# Quantum Theory in Hilbert Space: a Philosophical Review 

Jeremy Butterfield (jb56@cam.ac.uk) and Bryan Roberts (b.w.roberts@lse.ac.uk): Philosophical Aspects of QFT: Sections 1-3 for 12 October 2021; Section 4-5 for 26 October 2021

## Contents

1 Vector spaces and linear functionals ..... 2
2 Linear operators on a Hilbert space ..... 5
3 Diagonalizing operators ..... 9
4 Operator algebras ..... 24
5 States ..... 28

To prepare for philosophical aspects of quantum field theory, we begin with a review of mathematical quantum theory, with some interspersed Philosophical Remarks. Apart from these Remarks, the main themes here will be to build up to some intuition for the functional analysis ideas that underpin the algebraic approach, which we will often see applied to quantum field theory. We will also see some high points of quantum theory per se, such as Stone's theorem, Gleason's theorem and superselection.

The main books 'in the background' of this review are:
T. Jordan. Linear Operators for Quantum Mechanics: Chapters 1 to 5. Wiley 1969; Dover 2006. E. Prugovecki. Quantum Mechanics in Hilbert Space: Parts III, IV. Academic 1981; Dover 2006.

We especially recommend for this review, and for foundations of quantum theory, as a whole: N. Landsman. Foundations of Quantum Theory. Springer 2017: especially Chapters 5, 6,7,9,10. Open access: downloadable at: https://link.springer.com/book/10.1007/978-3- 319-51777-3

We also recommend for the early history of mathematical quantum theory, Landsman's recent survey: 'Quantum theory and functional analysis', arxiv: 1911.06630.

## 1 Vector spaces and linear functionals

1: Vector spaces (over $\mathbb{R}$, or over $\mathbb{C}$ ). Inner products. For a vector space over $\mathbb{C}$, we write $(z \psi, w \phi)=z^{*} w(\psi, \phi)$. The Cauchy-Schwarz inequality: $|(\psi, \phi)| \leq\|\psi\| \cdot\|\phi\|$, with equality iff the vectors are linearly dependent.

## 2: Hilbert space:-

The idea of a Cauchy sequence; and thus the idea of convergence of vectors: $\psi_{n} \rightarrow \psi:=\left\|\psi_{n}-\psi\right\| \rightarrow 0$ as $n \rightarrow \infty$. So infinite linear combinations of vectors are defined on analogy with $\Sigma_{n=1}^{\infty} \omega_{n}$ with $\omega_{n} \in \mathbb{C}$.

The vector space is complete iff every Cauchy sequence converges.
A Hilbert space is a complete inner product space: it is usually written as $\mathcal{H}$.
It is separable iff it has a countable (finite or denumerable) basis.
By the way: One similarly says that a metric space $(X, d)$ (i.e. $X$ is a set; $d: X^{2} \rightarrow \mathbb{R}^{+}:=\{r \in$ $\mathbb{R} \mid r \geq 0\}$ with $d(x, x)=0, d(x, y)=d(y \cdot x)$ and triangle inequality) is complete iff every Cauchy sequence converges.

In fact, any metric space has a 'canonical completion'. We define an equivalence relation between Cauchy sequences of $X$. Roughly speaking: $\left\{x_{n}\right\} \sim\left\{x_{n}^{\prime}\right\}$ iff $\left\{x_{n}\right\}$ and $\left\{x_{n}^{\prime}\right\}$ are 'trying to converge to the same point that is trying to be in $X^{\prime}$. The set of equivalence classes inherits the metric from $(X, d)$ (I.e. in a representative-independent way); and ( $X, d$ ) can be isometrically embedded in the set of equivalence classes.

Similarly: given an incomplete inner product space (sometimes called a 'pre-Hilbert space'), we can build its 'canonical completion' : which is a Hilbert space.

A subset of a vector space that is itself a vector space (so: closed under linear combination) is a linear manifold. A linear manifold that is closed, i.e. that contains the limit vector of every Cauchy sequence of vectors, is a subspace. For a finite-dimensional Hilbert space, every linear manifold is a subspace. A subspace of a separable Hilbert space is itself a separable Hilbert space.

Example: $l^{2}:=\left\{\left.\left(x_{1}, x_{2}, \ldots\right)\left|x_{n} \in \mathbb{C}, \Sigma\right| x_{n}\right|^{2}<\infty\right\}$ has an orthonormal basis $(1,0,0, \ldots),(0,1,0,0, \ldots), \ldots$ $=:\left\{\phi_{n}\right\}$. So each vector is $\Sigma x_{n} \phi_{n}$. The partial sums are $\left(x_{1}, x_{2}, \ldots, x_{N}, 0,0,0, \ldots\right)$, and these converge to $\left(x_{1}, x_{2}, \ldots, x_{N}, x_{N+1}, \ldots\right)$.

In general: each vector $\psi$ has a unique expression in terms of an orthonormal basis $\left\{\phi_{n}\right\}: \psi=$ $\Sigma\left(\phi_{n}, \psi\right) \phi_{n}$. One uses the Cauchy-Schwarz inequality, applied to partial sums, to show this.

NB: Any two Hilbert spaces (over $\mathbb{R}$, or over $\mathbb{C}$ ) of equal dimension are isomorphic: ("just map one ortho-basis onto another"). So any infinite-dimensional separable Hilbert spaces can be identified with $l^{2}$.

Agreed: one often hears remarks like 'the two theories use different Hilbert spaces', even when the Hilbert spaces alluded to have equal dimension! That is because theories involve quantities, as well as states (vectors in a Hilbert space). This fosters a more discriminating (logically strong) use of the phrase 'same Hilbert space'. Namely, that the isomorphism of Hilbert spaces, mapping vectors to vectors, should also map one theory's quantities in to the others. This will later be made precise as unitary equivalence. And so often, remarks like 'the theories use different Hilbert spaces' mean that the (equi-dimensional) Hilbert spaces are unitarily inequivalent. More, much more!, about this later ...

Ortho-complements and projectors: if $\mathcal{M}$ is a subspace of a Hilbert space $\mathcal{H}$, then $\mathcal{M}^{\perp}:=\{\psi \in$ $\mathcal{H} \mid(\psi, \phi)=0 \forall \phi \in \mathcal{H}\}$ is a linear manifold, indeed a subspace of $\mathcal{H}$. Every $\psi \in \mathcal{H}$ has a unique expression as a sum of two components in $\mathcal{M}$ and in $\mathcal{M}^{\perp}$ respectively: $\psi=\psi_{\mathcal{M}}+\psi_{\mathcal{M}^{\perp}}$.

3: Spaces of functions:-
Treating spaces of functions needs care, for two main reasons. We want to say: $\int \psi^{*}(x) \phi(x) d x$ is an inner product.
(1): But an inner product requires: $(\psi, \psi) \geq 0$ with equality only if $\psi=0$. And there are many non-zero functions on, say $[0,1], \psi:[0,1] \rightarrow \mathbb{C}$, with $\int_{0}^{1}|\psi|^{2} d x=0$.
(2): Secondly, in Riemann (i.e. elementary) integration theory, there are Cauchy sequences that do not converge. Define $f_{n}:[0,1] \rightarrow\{0,1\} \subset \mathbb{R}$ by $f_{n}(x):=1$ iff $x$ is of the form $\frac{m}{2^{n}}$, with $m$ an integer between 0 and $2^{n}$; and otherwise $f_{n}(x):=0$. Then any two functions $f_{n}, f_{n^{\prime}}$ differ at only finitely many points; and for every $n, \int f_{n}=0$. But the limit of the sequence $\left\{f_{n}\right\}$ is the function $f$ that takes the value 1 on every integer-multiple of a reciprocal of a power of 2 , and is otherwise $0 . f$ is not Riemann-integrable.

Both problems are solved by adopting Lebesque integration. We will not give details of this and the associated measure theory. But we note that the function $f$ just defined (value 1 on every integermultiple of a reciprocal of a power of 2 , and otherwise 0 ) is Lebesque-integrable and $\int_{[0,1]} f d x=0$ : an intuitive result in that $f$ takes value 1 on a 'merely' denumerable set of arguments.

For us, the benefits of adopting Lebesque integration can be summed up, in terms of our two problems: as follows ...

As to (1): We define an equivalence relation between functions on, say $[0,1], \psi:[0,1] \rightarrow \mathbb{C}$ : $f \sim f^{\prime}$ iff $f$ and $f^{\prime}$ are equal almost everywhere (a.e.), meaning 'equal everywhere except on a set of (Lebesque) measure 0 '. Then the equivalence classes $[f]$ themselves form a vector space, in a natural way. For example, the equivalence class of the pointwise sum $f+g$ of two representative elements, $f \in[f]$ and $g \in[g]$, is independent of the representatives chosen. Besides, the equivalence classes $[f]$ of those functions $f$, whose square integral $\int|f|^{2} d x$ is finite, form an inner product space in a natural way. That is: the inner product we intuitively want to have, viz. $\int f^{*}(x) g(x) d x$ is well-defined on the equivalence classes, since the integral is independent of the representatives $f, g$ that are chosen. Thus returning to the original problem (1): the equivalence class of the zero-function, $[0] \ni 0$, is the unique vector with norm zero.

As to (2): This inner product space whose elements are equivalence classes (under: almost everywhere equality) of Lebesque-integrable functions $f$ with finite square integral on, say $[0,1]$, i.e. $\int_{0}^{1}|f|^{2} d x<\infty$, is complete. That is: it is a Hilbert space. Similarly for square-integrable functions on the whole real line.

These spaces are called $L^{2}$ spaces. Thus we write, understanding the equivalence relation to be: almost everywhere equality:-

$$
\begin{equation*}
L^{2}([0,1]):=\left\{\left.[\psi]\left|\psi:[0,1] \rightarrow \mathbb{C}, \int_{0}^{1}\right| \psi\right|^{2} d x<\infty\right\} ; L^{2}(\mathbb{R}):=\left\{\left.[\psi]\left|\psi: \mathbb{R} \rightarrow \mathbb{C}, \int_{\mathbb{R}}\right| \psi\right|^{2} d x<\infty\right\} \tag{1}
\end{equation*}
$$

These two $L^{2}$ spaces are both separable: for they each have a denumerable basis. For example, the functions $\{1, \sqrt{ } 2 \cos 2 \pi k x, \sqrt{ } 2 \sin 2 \pi k x, \ldots\}$, with $k=1,2,3, \ldots$, are orthonormal in $L^{2}([0,1])$; and the theory of Fourier series teaches us that they are an orthonormal basis: every Lebesgue-square-integrable function on $[0,1]$ is a limit of linear combinations of these trigonometric functions.

We stress again that any two Hilbert spaces over $\mathbb{C}$ of equal dimension are isomorphic as Hilbert spaces. We "just map one orthonormal basis onto another"; (Section 2 will develop the theory of unitary operators). This applies equally to the infinite-dimensional cases. So any infinite-dimensional separable Hilbert space, e.g. $L^{2}([0,1])$, is isomorphic to $l^{2}$, i.e. our example in Paragraph 2 of a Hilbert space whose elements are appropriate sequences of complex numbers. This is the formal core of the often-cited equivalence between Schrödinger's wave mechanics and Heisenberg's matrix mechanics. (But there are many conceptual and historical subtleties abut this; cf. e.g. F. Muller,
'The equivalence myth: Parts I and II', Studies in History and Philosophy of Modern Physics, vol. 28 (1997), pp. 35-61 and 219-247.)

And again, the wider point here concerns how expositions in physics texts often say that two pieces of formalism involve "different Hilbert spaces". One should bear in mind that in most all such expositions, the Hilbert spaces concerned are of the same dimension, and so isomorphic-and so some more fine-grained (discriminating) criterion for when to say two Hilbert spaces are "the same" must be meant. We will return to this later: the main such criterion will of course be unitary equivalence, which requires a bijection of quantities, i.e. linear operators, on the Hilbert spaces - not just their being isomorphic.

