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a b s t r a c t

The CPT theorem states that any causal, Lorentz-invariant, thermodynamically well-behaved quantum
field theory must also be invariant under a reflection symmetry that reverses the direction of time (T),
flips spatial parity (P), and conjugates charge (C). Although its physical basis remains obscure, CPT
symmetry appears to be necessary in order to unify quantum mechanics with relativity. This paper at-
tempts to decipher the physical reasoning behind proofs of the CPT theorem in algebraic quantum field
theory. Ultimately, CPT symmetry is linked to a reversal of the C�-algebraic Lie product that encodes the
generating relationship between observables and symmetries. In any physically reasonable relativistic
quantum field theory, it is always possible to systematically flip this generating relationship while
preserving the dynamics, spectra, and localization properties of physical systems. Rather than the
product of three separate reflections, CPT symmetry is revealed to be a single global reflection of the
theory's state space.

© 2019 Elsevier Ltd. All rights reserved.
2 As in the case of T invariance, CPT invariance is often interpreted as indicating
that these apparently distinct possibilities are in fact different representations of
1. Introduction: explaining CPT symmetry

Virtually every serious candidate for a fundamental physical
theory fromNewtonian gravitation to classical electrodynamics has
been time-reversal-invariant. For every nomologically possible
world, there is another nomologically possible world where the
direction of time is reversed. Surprisingly, this is not true for rela-
tivistic quantum field theories (QFTs). It is possible to write down
physically reasonable QFTs which are not time-reversal-invariant,
and as James Cronin and Val Fitch experimentally demonstrated
in 1964, weak nuclear interactions in the actual world are described
by such a theory.1

While QFTsmay fail to be symmetric under simple time reversal,
the CPT theorem ensures that there is always a more complicated
time reversal symmetry present. The theorem loosely states that
any causal, Lorentz-invariant, thermodynamically well-behaved
QFT must be invariant under a combined symmetry operation
that reverses the direction of time (T), flips spatial parity (P), and
conjugates all charges present in the theory (C). Since particles and
antiparticles carry opposite charge, the net effect of charge conju-
gation is to swap matter and antimatter. In a CPT-invariant theory,
e, Cronin and Fitch observed
rtners at a different rate than
every nomologically possible world has a doppleg€anger where the
future is the past, left is right, and you and I are made out of
antiparticles.2

The historical development of QFT is closely tied to the CPT
theorem. Initial attempts to relativize quantum theory in the late
1920s ran aground on a cluster of problems stemming from a
conflict between relativistic causality and energy positivity.3 Plug-
ging the relativistic dispersion relation, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, directly into

the Schr€odinger equation yields a Lorentz-invariant wave equation,
however, the resulting dynamics are non-hyperbolic d initially
well-localized wavepackets spread faster than the speed of light,
raising the specter of faster-than-light signaling and other
causality-violating paradoxes. Hyperbolic wave equations, like the
Klein-Gordon and Dirac equations, avoid these immediate prob-
lems, however such equations have non-physical negative energy
solutions. These can be cut off by hand, but only at the cost of
ruining Lorentz invariance, hyperbolicity, or both.4 QFT effectively
the same physically possible world. For present purposes, I will set aside this
interpretive question.

3 See Weinberg (1995, Ch. 1) and Strocchi (2013, Ch. 1) for surveys of these
problems and the various attempts to circumvent them that lead to the develop-
ment of QFT.

4 These obstacles can be turned into a rigorous no-go theorem. See Strocchi
(2013, Prop. 2.2).
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5 “CPT, Spin-Statistics, and State Space Geometry,” (in preparation). The present
paper is based on previous dissertation work (Swanson, 2014, ch. 3). The main
conclusions drawn and the broad structural account of the algebraic CPT theorem
are the same, but some of the central details are different. In particular, the
distinction between *-isomorphisms, anti-isomorphisms, and conjugate-
isomorphisms are more clearly drawn by Lemma 1 and directly connected to
modular theory by Lemma 2. Lemma 3 is also new. Rather than starting from
modular covariance, the present account uses Borchers's auxiliary analyticity as-
sumptions to more clearly link central steps in the proof back to the Haag-Kastler
axioms, thereby reinforcing the arguments in Swanson (2018). The discussion of
charge conjugation in x3.6 is also different, highlighting the importance of modular
inclusions and hewing more closely to existing proofs in the mathematical physics
literature.

6 See Kadison and Ringrose (1997) and Blackadar (2006) for a thorough intro-
duction to the mathematics of C�-algebras and Haag (1996) for the application of
these ideas to AQFT. Halvorson and Müger (2006) and Ruetsche (2011) represent
more philosophically-oriented surveys of AQFT.
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sidesteps this problem by dropping the requirement that the the-
ory describe a finite, fixed number of particles. The negative energy
states never really go away. Rather they are reinterpreted as posi-
tive energy states with opposite charge. This trick only works to
restore Lorentz invariance and hyperbolicity, though, if there is an
exact correspondence between particles and antiparticles; they
must be indistinguishable except for their charge. The CPT theorem
accounts for this, explaining why particle/antiparticle pairs have
the same mass, spin, and lifetime. Viewed from this angle, CPT
symmetry plays a fundamental explanatory role in QFT. It is only
because the theory is CPT-invariant that we can reinterpret nega-
tive energy states as describing antiparticles in a manner consistent
with the requirements of relativistic causality.

But what explains the origins of CPT symmetry itself? Why is
this seemingly ad hoc combination of reflections always a sym-
metry of nature? Despite its importance, the physical basis for the
CPT theorem remains notoriously obscure. As Bain (2016) empha-
sizes, part of the problem is that there are several different versions
of the theorem with different starting assumptions. Many of the
more technical assumptions do not have a clear physical interpre-
tation, making comparisons between various proofs challenging. To
compound this difficulty, the theorems are couched within
different mathematical frameworks, Lagrangian QFT, Wightman
QFT, S-matrix QFT, and algebraic QFT. Lagrangian and S-matrix
proofs, while more physically transparent, lack mathematical rigor,
whereas the rigorous axiomatic proofs in the Wightman and
algebraic frameworks are more physically opaque. This state of
affairs has prompted Greaves (2010) and Greaves and Thomas
(2014) to search for a rigorous Lagrangian version of the CPT the-
orem. In this paper I attack the problem from the opposite direc-
tion, by looking for a more physically perspicuous interpretation of
proofs in algebraic QFT, the framework perhaps most familiar to
philosophers of physics.

In x2, I give an overview of algebraic QFT, focusing on the fea-
tures most essential for understanding the CPT theorem. Algebraic
proofs rely on the following main idea: in the vacuum represen-
tation, certain local algebraic invariants associated with spacelike
wedge regions act geometrically as elements of the Poincar�e group.
One of these invariants, the modular conjugation operator, JW , im-
plements a full CPT transformation of the theory when combined
with a spatial rotation. But why do modular invariants play such a
pivotal role, andwhatmakes wedge regions so special?Most proofs
simply begin by positing critical geometric or analytic properties of
the modular objects, and existing mathematical surveys, Borchers
(2000) and Borchers and Yngvason (2000), do not broach these
deeper interpretive questions.

In order to answer them, we will have to dig down into the
algebraic foundations of QFT. The central portion of the paper, x3,
takes the form of a mathematical physics whodunit. If we suspect
that a generic QFT must have some generalized time-reversal
symmetry, where might we look for it in the structure of alge-
braic QFT? By tracing the theorem's starting point back to the
physically-motivated Haag-Kastler axioms and carefully dissecting
its logical structure piece by piece, we will discover why the wedge
modular conjugation must be the culprit.

Our detective work points towards an intriguing geometric
explanation for CPT invariance: ultimately, it is linked to a reversal
of the C�-algebraic Lie product that encodes the generating rela-
tionship between observables and symmetries. In any causal,
Lorentz-invariant, thermodynamically well-behaved QFT, it is al-
ways possible to systematically flip this generating relationship
while preserving the dynamics, spectra, and localization properties
of physical systems. Rather than the product of three separate re-
flections, CPT symmetry is revealed to be a single global reflection
of the theory's state space.
In x4, I explore the ramifications that this story has for existing
philosophical debates about the explanation of CPT invariance.
Recently, Bain (2016) has issued an important skeptical challenge,
arguing that major divergences between proofs of the CPT theorem
couched in different frameworks preclude any of them from
providing an explanation for the CPT symmetry observed in nature.
Contra Bain, I argue that the present investigation reveals that the
algebraic proof shares a great deal of structure with proofs in
Lagrangian, S-matrix, and Wightman QFT, suggesting convergence
towards a core set of explanatory ideas. The algebraic proof offers
some of the greatest insight into this core that we have at present.

Meanwhile, Greaves (2010) offers a different geometric story
about the origins of CPT invariance in Lagrangian field theory. A
surprising corollary of this explanation is that the CPT theorem is an
essentially relativistic result; quantum mechanical assumptions do
not play a major role. I argue that the algebraic CPT theorem pro-
vides a better explanation for the origins of CPT invariance incor-
porating a more unified picture of antimatter captured by algebraic
superselection theory. Although there are intriguing similarities
between the algebraic proof and the more recent Lagrangian proof
given by Greaves and Thomas (2014), I argue that the case for a
purely classical explanation of CPT symmetry is not convincing.

Although these counterarguments are not decisive, they
significantly advance both debates and illustrate the potential
fruitfulness of further philosophical investigation into algebraic
QFT. I conclude in x5 by highlighting several open questions and
framing a conjecture relating state space, spatiotemporal, and
charge orientation structures that will be the subject of future
work.5
2. The algebraic CPT theorem

One of the most mathematically rigorous approaches to QFT
currently on the table, algebraic QFT (AQFT) serves as a natural
framework for investigating the conceptual underpinnings of
relativistic quantum theories. Rather than beginning with the
specification of a Hilbert space, AQFT starts with an abstract char-
acterization of the algebraic properties of gauge-invariant physical
quantities known as observables. It is typically assumed that the
observables of a quantum system form the self-adjoint part of a
noncommutative C�-algebra, A, an abstract collection of elements
isomorphic to a subalgebra of bounded Hilbert space operators.6

States are given by normalized, positive linear functionals,
f : A/C, whose values represent the expectation values of ob-
servables in A. Given a state, the Gelfand-Naimark-Segal (GNS)
construction determines a unique representation, pfðAÞ, of A as a
concrete subalgebra of operators acting on a Hilbert space, H f.
Within a representation, the closure of pfðAÞ with respect to the



Fig. 1. A doublecone, a spacelike wedge, and a spacelike cone.

7 As usually formulated, the spectrum condition requires that the spectral sup-
port of UðaÞ lie in the closed forward lightcone, Vþ , in momentum space. The
apparent reference to a distinguished temporal orientation is eliminable. It is only
required that UðaÞ must have spectral support in a closed convex set V which is
asymmetric under taking additive inverses: fVg∩f� Vg ¼ f0g.
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Hilbert space weak topology defines a von Neumann algebra
equivalent to the double commutant, pfðAÞ00 . Such algebras have a
complete lattice of projection operators, and in AQFT, this proced-
ure allows for the definition of additional representation-
dependent observables including energy-momentum operators
and superselected charges. Two representations p41

; p42
are qua-

siequivalent iff pf1
ðAÞ00 and pf2

ðAÞ00 are *-isomorphic. (This gener-
alizes the more familiar notion of unitary equivalence to reducible
representations.) Because field systems in AQFT have infinitely
many degrees of freedom, GNS representations of a given algebra
will typically not be quasiequivalent (unlike the situation in non-
relativistic quantum mechanics).

We will focus on AQFT in flat spacetime. Throughout, O will
denote an open region of Minkowski spacetime and O0 the interior
of its causal complement, the set of all points spacelike separated
from all points in O. Certain special regions will be important to
keep track of. A doublecone is a compact region formed by the
intersection of a past and future lightcone at two timelike separated
points. A spacelike wedge is an unbounded wedge-shaped region
whose two defining planes are tangent to the edges of some
lightcone. A spacelike cone is a cone-shaped subset of a spacelike
wedge, infinitely extended in one spacelike direction (see Fig. 1).

2.1. Assumptions

A model of AQFT is given by an assignment, fAðOÞg, of C�-al-
gebras to regions of spacetime satisfying the Haag-Kastler axioms,
along with a set of physically possible states, ffg. Each state in ffg
determines a GNS representation and a corresponding assignment
of local von Neumann algebras, fRfðOÞg ¼ fpfðAðOÞÞ00 g. The self-
adjoint elements of these algebras represent locally measurable
physical quantities, while the Haag-Kastler axioms specify the dy-
namics and enforce the joint requirements of relativity and quan-
tum mechanics. There are five standard axioms, and they all play a
crucial role in the algebraic CPT theorem:

Isotony: If O13O2, then AðO1Þ3AðO2Þ. This gives the assign-
ment fAðOÞg the structure of a net and allows us to define the
quasilocal algebra, A, as its upwards inductive limit. (The family
of physical states ffg is formally defined as a set of states of A.)
Microcausality: If O13O0

2, then AðO1Þ and AðO2Þ commute. This
enforces relativistic no-signaling constraints, ruling out act-
outcome correlations at spacelike separation. (It is also some-
times called the locality axiom.)
Covariance: The net fAðOÞg transforms covariantly under a
faithful representation of the connected Poincar�e group (or more
generally its covering group) as automorphisms of A. The full
group of isometries of Minkowski spacetime is the Poincar�e
group. Its covering group has the same Lie algebra and is used to
represent symmetries of spinor fields. The connected Poincar�e
group is the subgroup topologically connected to the identity,
consisting of translations, rotations, and boosts. (It does not
include orientation-reversing isometries like P, T, or PT re-
flections.) The dynamical laws of the theory are encoded in the
translation subgroup of this representation and are guaranteed
to be Lorentz-invariant.
Vacuum: There exists at least one translation-invariant state,
u2ffg. This is a necessary condition for u to be interpretable as
a vacuum state. In the corresponding GNS representation, the
translation subgroup is implemented by a strongly continuous
1-parameter group of unitary operators, UðaÞ. The group gen-
erators are the energy-momentum observables and are affili-
ated with the global von Neumann algebra, Ru ¼ puðAÞ00 .
Spectrum Condition: In each vacuum GNS representation, the
energy-momentum observables have spectral support in the same
lightcone lobe in momentum space. This ensures that the energy
spectrum is bounded from below in all Lorentz frames and that
the vacuum is thermodynamically stable.7

In addition to the Haag-Kastler axioms, the algebraic CPT the-
orem relies on five other assumptions:

