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This document, and its predecessor, Quantization of Linear Dynamical Systems I (mostly
about systems with finitely many degrees of freedom), expound a rigorous quantization proce-
dure developed by Irving Segal and others in the 1960s. This means we do not here cover
algebraic quantum theory; which will include e.g. inequivalent representations, ‘getting out of
Fock space’, Haag’s theorem etc. (cf. eg Emch 1972); and which will be used in discussing e.g.
the Unruh e↵ect and elements of QFT on curved spacetimes.

The ‘bottom-line’ for the two documents taken together is that we have a procedure for
quantizing (ie. constructing a representation of the Weyl algebra for) any of a special class of
classical systems. The simple harmonic oscillator and the free real bosonic field both belong to
this class; but of these two, only for the former (the finite system) does this construction pick
out a unique representation.

We begin in Section 1 by recalling from Part I:
(i) quantization as the construction of a representation of the Weyl algebra as-

sociated with some classical system’s phase space (endowed with suitable complex structure);
and as “unitarizing” a Hamiltonian evolution in a symplectic space so as to give an evolution
in a complex Hilbert space; cf. Sections 1-3 of Part I

(ii) the ideas of a one-particle structure and of Fock space, i.e. symmetric Fock
space built on any one-particle structure without regard to the details of dynamics; cf. Section
4 of Part I;

(iii) the Stone-von Neumann Theorem, which essentially guarantees that the
quantization of the paradigm finite classical system, viz. point particles in Rn, is unique (up to
unitary equivalence); and its “fermionic cousin” the Jordan-Wigner theorem; cf. Section 6 of
Part I.

Then we work up slowly to the free real bosonic Klein-Gordon field. We first look at
two ways the premises of the Stone-von Neumann Theorem can fail: viz. with

(a) failure of weak continuity (Section 2);
(b) a classical configuration space other than Rn, e.g. the circle S1 (Section 3).

Then we look at an infinite spin chain, as an example where the premises of the Jordan-Wigner
Theorem fail. This is an instructive system because one can easily show that unitary equivalence
(of representations of the CARs) fails (Section 4).

Finally, section 5 focusses exclusively on the free real bosonic field, subject to the Klein-
Gordon equation, and various interpretative issues, including particle localization and the in-
terpretation of the local field operators �(x).
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et al (1992, Section 1) and Halvorson (2001).

1 Canonical quantization of finite systems: recalled

1.1 Quantization as representations of the Weyl algebra

(This summarises Section 1 of Part I.) A familiar way of developing elementary quantum
mechanics is to “promote” the classical Poisson bracket relations

{qi, qj} = {pi, pj} = 0; {qi, pj} = �ij , (1)

where i, j 2 {1, 2, . . . n}, to the Heisenberg relations (CCRs)

[Qi, Qj ] = [Pi, Pj ] = 0; [Qi, Pj ] = i�ij1; (2)

(where ~ := 1) and to seek a representation of these quantities as self-adjoint operators on a
Hilbert space. However, in hindsight, we know to expect the Qis and Pjs to have unbounded
spectra, and therefore to not be fully defined on the space L2(Rn) of square-integrable functions.
This nuisance can be remedied by instead turning to the Weyl form of the CCRs.

Define, for any a,b 2 Rn,

U(a) := e�ia.P; V (b) := e�ib.Q; (3)

Then, given (2), we have
U(a)V (b) = eia.bV (b)U(a). (4)

Since the Us and V s are both families of unitaries, their spectra are bounded, and are defined
everywhere on L2(Rn). We may take (4) as the primitive CCRs; our task is then to find
representations of the Us and V s.
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But we are only halfway to our intended framing of the representation problem. Equa-
tion (4) can be given a more abstract presentation, which unifies the quantization of particles
and bosonic fields. Setting z := (a,b) 2 R2n, we define the family of operators

W (z) := e
1
2 ia.bU(a)V (b). (5)

Then the Weyl form of the CCRs (4) are equivalent to the Weyl algebra

W (z1)W (z2) = e
1
2 i⌦(z1,z2)W (z1 + z2);

W †(z) = W (�z);
(6)

for all z, z1, z2 2 R2n, where ⌦ is the symplectic product :

⌦(z1, z2) := a2.b1 � a1.b2, (7)

to be explained shortly. Importantly, the Weyl algebra (6), though abstract, may successfully
be extended to bosonic fields.