## 4: Philosophical Remarks:-

(A): We of course recognise $L^{2}(\mathbb{R})$ as the (rigorous version of) the quantum state-space of a spinless non-relativistic particle confined to the real line: the state-space with which we all first learnt wave mechanics. Since the classical configuration space of such a particle is $\mathbb{R}$, we see here the basic idea that the state-space of a quantum system consists of assignments of complex amplitudes to the possible configurations of the corresponding classical system. This will later lead to quantization theory. A general slogan, and notation, would be: "we replace a classical configuration space $\mathcal{Q}$ by its $L^{2}$ space: $L^{2}(\mathcal{Q})$ ".
(B): We already see here, in embryo, the measurement problem: "how can we extract-how does Nature deliver to us - a single classical fact, e.g. a particle being in a position $X \in \mathbb{R}$, from a function $\psi: \mathbb{R} \rightarrow \mathbb{C}$ ?" ... about which this document (this course?!) will-sorry!- not say much ...
(C): Even if one sets aside the physical and philosophical measurement problem, the question arises: 'Why Hilbert space?' That is: what motivations can be given for assuming the state space of a physical system is a Hilbert space?
Various research traditions make this precise, and offer an answer. Here is a glimpse of three:
(1): Quantum logic. This was initiated by Birkhoff and von Neumann in their 'Logic of Quantum Mechanics' (1936), and flourished especially in the 1960s (the Geneva school of J. Jauch) and later. Experimental 'Yes-No' propositions about a physical system are partially ordered by a sort of logical strength, endowed with logical operations of conjunction (and), disjunction (or) and negation (not), subject to certain (judiciously chosen!) conditions, to make them a lattice, (usually: an orthomodular lattice). This lattice is then shown in a representation theorem to be represented by the lattice of subspaces/projectors of a Hilbert space, partially ordered by inclusion.
(2): ‘Algebras of quantities': C*-algebras. We have not yet discussed quantities. (In Section 2 below, we will review the usual treatment of them as self-adjoint operators on Hilbert space.) So we have not yet seen the quantum-classical contrast as a matter of quantum theory allowing non-commutation of quantities. But a good case can be made for thinking of a system as given primarily by an algebra of quantities: an algebra that is commutative for classical systems, but non-commutative for quantum systems. States are then introduced as mathematical superstructure on top of the algebra of quantities: namely, as linear expectation functionals - details below. The most developed version of this approach uses $C^{*}$-algebras. More details later: here, we just note that in such an algebra, you can multiply any two elements even if they do not commute - an allowance about which you might well raise a philosophical eyebrow ... Then states on C*-algebras are shown to be representable in the traditional i.e. familiar ways - phase space for classical systems, Hilbert space for quantum systems. The buzzword is: the GNS construction, applying to commutative, respectively non-commutative, algebras.
(3): Information-theoretic and operational approaches. Inspired by studies of quantum non locality and Bell's theorem, and the rise of quantum information theory, with its protocols for eg. teleportation: various approaches take as primitive a set of probability distributions, for various
quantities (normally with a finite discrete set of outcomes), on various individual and joint systems (normally finite-dimensional). Thus conditions like no signalling/parameter independence are prominent. Again, the Hilbert space formalism (normally finite-dimensional) is recovered with appropriate representation theorems. Example: D'Ariano, Chiribella and Perinotti, Quantum Theory from First Principles, CUP.
(D): The question 'Why should quantities be represented by self-adjoint operators?' also has a very different aspect or meaning, that is not touched on in the literature under (C). After all, there is nothing to prevent one associated experimental outcomes with complex, e.g. imaginary, numbers: 'I can paint '5i metres' on the dial of an apparatus measuring position!' In Section 2, we will report a helpful classification (due to Roberts) of the possibilities for a quantum physical quantity to be represented by an operator that is not self-adjoint.
(E): The pilot-wave theory is a noble tradition for solving the measurement problem. But it has been developed entirely using intuitive wave mechanics, not $L^{2}$ spaces.

## 5: Linear functionals:-

Given a vector space $V$ over the field $\mathbb{R}$ or $\mathbb{C}$, the dual space $V^{*}$ consists of the linear functionals $F: V \rightarrow \mathbb{R}($ or $\mathbb{C})$. We recall that for a finite dimensional $V, \operatorname{dim}(V)=\operatorname{dim}\left(V^{*}\right)$; but there is no natural (canonical, i.e. basis-independent) isomorphism between them. But between $V$ and its second dual $V^{* *}$, there is a natural isomorphism.

With the extra structure of an inner product space, there is a natural isomorphism between $V$ and its dual $V^{*}$. (This underlies how in relativity theory, the metric raises and lowers indices.) Thus each $\psi$ in an inner product space defines a linear functional $F_{\psi}$ by:

$$
\begin{equation*}
F_{\psi}(\phi):=(\psi, \phi) \tag{2}
\end{equation*}
$$

And if $V$ is finite-dimensional, with $\left\{\phi_{i}\right\}$ an orthonormal basis: we assign to each $F \in V^{*}$, the vector $\psi_{F}:=\Sigma_{i} F\left(\phi_{i}\right)^{*} \phi_{i} \in V$. Applying the definition in eq. 2 to this $\psi_{F}$ yields $F$ again. That is: for any vector $\phi=\Sigma_{i}\left(\phi_{i}, \phi\right) \phi_{i}$, we have:

$$
\begin{equation*}
F(\phi)=\Sigma_{i}\left(\phi_{i}, \phi\right) F\left(\phi_{i}\right)=\left(\psi_{F}, \phi\right) \tag{3}
\end{equation*}
$$

To get a corresponding basis-independent correspondence for an infinite-dimensional inner product space, we must require the linear functionals to be continuous, defined in the obvious way. Namely: that $F$ is continuous iff: $\psi_{n} \rightarrow \psi$ implies that $F\left(\psi_{n}\right) \rightarrow F(\psi)$. Then we have the Riesz representation theorem:-
For every continuous linear functional $F$ on a separable Hilbert space, there is a unique $\psi_{F} \in \mathcal{H}$, such that $F(\phi)=\left(\psi_{F}, \phi\right)$.

Of course, in Dirac notation the correspondence between linear functionals and vectors induced by the inner product is built in to the notation. The linear functional $F_{\psi}$ is denoted by $\langle\psi|$, and the two sides of eq. 2 are written as $\langle\psi \mid \phi\rangle$.

## 2 Linear operators on a Hilbert space

1: Linear operators and matrices: the elements recalled ... On a suitable space of functions, a linear operator might be defined by

$$
\begin{equation*}
(A \psi)(x):=\frac{d \psi(x)}{d x} \quad ; \quad(A \psi)(x):=\int a(x, y) \psi(y) d y \tag{4}
\end{equation*}
$$

We shall generally assume that all Hilbert spaces are separable.

## 2: Bounded operators:-

A linear operator $A$ is continuous iff: $\psi_{n} \rightarrow \psi$ implies that $A\left(\psi_{n}\right) \rightarrow A(\psi)$. A linear operator $A$ is bounded iff there is a positive number $b$ such that for all $\psi,\|A \psi\|<b\|\psi\|$. The infimum of such numbers is the norm of $A$, written $\|A\|$.

Theorem: A linear operator $A$ is continuous iff it is bounded. (If $\mathcal{H}$ is finite-dimensional, then every linear operator is continuous, and so bounded.)

The norms of bounded linear operators obey:

$$
\begin{equation*}
\|A+B\| \leq\|A\|+\|B\| ;\|a A\|=\mid a\|A A\| ;\|A\|=0 \text { iff } A=0 ;\|A B\| \leq\|A\| .\|B\| \tag{5}
\end{equation*}
$$

The first three assertions follow straightforwardly from the same properties of the norm for vectors in $\mathcal{H}$. So we have a normed vector space of linear operators.

The first three assertions follow straightforwardly from the same properties of the norm for vectors in $\mathcal{H}$. So we have a normed vector space of all the bounded linear operators on $\mathcal{H}$, written $\mathcal{B}(\mathcal{H})$. Thanks to the last inequality of eq. 5 (called the 'sub-multiplicative' property), this vector space $\mathcal{B}(\mathcal{H})$ is closed under taking polynomials. It is also complete in the norm, i.e. closed under taking limits. We shall shortly discuss adjoints and see that $\mathcal{B}(\mathcal{H})$ is also closed under taking adjoints: which will lead us to algebras of operators.

A bounded linear operator on a separable Hilbert spaces can be represented by a matrix.

## 3: Inverses:-

A linear operator $A$ has an inverse if there is linear operator $B$ with $A B=1=B A$. Theorem: $A$ has an inverse iff: $\forall \psi, \exists$ ! $\phi$ with $\psi=A \phi$.

For a finite-dimensional $\mathcal{H}, \operatorname{dim}(\mathcal{H})=n$, with $\left\{\phi_{i}\right\}$ any basis:- Each of the following is necessary and sufficient for $A$ to have an inverse:
(i): there is no non-zero vector $\phi$ such that $A \phi=0$;
(ii): the set $\left\{A \phi_{1}, \ldots, A \phi_{n}\right\}$ is linearly independent;
(iii): there is a linear operator $B$ such that $B A=1$;
(iv): the matrix corresponding to $A$ has a non-zero determinant.

But for an infinite-dimensional $\mathcal{H}$, (i)-(iii) are not sufficient-even together. For consider the "right-shift" on $l^{2}: A: l^{2} \rightarrow l^{2}$, with $A\left(x_{1}, x_{2}, x_{3}, \ldots\right):=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$. Then (i) and (ii) hold. Also: define $B$ as "delete the first component and left-shift": $B\left(x_{1}, x_{2}, x_{3}, \ldots\right):=\left(x_{2}, x_{3}, \ldots\right)$; then (iii) holds. But $A$ has no inverse. For if $\psi=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ with $x_{1} \neq 0$ then there is no $\phi$ such that $\psi=A \phi$.

## 4: Unitaries:-

A linear operator $U$ is unitary iff: both (a) $U$ has an inverse and (b) $\|U \psi\|=\|\psi\|$ for all $\psi$. (Incidentally: the example of the "right-shift" on $l^{2}$, just above, shows that for an infinite-dimensional $\mathcal{H}$, condition (a) is needed.)

Every unitary operator is bounded, with $\|U\|=1$.
Theorem: If $U$ is unitary, then $(U \psi, U \phi)=(\psi, \phi)$ for all $\psi, \phi$. Corollary: It follows that the unitary image of an ortho-basis is an ortho-basis.

A "partial converse to the Corollary": If $U$ is bounded, and the $U$-image of some ortho-basis is an ortho-basis, then $U$ is unitary.

5: Adjoints and Hermitian operators:-
Let $A$ be bounded, and so continuous. Then for each $\psi \in \mathcal{H}$, the linear functional $F^{[\psi]}$ defined by

$$
\begin{equation*}
F^{[\psi]}(\phi):=(\psi, A \phi) \tag{6}
\end{equation*}
$$

is continuous. And so, by the Riesz theorem (Section 1: 5), there is a unique vector, call it $A^{\dagger}(\psi)$ such that $F^{[\psi]}(\phi):=\left(A^{\dagger}(\psi), \phi\right)$.
$A^{\dagger}$ is trivially linear. Using the Schwarz inequality (applied to $\left\|A^{\dagger}(\psi)\right\|^{2}=\left(\psi, A A^{\dagger} \psi\right)$, one has:
Theorem: If $A$ is bounded, then $A^{\dagger}$ is bounded, and $\left\|A^{\dagger}\right\|=\|A\|$.
One checks that: $A^{\dagger \dagger}=A ;(A B)^{\dagger}=B^{\dagger} A^{\dagger} ;(a A)^{\dagger}=a^{*} A^{\dagger} ;(A+B)^{\dagger}=A^{\dagger}+B^{\dagger}$.
A bounded linear operator $A$ is self-adjoint or Hermitian iff $A^{\dagger}=A$. This means: $(\phi, A \psi)=$ $(A \phi, \psi)$. That is: $(\phi, A \psi)=(\psi, A \phi)^{*}$. So for all $\psi$, we have: $(\psi, A \psi) \in \mathbb{R}$.

NB: for an infinite-dimensional $\mathcal{H}$, it is impossible to define an unbounded Hermitian operator on all vectors. See later, especially the start of paragraph 7 , just below.

Example: On $L^{2}([0,1])$, we define $(A \psi)(x):=x \psi(x)$. This $A$ is bounded with $\|A \psi\|^{2} \leq\|\psi\|^{2}$; and so $\|A\|=1$. And $A$ is Hermitian, since $\int_{0}^{1} \phi^{*}(x) \cdot x \psi(x) d x=\int_{0}^{1}[x \phi(x)]^{*} \cdot \psi(x) d x$.
But a "corresponding definition" on $L^{2}(\mathbb{R})$ is of course not bounded. But multiplying by a suitable "damping factor" gives a bounded and Hermitian operator on $L^{2}(\mathbb{R})$, e.g. we define $(V \psi)(x):=$ $(\exp |x|) \psi(x)$.

Theorem: If $A$ is bounded, and has a bounded inverse $A^{-1}$, then $\left(A^{\dagger}\right)^{-1}$ exists and $\left(A^{\dagger}\right)^{-1}=$ $\left(A^{-1}\right)^{\dagger}$.
Corollary: If $A$ is bounded and Hermitian, and has a bounded inverse $A^{-1}$, then $A^{-1}$ is Hermitian.
Hermitian operators are analogues of real numbers. As in: if $A$ is bounded, then its real and imaginary parts defined by

$$
\begin{equation*}
\operatorname{Re} A:=\frac{1}{2}\left(A+A^{\dagger}\right) ; \operatorname{Im} A:=\frac{-i}{2}\left(A-A^{\dagger}\right) \tag{7}
\end{equation*}
$$

are bounded and Hermitian; and $A=\operatorname{Re} A+\operatorname{Im} A$.