Additivity For any family of bounded open regions, fOig, the local
algebra Að∪OiÞ is the C�-algebra generated by the family of local
algebras fAðOiÞg. This is a technical condition relating the al-
gebras of bounded and unbounded regions. It is used in the
analysis of charge superselection structure, and it entails weak
additivity in vacuum representations. Weak additivity ensures
that the global von Neumann algebra Ru can be generated by
translations of any local algebra RuðOÞ. It is an important
ingredient in the Reeh-Schlieder theorem and several crucial
lemmas in the algebraic CPT theorem.
Wedge Intersection Property: For any doublecone D, in any
vacuum representation,RuðDÞ¼ ∩RuðWiÞ for all spacelike wedges
WiID. This is another technical condition allowing vacuum
doublecone algebras to be defined by the intersection of families
of wedge algebras. It is used in the proof of the Bisognano-
Wichmann property and to construct the minimal Poincar�e
representation in x3.5. If a model of AQFT does not satisfy the
wedge intersection property it is always possible to expand the
net of local algebras so that it is satisfied, although the extension
will not typically be unique.
Split Property: If regions O1 and O2 are spacelike separated and
not tangent, then in the vacuum representation RuðO1Þ and
RuðO2Þ can be “split,” i.e., they generate a tensor product of von
Neumann algebras. Along with the spectrum condition, the split
property is part of the characterization of thermodynamically
well-behaved QFTs. It entails that the family ffg includes well-
defined thermal equilibrium states satisfying the Kubo-Martin-
Schwinger (KMS) condition and is a necessary condition for a
model of AQFT to have an emergent particle interpretation
(Haag, 1996, ch. V.5). Existing algebraic proofs of the CPT theo-
rem rely on theweaker distal split property, which only requires
the existence of some pair of spacelike separated wedges such
that RuðW1Þ and RuðW2Þ can be split.
Analyticity: At certain critical stages, proofs of the algebraic CPT
theorem, like proofs in the Wightman framework, rely on tricky
analytic continuation arguments. As we will go on to see, in
AQFT many important analyticity properties are derived from
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the Haag-Kastler axioms andweak additivity. It remains an open
question if these assumptions along with the split property are
sufficient to derive all of the analyticity needed for the CPT
theorem. Existing algebraic proofs require auxiliary analyticity
assumptions, and the choice of which assumptions to make
marks a place where different algebraic proofs diverge. In our
presentation, two closely related assumptions, B-analyticity and
B-reality, will be introduced in x3.5 once we have developed the
necessary technical machinery.
DHR/BF Selection Criteria: For every physical state f2 ffg, the
GNS representation pf is quasiequivalent to the vacuum repre-
sentation in the causal complement of some doublecone or
spacelike cone (i.e., for some doublecone or spacelike cone, O, the
restrictions pfðAÞjO0 and puðAÞjO0 are quasiequivalent). This final
assumption is the key to the algebraic analysis of charge struc-
ture. Its physical motivation is the subject of the next section.
2.2. Charges and superselection structure

Rather than a single Hilbert space, the state space of a model of
AQFT is a collection of different GNS representations, grouped into
unitary equivalence classes called sectors. Each representation in a
given sector has the same folium of density operators, representing
states with the same global boundary conditions, characterized by
the values of representation-dependent observables in the global
algebra, Rf ¼ pfðAÞ00 . In different models of AQFT, different fam-
ilies of global states and their corresponding GNS representations
carry physical significance. The analysis of charge representations
initiated by Doplicher, Haag, and Roberts (1969a,b) is one of the
crowning achievements of AQFT and plays a central role in the
algebraic CPT theorem.

Charges are gauge-invariant, conserved quantities associated
with particular force laws. Electric charge is the conserved quantity
that couples to the electromagnetic force; color charge is the
conserved quantity that couples to the strong force.8 Besides
satisfying global conservation laws, they obey superselection rules
that forbid states which are superpositions of different charges. In
addition, charges can be localized within some region of spacetime,
and every charge has a well-defined conjugate charge. Particles
carrying conjugate charges can annihilate. Conversely, particle/
antiparticle pairs can spontaneously spring from the vacuum state.

In AQFT, these features are captured using special mappings
called localized transportable morphisms. Formally, these are injec-
tive *-homomorphisms 9 : A/BðH uÞ, where H u is the vacuum
GNS Hilbert space. Each morphism must be localized in some re-
gion, O (i.e., it acts as the identity on AðO0Þ), and it must be possible
to transport 9 to any other similarly shaped region in spacetime
using unitary mappings (i.e., for any similar region, O2, there is a
localizedmorphism, 92, and a unitary operator, U, such that U9ðAÞ ¼
92ðAÞU for all A2A).

The collection of localized transportable morphisms has a rich
mathematical structure, that of a symmetric tensor *-category.9 In
The notion of color charge discussed here is not the same as the more familiar
rk color labels red, blue, and green. These labels do not have a gauge-invariant
aning and can be superimposed. Color charge is a Z3-valued gauge-invariant
erselected quantity in the center of SU(3) constructed from functions of local
imir invariants. See Kijowski and Rudolph (2003) for a discussion of the
erselection structure of quantum chromodynamics on a finite lattice.
In the original analysis of Doplicher, Haag, and Roberts, Haag duality entails that
charge morphisms are actually endomorphisms of the quasilocal algebra,
/A. This greatly simplifies the mathematical analysis. In the more general
considered by Buchholz and Fredenhagen, this is no longer true, and consid-

bly more work is required to prove that the charge morphisms have nice cate-
ical properties.
particular, the category has a natural tensor product which allows
us to define notions of charge composition and conjugate charges.
Each morphism induces a corresponding mapping on global states
over A. If u is a vacuum state, u+9 describes a state with charge Q
localized in region O. Its conjugate is defined as the unique mor-
phism, 9, such that u+9+9 is a mixed state containing a component
in the vacuum sector. This captures the necessary condition for pair
creation/annihilation.10

Doplicher, Haag, and Roberts analyze charges described by
morphisms localized in compact spatiotemporal regions. Such
charges couple to forces like the strong force whose strength falls
off sharply as a function of distance. They prove that the relevant
category of localized transportable morphisms is equivalent to the
category of GNS representations of states satisfying the DHR se-
lection criterion d f satisfies the DHR selection criterion if its GNS
representation is quasiequivalent to the vacuum representation in
the causal complement of some doublecone. The corresponding
charge sectors are labeled by the value of the total charge observ-
able, and conjugate sectors are defined by the condition that
pðAÞ005pðAÞ00 contains a copy of the vacuum representation,
puðAÞ00 . According to the DHR picture, matter and antimatter states
are represented by states in conjugate sectors, giving rigorous
mathematical content to the idea that such states have opposite
charge quantum numbers (Baker & Halvorson, 2010).

For theories with compactly localized charges like quantum
chromodynamics, the DHR selection criterion is a physically plau-
sible constraint on the family of possible global states, ffg.
Buchholz and Fredenhagen (1982) extend the DHR picture to
include topological charges localized in spacelike cones. In theories
with a mass gap, there is a 1-1 correspondence between particle
representations (i.e., any representation in which the translation
subgroup is unitarily implemented and satisfies the spectrum
condition) and states satisfying the BF selection criterion d f sat-
isfies the BF selection criterion if its GNS representation is quasie-
quivalent to the vacuum representation in the causal complement
of some spacelike cone. While impressive, the analysis of charge
structure in AQFT is still incomplete. Because of the infrared
problem, we currently lack a full understanding of the localization
properties of charges in theories involving massless particles, and
thus the algebraic proof of the CPT theorem cannot be applied to
theories like quantum electrodynamics at this stage.11
2.3. CPT symmetry and the Bisognano-Wichmann Property

Algebraically, we can view a CPT transformation as an auto-
morphism, q : A/A, satisfying the following constraints:

(a) q2 ¼ id.
(b) If O13O2, then qðAðO1ÞÞ3qðAðO2ÞÞ.
(c) qðAðOÞÞ ¼ Að� OÞ, where �O is the region obtained from O

via a full spatiotemporal inversion in both the space and time
coordinates.

(d) q+aa;L ¼ a�a;L+q, where aa;L is the representation of the
connected Poincar�e group (or its covering group) posited by
the covariance axiom.

(e) For any DHR/BF charge morphisms, q+9 ¼ 9+q.
10 An example of a common annihilation event is eþ þ e�/gþ g. Since charge is
globally conserved and photons are chargeless, any interaction of this kind requires
that particles and antiparticles have conjugate charge. If u+9+9 is a mixed state
with a component in the vacuum sector, then the probability of a creation/anni-
hilation event is nonzero according to the Born rule.
11 See Buchholz and Roberts (2014) for recent work on extending the tools of
DHR/BF analysis to massless theories.
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The first two conditions require q to be an involution that pre-
serves the localization structure of the net fAðOÞg. Conditions (c)-
(d) ensure that q represents a full spatiotemporal inversion (cor-
responding to the element �id in the Lorentz group) and has the
right commutation relations with the Poincar�e transformations.
(Technically, (c), requires the choice of a privileged origin, but in
light of (d), this choice does not matter.) The final condition tells us
that q conjugates all charges present in the theory. (Note, the term
“automorphism” here is intended to encompass the various gen-
eralizations of *-automorphisms canvassed in x3.1.)

Roberts and Roepstorff (1969) characterize symmetries in AQFT
as automorphisms of the net that preserve transition probabilities
and permute superselection sectors. Generalizing Wigner's famous
theorem from non-relativistic quantummechanics, they prove that
any such symmetry can be represented by the adjoint action of a
unitary or antiunitary operator affiliated with the universal envel-
oping von Neumann algebra, A��.12 Note that for any GNS repre-
sentation, pf, and any automorphism, a : A/A, pf +aðAÞ :¼
pfðaðAÞÞ is a GNS representation for A generated by the state
f+a�1ðAÞ :¼ fða�1ðAÞÞ. Roberts and Roepstorff prove that there
always exists a unitary or antiunitary operator, W : H f/ H f+a�1 ,
representing a, meaning that WpfðAÞW� ¼ pf+aðAÞ. Since W is an
isometry, it is guaranteed to preserve transition probabilities.
Therefore, in order for a to be a symmetry of a model of AQFT, for
every physical state f2ffg, the symmetry-transformed state must
also be a physical state, f+a�12ffg.13

Thus if CPT is a symmetry of a model of AQFT, there exists a
unitary or antiunitary operator, Q, such that for any physical rep-
resentation pf,QpfðAÞQ� ¼ pf+qðAÞ, where pf+ q is also a physical
representation. In this case, (a) entails that Q¼ Q� ¼ Q�1 (since
any isometric involutive operator is self-adjoint). Meanwhile, (c)
ensures that QUða;LÞQ ¼ Uð� a;LÞ, in any sector carrying a uni-
tary representation of the connected Poincar�e transformations, Uða;
LÞ. This ensures that CPT reflection commutes or anticommutes
with the Hamiltonian and preserves the mass and spin properties
of particles which are given by the Casimir invariants of the rep-
resentation Uða;LÞ. In addition, (e) guarantees that CPT reflection
maps conjugate charge sectors onto one another.14

This leads to a statement of the main theorem:

CPT Theorem. Given a model of AQFT satisfying the Haag-Kastler
axioms, additivity, the wedge intersection property, the distal split
property, and the DHR/BF selection criterion, if the model also satisfies
12 The universal enveloping algebra, A�� , is isomorphic to the direct sum of all
GNS representations of A.
13 As Baker and Halvorson (2013) emphasize, the Wigner unitary/antiunitary, W,
will not in general implement a unitary/antiunitary equivalence between pf and
pf+a. This will be true just in case W intertwines the two representations,
WpfðAÞW� ¼ pf+aðAÞ for all A2A (i.e., W maps pfðAÞ to pf+ aðAÞ pointwise). The
distinction allows us to accommodate the phenomenon of spontaneous symmetry
breaking. According to one standard definition, a symmetry is unbroken iff W
implements a unitary/antiunitary equivalence. Otherwise it is spontaneously
broken. I thank two anonymous referees for drawing my attention to the subtleties
surrounding the Roberts-Roepstorff theorem.
14 Since conjugate charge representations are typically not quasiequivalent, it
appears that CPT symmetry will generally be broken in charge sectors, i.e., the
adjoint action ofQwill not intertwine p and p. This is not the case. Even if there are
no unitary intertwiners between p and p, there may still exist antiunitary inter-
twiners. As we will go on to see in x3:6, each irreducible charge sector is equivalent
to an irreducible representation of some compact gauge group G. Varadarajan
(1968, Lem. 3.8) proves that a necessary and sufficient condition for the existence
of antiunitary intertwiners between irreducible representations of G is that the
representations in question are conjugate to one another. So there will always exist
antiunitary intertwiners between charge sectors in the DHR/BF picture. If CPT
symmetry is unbroken in the vacuum sector (as we expect is the case in many, if not
all, physical models), then the adjoint action of Q will intertwine conjugate charge
representations.
analyticity conditions sufficient to entail the Bisognano-Wichmann
property, then there exists an antiunitary operator, Q, (unique up to
unitary equivalence), whose adjoint action represents an algebraic CPT
transformation preserving the set of physical states, ffg, and satisfying
(a)-(e).

Algebraic proofs of the CPT theorem are based on generaliza-
tions of a lesser known result from constructive QFT. Bisognano and
Wichmann (1975, 1976) prove that for QFTs satisfying the Wight-
man axioms, local algebras associated with spacelike wedges in the
vacuum representation contain special invariants that generate
particular Poincar�e transformations. The modular unitaries, Dit

W ,
associated with RuðWÞ generate the unique 1-parameter group of
W-preserving Lorentz boosts, LW ðtÞ.15 The antiunitary modular
conjugation, JW , implements a P1T reflection that reverses the di-
rection of time and flips one spatial direction perpendicular to the
edge of the wedge (see Fig. 2). Interestingly, it turns out that JW also
conjugates charge. The CPT theorem is then an immediate corollary
of rotational covariance.

The original proof of the Bisognano-Wichmann theorem uses
extensive analytic continuation techniques relying on the special
properties of gauge-dependent Wightman field operators. It thus
does not directly apply to AQFT. Nonetheless, mathematical phys-
icists have long suspected that the theorem is actually a more
general consequence of the structure of gauge-independent local
observables. As we will see in x3.3, the existence of local modular
invariants is a consequence of the Haag-Kastler axioms and weak
additivity, and their geometric interpretation is tightly constrained.
This motivates the following:

Bisognano-Wichmann Property: In the vacuum representation,
for any spacelike wedge W, the wedge modular unitaries generate
LW ðtÞ.

The Bisognano-Wichmann property holds iff JW implements a
CP1T reflection. Algebraic proofs of the CPT theorem therefore
attempt to isolate analyticity assumptions that are sufficient for
establishing the Bisognano-Wichmann property.

In 2-dimensional theories, no additional assumptions are
needed. The first algebraic proof of the CPT theorem, Borchers
(1992), inventively uses the analyticity properties entailed by
covariance and the spectrum condition to establish the Bisognano-
Wichmann property for 2-dimensional models of AQFT. In higher
dimensions the situation is less clear. Haag (1996) conjectures that
the Haag-Kastler axioms and the split property should be sufficient
to entail the Bisognano-Wichmann property on their own, but this
problem remains unsolved. Although there are models of the Haag-
Kastler axioms in which the Bisognano-Wichmann property fails
(Buchholz, Dreyer, Florig,& Summers, 2000; Yngvason,1994), there
are none that also satisfy the split property.

