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To prepare for philosophical aspects of quantum field theory, we begin with a review of mathe-
matical quantum theory, with some interspersed Philosophical Remarks. Apart from these Remarks,
the main themes here will be to build up to some intuition for the functional analysis ideas that
underpin the algebraic approach, which we will often see applied to quantum field theory. We will
also see some high points of quantum theory per se, such as Stone’s theorem, Gleason’s theorem and
superselection.

The main books ‘in the background’ of this review are:
T. Jordan. Linear Operators for Quantum Mechanics: Chapters 1 to 5. Wiley 1969; Dover 2006.
E. Prugovecki. Quantum Mechanics in Hilbert Space: Parts III, IV. Academic 1981; Dover 2006.

We especially recommend for this review, and for foundations of quantum theory, as a whole:
N. Landsman. Foundations of Quantum Theory. Springer 2017: especially Chapters 5, 6,7,9,10.
Open access: downloadable at: https://link.springer.com/book/10.1007/978-3- 319-51777-3

We also recommend for the early history of mathematical quantum theory, Landsman’s recent
survey: ‘Quantum theory and functional analysis’, arxiv: 1911.06630.
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over R, or over C). Inner products. For a vector space over C, we write
The Cauchy-Schwarz inequality: (¢, ¢)| < [|¥]|.]|¢]], with equality iff the
endent.

1: Vector spaces

S

tor space is complete iff every Cauchy sequence converges.
A Hilbert space is a complete inner product space: it is usually written as H.
It is separable iff it has a countable (finite or denumerable) basis.

By the way: One similarly says that a metric space (X,d) (i.e. X is a set; d: X? - R* :={r ¢
R|r > 0} with d(z,z) = 0,d(z,y) = d(y.z) and triangle inequality) is complete iff every Cauchy
sequence converges.

In fact, _ We define an equivalence relation between
Cauchy sequences of X. Roughly speaking: {x,} ~ {«]} iff {z,,} and {2}, } are ‘trying to converge
to the same point that is trying to be in X’. The set of equivalence classes inherits the metric from
(X,d) (Le. in a representative-independent way); and (X, d) can be isometrically embedded in the
set of equivalence classes.

Stulaly: given an incomplete fnner product space (sometimes caled a ‘pre-Hilbert space). we
can build its ‘canonical completion’ : which is a Hilbert space.

A subset of a vector space that is itself a vector space (so: closed under linear combination) is a
linear manifold. A linear manifold that is closed, i.e. that contains the limit vector of every Cauchy
sequence of vectors, is a subspace. For a finite-dimensional Hilbert space, every linear manifold is a
subspace. A subspace of a separable Hilbert space is itself a separable Hilbert space.

x1,$2, TNy TN+1; -

In general: each vector ¢ has a unique expression in terms of an orthonormal basis {¢,}: ¥ =
Y (¢n, ) n. One uses the Cauchy-Schwarz inequality, applied to partial sums, to show this.

s S s s s e

Agreed: one often hears remarks like ‘the two theories use different Hilbert spaces’, even when
the Hilbert spaces alluded to have equal dimension! That is because theories involve quantities, as

well s states (vectors in a Hilbert space). IS oserS o discrminating (logicallySrong) s ol
Ko veotors, should o mip one theory’s quantities in 0 the others| This will latcr be made precise
as And so often, remarks like ‘the theories use different Hilbert spaces’ mean
that the (equi-dimensional) Hilbert spaces are unitarily inequivalent. More, much more!, about this

later ....

Ortho-complements and projectors: if M is a subspace of a Hilbert space H, then M+ := {3 €
H | (¢,¢) =0 V¢ € H} is a linear manifold, indeed a subspace of H. Every ¢ € H has a unique
expression as a sum of two components in M and in M respectively: 1) = Y + ML

has an orthonormal basis (1, 0,0, ...), (0,1,0,0, ...
e (x1,22,...,2n,0,0,0,...), and these converge


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield



3: Spaces of functions—
i e of et eeas CARe O GO MAREERSOTS N want 1o say: | 0" (a)9(z) da is an
inner product.
(1): But an inner product requires: (¢,1) > 0 with equality only if ¢y = 0. And there are many
non-zero functions on, say [0,1], ¢ : [0,1] — C, with fol |y|2dz = 0.
(2): Secondly, in Riemann (i.e. elementary) integration theory, there are Cauchy sequences that do
not converge. Define f;, : [0,1] = {0,1} C R by f,(x) := 1 iff x is of the form &%, with m an integer
between 0 and 2"; and otherwise fy,(z) := 0. Then any two functions f,, f,/ differ at only finitely
many points; and for every n, [ f, = 0. But the limit of the sequence {f,} is the function f that
takes the value 1 on every integer-multiple of a reciprocal of a power of 2, and is otherwise 0. f is
not Riemann-integrable.

