ‘hidden
variable’ model of a correlation experiment that uses ‘left observables’ A;, Ay and
‘right observables’ By, B, that are, not projectors, but rather self-adjoint contractions.
Thus given a projector E, we define A := 2F —1, so that —1 < A = A* < 1. Then the
Bell inequality, for a state ¢ taken (as in algebraic quantum theory) as an expectation
functional, and for left and right algebras of observables A, BB, says:— For any self-
adjoint contractions A; € A, B; € B,4,j =1,2: | ¢(A1(B1+ B2) + A3(B1 — By)) |[< 2.
Then the maximal correlation of A and B in the state ¢ is defined to be:

B(¢, A, B) := sup %¢(A1(Bl + B,) + Ay(B1 — By))

where the supremum is taken over all self-adjoint contractions A; € A, B; € B. So
the Bell inequality is: 5(¢,.4, B) < 1. In fact, for any state ¢ on any C*-algebra with
commuting subalgebras A and B, there is a more permissive bound (Cirel’son 1980):

B¢, A, B) < /2.

So in the context of AQFT, we say that a state ¢ and two algebras A(0,), A(O,)
maximally violate the Bell inequality if 5(¢,.A(O1), A(O2)) = /2. We can now state
how this maximal violation is endemic in AQFT. Namely: Summers and Werner
show that for most rigorous AQFTs, for all pairs of regions, Oy, O, that have a cer-
tain shape (e.g. each is a double cone) and a certain spatiotemporal relationship (e.g.
they are tangent to each other), there is maximal violation of the Bell inequality for
all normal states. (Roughly speaking: a normal state is a density operator.)

Furthermore: If we do not require a maximal violation, then violation is endemic
in two other senses. The first relates to which quantities give the violation; the second
to which states, i.e. how generic a state, gives a violation.



(1): Roughly: Landau (1987) shows that we can be ‘as choosy as we please’ about
which quantities give the violation. That is: it follows from his results (Prop 3 and
5 of Physics Letters 120A,pp. 54-56) that for O;, O, strictly spacelike, and any
quantities A; € A(O,) and B; € A(O,) (with [A;, As] # 0 # [By, By, and each with
spectrum =£1), there is a state violating the Bell inequality.

(2): Roughly: Clifton and Halvorson (2000) show that once we pick a Hilbert
space H carrying a representation of a AQFT, either on Minkowski spacetime or on
any globally hyperbolic spacetime, and any two open spacelike-related regions O, Oy:
there is an open dense subset of the unit ball of H, i.e. a set of unit vectors of H,
each of which, considered as a state, violates the Bell inequality. That is, writing ¢
for the state: 8(¢, A(01), A(O3)) > 1. (This summarizes Propositions 1, 3, 4 of their

31.)

4 Peaceful co-existence: some themes

I confine myself to making four points, labelled (A) to (D). All are supportive of
the broad idea that there is “peaceful co-existence” between AQFT and the idea of
relativistic causality—but I admit, there are plenty of issues yet to explore! The first
three points are important. The fourth is my personal perspective on a line of work,
principally by Redei, about the fate, within AQFT, of Reichenbach’s Principle of the
Common Cause.

The first two points bear more on “separability” than “locality”. The first (due
to Clifton and Halvorson [4]) is about the Reeh-Schleider theorem, and the impossi-
bility of destroying entanglement. The second point, due to Landsman [5], is rather
different: it uses the apparatus of algebraic quantum theory to argue for “peaceful
co-existence” between Bohr and Einstein!

The third and fourth are each about the relations between AQFT’s Bell inequality
violation, and the assumptions of Bell-type theorems; and so bear more on “locality”
than “separability”.

(A): Reeh-Schleider and the indestructibility of entanglement:— Part (1) of Section
1.2 stated the Reeh-Schleider theorem. At first sight, it suggests action-at-a-distance,
as follows: for any given state ¢—perhaps specified in terms of its expectation values
for observables in a region spacelike to a point p—there is an arbitrarily close state
that one can “produce” by acting on the vacuum 2 with some element A of the
algebra A(O) associated with a tiny neighbourhood O of p. That is: A can be chosen
to make AQ arbitrarily close to ¢.

Clifton and Halvorson (Section 3 of [4]) reply to this threat, essentially by empha-
sising that in general A will represent a selective operation. I take it that this reply
is orthodox. In any case, it assimilates the situation to the familiar one, whereby the
no-signalling theorem is considered compatible with the change in statistics arising
from a selective projective measurement. (And so it leads to the themes in (C) and
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(D) below.)
Clifton and Halvorson go on (Section 4 of [4]) to discuss:
(i) how local operations in a region O cannot disentangle the field system’s
state in O from that in O’s spacelike complement; (this follows from the type III;
structure of local algebras, especially in the light of a characterization of type III; by
Connes and Stgrmer); but also
(ii) how the indestructibility of entanglement in (i) is not a practical problem.