The first proof for 3- and 4-dimensional theories, Guido and
Longo (1995), drops the covariance axiom and spectrum condi-
tion in favor of a geometric constraint on Dit

W :

Modular Covariance: In the vacuum representation, for any
spacelike wedge W, Dit

WRuðOÞD�it
W ¼ RuðLW ðtÞOÞ :
15 A spacelike wedge is the region of Minkowski spacetime causally connected to
an immortal, uniformly accelerating observer, the so-called Rindler wedge. If the
observer is accelerating in the x1 direction, their trajectory can be written in
standard coordinates as x0ðtÞ ¼ a�1sinhðtÞ, x1ðtÞ ¼ a�1coshðtÞ, x2ðtÞ¼ x3ðtÞ ¼ 0;
where t is proper time. The wedge region is defined by the condition x1 >

��x0��. The
Bisognano-Wichmann theorem tells us that in the vacuum representation,
Dit
W ¼ e2pitK1 (where K1 is the generator of an x1-boost). This is a simple rescaling of

proper time translations along the observer's worldline.



Fig. 2. The P1T reflection implemented by JW .
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This requires that the adjoint action of the modular unitaries
maps arbitrary local algebras in the vacuum representation onto the
algebras of LW ðtÞ-boosted regions. This covariance entails the
Bisognano-Wichmann property, but showing that each Dit

W acts
geometrically as a boost requires a detailed argument exploiting the
algebraic and analytic properties of the modular invariants. Bain
(2016) draws a number of philosophical conclusions about the
algebraic CPT theorem (e.g., that it does not assume Lorentz invari-
ance) based on a direct reading of the Guido-Longo proof. Swanson
(2018) cautions against such a direct reading, arguing that modular
covariance essentially bundles together the covariance axiom,
spectrum condition, and additional analyticity properties, obscuring
the physical justification behind various steps in the proof.

Here I will focus on the approach of Borchers (1995, 1996a,1998,
2000), which seeks to identify precisely which analyticity condi-
tions are needed in higher dimensions in addition to those already
implicitly encoded in the Haag-Kastler axioms. Although in their
present form these conditions are quite technical and their physical
motivation is poorly understood, pursuing this strategy will enable
us to trace the clearest possible chain of argument back to the Haag-
Kastler axioms.16

3. Deciphering the theorem

Summing up the mathematical philosophy behind AQFT,
Halvorson and Müger (2006, p. 740) observe:

AQFT proceeds by isolating some structural assumptions that
hold in most known QFT models. It formalizes these structural
assumptions, and then uses “abstract but efficient nonsense” to
derive consequences of these assumptions.

Prima facie, the algebraic CPT theorem is a paradigm example of
this approach. With the exception of technical conditions like
additivity, thewedge intersection property, and analyticity, its main
structural inputs are reasonably physically transparent. The chain
of argument is anything but. Somehow, using the geometric
properties of wedge-localizedmodular invariants, we can construct
an extended representation of the Poincar�e group which miracu-
lously includes an antiunitary CPT operator. To make the situation
even more challenging, presentations of the CPT theorem in the
mathematical physics literature typically begin by trying to estab-
lish the Bisognano-Wichmann property without providing physical
16 There are several other approaches that deserve mention. Kuckert (1997)
proves that if the wedge modular invariants map open regions onto open re-
gions, then the Bisognano-Wichmann property follows. Buchholz et al. (2000)
employs an alternative geometric constraint, the condition of geometric modular
action, on the family of wedge modular conjugations fJWg. Mund (2001) proves the
Bisognano-Wichmann property for asymptotically complete QFTs with a mass gap
using elementary algebraic assumptions and tools from Haag-Ruelle scattering
theory.
motivation for this starting point. The proofs are spread over many
separate papers, and often appeal to more abstract assumptions
than the Haag-Kastler axioms, aiming for the highest level of
mathematical generality possible. (Frequently they seek to prove
the spin-statistics theorem at the same time.)

The goal of this section is to decipher the chain of physical
reasoning behind the CPT theorem, starting from amore elementary
algebraic foundation than existing presentations. The groundwork
for the theorem is laid in x3.1e3 by connecting the modular
conjugation to a reversal of the C�-algebraic Lie product (lemmas
1e2). In x3.4, this connection is used to illuminate why time-
reversal symmetry must be antiunitary and to motivate the focus
on wedge regions (Lemma 3). Proofs of these lemmas are given in
the appendix. We then proceed through the heart of the theorem in
x3.5e6with the aim of using these ingredients to clarify the physical
justification for each mathematical step. While the argument is
certainly abstract, it is less nonsensical than it first appears.

3.1. The canonical involution

We suspect that a generic model of AQFT should contain a
hidden CPT reflection symmetry, but the Haag-Kastler axioms only
require covariance with respect to connected Poincar�e symmetries.
How can a reflection like CPT get into the mix?

Our first important observation is that there is already a passel
of algebraic reflection symmetries hiding in plain sight. Even
though the Haag-Kastler axioms do not explicitly mention re-
flections, they do so implicitly. By definition, every C�-algebra
employed by a model of AQFT is equipped with a canonical invo-
lution mapping, *:A/A, satisfying

ðA�Þ� ¼ A; ðAþ BÞ� ¼ A� þ B�;
ðcAÞ� ¼ cA�; ðABÞ� ¼ B�A�;

(1)

for all A; B2A, c2C (where c denotes complex conjugation). The
canonical involution can be viewed as a reflection of the algebra
across its self-adjoint subspace, ASA. Every operator in A can be
uniquely written in “complex form,” A ¼ Hþ iK , where
H ¼ 1

2 ðAþ A�Þ and K ¼ i
2 ðA� � AÞ are self adjoint. A quick calcula-

tion reveals that the canonical involution acts as “complex conju-
gation,” sending A¼ H þ iK to A� ¼ H � iK and leaving ASA
pointwise invariant. Thus just like the complex numbers, a
C�-algebra is self-similar; there is a conjugation operation that re-
flects the algebra across its “real axis,” ASA.

Strictly speaking, the canonical involution is not an automor-
phism ofA. It reverses the order of operator multiplication, ðABÞ� ¼
B�A�, and it is conjugate-linear on the underlying vector space,
ðc1Aþ c2BÞ� ¼ c1A� þ c2B�. It restricts to the identity on ASA,
however, and since physical quantities are represented by self-
adjoint operators, this suggests that we should interpret it as a
symmetry. Moreover, while the order of multiplication and the
difference between i and �i matters within the algebra, from the
outside looking in, the choice of an operator product and complex
unit looks like an arbitrary convention. We could choose right
instead of left operator multiplication and �i rather than i as a
complex unit and still be able to encode the same algebraic
relations.

We can capture this intuition as follows. Let Aop denote the
opposite algebra relative to A, consisting of the same underlying
vector space, involution, and norm as A, but with the opposite
C�-product, ðABÞop ¼ BA. Similarly, let Ac denote the conjugate
algebra, consisting of the same involution, norm, and operator
product as A, but whose underlying vector space is conjugate, ic ¼
� i. Finally, let Acop denote the analogously defined conjugate-
opposite algebra.
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We say that two C�-algebras are *-isomorphic if there exists a
linear bijection between them that preserves the identity, involu-
tion, and the operator product. (These conditions entail that the
norm is also preserved.) An anti-isomorphism is similarly defined
but reverses the order of the operator product, while a conjugate-
isomorphism acts conjugate linearly on the underlying vector space.
A conjugate-anti-isomorphism does both. It follows from this cluster
of definitions that A is antiautomorphic, conjugate-automorphic, or
conjugate-antiautomorphic (to itself) iff A is isomorphic to Aop, Ac,
or Acop respectively.

Lemma 1. Let A be any C�-algebra:

(i) A is naturally isomorphic to Acop,
(ii) Aop is naturally isomorphic to Ac,
(iii) A is naturally anti-isomorphic to Aop and Ac,
(iv) A is naturally conjugate-isomorphic to Aop and Ac,
with the relevant isomorphisms defined by the involution structure
common to all four algebras.

This lemma precisely characterizes the sense in which a
C�-algebra is self-similar:A is naturally conjugate-antiautomorphic
to itself, with the canonical involution defining the relevant
reflection symmetry. Furthermore, it reveals that there is an entire
family of related isomorphisms linking C�-algebras with opposite
choices of operator product and complex unit.
Algebra C�-Product Lie Product Complex Unit

A AB A+B i
Aop BA B+A i

Ac AB B+A � i

Acop BA A+B � i
3.2. The Lie-Jordan product and state space orientation

Do these formal algebraic symmetries have any physical con-
sequences? If the observables are all contained in ASA, what role
does the “imaginary” part of the algebra play? Our second impor-
tant observation, following Alfsen and Shultz (2001, 2003), is that
observables have double rolesd they represent physical quantities
and they act as infinitesimal generators of symmetries. The oper-
ator product is in fact two products in disguise:

Theorem. (Alfsen-Shultz). In any C�-algebra, the operator product
has a natural decomposition,

AB¼A � B� iðA+BÞ ; (2)

where A �B :¼ 1
2 ðABþ BAÞ is a commutative, non-associative Jordan

product, and A+B :¼ i
2 ðAB� BAÞ is a noncommutative, associative Lie

product.17
17 See Alfsen and Shultz (2003, ch. 6). The Jordan product satisfies the Jordan
identity,

�
A2 � B

�
�A ¼ A2 � ðB � AÞ ;

where A2 : ¼ A � A, while the Lie product satisfies the well-known Jacobi identity,

A+ðB+CÞþC+ðA+BÞ þ B+ðC+AÞ ¼ 0 :

They also satisfy two important compatibility conditions, the Leibniz rule and the
associator identity:

A+ðB � CÞ¼ ðA+BÞ � C þ B � ðA+CÞ;

and

ðA � BÞ �C � A � ðB � CÞ ¼ ðA+CÞ+B:

The first tells us that the map B1A+B is a derivation on ðASAÞ viewed as a real
Jordan algebra. The second quantifies the departure from associativity of the Jordan
product and is linked to the Heisenberg uncertainty relations. This structure allows
us to canonically view the original C�-algebra,A, as a dual Lie-Jordan algebra defined
on the complexified space ASA þ iASA . See Zalamea (2018) for an analysis of the
physical significance of this dual structure in both quantum and classical mechanics.
The self-adjoint subspace, ASA, is closed under the Jordan
product which encodes all spectral information about the observ-
ables.18 The Jordan product therefore captures the way in which
observables represent physical quantities. The Lie product, on the
other hand, captures the way in which observables generate sym-
metries. Each element A2ASA defines a 1-parameter group of au-
tomorphisms of A, given by

atðXÞ :¼ eitAXe�itA; (3)

for all t2R, X2A. Infinitesimally, this can be rewritten in terms of
the Lie product:

datðXÞ
dt

jt¼0 ¼ iðAX � XAÞ ¼ 2ðA+XÞ (4)

Thus the Lie product A+X represents the tangent vector of the
flow associated with the group of symmetries defined by A at t ¼ 0.
Unlike the Jordan structure,ASA is not closed under the Lie product.
In fact the closure ofASA with respect to the Lie product is the entire
C�-algebra. This reveals that the imaginary part of A algebraically
encodes the generating relationship between observables and
symmetries.

Putting this result together with Lemma 1, we see that the four
algebraswe have introduced,A,Aop,Ac, andAcop, all have the same
Jordan product, so they agree on spectral properties of observables.
The choice of a C�-operator product, Lie product, and complex unit
are constrainedd specifying any two naturally defines a choice for
the third:
The algebras A and Acop adopt one possible convention linking
observables to symmetries, the Lie product A+B, while Aop and Ac

adopt the opposite convention, the opposite Lie product ðA+BÞop ¼
B+A. Thus, when we specify a model of AQFT by choosing a net of
C�-algebras we are implicitly choosing one of these conventions.19

Since the Lie product is antisymmetric, A+B ¼ � ðB+AÞ, if we
choose the opposite convention, the tangent vectors defined by (4)
will point in opposite directions. The canonical anti-isomorphism
and conjugate-isomorphism linking A with Aop and Ac reverse
the Lie product. They flip the generating relationship between ob-
servables and symmetries.

This algebraic story has an elegant geometric dual: the natural
Lie product onA corresponds to an orientation structure on its state
space, S ðAÞ, the collection of all states on A. The state space is a
compact convex set, with extremal points representing pure states.
It has a natural order structure inherited from A and its exposed
faces form a lattice whose orthogonality relations mirror the
18 The spectrum of A2ASA is defined as the set of real numbers l such that A� lI
is not invertible. The invertibility of A� lI is equivalent to the existence of B2ASA

such that ðA� lIÞ �B ¼ I and ðA� lIÞ2 �B ¼ ðA� lIÞ (Alfsen & Shultz, 2003, Lem.
1.16eCor. 1.19).
19 If we start with ASA viewed as a real Jordan algebra, there will typically be
infinitely many Lie products compatible with the given Jordan product. Every such
compatible Lie product has a unique opposite. Alfsen and Shultz (2003, Thm. 6.15)
prove that Jordan-compatible Lie products are in 1-1 correspondence with Jordan-
compatible C�-products on the complexification ASA þ iASA . The same reasoning
applies to the opposite choice of complex unit, ASA � iASA .



Fig. 3. S ðM2Þ with clockwise orientation.
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spectral information encoded in the lattice of projection operators
in A. Kadison (1951) proves that all of the spectral information
encoded in the real Jordan algebra ðASAÞ is captured by the convex
geometry of S ðAÞ.

Alfsen, Hanche-Olsen, and Shultz (1980) prove that the full
structure of A can be recovered by equipping S ðAÞ with an
orientation structure that determines a 1-1 pairing between ob-
servables, viewed as R-valued affine functions on S ðAÞ, and 1-
parameter groups of symmetries of S ðAÞ. For a 2-level quantum
system, this orientation structure is easily visualized. In this case
the state space, S ðM2Þ, is isomorphic to a Euclidean 3-ball whose
boundary points represent pure states and whose interior points
represent mixed states. Each observable A determines a bounded
affine function attaining maximum and minimum values on some
pair of antipodal points. The non-self-adjoint operators iA and �iA
generate infinitesimal rotations of the 3-ball around the diameter
connecting these antipodal points. There are two possible choices
of orientation: iA can generate clockwise and�iA counterclockwise
rotations, or vice versa (see Fig. 3).

This basic idea forms the basis for the general case. For an
arbitrary C�-algebra, every minimal exposed face of S ðAÞ is either
isomorphic to a Euclidean 3-ball or a line segment, the former if the
face is generated by distinct pure states whose GNS representations
are quasiequivalent and the latter if the GNS representations are
inequivalent. An orientation for S ðAÞ is then given by a suitably
continuous choice of orientation, clockwise or counterclockwise,
for each facial 3-ball. Unlike a total manifold orientation where
there are only two choices, there are in general, infinitely many
orientation structures of S ðAÞ that are in 1-1 correspondence with
Jordan-compatible Lie products onASA (Alfsen& Shultz, 2001, Thm.
5.73). Every such orientation, however, has a unique opposite.
Down the line, this geometric interpretation of the Lie product will
give us valuable insight into the CPT theorem. Symmetries that
reverse the Lie product correspond to orientation-reversing re-
flections of the theory's state space.

