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Abstract. After briefly putth~g algebraic quantum theory into the context of 
a probabilistic interpretation with emphasis on local measurements, certain general 
features of the theory are examined. Sectors are defined and shown to be the 
components of the pure state space in the norm topology. Transition probabilities 
are defined by a simple algebraic formula and it is shown how superpositions of 
pure states may be defined. With the aid of these results, symmetries are charac- 
terized and the connexion with Wigner's Theorem is established. 

1. Introduction 

The predictions of quantum theory were quickly realized to be proba- 
bilistic in nature. These predictions do not fall within the scope of clas- 
sical probabil i ty theory but  they can be accommodated within a non- 
commutat ive probabili ty theory. The probabifistic formulation of quan- 
tum theory owes much to the pioneering work of vo• NW.UMANZq [1] but  
the clearest account of the essentials has been provided by  MACKEY [2]. 
Here the states and the observables are t reated as the pr imary entities 
of the theory and a probabili ty measure is assigned to each pair (co, A) 
consisting of a state o~ and an observable A. 

The algebraic approach to quantum theory with its stress on the 
C*-algebra of bounded observables was initiated by  SEGAL [3] and was 
realized by  AI~AWT [4], HAAG and KAS~ER [5] to provide a useful tool 
for understanding local quantum field theory. The relationship of alge- 
braic quantum theory to Mackey's axioms has recently been clarified by  
~YMEN [6] using the concept of a X*-algebra introduced b y  DAVIES [7]. 
As Davies showed, it  is always possible to embed an abstract  C*-algebra 
92 in a canonical way in a X*-algebra 92- so tha t  any state of 92 has 
a unique extension to a a-state on 92-. 92~ is called the a-envelope of 92. 
In  classical statistical mechanics if 92 is chosen to be the C*-algebra of 
continuous functions on a compact subset of phase space, 92N may  be 
identified with the X*-algebra of bounded Borel functions on tha t  subset. 
In  section 2, we discuss this relationship between C*-algebras and 2:*-al- 
gebras in the light of local measurements and show how unbounded 
observables fit naturally into the scheme. 

Regarding the probabilistie formulation of quantum theory as fun- 
damental,  we take the view tha t  a symmet ry  of a physical system is 
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most properly defined as a transformation leaving invariant  the under- 
lying probabili ty measures. In  Section 3, we discuss the implications of 
this assumption in a C*-realization of a physical system. Our main result 
here is tha t  any transformation of the states induced by a symmetry  is 
an isometry with respect to the metric induced by  the norm on 92', the 
dual of 92. 

Before establishing the connexion with the Wigner-Bargmann [8 and 
9] analysis of symmetries, we need to define sectors, establish some of 
their properties and also give an algebraic definition of the transition 
probabili ty between two pure states. This forms the material  of Section 4 
and allows us to formulate the superposition principle in Section 5 and 
show its invarianee under symmetry  transformations. 

We can now show in Section 6 tha t  transition probabilities are left 
invariant  by  a symmetry  whilst the sectors are permuted by  it. Thus, 
applying Wigner's Theorem in the ex~ended version due to BA~OM~¢~ 
[9], we can infer the existence of a uni tary or antiunitary mapping 
implementing the mapping from some initial sector to the corresponding 
final sector. This allows us to rederive a result of KADISO~¢ [10] tha t  
a symmetry  induces a Jordan isomorphism of the C*-algebra. We con- 
clude with a necessary and sufficient condition for a transformation of 
the pure states to be induced by a symmetry.  

For the convenience of the reader, we add a few remarks on the 
terminology and notation used. If  ~ is a map from a set X to a set Y, 
then for any subset M of Y, ~-1 (M) denotes the inverse image of M 
in X. I f  ~ is 1 - 1  and onto it will be called a bijeetion. I f  ~ : X - ~  Y and 
fl: Y-~ Z are two successive maps, fl o ~ denotes the composed map 
X - +  Z. R and C denote the fields of real and complex numbers respec- 
tively. A function ] : R -> R is called a (real-valued) Betel function, if 
]-I(B) is a Borel set of R for any Betel set B CR. A probabili ty measure 
/x on it/is a non-negative Borel measure such tha t /z  (//) = 1. 

By  a C*-algebra 92, we shall always mean an abstractly defined 
C*-algebra with unit, denoted by  I.  For details the reader is referred to 
Dixmier 's book [11 ]. I f / 2  is a compact Hausdorffspaee, then C (/2) denotes 
the C*-algebra of continuous funct ions/2 -+ C. The spectrum of A E 92 
is the set of complex numbers 2 such tha t  A - 2I has no inverse in 92 
and is denoted by  SpA. SpA is always compact and if A is Hermit ian 
then Sp A is real. We shall denote by  92h the Jordan algebra of Hermit ian 
elements of the C*-algebra 92. A Jordan homomorphism is a *-preserving 
linear map of a C*-algebra 92 into a C*-algebra ~$ such tha t  ¢ (A S) = ¢ (A) ~ 
for each A E 92. A bijeetive Jordan homomorphism is called a Jordan 
isomorphism. 

By a representation z~ of 92, we mean a representation by  bounded 
operators on some complex Hilbert  space ~f . .  z~ denotes the equivalence 
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class of unitarfly equivalent representations to which ~r belongs. The set 
of equivalence classes of irreducible representations is denoted by ~[ and 
called the spectrum of 9A. S(9A) denotes the set of states of 9,1, i.e. the 
set of positive linear functionals of norm 1. The extreme points of the 
convex set S(9A) are called pure s t a b s  and the set of pure states is 
denoted by  P (9A). I f  co ~ S (9A), ~ denotes the canonical cyclic represen- 
tat ion in the Hilbcrt  space ~ with cyclic unit vector x~ for which 
~o(A) = (x~, ~ ( A )  x~) for all A E 92 [11 ; 2.4.4]. This is often referred to 
as the Gelfand-Naimark-Segal construction. ~ is irreducible if and only 
if co is pure [11; 2.5.4] and we thus have a canonical mapping 

~-~ ~ : P(OA) -+ ~. A vector state on ~ in the representation z is 
a state cox E S(9A) such tha t  c%(A) = (x, ~(A) x) for all A E OA and some 
unit  vector x E ~ A fulI set of states [10] is a convex subset 5° (S(9A) 
such tha t  A > 0 in OA if co(A) >= 0 for all w E 5~. The norm topology on 
S(9A) is tha t  induced by  the dual norm on ~/' and is derived from the 
metric 6(o~, co') = I[co - co'I[ = sup Io~(A) - ~ ' ( A )  t. The w*-topology 

on S(OA) is the coarsest topology making the map  oJ ~ co(A) continuous 
for each A E ~.  