(B): Bohr vs Einstein Revisited:— Following [5], I will: (i) state a theorem (due to
Raggio and Bacciagaluppi), and (ii) urge the sense in which it makes peace between
Bohr and Einstein.

Beware, on both counts!

(i): The statement below is rough. I will not here explain even the idea of
C*-algebras ... let alone specify that a state being separable requires only that it be
in the w* closure of the convex hull of the product states; or that the tensor product
used should be the projective one.

(ii): As Landsman discusses (citing Spinoza and Maimonides!), the peace
is not complete ...

(i): Theorem: The following three conditions on two C*-algebras A, B are equiv-
alent:
(a): each state on A ® B is separable i.e. a mixture of product states;
(b): A or B (or both) is commutative;
(c): each state on A ® B satisfies the Bell inequality.

(ii): Now recall Einstein’s belief that (roughly speaking!) physics requires each
subsystem to have its own real state (Trennungsprinzip), and Bohr’s belief that
(roughly speaking!) physics requires a classical description of the measurement ap-
paratus. It is natural to translate these beliefs, respectively, into:

(1): For each pure state of a joint system, its restriction to a subsystem is
pure;

(2): The algebra of observables of a measurement apparatus is commuta-
tive; while a quantum system has a non-commutative algebra.

Punchline:— Now let us apply the Theorem to a joint system comprising a mea-
sured quantum object A, and a measurement spparatus B. Imposing (2), we infer
that condition (b) holds; and therefore, so do (a) and (c). In particular: (a) implies
(1). Thus in this framework, “Bohr implies Einstein”.

Similarly conversely, “from Einstein to Bohr”. that is: Imposing (1), and so (a),
we infer (b); and so, assuming A is non-commutative, we infer (2).

(C): Outcome dependence in AQFT:—Recall that interpretative discussions of
quantum non-locality revolve around which assumption of a proof of a bell inequality

10



one should deny. A broad motivation of the locality assumptions is that correlations
between spacelike events should be explained by a common cause occurring in the
intersection of their past light cones. This is made precise in Reichenbach’s Principle
of the Common Cause, with ‘explained by’ taken as ‘probabilistically screened-off
by’, i.e. ‘rendered probabilistically independent by conditioning on’. Hofer-Szabo et
al [6] is a full analysis of the Principle in general: for the application to quantum
non-locality, including AQFT, cf. Chapters 8.1 and 9.1.

In these discussions, it is usual to say that the assumption of a Bell theorem that
is shown false by the violation of the Bell inequalities is (in the now-prevalent jargon
proposed by Shimony) outcome independence, rather than parameter independence.
Here, outcome independence means: probabilistic independence of the two outcomes,
conditional on a specification of which two quantities are measured; and parameter
independence means: probabilistic independence of one wing’s outcomes from a spec-
ification of which quantity is measured in the distant wing. (So as Shimony agreed:
a better name for parameter independence would be ‘setting independence’.) Quan-
tum theory obeys parameter independence in the sense that it has the no-signalling
theorem mentioned in (2) of Section 1.1: a non-selective Liiders rule measurement of
A cannot affect the measurement probabilities of a quantity B that commutes with
Al

Broadly speaking, AQFT does not change this situation. That is: this usual/orthodox
verdict against outcome independence can be maintained, also in AQFT. (In fact,
AQFT encodes parameter independence in the fact that different local algebras have
a common unit.)

(D): SEL in AQFT:— Finally: my own contribution (cf. [7], Section 4) relates to
(C): to the fate, within AQFT, of appropriate formulations of outcome independence
and Reichenbach’s Principle of the Common Cause.

(1) T consider a precise formulation suitable for AQFT of a physical locality
condition, called ‘stochastic Einstein locality’ (SEL), which was introduced in the
Bell theorem literature as suiting Minkowski spacetime. The intuitive idea of SEL is
to combine Minkowski spacetime structure with the idea of objective time-dependent
chances for events, as follows:—

1T write ‘usual to say’ in the sense of ‘orthodox to say’! That is: We here set aside the pilot-wave
(causal) interpretation of quantum theory: for which the “culprit” assumption would instead be
parameter independence. For a glimpse of how, despite the orthodoxy, the conceptual situation is
very open, cf. my [8], which analyses a proposal of Kent’s (especially its Section 2).
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For an event E occurring in a spacetime region O, the probability at an earlier time
(spacelike hypersurface) ¢t that E occurs should be determined by history (i.e. the
events that occurred) within that part of the backward light cone of O that lies before

t; i.e. by history within J=(O) N J~(t):— ..
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More precisely, it turns out that this intuitive idea has two inequivalent formula-
tions; both generally and in the versions suitable for AQFT.

(2) T argue that:
one of these formulations follows from the AQFT axioms (especially Isotony
and Diamond);
the second is endemically violated by AQFT, as a result of the strong non-
local correlations coded in the vacuum state (or any vector state of bounded energy);
and

this violation corresponds to the endemic outcome dependence discussed
in (C) above.
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