3.3. Tomita-Takesaki modular theory

We have gone from no suspects to an entire slew of them. Every
C�-algebra used by a model of AQFT has a canonical conjugate-
antiautomorphism as well as a family of related mappings con-
necting the algebra to its opposite, conjugate, and conjugate-
opposite algebra. We do not expect every algebraic symmetry to
be a physical symmetry, however, since they will not necessarily
preserve superselection structure in the given set of physically
significant GNS representations.20

There is an additional constraint. In many, possibly all, models of
AQFT satisfying the assumptions of x2.1, vacuum states are CPT-
invariant. This entails that the algebraic CPT automorphism, q, is
implementable in vacuum representations, i.e., QpuðAÞQ¼ pu+
qðAÞ for all A2puðAÞ.21 In general, the canonical involution will not
20 Since each of these mappings induces a bijection on pure states, they must act
as a permutation on the unitary equivalence classes of irreducible representations
of A. So they permute sectors in a broad sense. The difficulty is that there is no
guarantee that all of these sectors are physical sectors. They need not satisfy the
DHR/BF selection criteria (or any other physically significant selection criteria). As
emphasized in x2.3, physical symmetries must induce a bijection on pure states in
the set of physically possible states, ffg, which is a significantly stronger condition.
See Baker and Halvorson (2013) for further discussion of these issues.
21 Must vacuum states be CPT-invariant? Borchers and Yngvason (2000, Thm. 2.1)
prove that the family of vacuum representations is CPT-invariant, but this leaves open
the possibility that CPT-symmetry could be spontaneously broken in vacuum states,
andQ permutes disjoint vacuum representations. The chain of argument sketched in
x3.5, however, appears to rule this scenario out. The interplay between CPT symmetry
and spontaneous symmetry breaking is a subtle issue that requires further study.
be unitarily or antiunitarily implementable in any physically sig-
nificant representations, but under certain technical conditions
that are guaranteed to hold for every local algebra in vacuum
representations (via the Reeh-Schlieder theorem), the involution
can be split into two pieces, one of which is antiunitary. Further-
more this antiunitary piece implements the canonical anti-
isomorphism between A and Aop. This is our third important
observation and the subject of Tomita-Takesaki modular theory.

In its most general mathematical setting, modular theory
studies the action of a von Neumann algebra,M, on a Hilbert space,
H , with a cyclic, separating vector,F. The former means thatMF ¼
H (where the overline denotes closure in the Hilbert space norm
topology), and the latter means that AF ¼ BF entails A ¼ B. As a
result, we can use F to translate between algebraic structure on M
and geometric properties of H . In general, the canonical algebraic
involution does not give rise to an isometry of the Hilbert space
structure, but can always be represented as a reflection with an
additional “twist.”

Using F, we can define the (generally unbounded) antilinear
operator,

S0AF ¼ A�F ; (5)

for all A2M. This can be extended to a closed, antilinear operator, S,
defined on a dense subset of H . Any such operator has a unique
polar decomposition into a partial isometry and a positive, self-
adjoint (generally unbounded) operator called the modulus. In
the present case, the polar decomposition of S is given by:

S ¼ JD1=2 ; (6)

with partial isometry J and modulus ðS�SÞ1=2 ¼ D1=2. It can be
shown that J ¼ J� ¼ J�1, and thus J, called the modular conjugation,
is antiunitary, self-adjoint, and involutive. The positive, self-adjoint
operator D is called the modular operator. The Hilbert space action
of the algebraic involution can thus be broken up into a reflection, J,
with an additional twist, D1=2.22

Together, the operators D; J have a rich structure that forms the
basis of Tomita-Takesaki modular theory. Its central theorem estab-
lishes the existenceof a canonical groupof automorphismsofM anda
canonical anti-isomorphism between M and its commutantM0:
22 The Tomita operator, S, implementing the canonical involution is isometric iff
S ¼ J and D is the identity operator. This is the case iff F is a tracial state. Since local
algebras in AQFT are generically type III von Neumann algebras and thus lack tracial
states, their canonical involutions will not be antiunitarily implementable in any
physically significant representation. Global algebras are generically type I, but
physical states are typically not separating for these, and so the conditions for
applying modular theory do not apply.
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Theorem. (Tomita-Takesaki). IfM is a von Neumann algebra acting
on a separable Hilbert space, H , with a cyclic and separating vector,
F2H , then
ðiÞ JF¼F ¼ DF ;
ðiiÞ DitMD�it ¼M;ct2R;

0
ðiiiÞ JMJ ¼ M

where D; J are the associated modular invariants.23

Since D is positive, Dit is unitary, and (ii) defines a strongly
continuous 1-parameter automorphism group of M d themodular
automorphism group. By (iii), the adjoint action of the modular
conjugation generates an anti-isomorphism and an equivalent
conjugate-isomorphism between M and M0. This allows us to
canonically identify M0 with Mop and Mc:

Lemma 2. Let M be a von Neumann algebra with a cyclic and sepa-
rating vector, F2H , and let D; J be the associated modular objects. J
defines natural *-isomorphisms jop : M0/Mop and jc : M0/ Mc.

Thus within the setting of modular theory, we find that the
reflection symmetry relating M and Mop (equivalently Mc) is al-
ways antiunitarily implemented by J, with the commutant M0

identified with Mop (equivalently Mc).
In AQFT, the Reeh-Schlieder theorem guarantees that these

conditions hold for local algebras in vacuum representations:

Theorem. (Reeh-Schlieder). If a model of AQFT satisfies the Haag-
Kastler axioms and weak additivity, then any vacuum state, u, is cy-
clic and separating for every local von Neumann algebra, RuðOÞ,
where O0 is a proper subset of Minkowsi spacetime.24

So every local algebra in a vacuum representation has a ca-
nonical antiunitary conjugation, J, the reflection portion of the
Tomita operator, S, implementing the algebraic involution.
Lemma 2 then entails that the reflection symmetry linking RuðOÞ
to RuðOÞop (equivalently RuðOÞc) is always antiunitarily imple-
mented with RuðOÞ0 identified with RuðOÞop (equivalently
RuðOÞc). As we will go on to see, this has important geometric
23 In the case where S is a bounded operator an elementary proof can be given.
See Blackadar (2006, Thm. III.4.3.2.). The unbounded case is highly non-trivial. See
Takesaki (2000, Ch. VI-VII) and Kadison and Ringrose (1997, Ch. 9.2) for different
versions of the full proof.
24 This is the first instance of an analytic continuation argument in the proof of the
CPT theorem. Here is the main idea behind the proof: let U be the vector repre-
senting u in the GNS Hilbert space H u . For some region O, suppose that an arbi-
trary vector J2H u is orthogonal to RuðOÞU. J will also be orthogonal to
UðaÞRuð~OÞUð�aÞU where ~O is any subregion strictly contained in O and UðaÞ are
sufficiently small translations. The spectrum condition entails that the vector-
valued function UðaÞU has analytic extension to the forward tube TðVþÞ :¼
fz2C4

���Im z2Vþg, where Vþ is the forward lightcone. This fact is used to show
that the function hU;UðaÞRuð~OÞUð�aÞUi is the boundary value of a holomorphic
function on the forward tube that vanishes in some neighborhood of the origin and
therefore vanishes everywhere. ConsequentlyJ is orthogonal to UðaÞRuð~OÞUð�aÞU
for all translations. Weak additivity then entails that J ¼ 0, and so U is cyclic for
RuðOÞ. Microcausality entails the separating property (For a full proof, see Horuzhy,
1990, Thm. 1.3.1.). Note that the theorem generalizes to any state analytic for the
energy. This requirement entails that the field strength cannot grow too large as a
function of the energy and is guaranteed to hold for any states satisfying the DHR/
BF selection criteria. We will not need this generalization in the ensuing discussion.
ramifications since commuting algebras are associated with
spacelike separated regions.
3.4. Time reversal

The local modular conjugation operators are prime suspects for
representing time reversal transformations. In AQFT, the dynamics
are encoded in the representation of the translation subgroup
whose existence is posited by the covariance axiom. Relative to a
given Lorentz frame, we canwrite the time evolution of an arbitrary
observable as

atðXÞ ¼ eitP0Xe�itP0 ; (7)

where P0 is the global Hamiltonian.
Choosing an arbitrary t ¼ 0 allows us to identify time evolved

observables in two distinct temporal directions, t and � t. As
Roberts (2017) emphasizes, in any quantum theory, a time reversal
transformation should reverse the temporal ordering of observ-
ables (in the Heisenberg picture) while preserving the length of
temporal intervals, thus mapping observables at time t to observ-
ables at time � t. It should also be an involution. If a theory is
invariant under a symmetry implementing a time reversal trans-
formation (possibly along with other transformations), this sym-
metry will be represented by a unitary or antiunitary operator, T. In
addition, it should either commute or anticommute with P0 so that
the form of the dynamical laws is unaffected by the reversal.
Putting these four constraints together, we have

TatðXÞT ¼ TeitP0Xe�itP0T ¼ e�itP0TXTeitP0 ¼ a�tðTXTÞ : (8)

The spectrum condition entails that the spectrum of P0 is pos-
itive in all Lorentz frames. As a consequence, Roberts shows that the
only way to consistently implement (8) with P0s0 is for T to be
antiunitary. The key idea is simple, but illuminating. Since the
generators of the translations are unique, it follows from (8) that
TitP0T ¼ � itP0. If T is unitary, linearity entails that Tit ¼ itT and
hence that TP0T ¼ � P0. (In this case, T anticommutes with P0.)
Since unitary operators preserve inner products, if P0s0 the
spectrum of P0 cannot be bounded from below, violating the
spectrum condition. So T must be antiunitary, in which case anti-
linearity entails that Tit ¼ � itT , and T commutes with P0.

Roberts's argument sheds considerable light onwhy time reversal
symmetries in quantum mechanics must be antiunitary. Our dis-
cussion of the dual Lie-Jordan product in x3.2 yields additional
insight. Any time reversal symmetry worth the name must send
at1a�t . There are only two ways to do this. The first is a unitary
transformation sending P01� P0. The second is an antiunitary
transformation that reverses the Lie product and thus the generating
relationship between P0 and at .25 The first route is blocked by the
spectrum condition, leaving the second as the only viable way to
implement time reversal symmetry in QFT. Given the constraints
linking the Lie product, C�-product, and complex unit, antiunitary
time reversal can be viewed either as a conjugate-isomorphism
sending i1� i with fixed C�-product (thus sending eit1e�it) or an
anti-isomorphism sending AB1BA with fixed complex unit (thus
sending eitð,Þe�it1e�itð,Þeit). Since Ac is naturally isomorphic to
Aop, the viewpoints are completely equivalent. Physically speaking,
both are ways of reversing the generating relationship between ob-
servables and 1-parameter groups of symmetries.
25 A symmetry preserves the Lie product iff it is unitarily represented and reverses
the Lie product iff it is antiunitarily represented. See Alfsen and Shultz (2001, Thm.
4.27).
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But more is required. In order to be a symmetry of AQFT, a time
reversal transformation should also preserve subsystem localiza-
tion information; T should be a symmetry of the net of observable
algebras, not just the global algebra. In the vacuum representation,
if O13O2, and thus RuðO1Þ3RuðO2Þ, we require that TRuðO1ÞT3
TRuðO2ÞT . Moreover, if a system is localized in a particular type of
region (e.g., a lightcone, doublecone, spacelike wedge, spacelike
cone), time reversal symmetry should preserve this localization. It
should map like-regions onto like-regions.

By the main Tomita-Takesaki theorem, JRuðOÞJ ¼ RuðOÞ0,
therefore in order for J to represent a time reversal symmetry,
RuðOÞ0 must be the local algebra of a region with the same geom-
etry asO. In general, there is no guarantee thatRuðOÞ0 will be a local
algebra at all, however microcausality entails thatRuðO0Þ3RuðOÞ0.
If a stronger duality relation obtains, the local algebras are as large
as possible consistent with microcausality, and RuðO0Þ ¼ RuðOÞ0. If
O has the same geometry as O0, then the modular conjugation
meets this necessary requirement.

Are there regions like this d regions that are isometric to their
spacelike complement and for which we expect duality to hold
quite generally? The answer is yes. In Minkowski spacetime, the
causal complement of a spacelike wedge is another spacelike
wedge. In fact, spacelike wedges are essentially the only causally
well-behaved regions with this property:

Lemma 3. If O is an open, convex, causally complete proper subre-
gion of Minkowski spacetime such that O and O0 are isometric, then O
is a spacelike wedge.

Moreover, wedge duality, RuðWÞ0 ¼ RuðW 0Þ, is a sufficient
condition (in conjunction with the Haag-Kastler axioms) for
applying the tools of DHR/BF superselection theory. It is expected to
hold (in the vacuum representation) with greater generality than
other forms of duality.26
27 Borchers originally proved the forward direction and Weisbrock the converse.
The forward proof has since been greatly streamlined by Florig (1998). The key idea
is as follows: spacelike translations along any direction in the characteristic 2-plane
of W form a positively generated 1-parameter group UðsÞ, such that UðsÞU ¼ U and
UðsÞRuðWÞUð�sÞ3RuðWÞ for s � 0 (a group of so-called half-sided translations).
Using the fact that UðsÞ is positively generated, along with the analytic properties of
3.5. Wedge reflection

The focus of our investigation has narrowed to modular conju-
gations associated with spacelike wedges in the vacuum repre-
sentation. (Incidentally, this is where most presentations of the
algebraic CPT theorem begin, obscuring the physical detective work
that has gotten us this far.) If wedge duality holds, then
JWRuðWÞJW ¼ RuðWÞ0 ¼ RuðW 0Þ, where JW is the modular
conjugation associated with wedge W, and W 0 is the opposite
wedge, the reflection of W across one spatial direction (perpen-
dicular to the edge of W). Thus, because of the fact that JW is a
modular conjugation, mapping RuðWÞ onto its commutant, com-
bined with duality and the unique geometry ofW, JW is a candidate
for representing a spatial reflection. If it does so (and thus preserves
subsystem localization), and if it commutes with the Hamiltonian,
JW will also represent a time reversal symmetry since it is an
antiunitary involution.

Under the same elementary conditions needed for the Reeh-
Schlieder theorem, Borchers (1992) and Weisbrock (1992) estab-
lish a remarkable result settling the latter question:
26 Wedge duality entails essential duality, a technical condition needed to prove
that the DHR/BF category has sufficient structure to represent charges. Essential
duality requires that the dual net, RuðOÞd :¼ RuðO0Þ0 , satisfies microcausality. (It
should be noted that as a restriction on the family of physical states, ffg, the DHR/
BF selection criteria can be applied whether or not duality obtains.) Another widely
discussed duality condition, Haag duality, requires that RuðDÞ0 ¼ RuðD0Þ for any
doublecone D. It is equivalent to the absence of spontaneous symmetry breaking in
the vacuum sector and is therefore of more limited interest, although it does hold in
a number of important models, such as the free Bosonic field.
Theorem. (Borchers-Weisbrock). If a model of AQFT satisfies the
Haag-Kastler axioms (except the spectrum condition) and weak
additivity, then the spectrum condition holds iff
Dit
WUðaÞD�it

W ¼ UðLW ðtÞaÞ and JWUðaÞJW ¼ UðraÞ where UðaÞ is the
unitary implementing an arbitrary translation in the vacuum repre-
sentation, LW ðtÞ is the unique 1-parameter group of W-preserving
Lorentz boosts, and r is the P1T reflection defined by
rða0; a1; a2; a3Þ ¼ ð�a0;�a1; a2; a3Þ, with a1 being a spacelike trans-
lation perpendicular to the edge of the wedge.27

Themodular objectsDit and JW thus have the right commutation
relations with the translations to be interpreted as wedge-
preserving Lorentz boosts and a P1T reflection. For 2-dimensional
AQFTs, wedge duality is a direct corollary of the Borchers-
Weisbrock theorem. In higher dimensions, however, counterex-
amples constructed by Yngvason (1994) show that things can go
haywire in the directions along the edge of the wedge and the
modular invariants may not map doublecones onto doublecones.