1.2 Symplectic vector spaces and manifolds; linear systems

(This repeats from Part I: Section 3.3 and then part of Section 3.6.) If we are lucky
enough for our classical phase space to be vector space (as when S = R2n), then we can make
it a symplectic vector space, which is a pair (S,⌦), where S is a phase space—also a vector
space—and ⌦ is a symplectic product. The symplectic product ⌦ : S⇥S ! R is, by definition,
anti-symmetric, linear and non-degenerate (i.e. if ⌦(z1, z2) = 0 for all z2, then z1 = 0).

We define the symplectic product on S = R2n
3 z1, z2 as in (7). Note that ⌦(z, ·) : S ! R

is a real-valued function on S, and so a classical observable. In particular, ⌦(z, ·) = qi i↵ z has
(n+ i)th component bi = 1 and the rest 0, and ⌦(z, ·) = pi i↵ z has ith component ai = �1 and
the rest 0. In general, ⌦(z, ·) is some linear combination of pis and qis. In this formulation, the
classical Poisson bracket relations (1) may be written

{⌦(z1, ·),⌦(z2, ·)} = �⌦(z1, z2), (8)

the corresponding Heisenberg form of the CCRs are

[⌦̂(z1, ·), ⌦̂(z2, ·)] = �i⌦(z1, z2)1, (9)

where (in the sought representation) the map z 7! ⌦̂(z, ·) takes elements of S to self-adjoint
operators, and the Weyl unitaries are defined by

W (z) := ei⌦̂(z,·). (10)

This is Wald’s presentation: see Wald (1994, Ch. 2). Later we will use field operators �, for
which �(Jz) = ⌦̂(z, ·), or �(z) = �⌦̂(Jz, ·) = ⌦̂(·, Jz).

Symplectic manifolds, more generally:— In the case where the classical phase space S
is not a vector space, we must resort to a longer route. In this case, we seek a group whose
action on S is transitive and preserves the symplectic form ! :=

P
i
dpi ^ dqi. (In the case

that S is a vector space, this group is just the (abelian) additive group of translations in S,
which is isomorphic to S. That is what allowed us to treat S as a symplectic vector space
above.) For illustration, taking the case S = R2n, the group action is a 2n-parameter family of
di↵eomorphisms associated with the vector fields (with constant coe�cients)

Xz =
nX

i=1

bi
@

@qi
� ai

@

@pi
, (11)
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for any z := (a,b) 2 R2n. We may now act on any two such vector fields with the symplectic

form ! with which S, being a classical phase space, is equipped. This yields

!(Xz1 , Xz2) = a2.b1 � a1.b2. (12)

Our quantization problem then becomes the search for continuous families of unitaries z 7!

W (z) which respect this symplectic structure, as expressed in the Weyl algebra (6), setting

e
1
2 i⌦(z1,z2) = e

1
2 i!(Xz1 ,Xz2 ). Since the Weyl algebra (6) is unitary up to the phase factor

e
1
2 i!(Xz1 ,Xz2 ), it is a projective unitary representation of the group of symplectomorphisms on

S.

Quadratic Hamiltonians and linear systems— We spell out how a Hamiltonian being
quadratic implies that time-evolution preserves linear structure. So let the phase space � be a
symplectic vector space with global coordinates (q, p). We write ⇠↵, with ↵ running from 1 to
2n.

We now define a linear system as one in which the Hamiltonian is a quadratic form H↵�

in the ⇠s. That is: the energy = H = (⇠↵)T [H↵�⇠� ]. Then taking partial derivatives of the
energy H with respect to any ⇠↵ (holding all other ⇠↵ constant of course) will give: a linear
combination of the various ⇠� , i.e. a linear combination with constant coe�cients. Call it a↵⇠↵

(with summation convention).Then rH is the column of these partial derivatives. Multiplying
rH by the symplectic matrix keeps it a linear combination. So the Hamiltonian vector field is
a linear combination of the various ⇠� with constant coe�cients. Call it b↵⇠↵ (with summation
convention)

So at each point ⇠ = (q, p) 2 �, the infinitesimal flow is: b↵⇠↵. Then it is trivial that
the time-evolution preserves the linear structure of solutions. For take two points: ⇠1 = (q1, p1)
and ⇠2 = (q2, p2). At the sum-state got by superposing these states, ⇠1+2 := (q1 + q2, p1 + p2),
the infinitesimal flow is by definition: b↵⇠↵1+2. But this is: b↵(⇠

↵

1 + ⇠↵2 ) = b↵(⇠↵1 ) + b↵(⇠↵2 ).
In short: The sum of two instantaneous states has as its infinitesimal Hamiltonian flow

(tangent vector in phase space) the sum of the two states’ individual Hamiltonian flows (tangent
vectors).