We shall also use the concept of a spectral measure, but  only in the 
special case of a spectral measure over R with values in a X*-atgebra OA. 
I n  this case we mean a map  B ,--~ E(B)  from the Borel sets of R i n t o  the 
projections of ~i such tha t  E ( 0 ) = 0 ,  E ( R ) = I  and B(Bif~B2)  
= E(B1)E(B2) for every pair of Borel sets B i and B~ and which is 
eountably additive with respect to the weak operator topology of some 
faithful ~-representation of 9A [7]. 

2. Local Measurement and C*-Realizations 

We choose the same s ta~ing point as M A c ~ Y  [2] and suppose tha t  
if 5 ° is any  set of states of a physical system and d any set of observables 
of tha t  system, then there is a map/x from 5 ° × d into the set of proba- 
bility measures on R. The physical interpretation of/x(~o, A) is tha t  it 
predicts the probabili ty distribution of measured values of A when the 
system is in the state co. The expectation value of A in the state co, co (A), 
is simply the first moment  of g(o), A) :  ~o(A)= f 2 #(oJ, A)(d2) .  This 
expectation value will not necessarily exist if A is unbounded. 

I f  we wish to give a mathematical  model for a physical system, we 
must  identify ~ and ~¢ with certain abstract  sets in such a way tha t  
there is a natural  probabil i ty measure associated with each pair (co, A). 
Formally, this may  be achieved by  mapping 5 p and za ¢ into such sets. 
This will then be called a realization of ( ~ ,  ~ , / x ) ,  and we shall be con- 
cerned here with three types  of realizations. 
22* 
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Definition 2.1. Let  92 be a C*-algebra and S(92) the set of states of 
92. A C*-realization of (S p, d , / z )  consists of maps co ~ cfi : Sz -+ S(92) and 
A ~-~ A : d -+ 9A~ such tha t  # (09, A)  = ft (~, A) ,  where /~ (~, ~ )  is the 
unique probabili ty measure on R with support  in SpA such tha t  ~ (g (A)) 
= fg(2) fi(d~,A) (d2) for all g EC(SpA) 1. A C*-realization is called 
a Z*-realization if 92 is a Z*-algebra and if the image of 5 ~ in S (92) con- 
sists of a-states. We have a Z*-spectral realization of (S~, d , / z ) ,  if 92 is 
a X*-algebra, 5 p is mapped into a-states on 92, and if there is a map 
A ~-~ E~i from ~¢ into the spectral measures over R with values in 92 
such tha t  #(co, A) (B) = d~(EA(B)) for every Borel set B C R .  

I t  is clear tha t  (5 ~, d ,  #) cannot have a C*- or 2~*-realization if z¢ 
contains unbounded operators. The advantage of X*-spectral realizations 
is tha t  they  are possible even when ~¢ eon ta~s  unbounded observables. 
Now any C*-realization determines a canonical X*-realization, since 
a C*.algebra 92 may  be embedded into its a-envelope 92~ in such a way 
tha t  any state of 92 has a unique extension to a g-state of 92- [7; Theorem 
3.1]. Moreover, any  2~*-realization determines a X*-spectral realization, 
since the Hermit ian elements of a X*-algebra are in 1 - 1 correspondence 
with the compact spectral measures over R with values in 92 [6; Lemma 
2.5]. I f  E~ corresponds to A E 92~ i t  is easy to verify tha t  fi(cb, A) 
= ~ o E A .  

I t  is useful to introduce an abstract  version of the correspondence 
A ~ EA in the context of a triplet (5 P, ~¢, #). We recall tha t  a question 
[2], Q E z~, is an observable such tha t  tt (co, Q) is concentrated on {0, 1} 
for all ~o E 5 ~. 

Definition 2.2. An observable A E ~¢ is said to have a spectral resolu- 
Zion in d ,  if there is a question-valued measure [2], Q~, over R such 
tha t  ~o o Q,~ = #(w, A) for all co E 5 °. 

We now turn to a description of local measurements. To measure 
a particular observable, we need a measuring device, whose specification 
will be supposed to include the spatial extension of the apparatus  
at  any  t ime t in some frame. Thus, in Minkowski space, the 
associated region may  be thought  of as a tube. The intersection 
of such a tube with a hyperplane t =  const, will be called a 
local section of Minkowski space. Every  measuring appacatus will be 
assumed to possess a pointer, or similar device, whose position indicates 
the result of the experiment. We assume tha t  any series of measurements 
can be reduced to single measurements which consist in reading the 
position of the pointer at  a particular instant  of time. This instant  of t ime 
defines a local section s (m) associated with each measurement m, and 
s (m) is compact as a consequence of the local nature of m. 

1 The existence of fi is guaranteed by applying Bochner's Theorem to the func- 
tion iv(t) = ~ (dr2). fi is just the state on C(SpA) induced by ~. 
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We assume tha t  given any state co E 5P, there is a probabil i ty measure 
#(co, m) on s (m) relative to the natural  Betel  structure of s (m). The 
measure/z(co, m) determines the probabi~ty distribution over s(m) of 
the position of the pointer when the system is in the state co. Let  S(m) 
denote the joint support  of the measures #(o9, m) as co varies in SP Thus 
x C S(m) if and only if, given an open neighbourhood N~ of x in s(m), 
there exists an co E Sf with/z(co, m) (N~) > 0. S(m) is a compact subset 
of s (m), and we shall assume tha t  S (m) is homeomorphie to a compact 
subset of R.  We are here ignoring, for example, the possibility of two- 
or three-dimensional graphical representations of measurements 3. 

Before associating an observable with a measurement m, we must  
provide the pointer with a scale over which it moves. We do this ab- 
stract ly by  specifying a Borel function ] : S ( m ) ~  R. Different Borel 
functions give different scales and determine different observables. In  
this way, we get a mapping f ~--* m (f) from the Betel functions on S (m) 
into d such tha t  l~(a), re(f))= f.f~(co, m), where f . /~  denotes the 
probabli i ty measure on R defined by  (f .  #) (B) ----/z(l~X(B)) for all Borel 
sets B of R.  

In  most  eases, it is a reasonable idealization to assume tha t  the 
measuring apparatus of a measurement m disturbs the system under 
observation only within some compact subset d (m) of Minkowski space. 
This set must  be distinguished from s (m), because it would neither be 
reasonable to assume tha t  d (m) was contained in a time-hyperplane, nor 
even tha t  the t ime at  which the pointer was read corresponded to a t ime 
when the apparatus was in effective interaction with the system. 