In the same way, unitary operators are analogues of complex numbers of absolute value one. We have:-
Theorem: A linear operator $U$ is unitary iff $U^{\dagger} U=1=U U^{\dagger}$.
For bounded operators $A, B$, one readily checks using the adjoints that for any ortho-basis $\left\{\phi_{n}\right\}$, the representing matrix $\left(c_{j k}\right)$ of the product $C:=A B$ is the product of the representing matrices, that is: $c_{j k}=\Sigma_{i} a_{j i} b_{i k}$.

## 6: Projection operators:-

Recall from Section 1:2 that if $\mathcal{M}$ is a subspace of $\mathcal{H}$, then $\mathcal{M}^{\perp}:=\{\psi \in \mathcal{H} \mid(\psi, \phi)=0, \forall \phi \in \mathcal{H}\}$ is also a subspace; and every $\psi \in \mathcal{H}$ has a unique expression as a sum of the two components: $\psi=\psi_{\mathcal{M}}+\psi_{\mathcal{M}^{+}}$. So we define the projection/projector $E_{\mathcal{M}}: \mathcal{H} \rightarrow \mathcal{H}$, by $E_{\mathcal{M}}(\psi):=\psi_{\mathcal{M}}$.

Theorem: A bounded linear operator $E$ is a projector iff $E^{2}=E=E^{\dagger}$. (To prove the leftward implication, one defines the set $\mathcal{M}$ to be the range of $E$, shows it to be a subspace, and shows that for any vector $\psi,(1-E)(\psi) \in \mathcal{M}^{\perp}$ etc.)

## 7: Unbounded operators:-

Turning to unbounded operators, our paradigm example is the quantity position in wave mechanics: more formally, in the Schrödinger representation of the canonical commutation relations on $L^{2}(\mathbb{R})$. Thus we want to define $(Q \psi)(x):=x \psi(x)$. This implies that $\|Q \psi\|^{2} \equiv \int_{\mathbb{R}}|x \psi(x)|^{2} d x$ can be arbitrarily larger than $\|\psi\|^{2} \equiv \int_{\mathbb{R}}|\psi(x)|^{2} d x$, so that $Q$ is unbounded.

But beware: unbounded operators introduce complexities about the domain of definition of the operator. For quantum theory needs unbounded operators $A$ with the algebraic property of being Hermitian, i.e. $(\phi, A \psi)=(A \phi, \psi)$ for all $\phi, \psi$ in the domain of $A$. And there is a $\ldots$

Theorem: If a linear operator $A$ is defined for all vectors, and if $(\phi, A \psi)=(A \phi, \psi)$ for all $\phi, \psi$, then: $A$ is bounded.

So in order for quantum theory to have the unbounded operators $A$ with the algebraic Hermitian property, i.e. $(\phi, A \psi)=(A \phi, \psi)$ for all $\phi, \psi$ in the domain of $A$, that it needs: we must consider operators $A$ with domains of definition less than all of $\mathcal{H}$. Hence the jargon of: dense domain, and extension, of an operator.

If $A$ has a dense domain, we can define $A^{\dagger}$. Namely:
$\operatorname{dom}\left(A^{\dagger}\right):=\{\psi \in \mathcal{H} \mid$ there is a vector $\tilde{\psi}$ such that $\forall \phi \in \operatorname{dom}(A):(\phi, \tilde{\psi})=(A \phi, \psi)$.
Then we define $A^{\dagger}$ by $A^{\dagger}: \psi \in \operatorname{dom}\left(A^{\dagger}\right) \mapsto \tilde{\psi}$. This defines $A^{\dagger}(\psi)$ uniquely (because $\operatorname{dom}(A)$ is dense); and $A^{\dagger}$ is linear, and $\operatorname{dom}\left(A^{\dagger}\right)$ is a linear manifold.

We say that a linear operator $A$ is symmetric iff: $A$ has a dense domain, and $(\phi, A \psi)=(A \phi, \psi)$ for all $\phi, \psi$ in the domain of $A$. Then by the discussion just above, we conclude that: for all $\psi$ in the domain of $A, A^{\dagger}(\psi)$ is defined, and $A^{\dagger}(\psi)=A(\psi)$. That is: $A^{\dagger}$ is an extension of $A$.

If in fact $A^{\dagger}=A$, then we say $A$ is self-adjoint or Hermitian.
We now apply this discussion to our paradigm example, position. We define $Q$ on $L^{2}(\mathbb{R})$ by specifying that $\operatorname{dom}(Q):=.\left\{\left.\psi\left|\int_{\mathbb{R}}\right| x \psi(x)\right|^{2} d x<\infty\right\}$. This domain is dense. (For we can approximate an arbitrary $\psi \in L^{2}(\mathbb{R})$ by the "truncated" functions $\psi_{n}(n \in \mathbb{Z})$ that are defined to be equal to $\psi$ on the interval $[-n, n]$, and to take the value 0 outside that interval. Clearly $\psi_{n} \rightarrow \psi$; and $x \psi_{n}(x)$ is square-integrable.) Then on this domain, we define: $(Q \psi)(x):=x \psi(x)$. Then $Q$ is clearly symmetric, since $\int_{\mathbb{R}} \phi^{*}(x) \cdot x \psi(x) d x=\int_{\mathbb{R}}[x \phi(x)]^{*} \cdot \psi(x) d x$. So $Q^{\dagger}$ is defined and extends $Q$. But is the domain of $Q^{\dagger}$ in fact larger than the domain of $Q$ ? In fact it is not larger: (cf. Jordan, Linear Operators for Quantum Mechanics, Section 11, p.31). So $Q^{\dagger}=Q$, and so $Q$ is self-adjoint: also known as: Hermitian.

A symmetric operator that cannot be extended to a larger domain is called maximal symmetric. Theorem: Every self-adjoint operator is maximal symmetric; (but not conversely)
An unbounded operator cannot be continuous. The "next best thing to continuity" is being closed, as follows.

We say an operator $A$ is closed iff: if (i) a sequence of vectors $\psi_{n}$ in $\operatorname{dom}(A)$ converges to a vector $\psi$ and (ii) the sequence of vectors $A\left(\psi_{n}\right)$ converges to a vector $\phi$, then $\psi \in \operatorname{dom}(A)$ and $A \psi=\phi$.

Theorem: If $\operatorname{dom}(A)$ is dense, then $A^{\dagger}$ is closed. So every self-adjoint operator is closed.
It is natural to ask: 'What are the conditions for a symmetric operator to be self-adjoint?' As just noted, being maximally symmetric is not sufficient. What about being symmetric and closed? This also turns out to be not sufficient. But in item (A) of paragraph 4 (Philosophical Remarks) of Section 3, we will get an answer. This answer relates to Philosophical Remark (D) in paragraph 4 of Section 1. That is: the answer relates to the idea that a quantity can be represented by an operator that is not self-adjoint.

## 3 Diagonalizing operators

We assume a complex separable Hilbert space.

## 1: Eigenvalues and eigenvectors:-

The definition of eigenvalue and of eigenvector is exactly the same for an infinite-dimensional Hilbert space, as for the finite-dimensional case. The following elementary but important results are derived exactly as for the finite-dimensional case:

1: If $T$ is a linear operator with an inverse $T^{-1}$, then $A$ and $T A T^{-1}$ have the same eigenvalues.
2: The eigenvalue of a Hermitian, respectively unitary, operator is real, respectively of absolute value 1 .

3: Two eigenvectors of a Hermitian, or of a unitary, operator, corresponding to different eigenvalues are orthogonal.

Let $A$ be Hermitian or unitary. Let $a_{1}, a_{2}, \ldots, a_{k}, \ldots$ be its eigenvalues, with eigenspaces $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{k}, \ldots$. Then the orthogonal sum $\operatorname{Eig}(A):=\oplus_{k} \mathcal{M}_{k}$ is the subspace of $\mathcal{H}$ spanned by eigenvectors of $A$. Of course, for a finite-dimensional complex Hilbert space, $\operatorname{Eig}(A)=\mathcal{H}$. This is the spectral decomposition or eigen-decomposition of the operator $A$.

We say that a subspace $\mathcal{M}<\mathcal{H}$ reduces the linear operator $A$ iff both $\mathcal{M}$ and $\mathcal{M}^{\perp}$ are invariant under $A$. This turns out to be equivalent to $A$ commuting with the projector onto $\mathcal{M}$ :

Theorem: Let $E_{\mathcal{M}}$ be the projector onto $\mathcal{M}$. Then $\mathcal{M}$ reduces $A$ iff $E_{\mathcal{M}} A=A E_{\mathcal{M}}$ iff $\left(1-E_{\mathcal{M}}\right) A=$ $A\left(1-E_{\mathcal{M}}\right)$.

Theorem: Let $A$ be Hermitian or unitary: then $\operatorname{Eig}(A)$ reduces $A$. So a Hermitian or unitary operator splits in to two separate parts: one part acting on $\operatorname{Eig}(A)$, and represented there, with respect to an eigenbasis, as a diagonal matrix; the other part acting on $\operatorname{Eig}(A)^{\perp}$.

## 2: Eigenvalue decomposition:-

We will generalise the spectral decomposition of a Hermitian or unitary operator $A$ to the infinitedimensional case, i.e. address the question of how $A$ acts on $\operatorname{Eig}(A)^{\perp}$. We begin by rewriting in a suggestive way the spectral decomposition of a Hermitian operator $A$ for the finite-dimensional case.

So let $A$ 's real eigenvalues be, in ascending order: $a_{1}<a_{2}<\ldots<a_{k}<\ldots<a_{m}$, with corresponding eigenspaces $\mathcal{M}_{k}$. Let $I_{k}$ be the projector on to $\mathcal{M}_{k}$. Then the spectral decomposition of $A$ is just

$$
\begin{equation*}
A=\Sigma_{k=1}^{m} a_{k} I_{k} \equiv \oplus_{k=1}^{m} a_{k} I_{k} \tag{8}
\end{equation*}
$$

Now we define for each real number $x, E_{x}:=\oplus_{a_{k}<x} I_{k}$. So: $E_{x}=0$ for $x<a_{1}$, and $E_{x}=1$ for $x>a_{m}$. And if $x<y$, then $E_{x} E_{y}=E_{x}=E_{y} E_{x}$, i.e. $E_{x} \leq E_{y}$.

For each $x \in \mathbb{R}$, we also define $d E_{x}:=E_{x}-E_{x-\varepsilon}$ with $\varepsilon$ chosen so small that there is no $a_{j}$ such that $x-\varepsilon<a_{j}, x$.

So $d E_{x}$ is not zero only when $x$ is an eigenvalue $a_{k}$; and in that case $d E_{x}=I_{k}$.
So for $\Sigma_{k=1}^{m} I_{k}=1$, we can write: $\int_{\mathbb{R}} d E_{x}=1$. And for $A=\sum_{k=1}^{m} a_{k} I_{k}$, we can write: $A=$ $\int_{\mathbb{R}} x d E_{x}$.

Besides: $\left(\phi, E_{x} \psi\right)$ is a complex function of $x \in \mathbb{R}$ that is continuous from the right, but which jumps in value by $\left(\phi, I_{k} \psi\right)$ at $x=a_{k}$. So we have (a sordinary Riemann integrals):

$$
\begin{equation*}
(\phi, \psi)=\int_{\mathbb{R}} d\left(\phi, E_{x} \psi\right) ;(\phi, A \psi)=\int_{\mathbb{R}} x d\left(\phi, E_{x} \psi\right) . \tag{9}
\end{equation*}
$$

Similarly, for a unitary operator $U$ in the finite-dimensional case. Its eigenvalues are $u_{k} \equiv e^{i \theta_{k}}$, where in ascending order: $0<\theta_{1}<\theta_{2}<\ldots<\theta_{k}<\ldots<\theta_{m} \leq 2 \pi$. Then we define for each real
number $x, E_{x}:=\oplus_{\theta_{k}<x} I_{k}$. So we can write:

$$
\begin{equation*}
U=\int_{0}^{2 \pi} e^{i x} d E_{x} ; \quad(\phi, U \psi)=\int_{0}^{2 \pi} e^{i x} d\left(\phi, E_{x} \psi\right) \tag{10}
\end{equation*}
$$

3: Spectral decomposition:-
A family of projectors $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ is called a spectral family iff:
(i) if $x \leq y$ then $E_{x} \leq E_{y}$, i.e. $E_{x} E_{y}=E_{x}=E_{y} E_{x}$;
(ii) continuity from the right: for all $\psi$ and for all $x$ : if $\varepsilon>0$, then $E_{x+\varepsilon} \psi \rightarrow E_{x} \psi$, as $\varepsilon \rightarrow 0$;
(iii) for all $\psi: E_{x} \psi \rightarrow 0$ as $x \rightarrow-\infty$, and $E_{x} \psi \rightarrow \psi$ as $x \rightarrow+\infty$. The main theorem is then...