1.3 One-particle structures

(This repeats passages of Section 4 from Part I.) There are two core ideas of the Segal
quantization of a linear classical system.

First: there is a map K from the solution space of a classical linear system, i.e. a
symplectic vector space, to a Hilbert space. K is required to satisfy conditions that combine
the ideas of complex structures and symplectic structures, in such a way that the Hilbert space is
determined. In short: we choose a complex structure J that preserves and tames the symplectic
form, and thereby complexify the real vector space and define a Hilbert space; (such a complex
structure J is not unique). Besides, K is determined as having a unitary dynamics that is the
“unitary cousin” of the classical system’s dynamics. K, or the Hilbert space to which it leads,
is called a one-particle structure.

Second: there is the usual Fock space construction, which will be applied to the one-
particle structure’s Hilbert space (i.e. after the first idea has been implemented). So here,
the phrase ‘one-particle’ signals that the Hilbert space is the first (non-zero, i.e. non-vacuum)
summand of the usual Fock space sum of ever larger tensor powers.

In Part I, we saw this illustrated for the harmonic oscillator (in one spatial dimension).
Starting with classical harmonic oscillator, the first idea delivers us as the quantum state space—
not the familiar quantum harmonic oscillator, with (in one spatial dimension) Hilbert space
L2(R)!—but ‘merely’ the world’s simplest complex Hilbert space, viz. C i.e. the complex plane.
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To get the familiar quantum harmonic oscillator, i.e. L2(R) (equipped with the quantum
harmonic oscillator Hamiltonian), we need to take the Fock space built from C. That Fock
space will “be” (i.e. be a Hilbert space isomorphic to) L2(R). So we in e↵ect factorize the
usual understanding of canonical quantization—viz. (for the 1-dimensional harmonic oscillator)
“replace the two-dimensional classical phase space R2

3 (q, p), with L2(R), i.e. L2 functions
on the configuration space R—into: first, build a 1-particle structure; second, build the Fock
space.

Here is a bit more detail about the first idea. (We postpone review of the second idea
until later.)

We begin with the triple, (S,⌦,�t), where S is a symplectic vector space, the ‘phase/solution
space’ for a Hamiltonian system, ⌦ is its symplectic product, and �t for the one-parameter group
of motions (i.e. symplectomorphisms) along the integral curves of the Hamiltonian vector field
Xh. We add a complex structure J that:

1. is a symplectomorphism; i.e. ⌦(Jz1, Jz2) = ⌦(z1, z2) (it follows that [J,�t] = 0, i.e. J is
equivariant under the classical dynamics);

2. “tames” ⌦ in that ⌦(z, Jz) > 0, for all z 6= 0.

Given this J , we define a complex inner product on (S,⌦,�t, J):

hz1, z2iS :=
1

2
⌦(z1, Jz2) +

1

2
i⌦(z1, z2), (13)

Note: The real part of this definition is using the idea that given a symplectic vector space V ,
with symplectic product !, one can define a complex-linear but real-valued symmetric bilinear
form gJ on the complex vector space VJ by: gJ(u, v) := !(u, Jv). Then we use the idea that
we can define a sesquilinear, complex-valued function on V ⇥ V , i.e. complex inner product, in
terms of gJ and !, by: hu, vi ⌘ hu, vi!,J := gJ(u, v) + i!(u, v).

1.4 The Stone-von Neumann and Jordan-Wigner uniqueness theorems

(This repeats passages of Section 6 from Part I.)

Theorem 1.1 (Stone-von Neumann Uniqueness Theorem). Let (S,⌦) be a symplectic vector

space, with S = R2n
. Every weakly continuous irreducible representation of the Weyl algebra

over (S,⌦) is unitarily equivalent to the Schrödinger representation, in which, for all  (x) 2

L2(Rn),

(W (a,b) )(x) := e�ia.(x� 1
2b) (x� b). (14)

Note as special cases that (W (a,0) )(x) ⌘ (U(a) )(x) =  (x� a) and (W (0,b) )(x) ⌘
(V (b) )(x) = e�ib.x (x). In fact, the Schrödinger representation is strongly continuous, so by
Stone’s Theorem there are 2n self-adjoint operators, Qi and Pi, such that U(a) = e�ia.P,
V (b) = e�ib.Q and for all  (x) 2 L2(Rn) in suitable domains,

(Q )(x) = x (x); (P )(x) = �ir (x). (15)

For the Jordan-Wigner theorem for the CARs, we consider first a sequence of quantum theories,
each corresponding to a chain of spin-12 systems. The first theory describes a single spin-12
system, with observables {�(x),�(y),�(z)}, which satisfy the Pauli relations