To ensure that the modular invariants act geometrically, addi-
tional analyticity assumptions are needed. Borchers (1995, 1996a,
1998, 2000) identifies two such conditions that are equivalent to
wedge duality and the Bisognano-Wichmann property. Let D be a
doublecone contained within a spacelike wedge, W, and let KðDÞ3
W denote the cylindrical set obtained by translating D in some
direction parallel to the edge of the wedge. Wedge duality requires
that there be enough elements A2RuðKðDÞÞ such that UðLW ðtÞÞAU
has bounded analytic continuation into the strip Sð� 1=2;0Þ. For
any such element, it can be proven that there exists an operator, bA,
affiliated with RuðKðrDÞÞ3RuðW 0Þ, such that

UðLW ð�i=2ÞÞAU ¼ bAU : (9)

The Bisognano-Wichmann property requires that in addition,
there is a large enough set of such analytic elements closed under
involution. This motivates the following:

B-Analyticity The set of A2RuðKðDÞÞ such that UðLW ðtÞÞAU has
bounded analytic continuation into the strip Sð�1=2;0Þ is *-strong
dense in RuðKðDÞÞ.
B-Reality The set of A2RuðKðDÞÞ such that both UðLW ðtÞÞAU and
UðLW ðtÞÞA�U can be analytically continued, with bA� ¼ cA� , is
*-strong dense in RuðKðDÞÞ.

Theorem. (Borchers). If a model of AQFT satisfies the Haag-Kastler
axioms and the wedge intersection property, then.

(i) wedge duality holds in the vacuum representation iff B-analy-
ticity holds,
the modular automorphism group encoded in the KMS condition, Florig shows that
the function

f ðzÞ¼
D
Diz
WA0U;U

�
e2pz

�
D�iz
W AU

E

which is analytic in the interior of the complex strip Sð0;1=2Þ, can be extended to a
holomorphic function which is bounded, and thus constant. (Here, A and A0 are
arbitrary elements of RuðWÞ and RuðWÞ0 respectively.) This entails, in particular,
that Dit

WUðe2pt sÞD�it
W ¼ Di0

WUðe2p0sÞD�i0
W ¼ UðsÞ and JWUð� sÞJW ¼ UðsÞ. Extending

these commutation relations to arbitrary translation vectors, a, is then a straight-
forward calculation exploiting the algebraic and analytic properties of Dit

W and JW .
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(ii) the Bisognano-Wichmann property holds iff wedge duality and
B-reality hold.28

Setting VðLW ðtÞÞ :¼ Dit
W , this theorem allows us to define a

unitary representation of the Poincar�e group, called the minimal
representation, which acts covariantly on the observable net and
satisfies the spectrum condition.29 Because of the analytic proper-
ties of these unitaries, D1=2

W ¼ VðLW ð�i=2ÞÞ is an element of the
complex Lorentz group and thus JW ¼ D1=2

W SW is the product of a
complex Lorentz transformation and the canonical involution on
the wedge algebra implemented by SW . This allows us to show that
the minimal representation contains additional reflection sym-
metries. In particular, we can define a “PT” operator,

Q :¼ JWVðRW ðpÞÞ ; (10)

where VðRW ðpÞÞ implements a spatial rotation by p in the plane
along the edge of the wedge.30 The scare quotes are included to
emphasize thatQmay domore than just implement a PT reflection.
Indeed, in the next section we will see that it must also conjugate
charge, making it a CPT operator.

But beforewe can proceed, one final wrinklemust be ironed out.
As a consequence of the Haag-Kastler axioms and weak additivity,
we have discovered that JW has the right algebraic properties to
implement a P1T reflection. Adding B-analyticity and B-reality en-
sures that it does in fact have such a geometric interpretation as
part of an antiunitary representation of the Poincar�e group which
28 The wedge intersection property is only needed for (ii). Borchers's proof is very
technical, but we can gain some understanding of it by focusing on the significance
of the cylindrical sets KðDÞ and equation (9). Note that for any KðDÞ3 W,
KðDÞ¼ ðW þ aÞ∩ðW 0 þ bÞ where a; b; are spacelike translations in the characteristic
2-plane of W. We consider two algebras RuðKðDÞÞ¼ RuðW þ aÞ∩RuðW 0 þ bÞ andbRuðKðDÞÞ ¼ RuðW þ aÞ∩RuðW þ bÞ0 . It follows that, RuðKðDÞÞ⊆ bRuðKðDÞÞ. The
Borchers-Weisbrock theorem entails that Dit and UðLW ðtÞÞ commute, and since
both leave U invariant, they differ by a 1-parameter group FW ðtÞ. If A2 RuðKðDÞÞ is
an analytic element, then at the lower boundary of Sð� 1=2;0Þ.

UðLW ð�i=2ÞÞAU ¼ FW ð�i=2ÞD1=2
W AU

¼ FW ð�i=2ÞJWA�JWU

¼ JWFW ð�i=2ÞA�JWU;

where the second line follows from the definition of the modular invariants, S ¼
JD1=2, and the last line by the Borchers-Weisbrock theorem. In general, FW ð�i=2ÞA�

is not a bounded operator, but it is affiliated with RuðKðDÞÞ3RuðW þ aÞ3 RuðWÞ.
Thus by the Tomita-Takesaki theorem and the Borchers-Weisbrock theorem,
JWFW ð�i=2ÞA�JW is affiliated with bRuðKðrDÞÞ3RuðW � aÞ03RuðWÞ0 . Wedge
duality holds iff bRuðKðrDÞÞ ¼ RuðKðrDÞÞ. Using Lorentz invariance, Borchers shows
that this is the case iff the set of analytic elements is *-strong dense. The Bisognano-
Wichmann property holds iff FW ðtÞ is trivial. If so, then we have cA�U ¼ JWAJWU ¼
ðJWA�JW Þ�U ¼ bA�

U, and B-reality holds. The converse requires a detailed analytic
continuation argument. See Borchers (2000, Thm. IV.2.2) for details.
29 The key to defining the Lorentz group is to note that any Lorentz transformation
is the product of boosts in three linearly independent spacelike directions, and that
each such boost is part of the stabilizer subgroup of some wedge. The translations
are a bit trickier. Consider two wedges W þa3W , where a is a lightlike translation
in the characteristic 2-plane of W. Using the Borchers-Weisbrock theorem, it can be
shown that

lim
t/∞

Dit
WþaD

�it
W ¼ lim

t/∞
VðLWþaðtÞÞVðLW ð�tÞÞ

converges strongly and therefore defines a unitary operator VðaÞ acting like a
lightlike translation in the a-direction. The remaining translations can then be
constructed as products of lightlike translations. See Borchers (2000, xIV.4) for the
complete construction.
30 In order to prove this it must be shown that the product JW maps doublecones
onto doublecones and that JWVðRW ðpÞÞ does not depend on the choice of a
particular wedge W. This hinges on the analytic properties of the modular in-
variants, Poincar�e covariance, and the special geometry of wedges. See Borchers
(2000, xIV.3) for details.
includes an operator, Q, defined by equation (10), implementing a
PT reflection. The difficulty is that this antiunitary representation
may not be an extension of the original unitary representation
posited by the covariance and vacuum axioms. In this case we have
two distinct representations, UðL; aÞ and VðL;aÞ, encoding poten-
tially different physics. The physics described by the minimal rep-
resentation VðL; aÞ must be Q-invariant, but there is no similar
guarantee for UðL;aÞ.

Streater (1967) and Oksak and Todorov (1968) exploit this gap to
construct counterexamples to the CPT and spin-statistics theorems.
All of these examples employ fields transforming under infinite-
dimensional representations of the cover of the Lorentz group,
so-called infinite spin representations. As a result, such QFTs violate
the split property and are thermodynamically ill-behaved. Exactly
how physically pathological they are remains to be fully investi-
gated, but Brunetti, Guido, and Longo (1993) prove that if the split
property obtains, even in its weaker distal form, UðL; aÞ is the
unique covariant representation of the (cover of the) Poincar�e
group acting on the vacuum representation:

Theorem. (Brunetti-Guido-Longo). If a model of AQFT satisfies the
Haag-Kastler axioms and the distal split property, then there can only
be one covariant representation of the Poincar�e group or its covering
group in the vacuum representation.31

So if the minimal representations exists, then the distal split
property ensures that UðL; aÞ ¼ VðL; aÞ and the relevant physics is
Q-invariant. It also ensures that Q is unique up to unitary
equivalence.
3.6. Charge conjugation

The hardest part of the CPT theorem is to understand why
charge conjugation is connected to a spatiotemporal symmetry like
PT. The answer lies in how the PT transformation constructed above
is implemented. In effect we are performing a spatiotemporal
reflection by flipping the Lie product, by changing how quantities
and symmetries are linked at a fundamental level. The Lie product
not only defines how spatiotemporal symmetries are tied to
quantities like mass and spin, it also defines how internal sym-
metries are tied to gauge charges. Flipping the Lie product, while
preserving the charge localization structure, maps each charge to
its conjugate. This is exactly what JW does.

Recall from x2 that in AQFT information about global gauge
symmetries is encoded in the structure of the category of localized
transportable morphisms of the quasilocal algebra. Conjugate
charges 9 and 9 have the defining property that u+9+9 contains a
component in the vacuum sector. If a model of the Haag-Kastler
axioms satisfies additivity and the distal split property, the statis-
tical dimension of each charge sector is finite, and each charge has a
unique conjugate up to unitary equivalence (some charges may be
self-conjugate). At the heart of the algebraic CPT theorem, Guido
and Longo (1992) establish the following:

Theorem. (Guido-Longo). If a model of AQFT satisfies the Haag-
Kastler axioms, additivity, the distal split property, the Bisognano-
Wichmann property, and the DHR/BF selection criterion, then for any
31 Here is the central idea: the Doplicher-Roberts reconstruction theorem
(Doplicher & Roberts, 1990) shows that if the distal split property holds, the gauge
group G is compact and commutes with any representation of the Poincar�e group. If
UðL; aÞ and VðL; aÞ are two different representations of the Poincar�e group, then
the adjoint action of UðL; aÞVðL�1;�aÞ is an internal symmetry, and thus an
element of G. This defines an action of the Poincar�e group in G. Since G is compact
and the Poincar�e group has no non-trivial finite dimensional representations, the
action must be trivial, and UðL; aÞ ¼ VðL; aÞ.
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charge morphism, 9, localized in a doublecone/spacelike cone 9¼ jW +
9+jW ;where jW ðAÞ ¼ JWAJW (for all A2A) is the morphism defined by
the adjoint action of the vacuum wedge modular conjugation, JW .

Rotational invariance then entails that 9 ¼ q+9+q. In order to
understand the Guido-Longo theorem, there are two questions
that must be answered d why is jW +9+jW a suitably localized
transportable morphism, and why is it conjugate to 9? The answer
to the first question is relatively straightforward. Since JW imple-
ments a P1T reflection in the vacuum representation, it induces an
algebraic P1T reflection on the defining net of local C�-algebras,
fAðOÞg, common to all sectors of the theory. Consequently
JWAðrOÞJW ¼ AðOÞ, where r is a P1T reflection around the edge of
the wedge, W. Since J2W ¼ I, it follows that jW +9+jW is a nontrivial
morphism on AðrOÞ and the identity on AðrO0Þ. Therefore jW +9+
jW is localized in rO, a region with the same geometry at O. Since 9

is transportable and JW acts geometrically, jW +9+jW is similarly
transportable.

The answer to the second question is less obvious and comes
from a deep connection between conjugacy and modular in-
clusions. Let M be an infinite factor (i.e., an infinite von Neumann
algebra with a trivial center, M∩M0 ¼ CI) acting on a separable
Hilbert space with a cyclic, separating vector F. (Eventually M will
be identified with RuðWÞ.) It follows from the Tomita-Takesaki
theorem that M0 is also an infinite factor. Let 9 be an irreducible
morphism of M (i.e., 9ðMÞ0 ∩M ¼ C), and assume that F is also
cyclic and separating for 9ðMÞ. In this setting, Longo (1984) estab-
lishes the existence of a canonical endomorphism, g9 : M/ 9ðMÞ,
defined by,

g9ðAÞ :¼ J9JAJJ9 ; (11)

where J and J9 are the modular conjugations of M and 9ðMÞ with
respect to F. This canonical endomorphism in turn defines a con-
ditional expectation relating the statistical properties of M and the
subalgebra 9ðMÞ. We can loosely think of a conditional expectation
as a device for optimally estimating the statistics of measurements
in M given information about measurements in the subalgebra,
9ðMÞ. Accardi and Checchini (1982) describe it as characterizing the
“statistical location” of 9ðMÞ within M relative to a given state.

If 9 is conjugate to 9, then by definition there exist isometries V ;
W2M such that 9+9ðAÞV ¼ VA and 9+9ðAÞW ¼ WA for all A2 M.
Longo (1990) proves that the equation,

ε99ðAÞ : ¼ 9ðVÞ�9+9ðAÞ9ðVÞ ; (12)

also defines a conditional expectation relating M and 9ðMÞ. A
seminal theorem by Takesaki (1970) establishes that there can only
be one such conditional expectation, and thus g9 ¼ 9+ 9 up to
unitary equivalence. Combining these ingredients, we find that the
conjugate morphism must have the form (up to unitary
equivalence),

9¼ 9�1+g9 ; (13)

where 9�1 is the inverse of 9.
If we choose a unitary operator implementing the morphism,

9ð,Þ ¼ Uð,ÞU�, then the inverse, 9�1, is the result of simply
reversing the order of multiplication, 9�1ð,Þ ¼ U�ð,ÞU.32 The con-
jugate morphism, 9, is revealed to be something slightly more
32 In the DHR/BF picture where 9 is interpreted as a localized charge creating
morphism, 9 will always be unitarily implementable within its localization region,
however the corresponding unitaries do not give rise to a unitary equivalence
between charge sectors.
complex, the result of reversing the order of multiplication com-
bined with the canonical endomorphism, g9, relating the statistical
structure of M and 9ðMÞ. Repeated iteration of conjugate mor-
phisms generates a sequence of nested subalgebras:

MI 9ðMÞI9+9ðMÞI9+9+9ðMÞI… (14)

A proper charge conjugation symmetry fulfilling condition (e)
from x2.3 must do more than invert 9 while preserving the type of
spacetime region 9 is localized in. It must also preserve statistical
information about this infinite sequence of inclusions. The fact that
the modular conjugation operator does so is linked to its role in
defining the canonical endomorphism, g9. Relative to the previous
choice of unitaries, the modular conjugation of 9ðMÞ can be written
as J9 ¼ 9ðJÞ ¼ UJU�. Therefore 9ð,Þ ¼ JU�Jð,ÞJUJ.