Let  (~ be a bounded open subset of Minkowski space and let ob (0) 
denote the set of observables of the form m (f), where m is any  measure- 
ment  with d (m) C 0 and ] is any  Borel function, f : S (m) -> R. Let  bob ((~) 
and cob (&) denote the subsets of ob (~) determined by  restricting ] to 
be a bounded Borel function or a continuous function respectively. 

Proposition 2.3. Every re(f)Cob(0) has a spectral resolution with 
values in bob(~). 

Proof. Let B be a Borel set of R,  then ]-I(B) is a Betel set of S(m), 
and if ZI-'(B) denotes its characteristic function, m(ZI-,(B)) is a question 
in bob((~). I f  we now set Qm~f)(B)=m(zI_~(B)), then a) oQ~(1)(B ) 
= co(m(%/-,(,))) = #(e0, re(f)) (B). Hence co o Q-O') ----/z(co, m(f)) for all 
co E Sf. This shows tha t  B ~-~ Q~(I) (B) is a question-valued measure and 
further tha t  i t  is the spectral resolution of re(f). 

Restricting S(m) to be homeomorphic to a compact subset of R has no deep 
significance. If we wished to relax this con(tit, ion, we ought, in the same spirit to 
allows observables A for which/z(e~, A) is a probability measure on l ~ , n ~  1. 
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We now assume that  we have a G*.realization of (hf, cob (0), ft) in 
a C*-algebra C*(0) defined by mappings re(I) ,---, ~h(f) and co ~-~ ~, and 

that  -- {e5 : oJ E 5f} is a full set of states of C* ((~). 
Proposition 2.4. Let re(l) C eob((~), then 
a) Sp~( / )  = / ( s ( m ) ) .  
b) g(~(l)) = ¢~(g o I ) / o r  g E C(Sp~(/))~. 
c) (dr(/): ] E C(S(m))a} is a Jordan subalgebra o/ C*(0)isomorphiv 

to C (S (m))h and /~---~ ~ (/) realizes this isomorphism. 
Proo I. a) Since Sp~ (l) supports the measures associated with ~ (]) 

in C* (~), ](S (m)) < SpFa (1). Let g : Sp~ (1) -~ R be any continuous func- 
tion such that  g o l(S(m)) = {0}. Then, making free use of the f~c t iona l  
calculus in C*-algebras [11 ; 1.5], 

~(g(~(/)))  = f g(~) ~(~,  re(l)) (d~) = 0 

for all eo E $f- Hence g(~(])) = 0, as 5 p, being full, separates C*((~). Bu~ 
](S(m)) is closed in SLY(/), and it follows by U~YSOHN'S Lemma [12; 
§ 4, ~ 0 1 ]  t h a t / ( s ( ~ ) )  = Sp~(l).  

b) ~ (~(g  o/)) = f ~(g ¢ / ) ,  ~(~o, m) (d~) = f g(~) tt(o~, m(/)) (d~). 
Hence ~ (~(g  o 1)) = ~(g(~(/))  for all ~ ~ ~ .  Thus ~h(g o ]) = g(~t(/)). 

c) By hypothesis, there is a homeomorphism h : S ( m ) ~ I ( t t .  
From a), Sp(~(h)) = h(S(m)) = I. ~ o w  g ,-* g(~(h)) is an isomorp~sm 
of C(I)h onto a Jordan subalgebra of C*(&) [11; 1.5.1]. Hence 

/ ' ~  ! ° h-~(~ (h)) = ~(I)  

is, by b), an isomorphism of C(S (m))a onto a Jordan subalgebra of C* ((~). 
Theorem 2.5. The C*-realization o/ (Sf, cob ((~), tt) in C* ((P) may be 

extended to a X*-realization of (5 f, bob((~), tt) in Z*(~)), where z~*(~)) 
denotes the u-envelope o/ C*(d)), and to a Z*-spectral realization of 
( ~ ,  ob (e), ~) in ~*  (~). 

Proof. By Proposition 2.4, /,--*~(]) is an injective morphism 
C(S(m))-> C*(&), and since C*((~) may be regarded as a subalgebra of 
X* (~), we equally have an injective morphism C(S (m)) -+ 2:* ((~). Picking 
a faithful a-representation of Z* (~)) and applying a result of D~vrEs 
[7; Lemma 2.3], we get we get a morphism B(S(m)}-+27*(&), where 
B{S(m)} denotes t~he Z*-algebra of complex Borel functions on S(m). 
Identifying {m (i) : ] : S (m) -+ R is bounded Borel} with the ttermitian 
elements of B {S (m)} in the obvious way, we may extend m (/) ,--~ ~ (/) 
to bounded Borel functions. Doing this for all m, we get a mapping 
bob (0) -> 27" ((~). The states of C* (~) may be identified with the ~-statcs 
of Z*((~) and l~(O), m(/))----/~(eh, ~(/))  for all bounded Borel functions 

: S (m) -~ R. ~¥e have now constructed a 27*-realization of (hf, bob (6),/~) 
extending the C*-realization of (5~, cob (&),/t) as required. The exten- 
sion to a 27*-spectral realization of (hf, ob ((P), #) in 27* (~) follows at 
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once by  takhlg the S*-spcctral realization of (~ ,  bob (0), #) determined 
by  its Z*-realization and applying Proposition 2.3 to extend from 
bob (0) to ob (0). 

The results of this section show that ,  as far as local measurements go, 
there is a natural  connexion between the C*-realizations, 2:*-realizations 
and 27*-spectral realizations. Which realization is chosen is largely a 
mat ter  of taste or convenience with respect to the particular problem 
under consideration. I t  is perhaps worth remarking here tha t  since the 
yon Neumann algebras so far used in physics are yon Ncumann algebras 
in separable t t i lbert  spaces, it  is of no consequence ff they are regarded 
as X*-algebras since every a-state is automatically normal. Note also 
KADISON [7; Appendix, Theorem A]. 

I t  is usual to regard as observables quantities which cannot strictly 
speaking be measured by  a local measurement. Thus the C*-algebras of 
strictly local observables are embedded in a C*-algebra of quasfloeal 
observables [5] and even global quantities such as total charge and total 
energy are reckoned as observables. I t  is not part  Of the aims of this 
paper to examine the relationship between local and global observables, 
and the rest of this paper will be devoted to describing certain conse- 
quences of assuming tha t  a physical system may be adequately described 
by  a C*-realization of certain of its observables. 