We will not give details of this and
the associated measure theory. But we note that the function f just defined (value 1 on every integer-
multiple of a reciprocal of a power of 2, and otherwise 0) is Lebesque-integrable and f[O,l] fdx = 0:
an intuitive result in that f takes value 1 on a ‘merely’ denumerable set of arguments.

For us, the benefits of adopting Lebesque integration can be summed up, in terms of our two
problems: as follows ...

way. For example, the equivalence class of the pointwise sum f 4 g of two representative elements,
f €[f] and g € [g], is independent of the representatives chosen. Besides, the equivalence classes [f]
of those functions f, whose square integral f |f |2d:v is finite, form an inner product space in a natural
way. That is: the inner product we intuitively want to have, viz. [ f*(z)g(z)dz is well-defined on
the equivalence classes, since the integral is independent of the representatives f, g that are chosen.
Thus returning to the original problem (1): the equivalence class of the zero-function, [0] 3 0, is the
unique vector with norm zero.

(under: almost
everywhere equality) of Lebesque-integrable functions f with finite square integral on, say [0, 1], i.e.
fol |f|?dx < oo, is complete. That is: it is a Hilbert space. Similarly for square-integrable functions
on the whole real line.
Thus we write, understanding the equivalence relation to be:
almost everywhere equality:—

1
L(0,10) = {0 [ :0.1] > ©. [ o de < oo} 5 L2R)i={[0] | ¥:R—C. [ [0 do < o0}
0
(1)
For example,
the functions {1,/2cos 27k, /2sin 27kz,...}, with & = 1,2,3,..., are orthonormal in L?([0, 1]);

and the theory of Fourier series teaches us that they are an orthonormal basis: every Lebesgue-
square-integrable function on [0, 1] is a limit of linear combinations of these trigonometric functions.

We stress again that any two Hilbert spaces over C of equal dimension are isomorphic as Hilbert
spaces. We “just map one orthonormal basis onto another”; (Section 2 will develop the theory of

unitary operators). This applies equally to the infinite-dimensional cases. So any infinite-dimensional
separable Hilbert space, e.g. _ i.e. our example in Paragraph 2 of a

Hilbert space whose elements are appropriate sequences of complex numbers. _

_ (But there are many conceptual and historical subtleties abut this; cf. e.g. F. Muller,
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“The equivalence myth: Parts I and II’, Studies in History and Philosophy of Modern Physics, vol.
28 (1997), pp. 35-61 and 219-247.)

And again, the wider point here concerns how expositions in physics texts often say that two
pieces of formalism involve “different Hilbert spaces”. One should bear in mind that in most all
such expositions, the Hilbert spaces concerned are of the same dimension, and so isomorphic—and
so some more fine-grained (discriminating) criterion for when to say two Hilbert spaces are “the
same” must be meant. We will return to this later: the main such criterion will of course be unitary
equivalence, which requires a bijection of quantities, i.e. linear operators, on the Hilbert spaces—mnot
just their being isomorphic.

(A): We of course recognise L?(R) as the (rigorous version of) the quantum state-space of a spinless
non-relativistic particle confined to the real line: the state-space with which we all first learnt wave
mechanics. Since the classical configuration space of such a particle is R, we see here the basic
idea that

This will later lead to quantization

theory. A general slogan, and notation, would be:

e already see here, in embryo, _ “how can we extract—how does

Nature deliver to us—a single classical fact, e.g. a particle being in a position X € R, from a function
¥ : R — C?” ... about which this document (this course?!) will—sorry!—mot say much ...

(C): Even if one sets aside the physical and philosophical measurement problem, the question
arises: _ That is: what motivations can be given for assuming the state space of
a physical system is a Hilbert space?