The Spectral Theorem: For each self-adjoint operator, there is a unique spectral family $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ such that for all $\psi, \phi \in \mathcal{H}$ :

$$
\begin{equation*}
(\phi, A \psi)=\int_{\mathbb{R}} x d\left(\phi, E_{x} \psi\right) ; \quad \text { so we write } \quad A=\int_{\mathbb{R}} x d E_{x} \tag{11}
\end{equation*}
$$

This obviously generalizes the finite-dimensional spectral theorem for self-adjoint operators, eq. 8 . Similarly for unitary operators $U$, with $E_{x}=0$ for $x \leq 0$, and $E_{x}=1$ for $x>2 \pi$ :

$$
\begin{equation*}
(\phi, U \psi)=\int_{0}^{2 \pi} e^{i x} d\left(\phi, E_{x} \psi\right) ; \text { so we write } U=\int_{0}^{2 \pi} e^{i x} d E_{x} \tag{12}
\end{equation*}
$$

which generalizes the finite-dimensional spectral theorem for unitary operators.
Let us illustrate this Theorem: first of all, with a bounded self-adjoint operator. We again take our paradigm example, "position"; but as a quantity on the real interval $[0,1]$, i.e. as a linear operator on $L^{2}([0,1])$. We define $E_{x}$ on $L^{2}([0,1])$ as "chopping the function off above $x$ ". That is: $\left(E_{x} \psi\right)(y):=\psi(y)$ for $y \leq x$, and $\left(E_{x} \psi\right)(y):=0$ for $y>x$. Then

$$
\begin{equation*}
\left.\| E_{x+\varepsilon} \psi-E_{x} \psi\right) \|^{2}=\int_{x}^{x+\varepsilon}|\psi(y)|^{2} d y \rightarrow 0, \text { as } \varepsilon \rightarrow 0 \tag{13}
\end{equation*}
$$

and $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ is a spectral family. Now define $A$ on $L^{2}([0,1])$ by $(A \psi)(x):=x \psi(x)$. Then $A$ is bounded and self-adjoint. For all $\psi, \phi \in \mathcal{H}$, we have

$$
\begin{align*}
\int_{\mathbb{R}} x d\left(\phi, E_{x} \psi\right) & =\int_{\mathbb{R}} x d \int_{0}^{1} \phi(y)^{*}\left(E_{x} \psi\right)(y) d y=  \tag{14}\\
\int_{\mathbb{R}} x d \int_{0}^{x} \phi(y)^{*} \psi(y) d y & =\int_{0}^{1} \phi(x)^{*} x \psi(x) d x=(\psi, A \phi) .
\end{align*}
$$

So $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ gives the spectral decomposition of $A$.
This $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ is continuous from the left, as well as from the right. We have

$$
\begin{equation*}
\left(\psi, E_{x} \phi\right)-\left(\psi, E_{x-\varepsilon} \phi\right) \equiv \int_{x-\varepsilon}^{x} \psi^{*}(y) \phi(y) d y \rightarrow 0, \text { as } \varepsilon \rightarrow 0 \tag{15}
\end{equation*}
$$

We say that $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ jumps in value at $x$ if for some vector $\psi,\left(E_{x}-E_{x-\varepsilon}\right) \psi$ does not converge to 0 , as $\varepsilon \rightarrow 0$. Otherwise, we say that $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ is continuous at $x$.

So in the above example, $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ is continuous at all $x$, since $A$ has no eigenvalues/eigenvectors. Similarly of course for position, similarly defined, on $L^{2}(\mathbb{R})$.

And similarly for the Schrödinger representation of position in $\mathbb{R}^{3}$. We postpone the details until Paragraph 7's discussion of functions of commuting operators. But the idea will of course be to define each of the three components of position as operators on $L^{2}\left(\mathbb{R}^{3}\right) \ni \psi(\mathbf{x}) \equiv \psi\left(x_{1}, x_{2}, x_{3}\right)$; with inner product $(\phi, \psi)=\int_{\mathbb{R}^{3}} \phi^{*}(\mathbf{x}) \psi(\mathbf{x}) d \mathbf{x}$.

Returning to the general case of a self-adjoint operator $A$, we have the ...
Theorem: Let $A$ be a self-adjoint operator with spectral decomposition $A=\int_{\mathbb{R}} x d E_{x}$. Then $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ jumps in value at $a$ iff $a$ is an eigenvalue of $A$. And with $I_{a}$ the projector onto the eigenspace fo $a$, we have: $E_{x} I_{a}=0$ for $x<a$; and $E_{x} I_{a}=I_{a}$ for $x \geq a$; and for any $\psi, E_{a} \psi-E_{a-\varepsilon} \psi \rightarrow I_{a} \psi$, as $\varepsilon \rightarrow 0$.

Accordingly, we define:-
(1): the spectrum of $A:=\operatorname{sp}(A):=\left\{x \in \mathbb{R} \mid E_{x}\right.$ increases $\} \equiv\left\{x \in \mathbb{R} \mid x \notin\right.$ interval $(a, b)$ on which $E_{x}$ is constant $\} ;$
(2): the point spectrum of $A:=\left\{x \in R \mid E_{x}\right.$ jumps $\} \equiv\{x \in R \mid x$ is an eigenvalue of $A\}$;
(3): the continuous spectrum of $A:=\left\{x \in R \mid E_{x}\right.$ increases continuously $\}$.

Theorem:: A self-adjoint operator is bounded iff its spectrum is bounded.
We say that self-adjoint operator $A$ is positive iff for all $\psi,(\psi, A \psi) \geq 0$.
Theorem::A self-adjoint operator is positive iff its spectrum is non-negative.

## 4: Philosophical remarks:-

(A): We return to the Philosophical Remark (D) in paragraph 4 of Section 1: the idea that a quantum physical quantity can be represented by an operator that is not self-adjoint. Cf. B. Roberts (2018): 'Observables, disassembled', Studies in History and Philosophy of Modern Physics 63, 150-162. (Preprint: http://philsci-archive.pitt.edu/14449/). On p. 153, Roberts reports that being selfadjoint is a "two out of three" property. That is:
A closed, densely-defined linear operator $A$ is self-adjoint if it satisfies any two of the following three properties:
(1): $A$ is normal. That is: $A A^{\dagger}=A^{\dagger} A$;
(2): $A$ is symmetric: $(\phi, A \psi)=(A \phi, \psi)$ for all $\phi, \psi$ in the (dense) domain of $A$.
(3): $A$ has real Spectrum, where we define 'Spectrum' in a more general way than we did 'spectrum' above: namely as the set $\operatorname{Spec}(A):=\{z \in \mathbb{C} \mid(A-z .0)$ has no inverse $\}$. So the condition is: $\operatorname{Spec}(A) \subset \mathbb{R}$.

This yields four ways that a closed, densely-defined linear operator $A$ can fail to be self-adjoint: having just one of the above three properties, or having none of them.

Roberts then explores each of these four ways, finding for each of them: conceptual issues and circumstances in which it is a reasonable notion of physical quantity.
(B): It would be hard to over-emphasise the importance of the spectral theorem, summed up in the second equation of eq. 11: $A=\int_{\mathbb{R}} x d E_{x}$. As we said: this obviously generalizes eq. $8:$ which is central to the quantum theory using finite dimensional Hilbert spaces. But there are two ways, (B1) and (B2) below, in which thinking of the integrand $x$ as position can be misleading. Hence our use of scare quotes around "Position" in Paragraph 3's example on $L^{2}([0,1])$.
(B1): The first point returns us to (A). Namely: because we think of the eigenvalues in the spectral theorem as the possible values of the quantity, as the system's "score" for the quantity, we tend to think that the mathematical fact that $x$ in the spectral theorem, i.e. in eq. 11 for any operator, must be real, forces on us the conclusion that "scores" for physical quantities must be real. (This thought is no doubt reinforced by the facts that (i) the quantum particle on the line is so
entrenched as the basic example in wave mechanics, and (ii) a classical particle's position is a real number.)

But that is a petitio principii, i.e. it is begging the question. It is only because of choosing a self-adjoint operator that the integrand in the spectral theorem is real. After all: consider the $e^{i x}$ integrand in the spectral theorem for unitaries, i.e. in eq. 12.
(B2): The second point is longer and more important. It is about the way that space and time apparently get different treatments in quantum theory. Thus it is often said that in non-relativistic quantum theory: position is a dynamical variable, namely represented by the self-adjoint operator $Q: \psi(x) \mapsto x \psi(x)$ as we have discussed; but that time is not such a variable-indeed, there is no selfadjoint operator representing time. (Indeed, there is a line of argument, originating from Pauli, that there cannot be such an operator.) And people often go on to say that in a relativistic theory, space and time should get similar treatments: which indeed they do, in quantum field theory-namely, by both space and time being parameters/indices of the fields, as in $\psi(x, t)$, i.e. neither space nor time being operators.

All this folklore is ... true enough as far as it goes. But there are many subtleties hereabouts! Here we just pick out three main topics. The first is about time as a physical quantity; and we give some details, following J. Hilgevoord (2002), 'Time in quantum mechanics', American Journal of Physics 70, 301-306. The second and third are about time-energy uncertainty, and localisation.
(B2a): Time as a physical quantity:- Hilgevoord emphasizes that we must of course distinguish:
(a) space and time coordinates, i.e. labels $(x, y, z)$ of spatial points, or $(x, y, z, t)$ of spacetime point-events: which labels can then function as coordinates of point-sized systems or physical events; from:
(b) position as a dynamical variable of a system, especially of a point-particle (subject to equations of motion, whose values determine those of other quantities e.g. energy).
Then Hilgevoord's point is that the (a) vs. (b) contrast is valid in both classical and quantum theory, and in both relativistic and non-relativistic theories. And thus the folklore's emphasis on quantum theory having a position operator matches classical physics' having position as a dynamical variable of a point-particle. Since the latter is written as $q$ (especially in Hamiltonian mechanics), and is thus notationally well-distinguished from the spatial coordinate $x$ (or $(x, y, z)$ ), Hilgevoord points out (p. 303) that in wave mechanics, a much less confusing notation for the wave function would be $\psi(q)$, rather than the usual (universal! . . and followed herein!) $\psi(x)$ or $\psi(\mathbf{x})$.

We agree completely! For recall our first Philosophical Remark (A) in Paragraph 4 of Section 1. Namely: the arguments of the complex-valued wave function are to be classical configurations, i.e. values of the dynamical variables $q$, not "mere" spatial positions in the (Lucretian!) "void".

Besides, it follows that, contrary to the suggestion of the folklore, some good sense can be made of a "time observable", i.e. time as a physical quantity-just like position is a physical quantity, in its guise as a dynamical variable. Thus Hilgevoord says (p. 302):

But do physical systems exist that have a dynamical variable that resembles the time coordinate $t$ in the same way as the position variable $q$ of a point particle resembles the space coordinate $x$ ? The answer is yes! Such systems are clocks. A clock stands, ideally, in the same simple relation to the universal time coordinate $t$ as a point particle stands to the universal space coordinate $x$. We may generally define an ideal clock as a physical system describable by a dynamical variable that, under time translations, behaves similarly to the time coordinate $t$.

For more on time observables, cf. B. Roberts (2014), 'A general perspective on time observables', Studies in History and Philosophy of Physics 47, 50-54, http://philsci-archive.pitt.edu/10600/. (A large collection of research articles is Muga, G., Sala Mayato, R. and Egusquiza I., ed.s (2008) Time

```
in Quantum Mechanics, Springer: two volumes.)
```

We just make a broad philosophical remark:- Physics - science!-aims to describe, indeed predict, how the values of variables vary as a function of . . . the values of other variables! Thus it is perfectly legitimate, even useful, to ask, for a body that is e.g. accelerating: 'what is the position $q$ as a function of the momentum $p$ ?', That is: one can ask for $q$ not as a function of time.

But agreed; it is a deep fact about physics (the world?!) that in classical and quantum physics, and relativistic and non-relativistic physics, and in an Hamiltonian or Lagrangian framework: it is vastly useful and tractable to describe the values of (most, if not all) dynamical variables as a function of . . . a single external time. (Here, external means, at least: not interacting with the system under investigation.) But as the Hilgevoord quote (and other papers, e.g. by Paul Busch) brings out: this external time need not be some unphysical idealization: it can be a dynamical variable of an appropriate clock system.
(B2b): Time-energy uncertainty:- For the time-energy uncertainty principle, we just note that:
(i) a philosopher's introduction is at: J. Butterfield, 'Time in quantum physics', http: //philsciarchive.pitt.edu/9287/;
(ii) a critique of widespread folklore that the principle explains particle creation by temporary violations (and briefer, the larger the violation) of energy conservation (!), is at: B. Roberts and J. Butterfield (2020), 'Time-energy uncertainty does not create particles', http://philsci-archive.pitt.edu/17443/
(B2c): Localisation:- There is another deep aspect of how space and time are treated in quantum theory. Namely: the contrast between particle and field, and especially:
(i) the subtleties of localisation of particles in relativistic quantum theories: e.g. NewtonWigner localization, and
(ii) in quantum field theories. particles being excitations of a quantum field, and so 'particle' being a derived-and even an emergent or approximate - concept.
We discuss (i) and (ii) later, when we turn to quantum field theory.