[�(x),�(y)] = 2i�(z) and cyclic perms; �2 := �(x)2 + �(y)2 + �(z)2 = 31. (16)
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This is equivalent to satisfying the canonical anti -commutation relations (CARs; see eg p.60-61
of Ruestsche 2011),

d2 =
⇣
d†
⌘2

= 0; [d, d†]+ = 1; (17)

where
�(x) = d+ d†; �(y) = �i

⇣
d� d†

⌘
; �(z) = dd† � d†d. (18)

We now consider a theory describing a linear chains of n spin-12 systems, with observables
{�k(x),�k(y),�k(z) | k 2 {1, 2, . . . n}}, satisfying

[�j(x),�k(y)] = 2i�jk�k(z) and cyclic perms; �2
k
:= �k(x)

2 + �k(y)
2 + �k(z)

2 = 31. (19)

Of course, our theory falls outside the scope of the Stone-von Neumann theorem, because
it is characterized by CARs, rather than CCRs. However, there is an analogous uniqueness
theorem:

Theorem 1.2 (Jordan-Wigner Uniqueness Theorem). For each finite n, every irreducible rep-

resentation of the CARs (equivalently, the Pauli relations) is unitarily equivalent to the Pauli

representation, in which

�P
k
(x) = 1⌦ . . .⌦ 1| {z }

k�1

⌦

✓
0 1
1 0

◆
⌦ 1⌦ . . .⌦ 1| {z }

n�k

;

�P
k
(y) = 1⌦ . . .⌦ 1| {z }

k�1

⌦

✓
0 �i
i 0

◆
⌦ 1⌦ . . .⌦ 1| {z }

n�k

;

�P
k
(z) = 1⌦ . . .⌦ 1| {z }

k�1

⌦

✓
1 0
0 �1

◆
⌦ 1⌦ . . .⌦ 1| {z }

n�k

.

(20)

The Stone-von Neumann theorem fails to apply if either of its antecedent conditions fail;
i.e. if either the classical phase space is not R2n, or else the representation of the Weyl algebra
is not weakly continuous. Following Ruestche (2011, Ch. 3), it is helpful to break the various
possible failures into three cases:

(i) weak continuity fails;

(ii) classical phase space is finite-dimensional, but not R2n;

(iii) classical phase space is infinite-dimensional.

In each of these cases, we have no guarantee that the quantization of our classical system is
unique. In fact, for each of these cases we know that the quantization is not unique. We’ll
investigate case (i) in Section 2, case (ii) in Section 3, and case (iii) in Section 5¿ Before that
we will deal Section 4 with infinite spin chains, i.e. the break-down analogous to case (iii) for
CARs.

2 Dropping weak continuity—and getting position or momentum eigenstates

There are representations of the CCRs that give up weak continuity (aka: regularity) whose
Hilbert space contains exact position eigenstates: but these are not the “improper eigenstates”
given by delta-functions (cf. our Hilbert space Review), nor the eigenstates of “rigged Hilbert
space”. By a parallel construction, one can build a non-regular representation with exact
momentum eigenstates. To explain this, we will follow Halvorson, “Complementarity of repre-
sentations in quantum mechanics”, Studies in History and Philosophy of Modern Physics 2004.
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His paper develops results from the 1970s, e.g. by Beaume et al. A philosophers’ review of
Halvorson is in Ruetsche 2011, Chapter 3.1.

These constructions are of interest for several reasons:—
(i) They use a non-separable Hilbert space: a kind of quantum state-space

relevant to various foundational/interpretative discussions (reviewed by Earman, “Quantum
Physics in Non-separable Hilbert spaces”, Pittsburgh 2020: Earman’s Section 5.2 discusses this
case).

(ii) In the representation with exact position eigenstates, there are no momentum
eigenstates; indeed, the momentum operator does not exist. And vice versa: the representa-
tion with exact momentum eigenstates has no position eigenstates, and no position operator.
Besides, these representations are unitarily inequivalent. (Non-separable Hilbert spaces and
unitarily inequivalent representations will be themes for us below.)