Various research traditions make this precise, and offer an answer. Here is a glimpse of three:

(1): |Quantum logic. This was initiated by in their ‘Logic of
Quantum Mechanics’ (1936), and flourished especially in the 1960s (the Geneva school of J. Jauch)
and later. _ about a physical system are partially ordered by a
sort of logical strength, endowed with logical operations of conjunction (and), disjunction (or) and
negation (not), subject to certain (judiciously chosen!) conditions, to make them a lattice, (usually:

This lattice is then shown in a _ to be represented
(2): fAlgebras of quantities’: C*-algebras. We have not yet discussed quantities. (In Section

2 below, we will review the usual treatment of them as self-adjoint operators on Hilbert space.)
So we have not yet seen the quantum-classical contrast as a matter of quantum theory allowing

non-comunutation of quantitics. But Wgo0ANCASE CATNbE HAAE T kg O A SySemIasNEIen
_ ‘re then introduced as mathematical superstructure

on top of the algebra of quantities: namely, details below. The
most developed version of this approach uses C*-algebras. More details later: here, we just note that
in such an algebra, you can multiply any two elements even if they do not commute—an allowance
about which you might well raise a philosophical eyebrow ... Then states on C*-algebras are shown
to be representable in the traditional i.e. familiar ways—phase space for classical systems, Hilbert

space for quantum systems. The buzzword is: _ applying to commutative,

respectively non-commutative, algebras.

(3): formation=fheoretic nd GperaMGRGIGPRAEHES] Tnspived by studics of quantum non

locality and Bell’s theorem, and the rise of quantum information theory, with its protocols for eg.
teleportation: various approaches take as primitive a set of probability distributions, for various

by
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quantities (normally with a finite discrete set of outcomes), on various individual and joint systems
(normally finite-dimensional). Thus conditions like _re promi-
nent. Again, the Hilbert space formalism (normally finite-dimensional) is recovered with appropriate
representation theorems. Example: D’Ariano, Chiribella and Perinotti, Quantum Theory from First
Principles, CUP.

(D): The question FWiiy/Siould Giities e Eepeseitea by LA OHUOPEIatois?) also has o
very different aspect or meaning, that is not touched on in the literature under (C). After all, there
is nothing to prevent one associated experimental outcomes with complex, e.g. imaginary, numbers:
‘I can paint ‘5i metres’ on the dial of an apparatus measuring position!” In Section 2, we will report
a helpful classification (due to Roberts) of the possibilities for a quantum physical quantity to be
represented by an operator that is not self-adjoint.

(E): [The pilot-wave theory is a noble tradition for solving the measurement problem. But it has
been developed entirely using intuitive wave mechanics, not L? spaces.

Given a vector space V over the field R or C, the dual space V*
F :V — R (or C). We recall that

consists of the linear functionals

each 1 in an inner product space defines a linear functional Fy, by:

Fy(¢) = (¥, 9). (2)
And if V is finite-dimensional, with {¢;} an orthonormal basis: we assign to each F' € V*, the vector

Yp =3 F(¢;)*¢; € V. Applying the definition in eq. 2 to this ¢p yields F again. That is: for any
vector ¢ = X, (¢4, @), we have:

F(¢) = %i (91, 0)F(¢i) = (Vr, 9). (3)
To get a corresponding basis-independent correspondence for an infinite-dimensional inner prod-

Namely: that F' is continuous iff: ¢, — 1 implies that F(¢,) — F(¢). Then we have

For every continuous linear functional F' on a separable Hilbert space, there is a unique ¥r € H,
such that F(¢) = (¢Yr, ¢).

Of course, in Dirac notation the correspondence between linear functionals and vectors induced
by the inner product is built in to the notation. The linear functional F, is denoted by (1|, and the
two sides of eq. 2 are written as (¢|@).

1: Linear operators and matrices: the elements recalled ... On a suitable space of functions, a linear
operator might be defined by

_ dy(a)
dx

(A9) () - L (A)() = / alz, y)i(y)dy (4)
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We shall generally assume that all Hilbert spaces are separable.

(If H is finite-dimensional, then

The norms of bounded linear operators obey:

The first three assertions follow straightforwardly from the same properties of the norm for vectors
in H. So we have a normed vector space of linear operators.

The first three assertions follow straightforwardly from the same properties of the norm for vectors
Thanks to the las
B(H) is closed under taking polynomials. It is also complete in the norm, i.e. closed under taking

limits. We shall shortly discuss adjoints and see that B(H) is also closed under taking adjoints:
which will lead us to algebras of operators.