Returning now to physics, consider a transportable DHR/BF
charge morphism, 9, localized in a doublecone or spacelike cone,
O3W . Wedge duality entails that 9 generates a transportable
morphism, 9W : RuðWÞ/RuðWÞ, localized in W. The wedge
algebra RuðWÞ is an infinite factor, and by the Reeh-Schlieder
theorem, the vacuum state is cyclic and separating for both
RuðWÞ and 9W ðRuðWÞÞ. For simplicity we assume that 9W is irre-
ducible (Nothing turns on this simplification. See Guido & Longo,
1992 for the general case.). This places us in the general mathe-
matical setting discussed above.

Using equation (13), we can define a W-localized conjugate
morphism, 9W ¼ 9�1

W +g9W
. Choosing a unitary implementing 9W , a

straightforward calculation shows that

9W ð,Þ¼
8<
:Uð,ÞU� on W

id on W 0

9W ð,Þ ¼
8<
: JWU�JW ð,ÞJWUJW onW

id onW 0;

(16)

while jW +9W+jW is localized in the opposite wedge,

jW + 9W+jW ð,Þ ¼
8<
: id onW

JWUJW ð,ÞJWU�JW onW 0: (17)

It follows that JWUJW9WJWU�JW ¼ jW+9W+jW , and since JWUJW
is unitary, jW +9W+jW and 9W are thus unitarily equivalent.

This is the situation for every WIO. If it is possible to choose a
consistent family of conjugates, f9Wi

g, such that

9W1
jW1∩W2

¼ 9W2
jW1∩W2

(18)

for everyW1;W2IO, then this consistent family will define a DHR/
BF charge morphism localized in O conjugate to the original 9. (The
flexibility to choose different 9W comes from the fact that charge
morphisms are only defined up to unitary equivalence.) Guido and
Longo (1992) prove that it is in fact possible to choose such a
consistent family as a consequence of the distal split property,
Poincar�e covariance, and the geometric action of JW .

Thus we find that all of the special properties of JW are essential
for explaining why it conjugates charge. Because it represents a
P1T reflection, it preserves the regions that DHR/BF charges are
localized in, and thus maps objects to objects in the relevant
category of localized transportable morphisms. Because it is an
antiunitary operator, it reverses the Lie bracket and thus the order
of C�-multiplication, inverting the morphism. But because it is also
a modular conjugation for the spacelike wedge W, it defines the
canonical endomorphism g9W

, characterizing the statistical loca-
tion of 9W ðRuðWÞÞ3RuðWÞ. It therefore maps W-localized



33 For our purposes it can be left open exactly what sorts of things these de-
pendency relations are. They might be nomological or meta-nomological relations,
counterfactual relations, grounding or constitutive relations, or a mixture thereof.
(It seems unlikely that they are causal relations, however, making the CPT theorem
an important prima facie example of non-causal explanation.) At this level, the
story will depend not only on further analysis of the relevant physics, but on
metaphysical debates about laws, modality, and fundamentality.
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morphisms onto their conjugates given by the formula 9W ¼ 9�1
W +

g9W
. In DHR/BF representations of a Poincar�e covariant QFT satis-

fying the distal split property, each DHR/BF localized morphism is
generated by a consistent family of such wedge-localized mor-
phisms, and therefore in addition to implementing a P1T reflec-
tion, JW conjugates charge.

The role that the Lie product plays in characterizing conjugate
charges can be further illuminated by considering the more tradi-
tional view of charges as conserved quantities associated with in-
ternal gauge symmetries. One of the greatest insights of the DHR/BF
analysis, is that the algebraic description of charge structure out-
lined in x2.2 is physically equivalent to this traditional picture. If the
observable algebras are generated by field operators as in
Lagrangian and Wightman QFT, the observable net corresponds to
the gauge-invariant portion of the underlying field algebra. In this
context, we can characterize superselection sectors using irreduc-
ible representations of the relevant gauge group G. Superselected
charges are defined using the Casimir invariants of the conserved
currents generated by these gauge transformations. The field op-
erators act on a single, underlying Hilbert space which splits into a
direct sum of G-invariant subspaces, H ¼4Hs. These subspaces are
in 1-1 correspondence with the superselection sectors in DHR/BF
theory. Restricting the action of G to Hs yields a direct sum of
irreducible representations of G with the same character, s. These
subspaces are also A-invariant. Restricting A to Hs yields a direct
sum of quasiequivalent, irreducible representations of A satisfying
the DHR/BF selection criteria. Conversely, the reconstruction the-
orem proven by Doplicher and Roberts (1990) shows that given the
category of DHR/BF representations, one can naturally reconstruct a
unique minimal algebra of field operators and gauge group, G.

In the field algebra picture, we find that the action of JW takes a
given representation of G to its complex conjugate representation,
which models the conjugate charge sector. We do not have to look
far to seewhy. A representation ðp;HÞ ofG can be specified by a set of
generating fields, Ta, lying in the (weak closure) of the field algebra,
that satisfy the commutation relations ½Ta; Tb� ¼ if abcTc (where f abc

are the group structure constants for G). The complex conjugate
representation is given by � ðTaÞ�. Within these relations we
immediately recognize the ever-present Lie product. The same
structure which encodes how observables generate symmetries also
encodes how unobservable field operators generate internal gauge
transformations. Flipping this structure yields the complex conju-
gate representation. It is because the same Lie structure is employed
in describing both internal gauge symmetries and external space-
time symmetries that we find a connection between them.

3.7. Summary

The algebraic proof of the CPT theorem shows how it is always
possible, in a broad class of thermodynamically well-behaved
models of AQFT, to systematically reverse the generating relation-
ship between symmetries and observables while preserving the
dynamics, spectra, and localization properties of physical systems.
As a consequence of the Reeh-Schlieder theorem, for any local
algebra in the vacuum sector of a generic model of AQFT, the ca-
nonical involution can be broken into two pieces, one of which is
the antiunitary modular conjugation operator, J. The modular
conjugation maps the relevant local algebra onto its commutant,
reversing the Lie product in the process. Commuting algebras are
associated with spacelike separated regions, hinting at a possible
geometric interpretation, and since J is antiunitary, it is a candidate
for a physical symmetry.

For spacelike wedges, the associated modular conjugation, JW , is
in fact always a physical symmetry. Because of the spectrum con-
dition, any generalized time reversal symmetry must be
represented by an antiunitary involution that reverses the Lie
product, commutes with the dynamics, and acts uniformly on
spacetime. Because JW is a modular conjugation operator,
JWRuðWÞJW ¼ RuðWÞ0, and if wedge duality holds, RuðWÞ0 ¼
RuðW 0Þ, suggesting that JW implements a P1T reflection. Proving
that JW commutes with the dynamics, that wedge duality holds,
and that JW implements a uniform geometric reflection requires a
detailed technical argument exploiting analyticity properties
derived from covariance, the spectrum condition, and the distal
split property, as well as auxiliary assumptions B-analyticity and B-
reality.

The Lie product also appears in the characterization of wedge-
localized charge morphisms, related by the formula 9 ¼ 9�1+g9.
The Lie product encodes the relational distinction between 9 and its
inverse 9�1, and since JW reverses the Lie product, it flips this
distinction. Moreover since JW is a modular conjugation, it pre-
serves the statistical properties of subalgebras related by charge
morphisms (encoded by the conditional expectation associated
with g9). Because JW acts uniformly on spacetime, it preserves all
types of localization regions, and since the theory is Poincar�e
covariant, morphisms localized in doublecones and spacelike cones
can be constructed from families of compatible wedge-localized
morphisms. Consequently, JW also conjugates DHR/BF charges.

The connection between the Lie product and state space
orientation discussed in x3.2 gives us further geometric insight into
the theorem. Since Q reverses the Lie product, it reflects the cor-
responding state space orientation. It is not a product of three
separate reflection symmetries, C, P, and T, but rather a single,
global reflection of state space. This conclusion is reinforced by
proofs of the CPT theorem inWightman QFT (Streater&Wightman,
1989) and rigorous Lagrangian proofs (Greaves & Thomas, 2014). In
both cases, a CPT operator is proven to exist without first decom-
posing it into separate C, P, and T reflections as is commonly done in
textbook presentations. The algebraic framework gives us a clearer
picture of the geometric origins of this operator as a systematic
reversal of the generating relationship between observables and
state space symmetries.

4. Philosophical consequences

4.1. Bain's skeptical challenge

The story just outlined is an example of what Bain (2016) calls a
structural explanation, insofar as it appeals to “mathematical con-
straints on a theory's state space that are independent of the
specification of the theory's dynamics” (p. 155). It should be
emphasized, however, that the explanation is not a purely mathe-
matical one. Though they do take the form of mathematical con-
ditions, the assumptions in x2.1 represent important physical
constraints imposed on any causal, Lorentz-invariant, thermody-
namically well-behaved QFT. By connecting each stage of the proof
back to the Haag-Kastler axioms, and by linking CPT reflection to a
systematic reversal of the generating relationship between ob-
servables and symmetries, the aim has been to illuminate how the
steps of the algebraic proof trace out important physical de-
pendency relations present in any such QFT.33 The upshot is that
the only consistent way to realize these constraints is for the
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theory's state space to be CPT-invariant, a fact which has physical
consequences for its particle spectrum as well as for scattering and
decay processes. A structural explanation is only as good as our
understanding of how the mathematics represents the physics,
both at the level of a proof's inputs and outputs, as well as its logical
structure.

While Bain is broadly sympathetic to this style of explanation,
he is skeptical that current versions of the CPT theorem actually
give us explanations, even provisional ones. Citing the current
inability of AQFT to rigorously model local gauge theories, he ar-
gues that the algebraic CPT theorem does not explain why the
actual laws of nature are CPT-invariant: “the systems of interest;
those that make contact with empirical tests, lie outside the sub-
class of systems for which the CPT and spin-statistics theorems
provide structural explanations” (Bain, 2016, p.157). These systems,
the Yang-Mills theories that comprise the standard model, can be
described using techniques from perturbative Lagrangian and S-
matrix formulations of QFT, but proofs of the CPT theorem in these
frameworks differ significantly from those in AQFTon Bain's telling.
For example, they disagree about whether or not Lorentz invariance
is necessary to prove the CPT theorem, as well as about whether
CPT invariance entails the spin-statistics connection or vice versa.
Consequently Bain thinks “it will be hard to make a case for a
common underlying mathematical structure,” shared across
frameworks, that a structuralist explanation of CPT invariance can
appeal to (p. 156).

I agree that right now the algebraic CPT theorem is only a po-
tential explanation for the CPT symmetry found in nature; however,
I think that Bain's conclusion is overly pessimistic. In my review of
Bain's book (Swanson, 2018), I argue that Bain's presentation of the
algebraic CPT theorem misinterprets the physical content of
modular covariance and obscures the role of Lorentz invariance, the
spectrum condition, and the split property in the physical argu-
ment at the center of the theorem. In doing so, it overemphasizes
differences and underestimates commonalities between the alge-
braic CPT theorem and proofs couched in other frameworks. Upon
closer inspection, there is a set of core of assumptions which appear
(in slightly different forms) in virtually all known versions of the
CPT theorem: restricted Lorentz invariance, energy positivity,
causality, finite spin, and analyticity.

Our detective work in x3 reinforces this critique. Unlike some
versions of the algebraic CPT theorem, the proof outlined here
explicitly displays this common logical form. The covariance
axiom, spectrum condition, and microcausality axiom enforce
Lorentz invariance, energy positivity, and causality, respectively,
while the split property ensures that there are no fields trans-
forming under infinite spin representations. Together, the
covariance axiom, spectrum condition, and Tomita-Takesaki
modular theory entail important analyticity properties (suffi-
cient to establish the CPT theorem in 2-dimensional models),
while B-analyticity and B-reality supply additional constraints
needed in higher dimensions. Moreover, our analysis locates the
seed of CPT reflection symmetry in a systematic reversal of the
algebraic Lie product, a structure found not only in AQFT, but in
every formulation of QFT that represents observables using Hil-
bert space operators including Lagrangian, S-matrix, and Wight-
man QFT.34
34 In some frameworks, including perturbative AQFT (Brunetti, Dütsch, &
Fredenhagen, 2009), the local algebras are not C�-algebras but more general
types of *-algebras. Nonetheless, such algebras contain a canonical involution
operation, and thus we might hope to find a suitable generalization of the ideas
sketched in x3.1e2.
While there are significant structural commonalities between
proofs in different frameworks, there are also non-trivial math-
ematical differences. Whether these stem from a deep disagree-
ment about the fundamental character of QFT, as Bain contends,
or if they are simply the product of different modeling techniques
and goals, remains an open question. Regardless, a strong case can
be made that the algebraic approach offers us some of the best
explanatory insight into the CPT theorem at present. Unlike
Lagrangian and Wightman QFT which start with assumptions
about gauge-dependent field operators, the Haag-Kastler axioms
characterize constraints on gauge-independent physical quanti-
ties, making their physical interpretation and justification more
direct. Moreover, there are models of CPT-invariant AQFTs that
violate the Wightman axioms, that are not the quantization of any
known classical Lagrangian, and which do not satisfy the as-
sumptions of Haag-Ruelle scattering theory, a mathematically
rigorous analogue of the standard S-matrix picture (Lechner,
2015; Summers, 2012). While the Wightman axioms are known
to fail for QFTs with local gauge symmetry (Strocchi, 2013, ch. 6),
the jury is still out on the Haag-Kastler axioms. All of this suggests
that AQFT has a wider scope than other frameworks, providing a
better characterization of what all relativistic QFTs have in
common.

Of course, we do not understand the entire story yet. B-analy-
ticity and B-reality are bootstrap assumptions. Their physical
interpretation and justification is a major question mark at the
heart of the algebraic proof. The role of analytic continuation ar-
guments must be better understood, even in cases like the Reeh-
Schlieder and Borchers-Weisbrock theorems where the starting
assumptions are physically well-motivated. Whether or not addi-
tivity and the wedge intersection property can be eliminated or
physically motivated remains to be seen.

In addition, there are significant limitations to the scope of
existing algebraic proofs. It is currently not known how to extend
the DHR/BF picture to describe charges associated with local
gauge symmetries, and because of the infrared problem, it cannot
be applied to theories with massless particles yet. The argument
also crucially relies on analyticity properties associated with
symmetries of a continuous spacetime manifold, as well as on
microcausality holding at arbitrarily short length-scales. Conse-
quently, it is not clear how to generalize the algebraic argument to
cover effective QFTs.35 The version of the proof outlined here
makes the further assumption that spacetime is flat.