3. Symmetries 

A symmetry of a physical system is intuitively a transformation of 
the system leaving all physically significant features invariant. We have 
chosen to introduce quantum theory in terms of the set of states S~ of 
a physical system, the set of observables d of tha t  system and a proba- 
bility measure # (co, A) defined for each pair (o E SP and A E ~ .  In  this 
approach, we naturally define a symmetry to be a pair of bijections 
:¢: ~ - ~  ~(f and ~ : ~ f - ~  ~4 such that  #(ce(o~), ~.(A))= #(co, A), for all 
eo E ~9° and A E d .  Thus the a priori physically significant features are 
the notions of state and observable of the system and the probability 
measure assigned to a pair (~o, A). I t  now follows that  co (A) -- ~ (co) (~ (A)) 
in the sense that,  if either side of the equation exists, then so does the 
other and equa~ty holds. Thus expectation values are preserved by 
a symmetry.  

In  the course of this paper, we shall analyse the possible forms of 
a symmetry in the C*-algebra context. To fix ideas, we suppose tha t  the 
quasilocal bounded observables of a physical system can be realized, in 
the sense of the previous section, by  the Hermitian elements 0A~ of 
a C*-algebra 92 and S~ by a full set of states of 92. We shall no longer 
distinguish between A and A or ~o and $ for the remainder of this paper. 
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Now if A E d is bounded, then so is a (A) and it  is a reasonable require- 
ment tha t  if A is a quasilocal bounded observable then so is ~(A). Thus 
we assume that  ~ induces a mapping ~1~ -+ ~lh, which we again denote 
by ~. 

If A, B ~1~, we set ~(A + iB)  = ~(A) + i~(B)  and thus extend 
to a mapping ~ : 9/-+ 91. 

Proposition 3.1. I /  ~ : 5" --> ,5" and ~ : 9A -> 91 arise [rom a symmetry 
then o~ is a/fine and w*-continuous and ~ is linear. 

Proo]. If i , / z  E R, i , /~ => 0 and t + /~  = 1, and if o)1, to, C ~9° then 
~co1 +/~co~ ~ ~o, since ~ is full. Now 
~(Xco1 + #co9) (A) = (~co1 +/~co~) (a-l(A)) = t(~co:) (A) +/~(~co~) (A) 
for all A ~PA. Hence ~(;.co1 + ~c%) = 2~(co1) +#~(o)~), i.e. e is affine. 
Now the w*-topology on J is the coarsest topology on ~9 ~ making the 
mappings co,--~ co(A) continuous for each A 492. However e(o))(A) 
= co(g-l(A)) so that  the mapping e),--- e(co) (A) is w*-eontinuous for 
each A C~I. Hence e is w*-eontinuous [13; § 2, No. 3]. Now if 2,/~ ~ C, 
co(~(IA + #B) )  = ~-x(co) @A + I~B) = o ) ( ~ ( A )  + #~(B))  for all 
~o E ~ .  But  5~ is a ~ull set of s~a~es, so that  ~ ( i A  + # B ) =  t~(A)  
+ ~ (B) and ~ is linear. 

Now KADISON [10; Theorem 2.2] shows that  a convex subset of 
S (9/) is full if and only if it is w*-dense in S (9/). Hence we may ex~end 

by continuity to a mapping ~: S(9.1)-+ S(gA) such that  ~(co)(~(A)) 
= co(A) for all A ~ Ol and ~o ~ S(N). :¢ is now a w*-homeomorphism of 
S(~l). Furthermore, we may prove, as in Proposition 3.1, that  ~ is weakly 
continuous, and g is clearly just the restriction of the dual of g-1 to S (92). 

I t  is possible to start  from the apparently weaker hypothesis that  
a symmetry is determined by a mapping ~ : ~9 ~ -+ 5 a which is affine and 
a w*-homeomorphism, and deduce the existence of the mapping 
~:02-~ 9/ [10; Corollary 4.7]. However, we prefer to adopt a notion of 
symmetry which has a more immediate physical interpretation and 
which allows us to simplify the mathematical analysis. 

Proposition 3.2. 1/ ~:S(9A)-+ S(~.I) arises / tom a symmetry, and 
w~, w s E S(9.1), then lice(co1) - a(e%)][ = flcox - co~.l]" In  other words, o~ is an 
isometry. 

Pro@ If  A ~9Aa, then IIAII = sup{lw(A)l :~o ~S(O.I)}, [11; 2.6.3]. 
Hence 

]]a(A)ll = sup{lm(~(A))[ : co E S(~l)} 

= sup{l~-l(o~) (A)l : o) E S(~l)} = ltAIl . 

Now ~(rol) - m(o~) is Hermitian, so, by [11; 1.2.6], 

= sup{l~(co1) (A) - ~(co~) (A)I: A E~I~, IIAll < I}.  
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l~ence 

= ~up{1(~ - ~) (~-~(A))J. A C~, ]tAIl --< I}. 

But II~-~(A)Ii = IIAII ~ A E~, so ;I=(~) - ~(~)11 = I[~ -- ~1; ~nd ~ is 
an isometry. 

4. Sectors and Transition Probabilities 

I n  the last section, we derived some of the properties of a mapping 
~ : S ( 9 / ) - +  S(9/) arising from a symmetry.  Before completing this 
analysis, we shall show how certain other concepts of elementary quan- 
t u m  theory may  be described in the context of C*-algebras. We begin 
by  relating the algebraic formalism to the Hilbert  space formalism. To 
fix ideas, we consider a system with commutat ive discrete superselection 
rules, so tha t  the I-Iilbert space of the system, ~ ,  decomposes into the 
direct sum of coherent subspaces ~ f  --- ~ 5 ~ .  The bounded observables 

i 6 I  
of the system are represented by  t Iermit ian  operators on ~ leaving 
each ~ f / inva r i an t ,  and the set of bounded observables acts irreducibly 
in each 5~f/. States represented by  unit  vectors of 2g ° having non-zero 
components in more than  one 5/0 i are not pure states, since the relative 
phase is not measurable 3. Looking at  the same situation from the alge- 
braic point of view, we would say tha t  we have a faithful representation 
~, say, of a C*-algebra of operators on ~f ,  which is the direct sum of 
inequivalent irreducible representations ~ = (~  ~i. Each unit vector 

461 
x ES~ defines a state eo~ of 9/, where eo~(A) = (x, 7~(A) x) for all A C9/. 
However  only those vectors belonging to a particular ~%ft define a pure 
state. This leads %o our first definition: 

Definition 4.1. Let  7~ be an irreducible representation of a C*-algebra, 
then the sector associated with 7I, S~,, is the set of vector states of the 
representation 7~. Naturally, Sa depends only on 7~, the uni tary equl- 
vMenee class of g. 