A bounded linear operator on a separable Hilbert spaces can be represented by a matrix.

3: Inverses:—
A linear operator A has an inverse if there is linear operator B with AB = 1 = BA. Theorem: A

has an inverse iff: Vi, 3¢ with ¢» = Ag.

(i): there is no non-zero vector ¢ such that A¢ = 0;

(ii): the set {A¢1, ..., Apy,} is linearly independent;

(iii): there is a linear operator B such that BA = 1;

(iv): the matrix corresponding to A has a non-zero determinant.

(i) and (ii) hold.
Also define B as “delete the first component and left-shift”: B(z1,z2,x3,...) := (22,23, ...); then
(iii) holds. But A has no inverse. For if ¢ = (z1, 22, z3,...) with 21 # 0 then there is no ¢ such that

W= Ag.

4: Unitaries:—

H, cond1t10n (a) is needed)

Every unitary operator is bounded, with ||U|| = 1.

Theorem: If U is unitary, then (U4, U¢) = (¢, ¢) for all ¢, ¢. Corollary: It follows that the

A “partial converse to the Corollary”: If U is bounded, and the U-image of some ortho-basis is
an ortho-basis, then U is unitary.
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5: Adjoints and Hermitian operators—
Let A be bounded, and so continuous. Then for each 1) € H, the linear functional F*! defined by

FW(¢) = (¢, Ag) (6)

is continuous. And so, by the Riesz theorem (Section 1: 5), there is a unique vector, call it Af(z))
such that FI¥l(¢) := (AT(¢), ¢).
AT is trivially linear. Using the Schwarz inequality (applied to ||Af()[|? = (1, AAT)), one has:
Theorem: If A is bounded, then A is bounded, and [|Af|| = ||A]].
One checks that: AT = A; (AB)! = BTAT; (aA)t = a*AT; (A4 B)f = AT 4 BT,
This means: (¢, AY) =

(A, ). That is: (¢, A) = (1, Ap)*. So for all ¢, we have: (¢, Ay) € R.

Example: On L?([0,1]), we define (A%)(z) := z¢)(z). This A is bounded with ||Ay|? < ||¢][%;
and so ||A|| = 1. And A is Hermitian, since fol o*(z).x(z) de = fol [z¢(z)]*.4b(z) dx.
But a “corresponding definition” on L?(R) is of course not bounded. But multiplying by a suitable
“damping factor” gives a bounded and Hermitian operator on L?(R), e.g. we define (V¢)(x) =
(exp [z])¢p().

Theorem: If A is bounded, and has a bounded inverse A~!, then (AT)~! exists and (Af)~! =
(AT

Corollary: If A is bounded and Hermitian, and has a bounded inverse A~!, then A~! is Hermitian.

G GEATO S A ARAIORHESIONFEAINBGIR] As in: if A s bounded, then its real and

imaginary parts defined by

Red := Z(A+ A") ; ImA :=

: - ah 7

are bounded and Hermitian; and A = ReA + ImA.

In the same way, unitary operators are analogies of complex mumbers of absolute value one. Wo

have:—
Theorem: A linear operator U is unitary iff UTU =1 = UUT.

For bounded operators A, B, one readily checks using the adjoints that for any ortho-basis {¢},
the representing matrix (c;i) of the product C' := AB is the product of the representing matrices,
that is: Cjk = Eiajibik.

6: Projection operators:—
Recall from Section 1:2 that if M is a subspace of H, then M+ := {¢p € H | (¢,¢) = 0, Vo € H}
is also a subspace; and every 1 € H has a unique expression as a sum of the two components:
Y = Ym + Y. So we define the projection/projector Eag : H — H, by Epm() := hpmg.

implication, one defines the set M to be the range of F, shows it to be a subspace, and shows that
for any vector ¢, (1 — E)(¢)) € M~ etc.)
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7: Unbounded operators:—

more formally, in the Schrédinger representation of the canonical commutation relations on L?(R).
Thus we want to define (Q¢)(x) = z¢(x). This implies that ||Qv[|* = [ |z¢(z)|?dz can be
arbitrarily larger than |[¢|> = [ [¢(x)|* dz, so that Q is unbounded.