(iii) Building on (ii), Halvorson sees these results as formulating (vindicating!)
Bohr’s doctrine of complementarity (this theme is also in other contemporary papers of his).
We recall from our Hilbert space Review, that in L2(R), complementarity is usually taken to
be formulated by such facts as:

(a) the position-momentum uncertainty relation (i.e. the product of the
standard deviations of any function and its Fourier transform is lower bounded); and

(b) the meet of (intersection of the ranges of) any compact-support spec-
tral projector for position with any compact-support spectral projector for momentum is the
zero projector (subspace); (cf.: for any function of bounded support, its Fourier transform has
unbounded support).
Whether or not Bohr (or we!) really “want” a quantum particle to be able to have a pre-
cise/sharp real-number position, or momentum—but not both!—in a way that goes beyond (a)
and (b) . . . is a matter for discussion! This is taken up by Ruetsche ibid. and e.g.: B Feintzeig
et al. Why be regular? Part I, Studies in History and Philosophy of Modern Physics 2019;
and B Feintzeig and J Weatherall, Why be regular? Part II, Studies in History and Philosophy

of Modern Physics 2019; and B Feintzeig, The classical limit of a state on the Weyl algebra,
Journal of Mathematical Physics 2018.

We now construct a representation with position eigenstates, guided by the Schrödinger
representation. Unlike the latter, our representation will be carried by the non-separable Hilbert
space l2(R) of all square-summable functions  : R ! C. These are functions  supported on
a countable set of real numbers, �( ) ⇢ R, and that satisfy

|| ||2 :=
X

x2�( )

| (x)|2 < 1 (21)

Here || || is the norm derived from the inner product h ,�i =
P

x2�( )\�(�)  
⇤(x)�(x). The

space l2(R) is spanned by the continuum-many states (characteristic functions of real numbers)

 �(x) =

⇢
1 if x = �,
0 if x 6= �.

(22)

The { � : � 2 (R)} are an orthonormal basis of l2(R).
We define the representations of the Weyl unitaries using these basis states, and guided

by the Schrödinger representation. We define for each a, b 2 (R):

(U(a) �)(x) :=  �(x� a) ⌘  �+a(x); (V (b) �)(x) := e�ibx �(x) ⌘ e�ib� �(x). (23)

Since for each a, b 2 (R), U(a) and V (b) map an orthonormal basis to another, they extend to
unitaries. One checks that the Weyl relations, eq. 4, hold.

7



It can now be checked that weak continuity fails for the Us. Recall (from Section 6.1
of Part I) that weak continuity requires that for every vector  in the Hilbert space, h , U(a+
") i ! h , U(a) i as "! 0. Then we note that

h �, U(a) �i =

⇢
1 if a = 0,
0 if a 6= 0,

(24)

and so U(a) is not weakly continuous at a = 0. It follows that Stone’s Theorem (cf. Section
3.6 of Hilbert space Review) does not apply, and we have no self-adjoint operator, the would-be
momentum, to generate spatial translations. More precisely: Stone’s theorem does not apply,
so that we cannot define the momentum operator in the standard way by taking the deriva-
tive �i(dU(a)/da)|a=0. (For discussion of a more general conception of “having a momentum
operator”, cf. e.g. Halvorson 2004, Section 4.)

Note that Stone’s theorem is often formulated with an assumption of strong continuity
on the 1-parameter group (e.g. De Faria and De Melo, 2010, Appendix A.9, p. 250). But in
fact for 1-parameter unitary groups, weak continuity implies strong continuity; (by a simple
argument, e.g. Prugovecki 2006, Lemma 6.2, p. 234).

On the other hand, the V s are weakly continuous. For trivially, on our orthonormal
basis, for any � 2 R: h �, V (b) �i ⌘ eib� ! 1 as b ! 0. So the V s are weakly continuous, and
therefore also strongly continuous; and so by Stone’s Theorem, we have a self-adjoint operator
Q such that V (b) = eibQ. Its action on our orthonormal basis is as we want:

(Q �)(x) = �i lim
b!0

b�1(V (b)� I) �(x) = �i lim
b!0

b�1(eib� � I) �(x) = � �(x). (25)

So much by way of constructing a position representation. Alternatively, we can mutatis

mutandis build a momentum representation on l2(R). The situation is then reversed: the V s
fail to be weakly continuous, and so fail to yield a self-adjoint generator, the would-be position
operator; while the Us are generated by a momentum operator satisfying the expected eigenvalue
equation.

These two representations on l2(R), the position and momentum representations, are
not unitarily equivalent. This can be seen immediately: no unitary A exists such that AQA†,
with Q as defined in (25), is the position operator in the momentum representation—no such
operator exists!