Despite these limitations, there are reasons for optimism on
several fronts. Recent model-dependent results due to Morinelli
(2018) suggest that the Bisognano-Wichmann property is logi-
cally weaker than the split property, breathing life into Haag's
conjecture that it can be proven from existing, physically justified
axioms. The Bisognano-Wichmann property can be formulated in
any spacetime with well-defined wedge regions, and it has been
used to prove the CPT theorem in curved spacetimes with a large
group of global isometries (Buchholz et al., 2000). More recently,
the generally covariant AQFT program initiated by Brunetti, Fre-
denhagen, and Verch has made substantial progress towards an
axiomatic version of AQFT in arbitrary curved spacetimes
35 Although the split property and weak additivity can be replaced by distal
versions that hold at some sufficiently long length-scale without affecting the de-
tails of the proof, it is much more difficult to envision relaxing microcausality and
covariance.
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(Brunetti, Dappiaggi, Fredenhagen, & Yngvason, 2015).36 Com-
bined with developments in perturbative AQFT, this program has
also started to provide a provisional picture of what effective QFTs
with local gauge symmetry might look like in the algebraic
framework (Fredenhagen & Rejzner, 2013, 2016). Strocchi (2013)
tentatively identifies the physical significance of local gauge
invariance with the holding of Gauss-type conservation laws for
the associated charge densities, and Kijowski and Rudolph (2003)
apply the DHR picture to study the superselection structure of
lattice quantum chromodynamics. Meanwhile, by studying
certain equivalence classes of superselection sectors called charge
classes, Buchholz and Roberts (2014) have started to clarify the
complex superselection structure of massless theories.37

Together, this work suggests that key ideas from the DHR/BF
picture will apply to theories like the standard model.

So even though we must wait for further developments in
constructive AQFT to determinewhether the algebraic CPT theorem
gives us the right story about our own universe, we have good
reason to believe that central ideas from the proof will be part of
the eventual explanation. In the interim, even as a provisional
explanation, it can shed light on a number of interpretive debates.
4.2. Greaves's Lagrangian approach

In her agenda-setting study of the Lagrangian CPT theorem,
Greaves (2010) provides a different structural explanation for the
origins of CPT symmetry (Arntzenius, 2011 offers a similar story.).
Although it has since been superseded by the more nuanced ac-
count developed by Greaves and Thomas (2014), the original,
simpler version is worth investigating on its own terms first.

The explanation has two main components. The first is a theory
of antimatter that conceptually links time reversal and charge
conjugation. Motivated by Feynman's famous view of antiparticles
as regular particles traveling backwards in time, Greaves argues
that particles should be represented by oriented worldlines. Reg-
ular particles are co-aligned with the direction of time, while an-
tiparticles are anti-aligned. Exactly what does the orientation work
is left open. It could be a 4-momentum as in Feynman's picture. It
could be a wavevector as in the standard Lagrangian picture
(Wallace, 2009). It could be something else entirely. The upshot is
that any time reversal symmetry will transform particles into
36 Fewster (2016) applies this framework to prove a general curved spacetime
version of the spin-statistics theorem, the CPT theorem's close cousin. The proof
shows that any QFT on curved spacetime that can be related to a QFT on flat
spacetime by certain deformations must obey the spin-statistics connection if the
flat spacetime QFT does. This suggests that flat spacetime versions of the CPT and
spin-statistics theorems might continue to carry important explanatory insight in a
curved spacetime context. It also could help diffuse a potentially serious objection
to the logic of the algebraic proof sketched in x3. In an arbitrary curved spacetime, it
is no longer true that the causal complement of a wedge is always a wedge, and this
is a necessary condition in order for JW to represent a P1CT reflection. Borchers has
conjectured that W 0 is a wedge only if the background spacetime is conformally
equivalent to either Minkowski or deSitter spacetime (see Hollands & Rheren,
2012). If Fewster's strategy works for the CPT theorem too, then although we
would not expect the CPT operator to be represented by JW in general curved
spacetime models, it could be defined by deformations of JW from a corresponding
flat spacetime model.
37 As in the massive case, charge morphisms are localized in spacelike cones.
Unlike the BF picture, however, where the direction of the cone is arbitrary, in
massless theories the direction of the cone determines an additional superselected
global observable associated with the asymptotic boundary conditions of soft
photon clouds. Sectors are labeled by the value of the total charge along with this
asymptotic flux parameter. Although we currently lack tools to define a tensor
product on the relevant category of representations, Buchholz and Roberts show
that considering equivalence classes of sectors with the same global charge, many
of the tools from the DHR/BF picture can be imported into this new setting.
antiparticles and vice versa. This collapses the CPT puzzle into a PT
puzzle.

The second component is a PT theorem for classical field the-
ories in Minkowski spacetime. The theorem applies to Lorentz-
invariant theories satisfying two main assumptions: (i) the fields
transform as tensors under spacetime diffeomorphisms, and (ii) the
dynamical laws are partial differential equations with polynomial
interaction terms. In this situation, Greaves proves that it is
impossible for the laws to encode just a temporal orientation or just
a spatial orientation.

Theorem. (Greaves). Any polynomial combination of tensor fields
that is invariant under connected Lorentz transformations is also
invariant under PT symmetry.38

If these are the only tools the laws have at their disposal, they
cannot break PT symmetry. Accordingly, any reasonable field the-
ory, quantum or classical, has to be PT-invariant. If the theory has
antiparticles, the first part of the story entails that PT invariance is
just the same thing as CPT invariance. The CPT theorem is therefore
an essentially relativistic result.

Although it is an appealing story on many levels, Greaves's
explanation faces several challenges. The most immediate worry is
that assumptions (i) and (ii) in the classical PT theorem are not
physically well-motivated. The first assumption, (i), rules out
spinor-valued fields, which are used to describe matter with half-
integer spin, an essential ingredient in any theory like the stan-
dard model with a wide assortment of fermions in its particle zoo.
Spinors can be used to construct PT-pseudotensors that are not PT-
invariant. For example, the common bilinear currents jgmg5j and
j i

2 ½gm;gn�j change sign under PT transformations. (Here j and j

are conjugate Dirac spinors and gm are Dirac spin matrices.) Prima
facie, classical spinor-valued field theories need not be PT-invariant.
This conclusion is confirmed by Greaves and Thomas (2014, x8),
who prove that there is no direct analogue of Greaves's PT theorem
for classical spinor fields. The fact that quantum spinor fields are
constrained by the CPT theorem cannot simply be explained by
appealing to the classical PT theorem.

The second assumption (ii), rules out field theories with non-
polynomial interactions, a rich area of active study in mathemat-
ical physics. Notable examples include Sine-Gordon models, Liou-
ville field theory, and Weinberg's chiral Lagrangian for p-mesons,
all of which are expected to be CPT-invariant. Greaves and Thomas
(2014) suggest that insofar as non-polynomial interactions terms
can be approximated by power series expansions, we can import
techniques from the polynomial case and extend the explanation.
This may not always be possible, and it is difficult to ascertain at
this stage what limitations in scope this puts on the proposed
explanation. Regardless, the algebraic story sketched in x3 directly
circumvents both of these challenges. It applies to both spinor and
tensor theories and is not restricted to polynomial interactions. In
principle, it has the potential to encompass models in which
38 See Greaves (2010, fn. 12) for a proof. The same basic argument underwrites the
classical PT theorem (Thm. 5.6) in Greaves and Thomas (2014). A temporal orien-
tation can be defined by specifying a privileged timelike vector-field, ta , however ta

will not be invariant under all connected Lorentz transformations. (It defines more
than just a temporal orientation.) This problem can be avoided by choosing an
equivalence class of coaligned timelike vector fields, ½ta�, but this sort of object is
not suitable to appear in a partial differential equation so the laws cannot make use
of it. Similar reasoning rules out the ability to encode just a spatial orientation and
can be generalized to any polynomial combination of tensor-fields. The situation is
markedly different in Galilean spacetime, where it is possible to directly encode a
temporal orientation using a special 1-form field. In this setting, there is no
analogue of the PT theorem to be found. The difference boils down to what kinds of
orientation structures can be encoded by polynomial combinations of tensor fields
on a given background spacetime.

Bryan W Roberts
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primitive causality fails and the dynamical laws cannot be expressed
in the form of differential equations at all.

Perhaps an even greater advantage, the algebraic story in-
corporates the DHR/BF analysis of charge structure, a more
powerful, unified picture of antimatter than the Feynman-inspired
view advocated by Greaves. The latter requires a coherent notion of
particle worldline, and if particles must be emergent structures in
QFT as suggested by numerous no-go results (e.g., Halvorson &
Clifton, 2002), the characterization of antimatter will be similarly
emergent. (Even if a QFT has emergent particles, quantum effects
may render the notion of a particle worldline unintelligible in many
contexts.) In contrast, the algebraic picture draws a more funda-
mental distinction between matter and antimatter which is known
to apply to rigorousmodels of low-dimensional interacting theories
like 2-dimensional Yukawa theory that lack a particle interpreta-
tion (Baker & Halvorson, 2010). The CPT theorem is generally
viewed as a deep, foundational result. It would be odd if it turned
out merely to describe high-level, emergent phenomena.

In addition, the connection between charge structure and
worldline orientation lacks a clear explanation on Greaves's view.
Even if time-reversal entails that we relabel particles and antipar-
ticles, it does not say anything about charge conjugation as such. An
electron will have �1 electric charge and a co-aligned worldline. If
we reverse the direction of time, its worldline is now anti-aligned
so we redescribe it as a positron. But intuitively, it should be a
positron with charge � 1! If the 4-momentum or wavevector is
responsible for orienting the worldline, there is no obvious link to
charge structure. If somehow the charge itself is responsible, then
we need a story about how it does this orientationwork. Unless this
explanatory gap can be bridged, the view turns out to rely on a
primitive CT symmetry built into the laws from the very start.

The algebraic CPT theorem, on the other hand, characterizes
antimatter solely in terms of charge structure and provides an
explanation for when and why particle/antiparticle partners must
have the same mass, spin, and lifetime. From this perspective, the
validity of the CPT theorem justifies why Feynman's interpretation
is possible in the first place. It is because a theory is CPT-invariant
that we can interpret a forward moving positron with charge þ1
as a backwards moving electron with charge � 1. Moreover, it
explains why time-reversal and charge-conjugation are so closely
linked. The spectrum condition entails that the only way to reverse
the direction of time is to reverse the Lie product. But since the Lie
product is also responsible for encoding the relationship between
conjugate charges, antiunitary time reversal will also conjugate
charge.39

Thirdly, if time reversal and charge conjugation are linked by
definition, as in Greaves's view, it is metaphysically impossible for
there to be particle/antiparticle pairs with different masses and
spins. But this is arguably a coherent possibility. Tureanu (2013)
reviews a number of CPT violating QFTs with these features.
Although there is ongoing debate about whether these theories can
satisfy Lorentz invariance and locality, the examples prove that
particle/antiparticle mass splitting is a metaphysical possibility,
39 There is an important caveat here. Although it is always possible to conjugate
charge by reversing the Lie product using the CPT operator, in theories where
charges and parity are treated symmetrically by the laws, it is also possible to define
unitary C and P operators, UC and UP , that preserve the Lie product. In this case one
can combine an antiunitary CPT reflection with unitary C and P transformations to
produce a net antiunitary time reversal represented by VT ¼ UCUPQ. This allows for
theories like quantum electrodynamics which are invariant under C, P, and T
symmetries independently. In other theories it is possible to define a unitary CP
operator, allowing for theories invariant under T, CP, and CPT transformations. See
Bogolubov, Logunov, and Todorov (1975, Ch. 12.4) and Mund (2001) for examples of
such constructions.
even if the models are not well-behaved relativistic QFTs. Unlike
Greaves's picture, the algebraic view does not build this restriction
into its definition of antimatter. The possibility of creation/annihi-
lation events only requires that partners have conjugate charge, not
that they are otherwise identical. One might object on externalist
grounds that antiparticles in our world must be anti-aligned par-
ticles, even if in other worlds they are realized by different sorts of
entities. Alternatively, it could be argued that this identification is a
physical rather than metaphysical necessity. Either way, the alge-
braic picture is revealed to have greater unifying power as an
explanation, describing charges and antimatter in a broader class of
theories with a common structure.

In more recent work, Greaves and Thomas (2014) give a math-
ematically expanded interpretation of the Lagrangian CPT theorem
drawing upon a general result dubbed strong reflection invariance.
(A strong reflection is defined as a PToperation on the field symbols
combinedwith a reversal of the order of products, reducing to just a
PT transformation in the classical case.) In this new work, the
Feynman picture of antimatter no longer plays a prominent role.
Instead, Greaves and Thomas characterize antimatter by a splitting
of the space of field configurations into complex subspaces similar
to the standard Lagrangian picture defended by Wallace (2009).
The restriction to polynomial interactions persists in their concept
of a classical formal field theory, defined as a complex affine sub-
space of the set of polynomial combinations of field symbols and
their derivatives. Perhapsmost significantly, by assuming a classical
version of the spin-statistics connection they expand the story to
include spinor fields. They use this to prove a more general version
of the classical CPT theorem that will be discussed in the next
section.

There are striking parallels between a strong reflection and a
global reversal of the Lie product. As we have seen in x3.2, reversing
the order of the C�-product is one way of reversing the Lie product
in AQFT. Thus at the heart of the newGreaves-Thomas theoremswe
can find a signature of the algebraic proof's guiding idea. Given the
common structural core discussed in x4.1, it is perhaps unsurprising
to discover additional commonalities between Lagrangian and
algebraic proofs. This important connection deserves further study.

At the same time, the algebraic proof continues to enjoy certain
explanatory advantages over these new Lagrangian proofs. The
picture of antimatter advocated by Greaves and Thomas is subject
to many of the same criticisms that applied to the Feynman view. In
interacting QFTs, our ability to decompose the space of field con-
figurations into positive and negative frequency subspaces is an
idealization. In the limit of no interactions, quantum electrody-
namics admits an interpretation in terms of plane waves with
opposite frequency. Conventionally, positive frequency solutions
are labeled as particle states and negative frequency solutions are
labeled as antiparticle states. This division into positive and nega-
tive frequency states requires a choice of complex structure on the
theory's state space, forging a link between frequency sign and
translations in opposite temporal directions. Conventionally, posi-
tive frequency solutions have a wavevector co-aligned with the
direction of time and negative frequency solutions have an anti-
aligned wavevector. Reversing the direction of time switches
which wavevectors are co-aligned and anti-aligned, but the view is
silent on the connection between this wavevector-induced orien-
tation and charge structure. Identifying symmetric positive and
negative frequency solutions with field configurations carrying
conjugate charge requires an additional, unmotivated ansatz. Thus
the new picture has the same explanatory gap as the old one. It
postulates a form of CT symmetry at the outset by requiring any
symmetry transformation that reverses the wavevector orientation
to also conjugate charge. This eliminates the possibility of particle/
antiparticle partners with different masses and spins by fiat.
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Moreover, it is an emergent rather than fundamental character-
ization of antimatter that only applies asymptotically in the free-
field limit.