But beware: unbounded operators introduce complexities about the domain of definition of the
operator. For quantum theory needs unbounded operators A with the algebraic property of being
Hermitian, i.e. (¢, Ay) = (Ap, 1) for all ¢, in the domain of A. And there is a ...

So in order for quantum theory to have the unbounded operators A with the algebraic Hermitian
property, i.e. (¢, AY) = (Ap, ) for all ¢, in the domain of A, that it needs: we must consider
operators A with domains of definition less than all of H. Hence

Namely:

dom(AT) := {1 € H |there is a vector ¥ such that V¢ € dom(A) : (¢,1)) = (Ap, 1) .}

Then we define AT by AT : ¢ € dom(A") — ¢. This defines Af(¢)) uniquely (because dom(A) is
dense); and A' is linear, and dom(A') is a linear manifold.

for all ¢, v in the domain of A. Then by the discussion just above, we conclude that: for all v in the

domain of AI ATiiiii is deﬁnedI and ATiiii = Aiiii That is: A is an extension of A.

We now apply this discussion to our paradigm example, position. We define Q on L?(R) by
specifying that dom(Q): =. {¢| [; |z¥(2)|* dz < co}. This domain is dense. (For we can approxi-
mate an arbitrary ¢ € L?(R) by the “truncated” functions 1, (n € Z) that are defined to be equal
to ¢ on the interval [—n,n], and to take the value 0 outside that interval. Clearly v, — 1; and
xp () is square-integrable.) Then on this domain, we define: (Qv)(z) := z¢(x). Then Q is clearly
symmetric, since [ ¢*(2).2¢(z)dz = [; [zé(2)]*.¢(z) dz. So QT is defined and extends Q. But is
the domain of Q' in fact larger than the domain of Q? In fact it is not larger: (cf. Jordan, Linear
Operators for Quantum Mechanics, Section 11, p.31). So Q' = @, and so _ also

known as: Hermitian.

A symmetric operator that cannot be extended to a larger domain is called maximal symmetric.
Theorem: Every self-adjoint operator is maximal symmetric; (but not conversely)

An unbounded operator cannot be continuous.

- as follows.

We say an operator A is closed iff: if (i) a sequence of vectors 1, in dom(A) converges to a vector
¥ and (ii) the sequence of vectors A(1;,) converges to a vector ¢, then ¢ € dom(A) and Ay = ¢.

Theorem: If dom(A) is dense, then A' is closed. So every self-adjoint operator is closed.

It is natural to ask: ‘What are the conditions for a symmetric operator to be self-adjoint?’
As just noted, being maximally symmetric is not sufficient. What about being symmetric and closed?
This also turns out to be not sufficient. But in item (A) of paragraph 4 (Philosophical Remarks) of
Section 3, we will get an answer. This answer relates to Philosophical Remark (D) in paragraph 4 of
Section 1. That is: the answer relates to the idea that a quantity can be represented by an operator
that is not self-adjoint.


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield



We assume a complex separable Hilbert space.

1: Eigenvalues and eigenvectors—
The definition of eigenvalue and of eigenvector is exactly the same for an infinite-dimensional Hilbert
space, as for the finite-dimensional case. The following elementary but important results are derived
exactly as for the finite-dimensional case:

1: If T is a linear operator with an inverse 77!, then A and TAT ! have the same eigenvalues.

2: The eigenvalue of a Hermitian, respectively unitary, operator is real, respectively of absolute
value 1.

3: Two eigenvectors of a Hermitian, or of a unitary, operator, corresponding to different eigen-
values are orthogonal.

Let A be Hermitian or unitary. Let a1, as, ..., a, ... be its eigenvalues, with eigenspaces M1, Mg, ..., My, ....

Then the orthogonal sum Fig(A) := @My is the subspace of H spanned by eigenvectors of A. Of
course, for a finite-dimensional complex Hilbert space, Fig(A) = H.

We say that

This
-rem: Let Erq be the projector onto M. Then M reduces A iff ExqfA = AEp iff (1-Ep)A =
A(l — Enm).

Theorem: Let A be Hermitian or unitary: then Eig(A) reduces A. So a Hermitian or unitary
operator splits in to two separate parts: one part acting on Eig(A), and represented there, with
respect to an eigenbasis, as a diagonal matrix; the other part acting on Eig(A)*.