## 5: Functions of an Operator:-

Let $A$ be a self-adjoint operator, with spectral decomposition $A=\int_{\mathbb{R}} x d E_{x}$. Let $f$ be a complexvalued function on the real line: $f: \mathbb{R} \rightarrow \mathbb{C}$. We define the operator $f(A)$, by

$$
\begin{equation*}
(\phi, f(A) \psi):=\int_{\mathbb{R}} f(x) d\left(\phi, E_{x} \psi\right) \tag{16}
\end{equation*}
$$

which for $f$ continuous can be taken as an ordinary Riemann integral. Then we have:
(1): for $f(x)=x, f(A)=A$;
(2): for $f(x)=1, f(A)=1$, since $\int_{\mathbb{R}} d\left(\phi, E_{x} \psi\right)=(\phi, \psi)$;
(3): $(f+g)(A)=f(A)+g(A)$ and $(c f)(A)=c(f(A))$;
(4): we define $(f g)(x):=f(x) g(x)$, so that $(\phi,(f g)(A) \psi):=\int_{\mathbb{R}}(f g)(x) d\left(\phi, E_{x} \psi\right)=\int_{\mathbb{R}} f(x) g(x) d\left(\phi, E_{x} \psi\right)$, and then we compute that

$$
\begin{array}{r}
\int_{\mathbb{R}} f(x) g(x) d\left(\phi, E_{x} \psi\right)=\int_{\mathbb{R}} f(x) d \int_{-\infty}^{x} g(y) d\left(\phi, E_{y} \psi\right)=\int_{\mathbb{R}} f(x) d_{x} \int_{-\infty}^{+\infty} g(y) d_{y}\left(E_{x} \phi, E_{y} \psi\right)= \\
\int_{-\infty}^{+\infty} f(x) d\left(\phi, E_{x} g(A) \psi\right)=(\phi, f(A) g(A) \psi) \tag{18}
\end{array}
$$

So we conclude that $(f g)(A)=f(A) g(A)$, and thus that functions of the operator $A$ commute with each other.

So (5): polynomial functions are defined in the natural way. If $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}$, then $f(A)=c_{0}+c_{1} A+c_{2} A^{2}+\ldots+c_{n} A^{n}$.
(6) If we define $\left(f^{*}\right)(x):=(f(x))^{*}$, then we compute that

$$
\begin{equation*}
\left(\phi,[f(A)]^{\dagger} \psi\right)=(\psi, f(A) \phi)^{*}=\int_{-\infty}^{+\infty} f(x)^{*} d\left(\psi, E_{x} \phi\right)^{*}=\int_{-\infty}^{+\infty}\left(f^{*}\right)(x) d\left(\phi, E_{x} \psi\right) \tag{19}
\end{equation*}
$$

so that $[f(A)]^{\dagger}=\left(f^{*}\right)(A)$. So if $f$ is a real-valued function, $f ; \mathbb{R} \rightarrow \mathbb{R}, f(A)$ is also self-adjoint. And if $f^{*} f=1$, then $f(A)$ is a unitary operator since $[f(A)]^{\dagger} f(A)=1=f(A)[f(A)]^{\dagger}$.
(7): $f(A)$ is positive if $f(x) \geq 0$ on the spectrum of $A$. For just consider: $(\phi, f(A) \phi)=$ $\int_{-\infty}^{+\infty} f(x) d\left\|E_{x} \phi\right\|^{2}$. Similarly, we deduce:
(8): $f(A)$ is bounded if $|f(x)|$ is bounded on the spectrum of $A$.

6: Stone's Theorem :-
Given a self-adjoint operator $H=\int_{-\infty}^{+\infty} x d E_{x}$, we define for all $t \in \mathbb{R}:\left(\phi, U_{t} \psi\right):=\int_{-\infty}^{+\infty} e^{i t x} d(\phi, E x \psi)$. Then $U_{t}$ is an operators, viz. $U_{t}=e^{i t H}$ and $U_{t}$ is unitary since $\left(e^{i t x}\right)^{*} . e^{i t x}=1$ (cf. the end of (6) above). Evidently, $U_{0}=1$; and since $e^{i t x} e^{i t^{\prime} x}=e^{i\left(t+t^{\prime}\right) x}$, we have $U_{t} U_{t^{\prime}}=U_{t+t^{\prime}}$. The converse of this is...

Stone's Theorem: Suppose that for all $t \in \mathbb{R}, U_{t}$ is a unitary operator, such that:
(i): for all vectors $\phi, \psi:\left(\phi, U_{t} \psi\right)$ is a continuous function of $t$
(ii): $U_{0}=1$ and $U_{t} U_{t^{\prime}}=U_{t+t^{\prime}}$ : so the family $\left\{U_{t}\right\}_{t \in \mathbb{R}}$ is a unitary representation of the group $(\mathbb{R},+)$.
Then: there is a unique a self-adjoint operator $H$ such that $U_{t}=e^{i t H}$ for all $t \in \mathbb{R}$, and
(1): the domain of $H$ is $\left\{\psi \in \mathcal{H} \left\lvert\, \frac{1}{i t}\left(U_{t}-1\right) \psi\right.\right.$ converges as $\left.t \rightarrow 0\right\}$; and then the limit vector is $H \psi$;
(2): if a bounded operator commutes with all of the $U_{t}$, then it commutes with $H$.

Using (1), we infer: If $U_{t} \psi \in \operatorname{dom}(H)$, then: $\left.\frac{1}{i \Delta t}\left(U_{\Delta t}-1\right) U_{t} \psi\right) \rightarrow H U_{t} \psi$, as $\Delta t \rightarrow 0$. That is:

$$
\begin{equation*}
\frac{1}{i \Delta t}\left(U_{t+\Delta t}-U_{t}\right) \psi \rightarrow H U_{t} \psi, \text { as } \Delta t \rightarrow 0 \tag{20}
\end{equation*}
$$

which we write as the "Schrödinger equation":

$$
\begin{equation*}
-i \frac{d}{d t}\left(U_{t} \psi\right)=H U_{t} \psi \tag{21}
\end{equation*}
$$

## 7: Functions of commuting operators:-

With the Spectral Theorem in hand, we can rigorously discuss taking functions of commuting operators. This will lead us, in Section 4, to algebras of operators: at first, abelian algebras and then to non-abelian algebras.

The idea of functions of commuting operators is of course that if two self-adjoint operators commute then their spectral projectors commute. Indeed, there is a ...

Theorem: Let $A$ be self-adjoint with spectral decomposition $A=\int x d E_{x}$; and let $B$ be bounded, self-adjoint and $A B=B A$. Then $B E_{x}=E_{x} B$.

Proof: If $A$ has pure point spectrum, $A=\Sigma_{k} a_{k} I_{k}$, the proof is elementary. If $A$ is unbounded, one needs a more careful statement to deal with issues about domains.

Indeed: if two self-adjoint operators $A_{1}, A_{2}$ are both unbounded, then we take $E_{x}^{1} E_{y}^{2}=E_{y}^{2} E_{x}^{1}$ for all $x, y \in \mathbb{R}$ to be the definition of $\left[A_{1}, A_{2}\right]=0$.

Given $f: \mathbb{R}^{2} \rightarrow \mathbb{C},(x, y) \mapsto f(x, y)$, we define $f\left(A_{1}, A_{2}\right)$ for two commuting self-adjoint operators $A_{1}, A_{2}$ by

$$
\begin{equation*}
\left(\phi, f\left(A_{1}, A_{2}\right) \psi\right)=\int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) d_{x} d_{y}\left(\phi, E_{x}^{1} E_{y}^{2} \psi\right), \quad \text { for all } \quad \phi, \psi \in \mathcal{H} \tag{22}
\end{equation*}
$$

Sums, scalar multiples, and products of such functions are defined in the obvious way. One shows that:
$\left.\left[f\left(A_{1}, A_{2}\right)\right]^{\dagger}=\left(f^{*}\right) f A_{1}, A_{2}\right)$; so that real functions $f$ define self-adjoint operators $f\left(A_{1}, A_{2}\right)$ and functions $f$ for which $f^{*} f=1$ define unitary operators $f\left(A_{1}, A_{2}\right)$;
$f\left(A_{1}, A_{2}\right)$ is positive if $f(x, y)>0$ on the cartesian product of the spectra of $A_{1}$ and $A_{2}$;
$f\left(A_{1}, A_{2}\right)$ is bounded if $f(x, y)$ is bounded on the cartesian product of the spectra of $A_{1}$ and $A_{2}$.
Compare items (5) to (8) at the end of Paragraph 5 above.
Similarly of course for functions of three commuting operators, as in the paradigm example: the Schrödinger representation of position in $\mathbb{R}^{3}$. Consider $L^{2}\left(\mathbb{R}^{3}\right) \ni \psi(\mathbf{x}) \equiv \psi\left(x_{1}, x_{2}, x_{3}\right)$; with inner product $(\phi, \psi)=\int_{\mathbb{R}^{3}} \phi^{*}(\mathbf{x}) \psi(\mathbf{x}) d \mathbf{x}$. For $r=1,2,3$, we define the self-adjoint operator $Q_{r}$ by $Q_{r} \psi(\mathbf{x})=x_{r} \psi(\mathbf{x})$. Then in the spectral decomposition

$$
\begin{equation*}
Q_{r}=\int_{\mathbb{R}} x d E_{x}^{r} \tag{23}
\end{equation*}
$$

the projectors $E_{x}^{r}$ are defined by $:\left(E_{x}^{r} \psi\right)(\mathbf{y})=\psi(\mathbf{y})$ for $\mathbf{y}$ with $y_{r} \leq x$, and $\left(E_{x}^{r} \psi\right)(\mathbf{y})=0$ for $\mathbf{y}$ with $y_{r}>x$. Then one has

$$
\begin{equation*}
\left(f\left(Q_{1}, Q_{2}, Q_{3}\right) \psi\right)(\mathbf{x})=f\left(x_{1}, x_{2}, x_{3}\right) \psi(\mathbf{x}) \tag{24}
\end{equation*}
$$

8: Complete sets of commuting operators :-
Let $A_{1}, A_{2}, \ldots, A_{N}$ be mutually commuting self-adjoint operators with pure point spectra; each with their spectral decomposition, $r=1,2, \ldots, N$

$$
\begin{equation*}
A_{r}=\Sigma_{k} a_{k}^{(r)} I_{k}^{(r)} \tag{25}
\end{equation*}
$$

Then for all $r, s$ and $j . k$, we have: $I_{k}^{(r)} I_{j}^{(s)}=I_{j}^{(s)} I_{k}^{(r)}$. And for any $j, k, \ldots l$, the product $I_{j}^{(1)} I_{k}^{(2)} \ldots I_{l}^{(N)}$ is a projector. Namely, the projector onto the subspace of simultaneous eigenvectors with corresponding eigenvalues, i.e. the space of vectors $\psi$ with $A_{1} \psi=a_{j}^{(1)} \psi, A_{2} \psi=a_{k}^{(2)} \psi, \ldots, A_{N} \psi=a_{l}^{(N)} \psi$. Some of these projectors may be zero: corresponding to combinations of eigenvalues that are not, in philosophical jargon!, co-possible or compossible.

These subspaces are orthogonal, i.e.

$$
\begin{equation*}
I_{j}^{(1)} I_{k}^{(2)} \ldots I_{l}^{(N)} I_{j^{\prime}}^{(1)} I_{k^{\prime}}^{(2)} \ldots I_{l^{\prime}}^{(N)}=\delta_{j j^{\prime}} \delta_{k k^{\prime}} \ldots \delta_{l l^{\prime}} I_{j}^{(1)} I_{k}^{(2)} \ldots I_{l}^{(N)} \tag{26}
\end{equation*}
$$

and complete, i.e.

$$
\begin{equation*}
\Sigma_{j} \Sigma_{k} \ldots \Sigma_{l} I_{j}^{(1)} I_{k}^{(2)} \ldots I_{l}^{(N)}=1 \tag{27}
\end{equation*}
$$

If none of these projects onto a subspace of dimension larger than one, we say that $\left\{A_{1}, A_{2}, \ldots, A_{N}\right\}$ is a complete set of commuting operators. Then choosing eigenvectors of length one, and labelling them with their eigenvalues, i.e. choosing an orthonormal eigenbasis, we can write in Dirac notation:

$$
\begin{equation*}
I_{j}^{(1)} I_{k}^{(2)} \ldots I_{l}^{(N)}=\left|a_{j}^{(1)} a_{k}^{(2)} \ldots a_{l}^{(N)}\right\rangle\left\langle a_{j}^{(1)} a_{k}^{(2)} \ldots a_{l}^{(N)}\right| \tag{28}
\end{equation*}
$$

Theorem: Let $A_{1}, A_{2}, \ldots, A_{N}$ be mutually commuting self-adjoint operators with pure point spectra. This is a complete set iff: every bounded operator $B$ that commutes with all the $A_{1}, A_{2}, \ldots, A_{N}$ is a function of them: $B=f\left(A_{1}, A_{2}, \ldots, A_{N}\right)$.