In models of AQFT that have a mass gap and are asymptotically
complete (and thus have a limiting particle interpretation), one can
show how matter and antimatter states are conventionally linked
to opposite frequency wave solutions in the no-interaction limit
(Mund, 2001). The DHR/BF picture can thereby help explain the
origins of the emergent Lagrangian picture in certain well-
understood examples. In principle, nothing prevents Lagrangian
QFT from making use of tools from AQFT to provide a more
fundamental characterization of antimatter. Existing Lagrangian
proofs simply have not done so. Since a convergent structural
explanation of CPT symmetry within different frameworks would
greatly improve our understanding of the theorem, this marks
another important question for further study.
41 Flato and Raczka (1977) construct an example of a classical scalar theory with
l45 self-interaction that is not C-invariant. Since this is a polynomial field theory,
combined with Greaves and Thomas's classical CPT theorem, this provides a prima
facie example of a CPT-violating classical field theory. Flato and Raczka draw a
different conclusion: whether we describe this example as CPT-violating and T-
invariant or as T-violating and CPT-invariant depends on a conventional choice of
phase for the T operator. This shows that even in the classical case, the status of
reflection symmetries is a subtle problem requiring further investigation.
42 The modular automorphism group acts as the identity iff the generating state is
tracial, but in an abelian von Neumann algebra, every state is tracial. As a result
there is no meaningful analogue of the Bisognano-Wichmann property. Further-
more, every abelian von Neumann algebra is maximal, M ¼ M0 . Thus JMJ ¼ M, and
so the modular conjugation operator cannot carry the geometric significance of a
CPT operator.
43 See Landsman (1998) for an overview.
44 Zalamea compares the symplectic manifold formulation of classical mechanics
and the K€ahler manifold formulation of quantum mechanics in which quantum
mechanical state space is viewed as a K€ahler manifold, ðM;u;g; JÞ, i.e., a symplectic
manifold equipped with a compatible Riemannian metric, g, and almost-complex
structure, J. In both the classical and quantum case, observables can be defined as
continuous R-valued functions that preserve all of the geometric structure of the
relevant state space. In classical mechanics, the Jordan product is just the product of
functions f �g ¼ fg. In quantum mechanics, the Jordan product is given by f �g ¼
fgþ gðv ;v Þ, where gðv ; v Þ is the metric-induced inner product of the Hamiltonian
4.3. Classical or quantum?

One of the surprising corollaries of Greaves's Lagrangian account
is that apart from the existence of antimatter, the CPT theorem does
not crucially rely on quantummechanical assumptions. Most of the
heavy lifting is done by the PT theorem for tensor fields, which
applies to both classical and quantum field theories. In contrast, the
algebraic proof of the CPT theorem employs foundational as-
sumptions from quantum mechanics as well as relativity. Covari-
ance and microcausality appear to be primarily relativistic
constraints, while the spectrum condition and modular theory are
quantum mechanical in origin. This suggests, contra Greaves, that
the explanation of CPT symmetry requires ingredients from both
theories. To what extent is the theorem classical or quantum?

Intriguingly, Greaves and Thomas (2014) give a proof of a clas-
sical CPT theorem which they claim has the same logical structure
as their version of the full quantum CPT theorem. True, they are
both instances of the same schema:

Theorem. (Greaves-Thomas). If a classical/quantum formal field
theory is (a) supercommutative and (b) invariant under a represen-
tation of the (cover of the) connected Lorentz group, then the theory is
invariant under CPT reflections iff it is $-hermitian.40

Supercommutativity is a version of the standard spin-statistics
connection for formal field theories, while $-hermiticity requires
invariance under a certain involution mapping. The problem is that
different notions of $-hermiticity are required to prove the classical
and quantum versions. In the quantum case, the relevant notion is
defined with respect to the canonical involution (providing another
point of convergence with the algebraic proof). In the classical case,
it is definedwith respect to the charge conjugation involution. Thus
once it is unpacked, the classical theorem asserts that if a classical
field theory obeys the spin-statistics connection and is invariant
under (a cover of) the Lorentz group, then it is CPT-invariant iff it is
C-invariant. The quantum CPT theorem permits C-violating the-
ories which are nonetheless still CPT-invariant, like the weak sector
of the standard model. Thus there is interesting interaction be-
tween spatiotemporal and charge structure in the quantum theo-
rem that is entirely absent in the classical version. Moreover, while
the theorem covers classical spinor theories, it does so by assuming
the spin-statistics connection. In relativistic quantum theories this
can be motivated by the spin-statistics theorem, but in classical
theories it is unclear if this sort of physical motivation can be given
(Bain, 2016, x4.2). The Greaves-Thomas classical CPT theorem is
40 For proof, see Greaves and Thomas (2014, Thm. 9.6).
thereforemarkedly different from its quantum counterpart, despite
initial appearances to the contrary.41

Our investigation of the algebraic proof in x3 casts further doubt
on the existence of a classical theorem with similar structure,
although the state of play is more complicated than it first appears.
Naively, we might try to model algebraic classical field theories by
starting with a net of Poincar�e-covariant commutative C�-algebras.
But in an abelian algebra, there is no natural Lie product and the
modular structure becomes trivial.42 To compound these difficulties,
Borchers (1996b, Thm. IV.6.2) shows that no net of abelian C�-alge-
bras can satisfy the spectrum condition. Given the central role played
by both modular theory and the spectrum condition in the algebraic
CPT theorem, these observations apparently preclude a classical
analogue of the proof. But this skeptical conclusion is too quick. In
classical field theories, physical quantities are linked to symmetries
by Noether's theorem just as in QFT. Since this generating relation-
ship is not captured by the structure of abelian C�-algebras, they are
not the right mathematical tools to model the full structure of clas-
sical field theories. This view is adopted by the deformation quan-
tization program, which models classical theories using dual Lie-
Jordan algebras just like quantum theories.43 The principle differ-
ence between classical and quantum Lie-Jordan algebras is the
associativity or non-associativity of the underlying Jordan product.
Weinstein (1997) develops the basic tools of modular theory within
the setting of classical associative Lie-Jordan algebras.

Whether or not such algebras can be used to evade Borchers's
no-go result remains to be seen. Even if there is a classical analogue
of the spectrum condition and modular theory, though, it is not at
all clear that these will entail the analyticity properties required to
establish CPT invariance. The link between observables and sym-
metries is more tightly constrained in the quantum case than in the
classical case. As Zalamea (2018) shows, since the classical Jordan
product is associative, the spectral properties of classical observ-
ables are completely independent of their role as generators. In
contrast, the non-associative quantum Jordan product directly re-
lates the spectral properties of quantum observables to the state
space symmetries that they generate.44 In quantum theories, con-
straints on symmetries entail constraints on observable spectra and
vice versa. This interplay between constraints is entirely absent in
classical theories. We should expect the joint consequences of
f g f g

vector fields vf and vg generated by f and g. On this picture, the uncertainty of a
quantum observable, Df ¼ gðvf ; vf Þ, in a given state, f, is a measure of how much
the symmetry generated by f changes f.
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covariance, microcausality, the spectrum condition, and modular
theory to diverge significantly in the classical and quantum cases.

A satisfactory resolution of this problem must await the devel-
opment of an algebraic formalism for classical field theories based
on Lie-Jordan algebras. For initial work in this direction, see
Brunetti, Fredenhagen, and Ribeiro (2019). To make better contact
with the algebraic picture of antimatter we also need a classical
analogue of the DHR/BF analysis of charge structure, which is no-
where in sight. These are important areas for future research.
Although the structural disanalogies between classical and quan-
tum Lie-Jordan algebras give us significant reason for doubt, all we
can definitively say at this stage is that a convincing case for a
classical theorem with the same scope and physical motivation as
the quantum CPT theorem has not been made.
5. Conclusion: Greaves's puzzle

Greaves (2010) frames the challenge of explaining CPT invari-
ance in the form of a puzzle. If the laws of nature violate C, P, or T
symmetry it is because they somehow define a privileged direction
of time, spatial handedness, or charge sign. If the laws are CPT-
invariant, this means that they cannot define one such orienta-
tion structure independently of the other kinds. The puzzle is that
these orientation structures seem to be “paradigm cases of distinct
existences; it's odd to find such necessary connections between
them” (2010, p. 38). Indeed, in relativistic spacetime one can show
that spatial orientation and temporal orientation are mathemati-
cally independent; a choice of one does not fix the other. (This
follows from the existence of isometries that preserve spatial
orientation while reversing temporal orientation and vice versa.)
While their relationship to charge orientation is less clear cut,
charge superselection structure arises from internal gauge sym-
metries associated with the particular forces that the charges
couple to, and these internal symmetries have no obvious
connection to spacetime structure.

Our investigation of the algebraic CPT theorem has revealed a
hidden connection. The mathematical structure that AQFT uses to
distinguish between the forward dynamics and its time-reversal is
the very same structure that it uses to distinguish between trans-
lations in different spatial directions as well as between charges
and their conjugates. CPT symmetry is not an ad hoc combination of
different reflections at all, but rather a single reflection of state
space that reverses the generating relationship between observ-
ables and symmetries. By tracing this idea through the steps of the
algebraic CPT theorem we have come to a better physical under-
standing of the argument. The proof reveals non-trivial constraints
on how a model of AQFT can deploy the Lie product in conjunction
with the Haag-Kastler axioms and auxiliary physical assumptions.
These constraints manifest themselves in complex analyticity
properties derived from the interplay between the spectrum con-
dition, microcausality, and covariance.45 As we have seen though,
additional analyticity assumptions are input by hand. It is unclear if
they can be derived from existing assumptions or must be inde-
pendently motivated, so at this stage the algebraic CPT theorem
only gives us a partial answer to Greaves's puzzle.

By framing the algebraic proof in this fashion, though, we have
made more direct contact with the Haag-Kastler axioms than other
presentations of the theorem (e.g., Bain, 2016, Ch. 1.2.4) and
revealed important structural commonalities that it shares with
45 These constraints are either absent or substantially weakened in Galilean QFT
where the CPT theorem is known to fail (L�evy-Leblond, 1967). The fact that a theory
employs a single Lie product to describe both internal and external symmetries is
insufficient to answer Greaves's puzzle on its own.
proofs in Lagrangian, S-matrix, and Wightman QFT. This goes a
considerable way towards responding to Bain's skeptical challenge.
Although our analysis also highlights shortcomings of Greaves's
Lagrangian approach, the parallels between the algebraic proof and
the recent Greaves-Thomas proof hint at additional structural
commonalities that warrant further investigation.

While the scope of Greaves's original geometric explanation of
CPT symmetry appears to be too narrow, its central insight is
promising. Even if different types of orientation structures are
logically independent, there may be constraints on how laws of a
particular type can encode these structures. Greaves locates these
constraints in the definability properties of Lorentz-invariant
polynomial combinations of tensor fields, but the story might go
differently. In addition to temporal, spatial, and charge orientation,
there are other orientation structures that the laws can employ.
And in the presence of these other orientation structures, temporal,
spatial, and charge orientation might be less independent than it
first seems. For example, although temporal and spatial orienta-
tions are logically independent in Minkowski spacetime, if the laws
somehow make use of a total orientation of the underlying
spacetime manifold, the choice of a temporal orientation naturally
defines a spatial orientation and vice versa.46

The laws of QFT do not apparently use a total spacetime orien-
tation, but they do use a Lie product, a natural orientation structure
on state space. This provides the basis for an intriguing conjecture:

Conjecture. In a causal, Lorentz-invariant, thermodynamically
well-behaved QFT, the choice of a state space orientation naturally
defines a temporal orientation up to a choice of spatial orientation and
charge sign.

This has the same flavor as Greaves's original PT theorem, but
with significantly different mathematical and physical content. A
proof of this conjecture stands to shed further light on the origins of
CPT symmetry and will be the subject of future work.47

6. Appendix: proofs of lemmas 1-3

Proof of Lemma 1. All four algebras have the same involution
structure and self-adjoint subspace (which includes the identity
element). To prove (i), define the isomorphism 4 : A/Acop as the
linear mapping whose restriction to ASA is the identity and that
sends i1ic and AB1ðABÞop. It is well-defined because the product
of two self-adjoint elements is self adjoint iff they commute (and
thus iff AB ¼ ðABÞop), and iA is not self-adjoint for any self-adjoint
element A. Using the fact from the main text, every element A2A

can be uniquelywritten as A¼ H þ iK withH;K2ASA. Consequently
4ðAÞ ¼ Hþ icK ¼ H� iK ¼ A�, so the map is a bijection. Moreover,
4ðIÞ ¼ I and 4ðA�Þ ¼H� icK ¼ Hþ iK ¼ A�� ¼ 4ðAÞ�, so it preserves
the identity element and involution structure. Finally, it is multi-
plicative, since 4ðABÞ ¼ ðABÞ� ¼ B�A� ¼ ðA�B�Þop ¼ ð4ðAÞ4ðBÞÞop,
and is thus a *-isomorphism. Naturality follows from the fact that
for any *-homomorphism, p, pðA�Þ ¼ pðAÞ�, and therefore
p+4ðAÞ ¼ pðA�Þ ¼ pðAÞ� ¼ 4+pðAÞ.

The proof of ðiiÞ follows the same reasoning, with ~4 : Aop/Ac

the analogously defined natural *-isomorphism. To prove (iii)
define the anti-isomorphism 4op : A/Aop as the linear mapping
whose restriction to ASA is the identity and that sends i1i and
AB1ðBAÞop. ~4+4op : A/Ac then defines an anti-isomorphism be-
tween A and Ac. Similarly, to prove (iv) define the conjugate-
46 See Wald (1984, p. 60, 429e434).
47 “CPT, Spin-Statistics, and State Space Geometry” (in preparation).



N. Swanson / Studies in History and Philosophy of Modern Physics 68 (2019) 106e125124
isomorphism 4c : A/Ac as the conjugate-linear mapping whose
restriction toASA is the identity and that sends i1� ic and AB1AB.
~4�1 +4c : A/Aop then defines a conjugate-isomorphism between
A andAop. Naturality follows from the naturalness of ~4 and the fact
that 4opðAÞ ¼ 4cðAÞ ¼ A, and so both mappings commute with
*-homomorphisms. ,

Note: Interestingly, A is not necessarily isomorphic to Aop or Ac.
The first such examples are due to Connes (1975). It remains an
open question which (if any) natural constraints might entail that
an algebra is antiautomorphic (equiv. conjugate-automorphic) to
itself.

Proof of Lemma 2. The mapping j� : M/M0 defined j�ðAÞ :¼ JA�J
is the required anti-isomorphism, and the mapping j : M/ Mc

defined jðAÞ :¼ JAJ is the equivalent conjugate-isomorphism. To
check this, note that j�ðABÞ¼ JðABÞ�J ¼ JB�A�J ¼ JB�JJA�J ¼ j�ðBÞj�ðAÞ
and j�ðiIÞ¼ JðiIÞ�J ¼ Jð�iIÞJ ¼ iI since iI2M∩M0 and for any such
central element JAJ ¼ A�. Thus j� is an anti-isomorphism. It follows
from a similar calculation that j preserves products but jðiIÞ ¼ � iI,
so j is a conjugate-isomorphism. (These morphisms are natural
since J is uniquely fixed by M and F.) Using Lemma 1, we can then
define the natural isomorphisms jop :¼ 4op+ðj�Þ�1 and jc : ¼ 4c+
j�1. ,

Proof of Lemma 3. Suppose some open, convex, causally com-
plete region O is isometric to O0 and is not a spacelike wedge.
Thomas and Wichmann (1997, Thm. 3.2) prove that every closed,
convex, causally, complete subset of Minkowski spacetime is the
intersection of closed spacelike wedges, so O3W for some wedge
W and thus W 03O0. Spacelike wedges are maximal in the lattice of
open, convex, causally complete subregions, so it follows that O0 is a
wedge. The causal complement of a wedge is a wedge and ðO0Þ0 ¼ O
(since O is causally complete), so O is a wedge, contradicting the
initial assumption. ,
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