3 Nontrivial configuration spaces: a particle on the circle

For a particle on the circle, the configuration space is S1, coordinatized by � 2 [0, 2⇡) and the
phase space is S = S1

⇥ R, coordinatized by (�, l) 2 [0, 2⇡) ⇥ R. This phase space cannot be
a symplectic vector space, since S1 is not a vector space. But it is a symplectic manifold, with
symplectic form ! = dl ^ d�. Therefore we have to look for the group of symplectomorphisms
on S. This is a 2-parameter family, generated by the vector fields

Xz = b
@

@�
� a

@

@l
, (26)

where z := (a, b) 2 R2. As discussed in Section 3 of Part I, this parameter space can be given
the structure of a symplectic manifold by defining

⌦(z1, z2) := !(Xz1 , Xz2) = a2b1 � a1b2. (27)
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Inspired by the Schrödinger representation on L2(R), we might want to define the Weyl
unitaries on L2(S1) 3  (�), according to:

(V (b) )(�) := e�ib� (�); (U(a) )(�) :=  (�� a). (28)

But now we face the problem that  is only defined on [0, 2⇡), while a may be any real number.
The standard solution (see Morandi 1992, Ch. 3) is to seek representations not in the space of
square-integrable functions on S1, but rather on its universal covering space, R, coordinatized
by �̃. The idea is that a phase ✓ is picked up for each 2⇡ translation along R; and di↵erent
choices of ✓ give unitarily inequivalent representations of the Weyl relations.

In detail:— The group ⇡1(S1) of homotopy equivalence classes [�] on S1 ([�] a loop on
S1) acts on the real line in the obvious way. Note that ⇡1(S1) ⇠= Z. Namely: if [k] is the class
of loops circling S1

|k| times, clockwise if k > 0 and anti-clockwise if k < 0 (so k 2 Z), then the
action is: [k] · �̃ := �̃ + 2⇡k. Given this action, we require the states  ̃ 2 L2(R) to satisfy the
condition

 ̃([�] · �̃) = a([�]) ̃(�̃), (29)

where a : ⇡1(S1) ! U(1) is a 1-dimensional unitary representation of ⇡1(S1).
Let [+1] be the class of loops circling S1 once clockwise, and let a([+1]) =: ei✓, where

✓ 2 [0, 2⇡). Here we see how the choice of the representation a fixes the phase picked up by a
single translation by 2⇡—and thus by any integer number of such translations. That is: this
implies that a([k]) = eik✓, where k 2 Z. It then follows, using eq. 28 and 29, that

(U(2k⇡) ̃)(�̃) = e�ik✓ ̃(�̃) . (30)

It may be checked that

(V (b) ̃)(�̃) := e�ib�̃ ̃(�̃); (U✓(a) ̃)(�̃) = e�i
a✓
2⇡  ̃(�̃� a); (31)

satisfy the required Weyl relations and condition (30).
The self-adjoint generator of the U✓s is the angular momentum operator

L✓ = �i
d

d�̃
+

✓

2⇡
, (32)

which, due to (30), has the discrete spectrum {k + ✓

2⇡ | k 2 Z}.
Since the spectra of any two L✓1 , L✓2 , where ✓1 6= ✓2, are disjoint, no two representations

are unitarily equivalent.
But the value of ✓ has empirical consequences, as illustrated by the related examples:

(i) the Aharonov-Bohm e↵ect; and (ii) anyons. In both of these cases the configuration space’s
first homotopy group is ⇡1(Q) ⇠= Z, like the particle on the circle.

4 Infinite degrees of freedom 1: the infinite spin chain

Recall Section 1.4 above about the Jordan-Wigner theorem, and its specification of the Pauli
representation on a finite spin: which recalled Section 6.1 of Part I. We now repeat more of
that Section 6.1.

An alternative to the Pauli representation (though, by the Jordan-Wigner theorem,
equivalent to it) is the representation S (for ‘switch’) that defines the spin matrices according
to

�S
k
(x) = �P

k
(y); �S

k
(y) = �P

k
(z); �S

k
(z) = �P

k
(x); k = 1, 2, ..., n (33)

i.e. the switch representation of �k(x) in HS has the same matrix elements as the Pauli represen-
tation of �k(x) in HP , etc. Now let U : C2

P
! C2

S
be the unitary such that U�P

k
(x)U † = �S

k
(x),
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etc. Then the unitary ⌦
nU : HP ! HS establishes the unitary equivalence between the switch

and Pauli representations.
This equivalence extends to all operators in B(HS) and B(HP ). In particular, let

{fi({�Pk (i)})} be a sequence of linear functions of the {�P
k
(i)} which converges in HP ’s weak

topology to the operator FP . Each fi({�Pk (i)}) 2 B(HP ) and B(HP ) is closed under weak
convergence; so FP 2 B(HP ). Similarly, let {fi({�Sk (i)})} be a sequence of linear functions of
the {�S

k
(i)}, where

fi({�
S

k
(i)}) = Ufi({�

P

k
(i)})U †. (34)

Weak convergence is preserved under unitary transformations, so the {fi({�Sk (i)})} converge in
HS ’s weak topology to some operator FS 2 B(HS), and FS = UFPU †.