2: Figenvalue decomposition:—

So let A’s real eigenvalues be, in ascending order: a1 < as < ... < ap < ... < @, with corre-
sponding eigenspaces M. Let I be the projector on to My. Then the spectral decomposition of A
is just
(8)

+ = 0 for x < a1, and E, = 1 for

For each x € R,
that x — e < aj, .

esides: (9,
jumps in value by

(¢,1,

Similarly, for a unitary operator U in the finite-dimensional case. Its eigenvalues are uj, = e,

where in ascending order: 0 < 61 < 0y < ... < O < ... < 0, < 27. Then we define for each real
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number z, E, := ©g, <, [. So we can write:

2

U= /O e=dE, 5 (6,U) = /0 ¢ d(6, Eat)) (10)

3: Spectral decomposition:—

(ii) cont_inuity from the right: for all ¢ and for all z: if ¢ > 0, then E, . — E,9, as € — 0;
(iii) for all ¢: Eyp — 0 as ¢ — —o0, and E,1) — ¢ as x — 400. The main theorem is then...

su_

(11)

This obviously generalizes the finite-dimensional spectral theorem for self-adjoint operators, eq. 8.
Similarly for unitary operators U, with £, =0 for z <0, and F, = 1 for x > 2

2 2m
(¢, U1/1)=/0 e d(¢, Exp) ;3 so we write Uz/o e dE, ; (12)

which generalizes the finite-dimensional spectral theorem for unitary operators.

We again take
our paradigm example, “position”; but as a quantity on the real interval [0,1], i.e. as a linear
operator on L?([0,1]). We define E, on L?([0,1]) as “chopping the function off above z”. That is:
(Ez)(y) :=9Y(y) for y < x, and (Ey¢)(y) := 0 for y > x. Then

x+e
|Beect = E)P = [ [P dy 0, as= o, (13)

and {FE,}zer is a spectral family. Now define A on L2([0,1]) by (A¢)(z) := 2(x). Then A is
bounded and self-adjoint. For all ¢, ¢ € H, we have

1
/R 2 d(6, Eu)) = /R vd /0 ()" (Ea) () dy = (14)
/R vd /0 S(y) V() dy = /0 o(a) z() dz = (b, Ag) .

So {E;}.er gives the spectral decomposition of A.

This {E,}.er is continuous from the left, as well as from the right. We have

(0. 5:0) ~ (0 Eae) = [ 0o}y =0, as e 0. (15)

We say that {Ey}zer jumps in value at x if for some vector ¢, (Ey — Ey_.)Y does not converge
to 0, as € — 0. Otherwise, we say that {E;}zer is continuous at x.

10
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And similarly for the Schrodinger representation of position in R?. We postpone the details until
Paragraph 7’s discussion of functions of commuting operators. But the idea will of course be to
define each of the three components of position as operators on L?(R3) 3 ¥(x) = v(x1, z2, v3); with

inner product (¢,v) = [gs ¢* (%) (x) dx.

ccordingly, we define:—-
(1): the :=sp(A) :={x € R| E; increases} = {z € R|z ¢ interval (a,b) on which E, is constant};
(2): the of A:={x € R|E; jumps} = {x € R|x is an eigenvalue of A};

of A := {z € R| E, increases continuously}.

adjoint operator is bounded iff its spectrum is bounded.
We say that self-adjoint operator A is positive iff for all ¢, (1, Ayp) > 0.

Theorem::A self-adjoint operator is positive iff its spectrum is non-negative.

(A): We return to the Philosophical Remark (D) in paragraph 4 of Section 1: the idea that a quantum
physical quantity can be represented by an operator that is not self-adjoint. Cf. _

(Preprint: http://philsci-archive.pitt.edu/14449/). On p. 153, Roberts reports that being self-
adjoint is a “two out of three” property. That is:
A closed, densely-defined linear operator A is self-adjoint if it satisfies any two of the following three
properties:

(1): A is normal. That is: AAT = ATA;

(2): A is symmetric: (¢, A) = (Ap, 1)) for all ¢, 1) in the (dense) domain of A.

(3): A has real Spectrum, where we define ‘Spectrum’ in a more general way than we did
‘spectrum’ above: namely as the set Spec(A) := {z € C| (A — z.I) has no inverse}. So the condition
is: Spec(4) C R.