The sectors are the algebraic analogue of the coherent subspaces and 
our first task will be to investigate their structure. 

Proposition 4.2. Let co, co' be pure states o / a  C*-algebra 91, then the 
]ollowing conditions are equivalent. 

a) co and co' belong to a common sector o] P (9~). 
b) There exists a vector x" E ~ such that e)" (A) = (x', :~,(A) x'). 
c) There exists a unitary element U E 91 such that o~' (A) = co (U* A U). 
d) ~o~ and z~, are unitarily equivalent. 

s Such vector states are regarded as being physically unrealizable by authors 
for whom the term "state" is synonymous with "pure state". 
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The sectors/orm a disjoint covering o] P(91) and S~ is the inverse image of 
under the canonical mapping P(91) ~ ~.l. 

Proo]. If e) holds, a)' (A) = (x', zt~(A) x') with x' = 7~,(U) x~,, so e) 
implies b). If b) holds, co, o)'E S ~ ,  so b) implies a). If co E Sa, then 
co(A) = (x, g (A)x)  with x E J ~ .  x is cyclic as ~ is irreducible, hence 
~ = ~ and a) and d) are equivalent, d) implies e) by a result of GLn~M 
and KADISON [14, and 11; 2.8.6]. We have now also proved the final 
statement of the Proposition. 

We give one further characterization of a sector which requires two 
preparatory results. The first, whose proof we omit, is due to GLuM 
and KADISO~ [14]. 

Lemma 4.3. Let 91 be a C*-algebra with identity and let co and e)' be 
pure states o/91, then i/]lo~ -- co'If < 2, the reTresentations ~ and ~ .  are 
equivalent. 

Lemma 4.4. Let ~ be a representation of a C*-algebra 91 on J/#, and 
let ~ (91)- denote the weak closure o/g(91) in ~(~/~) .  Then the mapping 
/~--~ / o ~ is a linear isometry from the normal linear ]unctionals on zc (91)- 
into 91', the dual o/91. 

Proof. If ] is a normal linear functional on ~ (91)% then ] o z is cer- 
tainly a continuous linear functional on 91. Further 1] o s(A)! < ]lf][ 
• II~(A)I! =< ll/ll llAll for all A ~91. ~ o w  given s > 0, there exists a 
T ~ ~(91)- wi~h It Tll =< 1 and i/(T)I > lllII - ~/2. N o w  ~he ultrastrong and 
strong topologies agree on the unit ball of .Lf ( ~ )  and by  the Kaplansky 
density theorem [15 and 16; p. 43-46] ,  there exists an A ~ 92 with 
Iiu(A)l I < 1 and If °z (A) l  > tt]!I- ~. But,  by the uniqueness of the 
C*-norm, ~r(91) and 91/Ker7~ are naturally isometric [11; 1.8.3] so tha t  
H=(A)ii = inf{HBtl : ~(B) = =(A)}. Hence we may suppose A has been 
chosen ~ t h  I[AII Z 1 + ~. Thus 

But e is arbitrary so II/o ~11 = Illll as required. 
This Lemma ~ be applied to the case where ~ is an irreducible 

representation. The normal linear functionMs on ~(91)-= ~ o ( ~ )  are 
then the elements of t~he predual [11 ; A 23] and may be represented by  
the operators of trace class and their norm is just the trace norm [16; 
p. 37--42 and 17]. 

Proposition 4.5. The sectors are the components of P(OA) in the norm 
topology. 

Proo]. Lemma 4.3 and Proposition 4.2 show tha~ the sectors are open. 
Proposition 4.2 also shows that  they form a disjoint covering of P(91), 
hence each sector is Mso closed. I t  remains to show that  they are con- 
nected in the norm topology. We can, however, regard S~ as the set of 
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one-dimensional projection operators in ~ .  This set is pathwise- 
connected in the trace norm topology by  virtue of a simple explicit 
construction. By Lemma 4.4, the trace norm corresponds to the norm 
on S~. So Sa is pathwise-conneeted and hence connected, completing the 
proof. 

This result implies tha t  ~ is a discrete space with respect to the 
corresponding quotient topology under the canonical mapping P (92) -~ ~[. 

Returning now to our example of a system with commutat ive discrete 
superselection rules, we consider the concept of transition probability. 
This is customarily defined for pure states only, and if x and x'  are unit 
vectors of ~ representing pure states, the transition probabili ty between 
these two states is [(x, x')] ~. This quant i ty  has a simple algebraic inter- 
pretation. 

Proposition 4.6. Let w~ and eo~, be the :pure states ~orrespondinft to the 
1 

unit veztors x and x', then ](x, x')I ~ = 1 - ~-]]co~ - co~,]i ~. 

Proof. I f  x and x'  belong to different coherent subspaees, then 
[(x, x')[ 2 = 0 and, by  Lemma 4.3, []co~ - o~,l] ---- 2 as required. I f  x and x'  
belong to the same coherent subspace ~ i ,  say, then, applying Lemma 4.4 
to the representation ~r~, I[¢o~- ¢o,,II is just the trace norm r ( T )  of 
T = x ® Y -  x'  ® ~'. However, ~(T) is the sum of the moduli of the 
eigenvalues of T [17], and a routine calculation gives 

1 
I ( x ,  x ' ) p  = 1 - = 1 - - 

This leads us to the following definition : 
Definition 4.7. Le t  w, ~o'E/)(92) then co. w', the transition proba- 

1 
bility between co and w', is given by  co- co' = 1 -- -4- Ilw -- w'H ~. 

The temptat ion to use this formula to define transition probabilities 
for mixed states should be resisted. For to determine a transition proba- 
bility from an unknown state co' into the state o) operationally, we need 
to measure an observable so tha t  the state after a (non-selective) measure- 
ment  is a mixed state, one of whose constituents is the state co. I f  the 
unknown state co' can be represented by  a density matr ix  Q, and the 
pure state by  a unit  vector x, then P~ = x ® ~ is the projection operator 
onto the subspace generated by  x and is an observable, at  least in some 
approximate sense. The state after the measurement is represented by  
the density matr ix  P~@ P~ + (1 -- P~) ~(1 -- P~). Pxo P~ is always pro- 
portionat to x ® ~, irrespective of the choice of O, and the constant of 
proportionality is the transition probability. I f  co were not  pure, we 
would not be able to find an observable with the required property.  For  
this reason, and to preserve the symmet ry  between eo and co', we have 
defined the transition probabili ty only between pure states. 
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5. The Superposition Principle 

In  quantum mechanics the superposition principle is exemplified by 
the statement that,  ff ¢1 and ¢2 are normalizable solutions of the time- 
dependent SchrSdinger equation, then ¢1 ÷ ¢3, the superposition of ¢1 
and ¢3, is also a normalizable solution. From a logical point of view, this 
statement may be resolved into a definition, an axiom, and an assertion. 
I t  defines "supcrposition" as a mathematical term, contains the implied 
axiom that  ff ¢1 and ¢3 taken at time t each represent a state then so 
does ¢1 + ¢3, and asserts tha t  the time translation preserves super- 
positions, We shall investigate the form the superposition principle takes 
in the algebraic context and our discussion correspondingly consists of 
three parts. 