In the Pauli representation HP
⇠= C2n, we may define the polarization observable m̂P :=

(mP
x ,m

P
y ,m

P
z ), where

mP

x :=
1

n

nX

k=1

�P
k
(x), etc. (35)

Clearly, m̂P
2 B(HP ), and the spectrum of m̂P is parametrized by points on the unit sphere.

From the above considerations, we know that the similarly defined polarization observable
m̂

S := (mS
x ,m

S
y ,m

S
z ) in the switch representation satisfies

m̂
S = Um̂

PU †, (36)

and so expectation values in S are identical to corresponding (given U) expectation values in
P .

Now consider the theory of the infinite spin-chain, in which we have a spin-12 system for
every integer in Z. This theory has observables satisfying the Pauli relations (19). Representa-
tions of the Pauli relations in such a theory will be carried by a separable Hilbert space only if
we make some hard choices about which of the uncountably many prima facie possible states
are to be excluded.

(References for what follows include, G. Sewell’s books, Quantum Theory of Collective

Phenomena 1986, and Quantum Mechanics and its Emergent Macrophysics 2002; cf. Section
2.3 of each book. The natural proposal to set H = the infinite tensor product of C2 leads to a
non-separable Hilbert space, since it has 2@0 dimensions: cf. Section 2.1 of Earman, “Quantum
Physics in Non-separable Hilbert spaces”, Pittsburgh archive 2020.)

One way to construct a separable Hilbert space is to pick a single-site state-vector |✓,�i
to favour. |✓,�i represents the eigenstate (with eigenvalue 1) for the spin vector’s being û(✓,�),
which is the unit vector intersecting the unit sphere characterized at latitude ⇡

2�✓ and longitude
�. Our Hilbert space H(✓,�) is then constructed as follows. First, it contains the state in which
every spin-site has state |✓,�i; call this state ⌦(✓,�). Then we generate H(✓,�) by taking the
closed linear span of all states obtained from ⌦(✓,�) by SU(2) rotations on any finite number of
the spin sites.

We can do this as follows. First define H(✓,�) as a fermionic Fock space on l2(Z):

H(✓,�) := F�

⇥
l2(Z)

⇤
= C� l2(Z)�A2

⇥
l2(Z)⌦ l2(Z)

⇤
� . . . (37)

The subspace AN

⇥
⌦

N l2(Z)
⇤
corresponds to arbitrary superpositions of states in which exactly

N spin sites are in an eigenstate of pointing in the direction �û(✓,�) ⌘ û(⇡�✓,�+⇡) and all
remaining spin sites are in an eigenstate of pointing in the familiar direction û(✓,�).

We define the “vacuum” state ⌦(✓,�) by

⌦(✓,�) = 1� 0� 0� . . . (38)
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We now define fermionic creation and annihilation operators d†
k
, dk for each spin site k 2 Z.

H(✓,�) is the closed linear span of arbitrary combinations of these acting on ⌦(✓,�). First we

define the operators d(N)
k

†

: ⌦N�1l2(Z) ! ⌦
N l2(Z) and d(N)

k
: ⌦N l2(Z) ! ⌦

N�1l2(Z) for all
N 2 N:

d(N)
k

†

( 1 ⌦ . . .⌦  N�1) := �k ⌦  1 ⌦ . . .⌦  N�1

d(N)
k

( 1 ⌦  2 ⌦ . . .⌦  N ) :=  1(k)  2 ⌦ . . .⌦  N

(39)

where �k(j) = �jk. Now we may define d†
k
, dk : F�

⇥
l2(Z)

⇤
! F�

⇥
l2(Z)

⇤
by

dk
† := d(1)

k

†

�
p
2A2d

(2)
k

†

�
p
3A3d

(3)
k

†

� . . .

dk := 0 � d(1)
k

�
p
2d(2)

k
�

p
3d(3)

k
� . . .