The orthonormal eigenbasis $\left\{\left|a_{j}^{(1)} a_{k}^{(2)} \ldots a_{l}^{(N)}\right\rangle\right\}$ gives a spectral representation of $A_{1}, A_{2}, \ldots, A_{N}$ and of the functions $f\left(A_{1}, A_{2}, \ldots, A_{N}\right)$ as diagonal matrices:

$$
\begin{equation*}
\left\langle a_{j}^{(1)} a_{k}^{(2)} \ldots a_{l}^{(N)} \mid f\left(A_{1}, A_{2}, \ldots, A_{N}\right) \psi\right\rangle=f\left(a_{j}^{(1)} a_{k}^{(2)} \ldots a_{l}^{(N)}\right)\left\langle a_{j}^{(1)} a_{k}^{(2)} \ldots a_{l}^{(N)} \mid \psi\right\rangle . \tag{29}
\end{equation*}
$$

## 9: Philosophical Remarks:-

The selection of a self-adjoint operator with pure point spectrum, and so of a complete family of orthogonal eigenspaces, is at the heart of not just
(i) the mathematics; but also:
(ii) the physics; and
(iii) the interpretation/philosophy
of quantum theory. Besides, the main issues are already clear in the case of finite dimensional Hilbert spaces. (Indeed, they are clear for real Hilbert spaces: for which, of course, 'self-adjoint' is replaced by 'symmetric' in the sense of elementary matrix theory, i.e. the matrix elements $a_{i j}$ obey: $a_{i j}=a_{j i}$. Of course, this is not the sense we defined above!)

As to (i), the mathematics: we here confine ourselves to some main ideas about the latticetheoretic ('quantum logic') approach:-

Recall Philosophical Remark (C) (1), about quantum logic, in Paragraph 4 of Section 1. It concerned the lattice $\mathcal{L}$ of projectors (equivalently: subspaces) of Hilbert space. Selecting a complete family of orthogonal eigenspaces, $\left\{E_{i}\right\}$ say, amounts to picking a sublattice of $L$ : one that is Boolean. More precisely: a complete family of orthogonal eigenspaces (equivalently: projectors) is the set of atoms (smallest, logically strongest, least-in-the-partial-order-but non-zero-elements) of a Boolean sublattice of $\mathcal{L}$. The other elements of the sublattice are given by all the possible sums (orthogonal sums, $\oplus$ ) of these atoms. Roughly speaking: 'Boolean' means that the distributive laws, of intersection $\cap$ over addition + , and vice versa (of addition over intersection), hold for subspaces.

That is: with $E, F, G$ being three subspaces, $E, F, G<\mathcal{H}$, the distributive laws are:

$$
\begin{equation*}
E \cap(F+G)=(E \cap F)+(E \cap G) ; \text { and } E+(F \cap G)=(E+F) \cap(E+G) \tag{30}
\end{equation*}
$$

These equations are easily proved for $E, F, G$ mutually orthogonal (as are the atoms); cf. elementary projector algebra. But they also hold for the various possible sums of atoms. -

And they are very easily disproved for $E, F, G$ 'skew'. Just take three mutually skew rays in the Euclidean plane $\mathcal{H}=\mathbb{R}^{2}$. Then the first equation of eq. 30 would read: $E=0$, and the second equation of eq. 30 would read: $E=\mathcal{H}$. Both of which are false.

We say that roughly speaking 'Boolean' means that the distributive laws hold: because we are here neglecting conditions about the behaviour of the complement, i.e. the unary operation on subspaces, $E \mapsto E^{\perp}$, or equivalently for projectors, $E \mapsto 1-E$.

Three final remarks about this lattice-theoretic perspective:
(1): Since a function $f$ is in general many-one, i.e. two arguments can map to the same value, a self-adjoint operator $B$ being a function of another $A$, i.e. $B=f(A)$, means that the sublattice of $\mathcal{L}$ that is defined, as sketched above, by $B$ (with $B$ 's eigenspaces as its atoms) will be a sublattice of the sublattice defined by $A$. In short: coarse-graining.

Note also that $B$ can be a function of two operators $A, C$ that do not commute: i.e. . $B=f(A)=g(C)$ with $[A, C] \neq 0$. This point will be crucial in the discussion of FUNC and of 'no go' theorems against 'hidden variable' supplementations of orthodox quantum theory, that we discuss
under interpretation/philosophy below. For it means that imposing conditions on the assignment of values to the operator $B$ (and perhaps some other operator with which $B$ commutes) can have consequences for the values of operators $A$ and $C$ that do not commute.
(2): Later, when we discuss states i.e. probability distributions for the values of quantities (and so for the values 1 and 0 for projectors), this Booleanness of the sub-lattice will secure there being a classical (Kolmogorov) probability space for the distribution to be defined on.
(3): When we consider the algebraic approach to quantum theory, Booleanness of a lattice will correspond to the abelianness of the algebra of quantities. The rough picture, here stated only for bounded operators, is:
(3A): Although the elements of an algebra 'go beyond' projectors, by including also selfadjoint operators (indeed, arbitrary real linear combinations of projectors: which can then be spectrally resolved), and then also skew-adjoint operators, the projectors are the building blocks of the algebra; and so the abelianness of the algebra is caught by the mutual commutation of the projectors.
$(3 \mathrm{~B})$ : The commutation of projectors $[E, F]=0$ is equivalent to a neat lattice-theoretic expression of their ranges (1-eigenspaces). If we now write $E, F$ for the ranges, it is (using $\oplus$ to signal that the summands are orthogonal):

$$
\begin{equation*}
E=(E \cap F) \oplus\left(E \cap F^{\perp}\right) ; \text { and } F=(E \cap F) \oplus\left(E^{\perp} \cap F\right) \tag{31}
\end{equation*}
$$

As to (ii), the physics: we note:
The selection of such an operator can be interpreted as choosing to measure the quantity it represents, i.e. choosing an experimental context. And the non-commutation of two operators represents it being impossible to measure them both simultaneously with arbitrary accuracy. Recall Bohr on mutually exclusive experimental contexts! Cf. e.g. his essay in P.A. Schilpp ed. Albert Einstein: PhilosopherScientist

Later, after we introduce states, we will make simultaneous measurability more rigorous. As we will see: this can be done without committing us to a version of the Projection Postulate or a similar "collapse of the wave-packet". For the moment, we just note that for a finite dimensional (indeed real or complex) Hilbert space, it is natural to define:
(the quantities represented by) two self-adjoint operators $A$ and $B$ are co-measurable along the following lines:
'a measurement of one quantity does not disturb a pre-existing value of the other quantity'. And it is natural to make 'pre-existing value' more precise in terms of an outcome/result ("pointerreading") from an immediately preceding measurement process. That is: we imagine a measurement of $A$ yields some outcome/eigenvalue $a$; then an immediately succeeding measurement $B$ yields some outcome/eigenvalue $b$; and then an immediately succeeding second measurement $A$ is done and yields some outcome/eigenvalue $a^{\prime}$.

So in this scenario with its three successive acts of measurement, it is natural to define:
'measuring $B$ does not disturb the measurement of $A$ '
as follows:
'Whatever are the outcomes/eigenvalues $a, b$ of the first two measurements (and whatever probabilities our theory may ascribe to them), the third measurement (i.e. the final $=$ second measurement of $A$ ) is bound/certain to give the same outcome/eigenvalue as the first one did: $a^{\prime}=a^{\prime}$.

So let us say that $A$ and $B$ are co-measurable iff: measuring $B$ does not disturb the measurement of $A$ in this operational sense, and vice versa. Here, 'vice versa' means that also, measuring $A$ does not disturb the measurement of $B$. That is. we must have, in an obvious notation: $b^{\prime}=b$.

Then it is easy to connect this definition of co-measurability to commutation of operators for
finite dimensional Hilbert space, if we also say that measurement processes are described by the elementary Projection Postulate, i.e. the postulate that a measurement of the system, in any state (vector) $\psi$, for the quantity represented by $A$ :
(i) projects the system's state instantaneously into the eigenspace of the eigenvalue obtained as the measurement's outcome; and then of course
(ii) re-normalizes the state by dividing it by its own length.

Thus, the Projection Postulate says there is an instantaneous state transition, which is, in a notation adapted from the above discussion:

$$
\begin{equation*}
\psi \mapsto \frac{E_{a}^{A} \psi}{\left\|E_{a}^{A} \psi\right\|} \tag{32}
\end{equation*}
$$

The connection, for finite dimensional Hilbert space, of the above definition of co-measurability, understood with this Projection Postulate, to commutation of operators is the readily proved equivalence:

Theorem: Two self-adjoint operators, with pure point spectra $A=\Sigma a_{j} E_{j}^{A}$ and $B=\Sigma b_{k} E_{k}^{B}$ are co-measurable in this sense iff they commute, i.e. $[A, B]=0$. (Of course, this latter condition is equivalent to all pairs of spectral projectors commuting: i.e. $\left[E_{j}^{A}, E_{k}^{B}\right]=0$, for all $j, k$.)

As to (iii), the interpretation/philosophy: we note:
The orthodox view in the quantum textbooks (a kind of 'precipitate' of Bohr, Dirac, Heisenberg, von Neumann; 'Copenhagen') is of course that a quantum system in state $\psi$ only has values for those physical quantities of which $\psi$ is an eigenstate/eigenvector: with the value being of course the corresponding eigenvalue. This is often called the eigenvalue-eigenstate link. And for a given state $\psi$, the quantities of which it is an eigenstate are sometimes called $\psi$ 's eigenquantities.

In particular, the lack of common eigenstates for non-commuting quantities like position and momentum (suppressing here their having continuous spectra...) means that no system has a value for both position and momentum.

Thus we are faced with the measurement problem, i.e. the appalling possibility that this lack of values, though it seems acceptable in the atomic realm which is after all unvisualizable etc etc, could propagate to the macro-realm-and so conflict with the supreme success of classical physics' ascription to systems of values for both position and momentum. (Cf. Schrödinger's amazing 'cat' paper of 1935) . . .

So it is natural to propose that we should supplement the orthodox quantum state. That is: we should ascribe values additional to those that are ascribed by the orthodox eigenvalue-eigenstate link. The natural hope is that there are states that ascribe to every self-adjoint operator an element of its spectrum, subject to natural conditions. What natural conditions? The obvious one (sometimes called ' FUNC ') is that if $A$ is ascribed a value $a$, then $f(A)$ is ascribed the value $f(a)$. (After all, we often envisage measuring $f(A)$ by measuring $A$ and applying $f$ to the outcome.) But even if we consider only operators with pure point spectrum on a finite dimensional Hilbert space, there are problems.

That is: there are 'no-go' theorems that such an assignment, for all the self-adjoint operators, satisfying FUNC for them all, is impossible. Indeed, it is provably impossible even for some judiciously the aspiring solver of the measurement problem might say: 'unfortunately!'-chosen finite sets of projectors on all Hilbert spaces of (complex) dimension 3 or more (i.e. $\mathbb{C}^{3}, \mathbb{C}^{4}, \ldots$ ).

These theorems are mostly associated with the names of Gleason (a theorem of 1957), and Kochen and Specker (a joint paper of 1967). But beware: what is usually called 'Gleason's theorem' is a positive result. It is a representation theorem for probability distributions on the set of all subspaces (projectors) of a Hilbert space. We will state it later (in Section 5), when we discuss states rigorously.

The no-go theorem is a corollary to this positive result.
The history has several ironies: one might even say, sadnesses (i.e. misunderstandings blocking progress). For:

First: One can prove this corollary directly. And J S Bell did so in his paper, 'The problem of hidden variables in quantum mechanics', published in Reviews of Modern Physics, in 1966. This paper was written in 1963: before Bell proved the Bell inequalities-which he did, and published, in 1965. (The delay in the publication of the 1966 paper was due to the typescript being lost for about two years in the back of a filing cabinet at the offices of Reviews of Modern Physics!) And the 1966 paper was written as a defence of the programme of supplementing the orthodox quantum state, not as an argument against it. For Bell proved the corollary, i.e. the no-go theorem, as part of an analysis urging that the assumptions of it were eminently deniable.