(B): It would be hard to over-emphasise the importance of the spectral theorem, summed up in
the second equation of eq. 11: A = [z dE,. As we said: this obviously generalizes eq. 8: which is

central to the quantum theory using finite dimensional Hilbert spaces. _

Hence our use

of scare quotes around “Position” in Paragraph 3’s example on L?([0, 1]).

(B1): The first point returns us to (A). Namely: because we think of the eigenvalues in the
spectral theorem as the possible values of the quantity, as the system’s “score” for the quantity,
we tend to think that the mathematical fact that x in the spectral theorem, i.e. in eq. 11 for any
operator, must be real, forces on us the conclusion that “scores” for physical quantities must be real.
(This thought is no doubt reinforced by the facts that (i) the quantum particle on the line is so
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entrenched as the basic example in wave mechanics, and (ii) a classical particle’s position is a real
number.)

But that is a petitio principii, i.e. it is begging the question. It is only because of choosing
a self-adjoint operator that the integrand in the spectral theorem is real. After all: consider the ¢®
integrand in the spectral theorem for unitaries, i.e. in eq. 12.

(B2 e o oS lonEe AANOFE APORERE) 1t i about the way that SpageNanAMg
iarently get different freatments in. quantum fheory [Thvs it is often said that in non-relativistic

quantum theory: position is a dynamical variable, namely represented by the self-adjoint operator
Q : Y(x) — z1p(x) as we have discussed; but that time is not such a variable—indeed, there is no self-
adjoint operator representing time. (Indeed, there is a line of argument, originating from Pauli, that
there cannot be such an operator.) And people often go on to say that in a relativistic theory, space
and time should get similar treatments: which indeed they do, in quantum field theory—namely, by
both space and time being parameters/indices of the fields, as in ¢(x,t), i.e. neither space nor time
being operators.

All this folklore is ...
Here we just pick out

true enough as far as it goes. But there are many subtleties hereabouts!

‘Time in quantum mechanics’, American Journal of

Physics 70. 501-306. The second and third are abont time-energy uncertainty, and localisation.

(B2a): Time as a physical quantity:— Hilgevoord emphasizes that _
[(2) space and time coordinates; i.e. labels (x,y, z) of spatial points, or (z,y, z,t) of spacetime

point-events: which labels can then function as coordinates of point-sized systems or physical events;
from:

especially of a point-particle (subject to
equations of motion, whose values determine those of other quantities e.g. energy).
Then Hilgevoord’s point is that the (a) vs. (b) contrast is valid in both classical and quantum theory,
and in both relativistic and non-relativistic theories. And thus the folklore’s emphasis on quantum
theory having a position operator matches classical physics’ having position as a dynamical variable
of a point-particle. Since the latter is written as ¢ (especially in Hamiltonian mechanics), and is thus
notationally well-distinguished from the spatial coordinate x (or (z,y, 2z)), Hilgevoord points out (p.
303) that in wave mechanics,
rather than the usual (universal! ... and followed herein!
We agree completely! For recall our first Philosophical Remark (A) in Paragraph 4 of Section 1.
Namely: the arguments of the complex-valued wave function are to be classical configurations, i.e.
values of the dynamical variables ¢, not “mere” spatial positions in the (Lucretian!) “void”.

Besides, it follows that, contrary to the suggestion of the folklore, some good sense can be made
of a “time observable”, i.e. time as a physical quantity—just like position is a physical quantity, in
its guise as a dynamical variable. Thus Hilgevoord says (p. 302):

in the same way as the position variable ¢ of a point particle resembles
the space coordinate x? _ A clock stands,
ideally, in the same simple relation to the universal time coordinate ¢ as a point particle
stands to the universal space coordinate x. We may generally define an ideal clock as
a physical system describable by a dynamical variable that, under time translations,
behaves similarly to the time coordinate t.

For more on time observables, cf.

Stidics i Histors and Philosophi of Physics 47, 50-54, htp:/ /philsci-archive.pitt.cdu/ 10600/ (A

large collection of research articles is Muga, G., Sala Mayato, R. and Egusquiza 1., ed.s (2008) Time
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in Quantum Mechanics, Springer: two volumes.)

We just make a broad philosophical remark:— Physics—science!l—aims to describe, indeed pre-
dict, how the values of variables vary as a function of . . . the values of other variables! Thus it is
perfectly legitimate, even useful, to ask, for a body that is e.g. accelerating: ‘what is the position ¢
as a function of the momentum p?’, That is: one can ask for ¢ not as a function of time.