(40)

It may be checked that

[dj , dk]+ = [d†
j
, d†

k
]+ = 0; [dj , d

†

k
]+ = �jk . (41)

We may now define

�(✓,�)
k

(x) := Uk(✓,�)
⇣
dk + d†

k

⌘
Uk(✓,�)†;

�(✓,�)
k

(y) := �iUk(✓,�)
⇣
dk � d†

k

⌘
Uk(✓,�)†;

�(✓,�)
k

(z) := Uk(✓,�)
⇣
dkd

†

k
� d†

k
dk
⌘
Uk(✓,�)†;

(42)

where

Uk(✓,�) := sin
1

2
✓e�

1
2�dk + sin

1

2
✓e

1
2�d†

k
+ cos

1

2
✓e

1
2�dkd

†

k
� cos

1

2
✓e�

1
2�d†

k
dk. (43)

Intuitively, think of each Uk(✓,�) as rotating eigenstates of spin-direction û(✓,�) to eigenstates
of spin-direction ẑ := û(0,0) at spin-site k.

The significant result is now that di↵erent choices for (✓,�)—and therefore for ⌦(✓,�)—
lead to unitarily inequivalent representations of the Pauli relations. This can be seen informally
by considering that the inner product between any state from H(✓,�) and any state from H(✓0,�0),
where (✓,�) 6= (✓0,�0), involves infinitely many factors of the kind h✓,�|✓0,�0i, each of which is
strictly less than one. Therefore, the inner product is zero. This is an instance of representations
which are called disjoint ; we will return to this idea below.

Alternatively, note that, for finite spin-sites, the unitary connecting (the analogues of)
⌦(✓,�) and ⌦(0,0) could be implemented by

nY

k=1

Uk(✓,�) = ⌦
N

 
cos 1

2✓e
1
2� sin 1

2✓e
�

1
2�

sin 1
2✓e

1
2� � cos 1

2✓e
�

1
2�

!
(44)

on ⌦
NC2. But we cannot make sense of the infinite-site counterpart

Q
1

k=�1
Uk(✓,�) on a

separable Hilbert space.
We can see the unitary equivalence more rigorously by noting that the observables

m(✓,�)
x,n :=

1

2n+ 1

nX

k=�n

�(✓,�)
k

(x), etc. (45)

defined on H(✓,�) converge in the weak topology, as n ! 1, to the global polarization m̂
(✓,�)
1 ,

where

h⌦(✓,�),m
(✓,�)
1 ⌦(✓,�)i = lim

n!1

1

2n+ 1

nX

k=�n

û(✓,�) = û(✓,�). (46)
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Similarly, we can define the global polarization m̂
(✓0,�0)
1 in H(✓0,�0), where

h⌦(✓0,�0),m
(✓0,�0)
1 ⌦(✓0,�0)i = û(✓0,�0). (47)

But û(✓,�) 6= û(✓0,�0), so these two representations must be unitarily inequivalent.

Some comments:

(i) We can see unitary inequivalence as arising from “vacuum” polarization. I.e., the states
on which we build each representation di↵er “infinitely” from each other, and since any
two states in the same representation are accessible by a finite number of transformations,
any state in one representation will be inaccessible to any state in the other.

(ii) If N < 1, then all states “fit” into a separable Hilbert space, and there is no superse-
lection. But superselection can be approximated for large N by restricted the algebra of
quantities to “local” ones.

(iii) How to choose which representation? Answer: sometimes dynamics, sometimes not. E.g.
as we have in e↵ect seen above: the ferromagnetic choice H =

P
1

k=�1
(1� �k.�k+1) does

not determine a unique vacuum.

(iv) The idea of “particles” arises as a solution to the problem of defining a Hilbert space of
states which is separable, i.e. has a countable basis, for an infinite system (for which we
might naturally expect an uncountable number of basis states). That is: here, particles
allow us to define finite deviations of the system from a selected “vacuum” state. We say
“vacuum” in scare-quotes because (i) we have not invoked a Hamiltonian and (ii) in the
spin-chain, the “vacuum” is no more “empty” than any other state. This use for particles
also arises in QFT, and is separate from the idea of “particles” associated with finding
normal modes and their excitations (as discussed in Section 4.1 of Part I).

(v) Unlike in QFT, there is no vacuum entanglement here: i.e. the vacuum state is not
entangled between the sites.

(vi) In our GNS and all that: a rough guide to algebras and states, we will return to the closing
argument above, for unitary inequivalence. We will see it in the context of the facts that
(i) the representations of a C⇤-algebra are given within a Hilbert space, which allows us
to define a weak topology; (ii) we can close the set of the C⇤-algebra’s representatives in
this weak topology; and (iii) the new operators so generated (which don’t live in the C⇤-
algebra) have di↵erent spectra in di↵erent representations; so (iv) they cannot be unitarily
equivalent.

(vii) There is also here the general philosophical theme mentioned at the end of Section 2.4.C
of Part I: singular limits and emergence.
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