Second: Indeed, he pointed out in his 1966 paper that the assumptions are denied by the pilot-wave theory: which he considered tenable, indeed eminently reasonable, despite having a manifest non-locality in its guidance equation for a bipartite system. That is, in the traditional and best-developed non-relativistic version of the theory: the deterministic spatial trajectory of one part of such a system (one point-particle, according to the pilot-wave theory) is sensitive to where in space the other point-particle is. That is: the first particle's spatial trajectory is instantaneously sensitive, in the manner of action-at-a-distance (though without any fall-off with distance as one has in Newtonian gravitation) to where the second particle is located.

Third: In fact, Bell's 1966 paper ends by making precisely this point: that the pilot-wave theory is manifestly non-local. He also there stresses that, of course, Bohm in 1952 was well aware of this non-locality; and he ends by raising the question whether any supplementation of quantum theory must be in some way non-local. (A footnote added in proof then mentions his previously published 1965 paper as having answered this question, for one notion of non-locality. Not so much a case of backwards causation a la science fiction, but merely a disordered filing cabinet ... )

Fourth: Gleason's positive theorem - the representation theorem for probability distributions on the set of all subspaces (projectors) of a Hilbert space - generalizes a theorem of von Neumann, in his monumental 1932 book. Historically, this latter theorem was very influential in persuading physicists between ca. 1932 and ca. 1966 that this sort of supplementation of quantum theory could not work. It is standardly called von Neumann's no hidden variables theorem.

Here again, Bell's 1966 paper is gold. For it articulates the Achilles heel of von Neumann's theorem. Namely: von Neumann assumes that, whatever the advocate of hidden variables envisages as a state, they should accept that states ascribe expectations to self-adjoint operators, subject to the following linearity condition. Namely: a state ascribes as the expectation $\operatorname{Exp}(A+B)$ of the sum of self-adjoint operators $A, B$, the sum of their individual expectations. So $\operatorname{Exp}(A+B)=\operatorname{Exp}(A)$ $+\operatorname{Exp}(B)$.

Bell points out that any advocate of hidden variables, i.e. of postulated dispersion-free states (i.e. states ascribing values to all quantities) can-indeed should!-deny this condition: just as the pilot-wave theory does. In a judo-like manoeuvre ('use your opponent's momentum to defeat them!'), Bell invokes the Bohrian idea that if $A$ and $B$ do not commute, and so cannot be measured together, one cannot measure $A+B$ by measuring both $A$ and $B$ and adding the outcomes. So although $A+B$ is self-adjoint, and can in general be measured, doing so will require some other experimental arrangement, different from both that for $A$ and that for $B$. Agreed: quantum stateswhether vector states as discussed so far, or density matrices, to be discussed later-do obey this linearity condition, even if $A$ and $B$ do not commute. But, says Bell, that is a peculiarity of the quantum formalism, and by no means a compulsory feature of states as ascriptions of expectation values. (Cf 1966, Section III, p. 449, column 1. Incidentally, Einstein pointed out the same Achilles heel to Bargmann in conversation in the 1940s ... )

Beware: the entire algebraic approach to quantum theory will blithely endorse von Neumann's assumption. As we say in England: 'swallow it, hook line and sinker' . . . We will return to
this irony ...
Fifth: Finally, there is a further irony in relation to the first one above, about Bell's 1966 paper proving the relevant corollary of Gleason's positive theorem. This final irony is that the main drift of the Kochen-Specker paper of the following year (1967) is also to prove this corollary. This paper is rightly lauded. Its merits include: ...
(a) It connects the corollary to the quantum logic, lattice-theory, approach sketched above. The non-Boolean lattice of projectors with its delicately interlaced Boolean sub-lattices, is treated in a kindred manner to differential geometry's treatment of a manifold with its delicately interlaced charts. In particular, the operations, like taking the sum of two projectors, are partial. They are restricted to the summands being both in some Boolean sub-lattice. Thus the buzzword: partial Boolean algebra. ...
(b) It exhibits a specific finite set of projectors to which the values 1 and 0 cannot be assigned without violating the (apparently natural) assumptions like FUNC, above. It even relates these projectors to a specific quantum system (orthohelium). ...
(c) It is mathematically elegant and has engendered an enormous literature, pursuing e.g. the physical idea of 'contextuality', and invoking advanced mathematical fields like topos theory ... But the irony (and even sadness) is that the Kochen-Specker paper falls squarely within - and has had its great influence within-the quantum logic tradition. It does not discuss, as Bell 1966 does, the fact that the apparently natural assumptions are eminently deniable . . .

10: Complete (sets of commuting) operators, with continuous spectra :-
For operators $A_{1}, A_{2}, \ldots, A_{N}$ with continuous spectra, the definition of a complete set is given by the condition in the Theorem at the end of Paragraph 8, above: viz. that every bounded operator $B$ that commutes with all the $A_{1}, A_{2}, \ldots, A_{N}$ is a function of them: $B=f\left(A_{1}, A_{2}, \ldots, A_{N}\right)$. In fact, the Schrödinger representation of position is, by itself, a complete set. That is: if on $L^{2}(\mathbb{R})$, we define the self-adjoint operator $Q$ by $(Q \psi)(x)=x \psi(x)$, then:

Theorem: every bounded operator $B$ that commutes with $Q$ is a function of $Q$.
We briefly connect with the Dirac notation which brings out the analogy with a complete set of commuting operators, with pure point spectra. Thus we write:

$$
\begin{equation*}
\langle x \mid \psi\rangle=\psi(x) \text { and }\langle x \mid Q \psi\rangle=x\langle x \mid \psi\rangle \text { and }\langle x \mid f(Q) \psi\rangle=f(x)\langle x \mid \psi\rangle . \tag{33}
\end{equation*}
$$

Of course, $Q$ has no eigenvectors. (For if $x \psi(x)=a \psi(x)$, then $\psi(x)=0$ for $x \neq a$, and so: $\|\psi\|^{2}=0$.) But we use delta functions, so that writing

$$
\begin{equation*}
a \delta(x-a)=x \delta(x-a) \tag{34}
\end{equation*}
$$

"justifies" our writing

$$
\begin{equation*}
Q|a\rangle=a|a\rangle \text { and }\langle a \mid \psi\rangle=\psi(a)=\int_{\mathbb{R}} \delta(x-a) \psi(x) d x . \tag{35}
\end{equation*}
$$

And similarly

$$
\begin{equation*}
\psi(x)=\int_{\mathbb{R}} \psi(a) \delta(x-a) d a \text { "justifies" }|\psi\rangle=\int_{\mathbb{R}}\langle a \mid \psi\rangle|a\rangle d a ; \tag{36}
\end{equation*}
$$

so that any vector $\psi$ can be "thought of" as a linear combination of delta-functions Thus deltafunctions are like an orthonormal basis of eigenfunctions.

We similarly use delta-functions to express operators, especially their spectral resolutions. Thus for each $a \in \mathbb{R}$, let us define the 'dyad' $|a\rangle\langle a|$ by its action

$$
\begin{equation*}
(|a\rangle\langle a| \psi)(x):=\psi(a) \delta(x-a) \quad \text { i.e. } \quad(|a\rangle\langle a|) \psi:=\langle a \mid \psi\rangle|a\rangle . \tag{37}
\end{equation*}
$$

Then with $E_{x}$ in the spectral family for $Q$, we can write for all $\psi:\left(E_{x} \psi\right)(y) \equiv \int_{-\infty}^{x} \psi(a) \delta(y-a) d a=$ $\int_{-\infty}^{x}(|a\rangle\langle a| \psi)(y) d a$. So we can write

$$
\begin{equation*}
E_{x}=\int_{-\infty}^{x}|a\rangle\langle a| d a ; \text { and similarly } Q \equiv \int_{\mathbb{R}} x d E_{x}=\int_{\mathbb{R}} x|x\rangle\langle x| d x \tag{38}
\end{equation*}
$$

In the same way, the three operators $Q_{r}$ on $L^{2}\left(\mathbb{R}^{3}\right) \ni \psi(\mathbf{x}) \equiv \psi\left(x_{1}, x_{2}, x_{3}\right)$, defined at the end of Paragraph 7 by $\left(Q_{r} \psi\right)(\mathbf{x})=x_{r} \psi(\mathbf{x})$ are a complete set of commuting operators, with pure continuous spectra. On analogy with eq. 33 to 38 , writing $\mathbf{Q}:=\left(Q_{1}, Q_{2}, Q_{3}\right)$, we write:

$$
\begin{equation*}
\langle\mathbf{x} \mid \psi\rangle=\psi(\mathbf{x}) \text { and }\langle\mathbf{x} \mid \mathbf{Q} \psi\rangle=\mathbf{x}\langle\mathbf{x} \mid \psi\rangle \text { and }\langle\mathbf{x} \mid \mathbf{f}(\mathbf{Q}) \psi\rangle=\mathbf{f}(\mathbf{x})\langle\mathbf{x} \mid \psi\rangle . \tag{39}
\end{equation*}
$$

The operators $Q$ have no eigenvectors. But we again use delta functions, and write $|\mathbf{a}\rangle$ for $\delta(\mathbf{x}-\mathbf{a})$; so that writing

$$
\begin{equation*}
\mathbf{a} \delta(\mathbf{x}-\mathbf{a})=\mathbf{x} \delta(\mathbf{x}-\mathbf{a}) \tag{40}
\end{equation*}
$$

"justifies" our writing

$$
\begin{equation*}
Q|\mathbf{a}\rangle=\mathbf{a}|\mathbf{a}\rangle \text { and }\langle\mathbf{a} \mid \psi\rangle=\psi(\mathbf{a})=\int_{\mathbb{R}} \delta(\mathbf{x}-\mathbf{a}) \psi(\mathbf{x}) \mathbf{d} \mathbf{x} \tag{41}
\end{equation*}
$$

And similarly

$$
\begin{equation*}
\psi(x)=\int_{\mathbb{R}} \psi(\mathbf{a}) \delta(\mathbf{x}-\mathbf{a}) \mathbf{d a} \quad \text { "justifies" }|\psi\rangle=\int_{\mathbb{R}}\langle\mathbf{a} \mid \psi\rangle|\mathbf{a}\rangle \mathbf{d a} ; \tag{42}
\end{equation*}
$$

so that any vector $\psi$ can be "thought of" as a linear combination of delta-functions Thus deltafunctions are like an orthonormal basis of eigenfunctions.

We similarly use delta-functions to express operators. So we write

$$
\begin{equation*}
E_{x}^{(r)}=\int_{a_{r} \leq x}|\mathbf{a}\rangle\langle\mathbf{a}| d \mathbf{a} ; \text { and similarly } \mathbf{Q}=\int_{\mathbb{R}^{3}} \mathbf{x}|\mathbf{x}\rangle\langle\mathbf{x}| d \mathbf{x} \tag{43}
\end{equation*}
$$

11: Fourier transforms, and the spectral representation of $i \vec{\nabla}:-$
11.A: Basics:- We again consider $L^{2}\left(\mathbb{R}^{3}\right) \ni \psi(\mathbf{x}) \equiv \psi\left(x_{1}, x_{2}, x_{3}\right)$; with inner product $(\phi, \psi)=$ $\int_{\mathbb{R}^{3}} \phi^{*}(\mathbf{x}) \psi(\mathbf{x}) d \mathbf{x}$. For $r=1,2,3$, we define the operator $P_{r}$ by

$$
\begin{equation*}
\left.\left(P_{r} \psi\right)(\mathbf{x}):=-i \frac{\partial}{\partial x_{r}} \psi(\mathbf{x}) ; \text { or, writing } \mathbf{P}:=\left(P_{1}, P_{2}, P_{3}\right):(\mathbf{P} \psi)(\mathbf{x}):=-i \nabla \psi\right)(\mathbf{x}) \tag{44}
\end{equation*}
$$

(We set $\hbar$ equal to 1: the Fourier transformations will give us enough $2 \pi \mathrm{~s}$ to worry about!) These operators $P_{r}$ are self-adjoint. For they have the symmetric property $\left(\phi, P_{r} \psi\right)=\left(P_{r} \phi, \psi\right)$ (integration by parts), and they have dense domain, so that $P_{r}^{\dagger}$ is defined; and one can show that $P_{r}^{\dagger}=P_{r}$; cf. Paragraphs 3 and 7 of Section 2.

We will not linger on the interpretation of these operators $P_{r}$ as representing momentum. We just note that one is led to it by deep analogies with Hamilton-Jacobi theory and with Hamiltonian mechanics' treatment of Poisson brackets: analogies which were of course in the minds of the theory's inventors, especially Schrödinger and Dirac. And we will later discuss in detail the commutation relations between position and momentum.