We first turn to the definition of superposition. We must not expect 
to be able to superpose any two states. To show this, we again consider 
the example of a system with commutative discrete superseleetion rules 
whose existence in quantum field theory was demonstrated by WICK, 
WIGHT~A,W and WIG~v~ [18]. If x and x' are unit vectors representing 
states ¢% and o)x, lying in different sectors, i/y~2 (x - x') and 1/y2(x d- x') 
both represent the mixed state 1/2 (w~ ÷ e%,) rather than two different 
superpositions of ~% and 6% ,a. Hence superposition is restricted to pure 
states taken from the same sector. 

Let  ¢o be a state in the sector S~ and let I~ be the left ideal 
{A:a)(A*A)=O} in 9A. For any A ~I+, the linear functional to A 
defined by 

to(A* BA) 
eo~(B)-- co(A'A) fo ra l l  BEgA 

is a pure state in Ss, and, as we have seen in Proposition 4.2, any o / ~  Sa 
may be represented in this form [19]. Note that  o)z = co and (co~)B = cos~ 
if B ~ I ~ .  

Definition 5.1. Let  o)E P(9/) and let Ai, A S ~ 9d be linearly inde- 
pendent (rood I~), then COA~+A ~ is called a superposition of COA~ and ~o~. 

The connexion with the customary definition becomes clear when 
we pass to the Hilbert space formalism. ~(Ai)x~ and 7~(A~)x+ are 
linearly independent vectors of J~f~ representing ~oA, and eoA~ respectively 
and ~r~(A1) x~ ÷ ~ (Au)  x~ represents o~a~+A~. Definition 5.1 automati- 
cally rules out superpositions of pure states from different sectors and 
eox~+A ~ necessarily lies in the same sector as eox~ and cox. I t  must be 
emphasized that  ~OA,+A ' depends on the particular choice of co, A 1 and A S, 
and not merely on eox~ and cox. We shall parametrize all possible super- 
positions and start  with a simple Lemma. 

A statistical mixture is sometimes referred to as a superposition and what is 
meant here is then called a coherent superposition. 
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Lemma 5.2. Let eo E P (9.1) and A,  B ~ I~. Then WA = eo~ i /and  only 
i ] B  = hA (rood Io,) for some ]~ C C, 2. =~ O. 

Pro@ I f  2 CC, 4 4  0 and N EI~, then wxA+~= e0 A by  a simple 
application of the Cauchy-Sehwarz inequality [11; 2.1.2]. Conversely if 

= - - -  0 a n d  

Ion(A* B)] ~ -- 1 . 
~o~ • o) B = os(A* A)  o~(B* B)  

Hence os((B - )hA)* (B -- 2A)) = 0 has a non-zero solution in 4. 
This Lemma is actually just a consequence of the fact  tha t  S~ o may  

be identified with P (Jgo), the projective space of ~ and tha t  5(¢°~ = ~/I,0 
[ 19 and 11 ; 2.8.5 ]. I t  shows that ,  keeping ~o, A i and A 2 fixed, 2 ,--~ *oa, + ~a, 
2 E C, 2 + 0, parametrizes all possible superpositions of tea, and teA,. 
Tile triplet (co, Ai, A~) may  always be chosen so tha t  A i --- I and A~ = U, 
where U is unitary. Le~ us suppose tha t  oo and coy are orthogonaI, i.e. 
o • co v = 0, and let us set 2 = t an0  e ~ , 0 < 0 < ~r/2, 0 =< ¢ < 2u. Then 

eoi+~ ~ (A) = eos~0 o(A)  + sin~0 cov(A ) + cos0 sin0 [e i* oJ(A U) 

+ e - ~  ~o(U*A) (*) 

parametrizes all superpositions of co and toe. I f  we take the mean of the 
equation (*) with respect to the phase ¢, the "interference te rm"  drops 
out leaving the mixed state co '=  cos20 co+ sin"0 eo~. Thus there is 
a mixed state (o' with mixing ratio 12] ~ = tango corresponding to any 

superposition o~ I + ~ ~. 

A se~ M of pure states of ~ ~ l l  be said ~o be closed under super- 
positions if i~ contains every superposition of any  p a ~  of its elements. 
I f  M is not  closed under superpositions, let A (3/) denote the smallest 
subset of P(O2) closed under superpositions and containing M. For  
example if M = {wa, : i = 1, 2 . . . .  , n} where the Ai, i = 1, 2 . . . . .  n, are 
linearly independent (rood I , ) ,  then the matr ix  o)(A*A~) is strictly 
positive and 

K - -  1(~, 2~ . . . . .  2,) : , ~  ~2~ co (A 'A , )  ---- 1} 

is a compact subset of C n intersecting every ray  through the origin. Any 
state co' of the form co'(B) = ~ i 2 ~ o ( A *  BA~) for all B ~0A, with 

(2x, 2~ . . . . .  ).~) ~ K'  is an element of A (M). The map  ¢ : K ~ A (M) so 
defined is onto and two n-tuplets are mapped  onto the same state if and 
only if they differ by  a common phase factor. I n  this way, we see tha t  
A (M) is isomorphic to Pn- i  (C), the complex projective space of n -- I 
dimensions. 

As we have seen, P(~I) is the disjoint union of its sectors and each 
sector S~ m a y  be regarded as the unit rays of a Hilbert  space O.l[I,o, 
where ~o ~ S~. This allows us to perform on P (9.[) many  of the operations 
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associated with a tI i lbert  space. We have already seen this above in the 
case of the operation A which corresponds to taking linear hulls. Another 
example is forming orthogonal complements: if M C P(~) ,  we simply 
set M ±  = {co C P(~I) : co" co' = 0 for all co' E M}. We may  also close 
A(M) in the norm topology and, as in the linear case, we get M ± ± 
= ~(M) .  If  M CS~, then ~(M), as a metric space, is actually uniformly 
isomorphic to a projective Hilbert  space. We can introduce the concept 
of an orthogonal basis in P(~,I) and prove the analogue of Bessel's ine- 
quality and Parseval 's  equation. We can also give an algebraic version 
of the Gram-Schmidt o r thogona~a t ion  process by  taking advantage of 
the representation of S~ using 9A/I~. 