The spectral representation of these operators is given by Fourier transforms of the spectral representation of the operators $Q_{r},\left(Q_{r} \psi\right)(\mathbf{x})=x_{r} \psi(\mathbf{x})$, discussed at the end of Paragraph 10. The main theorem is:

Theorem: For any $\psi(\mathbf{x}) \in L^{2}\left(\mathbb{R}^{3}\right)$, the sequence of vectors $\chi_{n}, n \in \mathbb{Z}$, defined by

$$
\begin{equation*}
\chi_{n}(\mathbf{k}):=(2 \pi)^{-\frac{3}{2}} \int_{-n}^{n} d x_{1} \int_{-n}^{n} d x_{2} \int_{-n}^{n} d x_{3} \exp (-i \mathbf{k} \cdot \mathbf{x}) \psi(\mathbf{x}) \tag{45}
\end{equation*}
$$

converges to a limit vector $F \psi$ such that $\|F \psi\|^{2}=\|\psi\|^{2} . F \psi$ is the Fourier transform of $\psi$. Besides, the sequence of vectors

$$
\begin{equation*}
\psi_{n}(\mathbf{x}):=(2 \pi)^{-\frac{3}{2}} \int_{-n}^{n} d k_{1} \int_{-n}^{n} d k_{2} \int_{-n}^{n} d k_{3} \exp (i \mathbf{k} \cdot \mathbf{x})(F \psi)(\mathbf{k}) \tag{46}
\end{equation*}
$$

converges to $\psi$.
A vector $\psi$ is in the domain of $P_{r}$ iff $k_{r}(F \psi)(\mathbf{k})$ is square-integrable: in which case (cf. integration by parts with boundary term vanishing)

$$
\begin{equation*}
\left(F P_{r} \psi\right)(\mathbf{k})=k_{r}(F \psi)(\mathbf{k}) \tag{47}
\end{equation*}
$$

Accordingly, we write

$$
\begin{equation*}
(F \psi)(\mathbf{k})=(2 \pi)^{-\frac{3}{2}} \int \exp (-i \mathbf{k} \cdot \mathbf{x}) \psi(\mathbf{x}) d \mathbf{x} \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(\mathbf{x})=(2 \pi)^{-\frac{3}{2}} \int \exp (i \mathbf{k} \cdot \mathbf{x})(F \psi)(\mathbf{k}) d \mathbf{k} \tag{49}
\end{equation*}
$$

Since $F$ preserves norm and has an inverse, it is unitary, and so preserves inner products; cf. Paragraph 4 of Section 2. So we have

$$
\begin{equation*}
\int(F \phi)(\mathbf{k})^{*}(F \psi)(\mathbf{k}) d \mathbf{k}=\int \phi(\mathbf{x})^{*} \psi(\mathbf{x}) d \mathbf{x} \tag{50}
\end{equation*}
$$

We write the inverse of $F$ as

$$
\begin{equation*}
\left(F^{-1} \phi\right)(\mathbf{x})=(2 \pi)^{-\frac{3}{2}} \int \exp (i \mathbf{k} \cdot \mathbf{x}) \phi(\mathbf{k}) d \mathbf{k} ; \text { i.e. as: } \quad\left(F^{-1} \phi\right)(\mathbf{x})=(F \phi)(-\mathbf{x}) \tag{51}
\end{equation*}
$$

Eq. 61 implies that

$$
\begin{equation*}
\left(P_{r} \psi\right)(\mathbf{x})=(2 \pi)^{-\frac{3}{2}} \int k_{r} \exp (i \mathbf{k} \cdot \mathbf{x})(F \psi)(\mathbf{k}) d \mathbf{k} \tag{52}
\end{equation*}
$$

and that in three dimensions

$$
\begin{equation*}
-i \nabla(\mathbf{x})=(2 \pi)^{-\frac{3}{2}} \int \mathbf{k} \exp (i \mathbf{k} \cdot \mathbf{x})(F \psi)(\mathbf{k}) d \mathbf{k} \tag{53}
\end{equation*}
$$

Writing $\left(Q_{r} \psi\right)(\mathbf{x})=x_{r} \psi(\mathbf{x})$, eq. 47 then implies

$$
\begin{equation*}
F P_{r}=Q_{r} F \text {; i.e.: } \mathbf{P}=F^{-1} \mathbf{Q} F \tag{54}
\end{equation*}
$$

This now implies how to express the spectral decomposition of $P_{r}$ in terms of that of $Q_{r}=\int x d E_{x}^{(r)}$; as follows. One checks that $\left\{F^{-1} E_{x}^{(r)} F\right\}$ is a spectral family, because $F$ is unitary and $\left\{E_{x}^{(r)}\right\}$ is a spectral family, Then using $F^{-1}=F^{\dagger}$, we compute:

$$
\begin{equation*}
\left(\phi, P_{r} \psi\right)=\left(\phi, F^{\dagger} Q_{r} F \psi\right)=\left(F \phi, Q_{r} F \psi\right)=\int x d\left(F \phi, E_{x}^{(r)} F \psi\right)=\int x d\left(\phi, F^{-1} E_{x}^{(r)} F \psi\right) \tag{55}
\end{equation*}
$$

So the spectral decomposition of $P_{r}$ is:

$$
\begin{equation*}
P_{r}=\int x d F^{-1} E_{x}^{(r)} F . \tag{56}
\end{equation*}
$$

11.B: Completeness:- We can now repeat for momentum, $\mathbf{P}:=\left(P_{1}, P_{2}, P_{3}\right)$, the discussion of complete commuting operators and their functions, that we had for position $\mathbf{Q}:=\left(Q_{1}, Q_{2}, Q_{3}\right)$. Cf. the end of Paragraph 7 (especially eq. 22 to 24 ), and the end of Paragraph 10 (especially eq. 39 to 43).

Thus we recall eq. 22 's definition of a function $f\left(A_{1}, A_{2}\right)$ of two commuting operators $A_{1}, A_{2}$ in terms of inner products $\left(\phi, E_{x}^{(1)} E_{y}^{(2)} \psi\right)$. Thus functions of the three two commuting operators $P_{1}, P_{2}, P_{3}$ are defined by integrals with respect to inner products

$$
\begin{equation*}
\left(\phi,\left(F^{-1} E_{x}^{(1)} F . F^{-1} E_{y}^{(2)} F . F^{-1} E_{z}^{(3)} F\right) \psi\right)=\left(F \phi, E_{x}^{(1)} E_{y}^{(2)} E_{z}^{(3)} F \psi\right) \tag{57}
\end{equation*}
$$

So for any function $f ; \mathbb{R}^{3} \rightarrow \mathbb{C}$, the operator $f(\mathbf{P})=f\left(P_{1}, P_{2}, P_{3}\right)$ is determined by inner products:

$$
\begin{array}{r}
(\phi,(f(\mathbf{P})) \psi)=\iiint f(x, y, z) d_{x} d_{y} d_{z}\left(F \phi, E_{x}^{(1)} E_{y}^{(2)} E_{z}^{(3)} F \psi\right) \equiv  \tag{58}\\
\left(F \phi, f\left(Q_{1}, Q_{2}, Q_{3}\right) F \psi\right)=\left(\phi, F^{-1} f(\mathbf{Q}) F \psi\right)
\end{array}
$$

So

$$
\begin{equation*}
f(\mathbf{P})=F^{-1} f(\mathbf{Q}) F \tag{59}
\end{equation*}
$$

Comparing this with eq.s 47 and 61 respectively, we deduce:

$$
\begin{equation*}
(F f(\mathbf{P}) \psi)(\mathbf{k})=f(\mathbf{k})(F \psi)(\mathbf{k}) \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
(f(\mathbf{P}) \psi)(\mathbf{x})=(2 \pi)^{-\frac{3}{2}} \int f(\mathbf{k}) \exp (i \mathbf{k} \cdot \mathbf{x})(F \psi)(\mathbf{k}) d \mathbf{k} \tag{61}
\end{equation*}
$$

We can also repeat for momentum, $\mathbf{P}$, the discussion in Paragraph 10 (especially the beginning) that position illustrates the result that a bounded operator that commutes with a complete set of operators is a function of them. Thus since $Q_{1}, Q_{2}, Q_{3}$ is a complete set of operators, so is $P_{1}, P_{2}, P_{3}$. For if $B$ is a bounded operator that commutes with the three operators $\mathbf{P}$, then $F B F^{-1}$ is a bounded operator that commutes with the three operators $F \mathbf{P} F^{-1}=\mathbf{Q}$. So there is a function $f$ of three variables such that $F B F^{-1}=f(\mathbf{Q})$. And so, eq. 59 implies:

$$
\begin{equation*}
B=F^{-1} f(\mathbf{Q}) F=f(\mathbf{P}) \tag{62}
\end{equation*}
$$

We can similarly now connect with Dirac notation for momentum-space: i.e with the variable $k$, or in three dimensions $\mathbf{k}$, replacing the variables $x$ or $\mathbf{x}$ respectively in eq. 33 to 43 . We do not need to exhibit the details; (for which, cf. e.g. Jordan Linear Operators for Quantum Mechanics, the end of Section 18, pp. 64-66). Thus for example, the analogue of eq. 43 is, as one would expect:

$$
\begin{align*}
F^{-1} E_{x}^{(r)} F= & \int_{k_{r} \leq x}|\mathbf{k}\rangle\langle\mathbf{k}| d \mathbf{k} ; \text { and similarly }  \tag{63}\\
& \mathbf{P}=F^{-1} \mathbf{Q} F=\int_{\mathbb{R}^{3}} \mathbf{k}|\mathbf{k}\rangle\langle\mathbf{k}| d \mathbf{k}
\end{align*}
$$

Philosophical Remark:- These last two paragraphs are a template for the later discussions (especially in the algebraic approach) of unitary equivalence: i.e. the idea that a single unitary operator $U$ "carries" each operator $A$ in an algebra of operators $\mathcal{A} \ni A$ to an element of another algebra: $U A U \in \mathcal{A}^{\prime}:=U \mathcal{A} U$. Thus recall from paragraph 2, in Section 1 that any two Hilbert spaces of equal dimension are isomorphic; and that this is reconciled with people's often talking about 'two theories using different Hilbert spaces' by the fact that the theories also involve quantities i.e. operators.

Indeed: Later, it will be important that for a quantum system with infinitely many degrees of freedom, i.e. a quantum field or a quantum statistical mechanical system in the limit of infinitely many components (e.g. an infinite lattice), one can need-in order to describe the various possible physical behaviours of the system-unitarily inequivalent algebras. Note that here 'infinitely many degrees of freedom' does not mean (it means 'more than'!) 'needing an infinite-dimensional Hilbert space'. For even a non-relativistic quantum point-particle on a line needs the latter, i.e. $L^{2}(\mathbb{R})$. So one says: a quantum field is an 'infinite (or: infinite-dimensional) quantum system' , and a quantum point-particle is a 'finite (or: finite-dimensional) quantum system'.

But in a sense that can be made precise in various ways, especially in the famous Stone-von Neumann theorem (which we will discuss later): a finite-dimensional quantum system does not need unitarily inequivalent algebras.

## 4 Operator algebras

We first give a glimpse of this field, introducing some jargon; then expound Schur's lemma for sets of operators; then discuss von Neumann algebras in more detail; and finally, give more detail about operator topologies.

1: Glimpsing operator algebras: von Neumann's theorem:-
Given a self-adjoint operator $A$, the polynomials in $A$ thus form a complex algebra, closed under taking adjoints (called a $*-$ algebra). If $A$ is bounded, this algebra has a norm. We can take the completion of the algebra in this norm: since a normed vector space that is complete in its norm is called a Banach space, this algebra is then called a Banach *-algebra. This is an abelian algebra, i.e. for any elements $X, Y$, we have $X Y=Y X$.

It is also an example of the abstract concept of a $C^{*}$-algebra: which is defined as any Banach *algebra whose norm (i) is sub-multiplicative (cf the last inequality in eq. 5), and (ii) obeys $\left\|A^{*} A\right\|=$ $\|A\|^{2}$.

In quantum theory on Hilbert space, $C^{*}$-algebras of operators are important. But they have the disadvantage that they do not in general contain projectors, not even the spectral projectors of their self-adjoint elements. Fortunately, there is an alternative "cousin" notion of algebra, von Neumann algebra, such that any von Neumann algebra is generated by the projections it contains.

Von Neumann algebras are characterised in a concrete way, i.e. as sub-algebras of $\mathcal{B}(\mathcal{H})$ for a given $\mathcal{H}$; in terms of a different topology on operators than the norm (also called 'uniform') topology we have been implicitly using hitherto.

Thus we say that a sequence $\left\{A_{n}\right\}$ converges to $A$ in $\mathcal{H}$ 's weak topology iff, for all $|\psi\rangle,|\phi\rangle \in \mathcal{H}$ : $\left.\left|\langle\psi|\left(A_{n}-A\right)\right| \phi\right\rangle \mid \rightarrow 0 .{ }^{1}$ Then we define a von Neumann, or $W^{*}$ algebra to be a $*$-algebra that is a

[^0]
[^0]:    ${ }^{1}$ This definition simplifies slightly by defining convergence in terms of sequences not nets. For details of the emen-