We turn now to the structure of the physical states 5 p of the system 
and th~ role of the superposition principle as an axiom on the structure 
of the pure physical states. Let  ~ = ~ ~ P (~2) and let us call a sector 
S~ physical if ~ S~ ~= O. The physical spectrum of 9A is then 

~ = {~ E ~ :  S~ is physical}. We can now formulate the 
Superposition Principle: The superposition of two physical pure states 

is again a physical pure state. Thus A(~q~) = .9~. 
I f  S~ is a physical sector, the superposition principle says tha t  

S~ ~ ~ is closed under superpositions. The exact form of S~ ~ ~q~ is 
probably of little consequence; we assume tha t  i t  is norm dense in S~. 
I t  is often convenient to regard S~ ~ 5z~ as the whole of S~, although 
a more intelligent guess would be to take it  to be those states of S~ with 
a finite expectation value of the energy. We have already assumed tha t  

is convex and we follow MAC~:EY [2] in assuming tha t  5 z is closed 
under forming countable convex combinations. I t  is consistent with the 
emphasis on pure states in this paper to suppose tha t  ~ is the set of 
extreme points of ~ .  Thus 

Finally, we want to show tha t  superpositions are preserved by  symmetry  
transformations. 

Proposition 5.3. 1l M C P(PA) and ~ : S(PA) -~ S(~1) arises [tom a sym- 
metry, then ~(A (M))= A(a(M)). 

Proof. I t  suffices to prove the result if M is finite. As ~ is an affine 
automorphism by  Proposition 3.1, ~ must  leave P (~/) invariant. However 

is also an isometry, Proposition 3.2, so tha t  a ( M  ~) = ~(M) ±. Hence 
~(~(M))  = A(~(M)).  But  if ~ ~ finite A (M) = A(M) ~ i n g  the result. 

This completes the three parts  of our analysis of the superposition 
principle, for a t ime translation is merely a particular example of a sym- 
metry.  I n  conclusion, we add a few remarks on the physical meaning of 
superposition. The transition co ,---~ COA is an example of a pure operation 
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[5] and m a y  be regarded as induced by  a local measurement  or some 
local "influence" transforming pure states into pure states. The super- 
position principle given above may  be reformulated to read:  if a state 
eo E 5 ~  is acted on by  influences A 1 and As, the resulting state is again 
in 5f~ and may  be obtained by  a single transition co ~ coAl+A ~ corre- 
sponding to the sum of the influences. This corresponds to its usual 
formulation in classical physics. Actually from this point of view the 
puri ty  of ~o is irrelevant and Definition 5.1 could easily be modified 
accordingly. 

6. Wigner's Theorem and Symmetries 

We now take up our analysis of symmetries to deduce tha t  a sym- 
met ry  leaves transition probabilities invariant  and permutes the sectors. 

Proposition 6.1. I/  ~: S(91)-> S(91) arises from a symmetry and 
w, co' E P(OA), then ~ (o )  • o~(eo') = co. co'. Further i / S  is a sector then so 
is ~ (S) and ~¢ induces a bl]ection ~ : ~ ~ ~[. 

Proo/. As ~ is an affine isomorphism by  Proposition 3.1, a must  
leave P(91) invariant.  However, by  Proposition 3.2, ~ is an isometry, so 
by  Definition 4.7, ~(w)" a (~o ' )=  w" ¢0'. An isometry of P ( ~ )  must  
induce a permutat ion of the components of P (91.1) in the norm topology 
and by  Proposition 4.5, these are just the sectors. Hence ~ induces 
a bijeetion ~ : ~ -+ 2 .  

Proposition 4.6 shows tha t  our definition of transition probabili ty is 
consistent with the usual one so we are in a position to apply Wigner's 
Theorem [8] to deduce the form of :¢. 

Proposition 6.2. I / ~  : S(91) -+ S(9.1) ar i ses / rom a symmetry and i /7 t  
and ~ '  are irreducible representations o/ 02 such that ~'  = ~ (~) then there 
exists a mapping W : ~ -+ ~ ,  linear with respect to the real numbers and 
unique 5 to within a phase/actor such that o:(w~) = oorr~ /or all unit  vectors 
x E ~%f=. W is either unitary or antiunitary. 

Proo]. The elements of S~ and Sa. are in natural  1 - 1 correspondence 
with the rays of the Hilbert  spaces 5/f. and $F,, respectively. Hence 
c¢ induces a bijection of the rays of ~ f ,  onto those of ~ , . .  Applying 
Wigner 's  Theorem in the extended form due to B~RGMA~ [9], the 
assertion follows. 

We can also characterize ~ : 91 -+ 91 and obtain thereby a result due 
to KADIso~ [10; Corollary 4.7]. 

Proposition 6.3. I / ~  : 91 --> 91 ar i ses / rom a symmetry  and A C 2[ then 
~ (A)  ~ ~- ~(A~). I n  other words ~ is a Jordan homomorphism and, since 
is a bi]ection, ~ is i n / a c t  a Jordan isomorphism. 

s A trivial modification is necessary if ~ is one-dimensional. 
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Proo/. With the notation of Proposition 6.2, if x C ~f~ is a unit  
vector, (x, ~ ( A ) x ) =  c%(A)=  ~((o~)(~(A))= (W~, ~' o~(A)  Wx).  Sup- 
pose for definiteness tha t  W is antiunitary, then 

(x, =(A) x) = (x, (W-1 o x) 
for all x C Yr,  and thus (x, ~(A) y) = (x, (W - t  7~' o ~(A) W)* y) for all 
x, y E Jt°~ • Hence ~ '  o ~(A) = W~(A*)  W -1 and so 

~ ' (~(A) ~) = WT~(A 2.) W -1 = ~' o ~(A~). 

I f  W is unitary, we obtain 7~' o ~(A) = W ~ ( A )  W -1 and again ~ '(~(A) 2) 
=7~' o~(A2). ~ence  ~ ( A 2 ) = ~ ( A )  ~ since a C*-algebra has enough 
irreducible representations [11 ; 2.7.3]. Thus ~ is a Jordan isomorphism. 

I t  is a mat te r  of simple manipulation to deduce tha t  ~ ( A B  + B A )  
= ~(A) ~(B) ÷ ~(B) ~(A) for all A,  B E 91. Tl~s is perhaps more familiar 
as the definition of a Jordan homomorphism ~. 

I t  is natural  to ask whether, if we are given a bijection ~ : ~ --> ~[, 
a representation zi  of 91 in ~%ft for each i E ~[ and a unitary or anti- 
uni tary map W~ : Jdfi -> ~a( i ) ,  we m a y  construct a pair of mappings 

: S (91) -~ S (91), ~ : 91 --> 91 having the properties of a symmetry  such tha t  
~(o~) ---- o)wi~ for alI unit  vectors x ~ ~/~. This is not in general possible, 
and to obtain a result with a converse, we must  first strengthen 
Proposition 6.2. 

Proposition 6.4. 1/ ~ : S (91) ~ S (91) arises /rom a symmetry, let 
z~ = ( ~  z~i; ~ is called the reduced atomic representation. Then there exists 

a mapping W : 2ft~ -> ~ ,  linear with respect to the real numbers, such that 
~(o~) = o ~  ]or all unit vectors x ~ ~Y~,. I / W '  is any other such mapping, 
W' = W ~ e i~ Ii, where I i  is the identity operator on Wf i and 2~ is real. 

In  other words, W is unique ~ to within a phase/actor on each ~ i .  ~urther 
W has the/ollowing properties: 

a) I(Wx, Wy)[ ~- ](x, Y)I ~or all x, y E 5~,. 
b) W ( ~ )  = ~f~(~) ~or all i E 
e) W~(91~) W -~ = ~(91~). 
Proo/. I~ x ~ ~ i  is a unit vector, eo~ ~ Si and ~(co~) ~ S~(~). Hence if 

~(eo~) ---- ~o~, y must  be a unit  vector of ~f~(~). Thus W, if i t  exists, must  
satisfy b) and by  Proposition 6.2 must  coincide on 2Ft with a unitary 
or antiunitary operator W i : ~  i ~ ~:(i)" Thus W must  satisfy (Wx)a(i) 
= Wix  i for all x ~ Wf., where xi denotes the projection of x onto Wf~. 
However, if we use this equation to define a W, W is automatically 
linear with respect to the real numbers and satisfies a) and b). Now if 

The term used by K~DISO~ [10] is C*-homomorphism. 
A trivial modification is again necessary if some of ~he ~f~ are one-dimensional. 
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n 2 x i s  a v e c t o r  = Itz lI % ,  w h e r e  y ,  = zJItx II a n d  t h e  
is taken over all i E ~ such tha t  xt # 0. Hence at(c%) ' = II  II 

and ~ (oJ~) = cow~ for all unit vectors x E ~ .  I t  remains to show that  W 
satisfies c). :Now from the proof of Proposition 6.3, ~( i )  o~(A) 
= W ~ ( A ) W , ~  -1 ff A E92~. A routine calculation now shows that  

o ~ ( A )  = W ~ ( A )  W -1, which implies c). The statement on the degree 
of uniqueness of W follows from the construction and Proposition 6.2. 

Proposition 6.5. Let x¢ be the reduced atomic representation. Given a 
mapping W : ~%f~---> ~ which is linear with respect to the real numbers 
and satisfies : 

a)](Wx, Wy)] = I(x, y)[ /or x, y C ~ta,,. 
b) W(JFi)  = ~ f  ~(i) where ~ : ~,1 -> 9,1 is a bi]ection. 
e) Wz~(~h) W -~ = ~(92~). 

Then the exist unique bisections a : S(92) --> S(92), F¢ : 9.1 -> 92 such that 
tt(o~(co), ~(A))  = #(co, A ) / o r  co E S(OA) and A E 92a and a(c%) = cowx /or 
all unit  vectors x E ~ .  

Proo]. The reduced atomic representation ~ is faithful since a O*- 
algebra has sufficient irreducible representations and we may use c) to 
define a mapping ~: 92h~ 92a by setting ~ o ~ ( A ) =  WT~(A) W -1. Fur- 
ther ~ is isometric, onto and real linear since W has these properties. 

extends to a linear mapping ~ : 9A -+ 92 which is also an isometry and 
onto as may be shown, for example, by using the inequalities max(HA[1 , 
t]B]i) --< [[A + iB][ G ]]A][ + lfB][ valid for A, B C92a. a must now be 
defined as the restriction to S(92) of the dual of ~-~, so as to satisfy 
a(co) (~(A)) = o.)(A). If  x ~ ~ f .  is a unit vector and A ~ 92~, 

a(c%) (a(A)) = (x, ~ ( A )  x) = ( W x ,  ~ o a ( A )  W x )  = cow~(a(A)) . 

Hence ~(coz) = ~owx as required. If A ~ 92~ and g is a continuous func- 
tion on the spectrum of A, then ~(g(A))  = g(~(A))  since ~ induces an 
isomorphism of the commutative subatgebra of 92 generated by A onto 
that  generated by  ~(A). Hence #(~(co), ~(A))=/~(co, A) for co ~S(92) 
and A E 92a. Now ~ : P(92) -+ P(92) is uniquely determined by the con- 
ditious of the Proposition, hence ~ : 92 -+ 92 is uniquely determined since 
we must have a(co)(~(A))= e~(A). Thus ~: S(92)~ S(92) is also uni- 
quely determined completing the proof of the Proposition. 

There may still be no symmetry of the physical system which gives 
rise to the mappings ~ and $ of Proposition 6.5 because, in the analysis 
of concrete physical systems, there may be physical reasons, for example 
uniqueness and invarianee of the vacuum, placing further restrictions on 
the nature of ~ and $. Even within the framework of this paper, we have 
not quite completed our analysis because we assumed that  ~(5 ~) = 5C 
However, with the assumption and notations of the previous section, we 
can easily fill this gap. Let  ~r' = 0 ~ then each co E 5 o  is represented 
23 Commun. math .  Phys.,Vol. 11 i~ ~ 
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b y  a un i t  vec to r  of J / r e  a n d  each co ~ :7 ~ b y  a densiSy m a t r i x  of ~ . .  
~ '  mus t  be fa i thful  since 5 ~ is full  a n d  ~urther ~ (~1~) = ~[~. The  analogues  
of Propos i t ions  6.4 and  6.5 now hold wi th  s '  replac ing ~. a ( S  z) --  5 ~ if 
and  only if W leaves ~he subspace  spanned  b y  {x ~ f ~ . :  [lx[l---- 1 and  
co~ ~ 5 ~ }  inva r i an t .  
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