But n classical and quantum physics,
and relativistic and non-relativistic physics, and in an Hamiltonian or Lagrangian framework:

_ (Here, external means, at least: not interacting with the system

under investigation.) But as the Hilgevoord quote (and other papers, e.g. by Paul Busch) brings
out: this external time need not be some unphysical idealization: it can be a dynamical variable of
an appropriate clock system.

(B2b): _— For the time-energy uncertainty principle, we just note that:

(i) a philosopher’s introduction is at: J. Butterfield, ‘Time in quantum physics’, http: //philsci-
archive.pitt.edu,/9287/;

(ii) a critique of widespread folklore that the principle explains particle creation by temporary
violations (and briefer, the larger the violation) of energy conservation (!), is at: B. Roberts and J.

Butterfield (2020), {Timeé-energy uncertainty does not create particles’, http://philsci-archive.pitt.edu/17443/

(B2c¢): - There is another deep aspect of how space and time are treated in quantum
theory. Namely: the contrast between particle and field, and especially:
(i) the subtleties of localisation of particles in relativistic quantum theories: e.g. Newton-
Wigner localization, and
(ii) in quantum field theories. particles being excitations of a quantum field, and so ‘particle’
being a derived—and even an emergent or approximate—concept.
We discuss (i) and (ii) later, when we turn to quantum field theory.

5: Functions of an Operator—
Let A be a self-adjoint operato i
valued function on the real line:

Let f be a complex-

(16)

which for f continuous can be t
(1): for f(z) = x, f(A) =
(2): for f(z) =1, f(A )—1 SmcefRd(¢ Eyp) = (¢

»P);
(3): (f +9)(A) = f(A) +9(A) and (cf)(A) = c(f(A));
(4): we define (fg)(z) := f(x)g(x), so that (¢, (fg)(A)¥) := [; (fg)(x) d(, Earp) = [ f( d(¢, Ex1)),

and then we compute that

[ @i B = [ [ g B = [ 1w ] s = a7
+oo
£(@) (s Eug(A)) = (6, F(A)g(A)) . (18)

—0o0

So we conclude that (£g)(4) = £(4)g(A). and thus thot FiFGHOHSIOHHEGREEROEACOMHEE
cach other.

So (5): polynomial functions are defined in the natural way. If f(z) = co+c12+ cox? + ... +c 2",
then f(A) =co+c1A+ A% + ... + ¢, A™.
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(6) If we define (f*)(z) := (f(x))*, then we compute that

+oo +oo
(6, [f(A]TY) = (¥, f(A))" = | fl@)"dv, Eee) = /_ (f)(@)d(d, Ext)) ; (19)
so that [f(A)]" = (f*)(A). So if f is a real-valued function, f;R — R, f(A) is also self-adjoint. And
if f*f =1, then f(A) is a unitary operator since [f(A)]'f(A) =1 = f(A)[f(A)]!.

(7): f(A) is positive if f(z) > 0 on the spectrum of A. For just consider: (¢, f(A)¢) =
[ f(x)d||Exo||?. Similarly, we deduce:
(8): f(A) is bounded if | f(z)| is bounded on the spectrum of A.

6: Stone’s Theorem —
Given a self-adjoint operator H = f_Jr;o xdE,, we define for all t € R: (¢, Up)) := fj;o e d(p, Ex).
Then Uy is an operators, viz. Uy = el and U; is unitary since (e/%)*.e#* = 1 (cf. the end of (6)
above). Evidently, Uy = 1; and since eei's = ¢i(t+1)7 we have U,Uy = U;yy. The converse of this
is...

nd
the limit vector

1
is H;
(2): if a bounded operator commutes with all of the Uy, then it commutes with H.

Using (1), we infer: If Uy € dom(H), then: 7 (Uar — 1)Uph) — HUwp, as At — 0. That is:

1
E(UH_At — Ut)’(p — HUt’lp, as At — 0 (20)
which we write as the “Schrodinger equation”:

i 2 V) = HUW. (21)

7
With the Spectral Theorem in hand, we can rigorously discuss taking functions of commuting oper-
ators. This will lead us, in Section 4, to algebras of operators: at first, abelian algebras and then to
non-abelian algebras.

@nite then Hheir spectral Projectoss commute, Indced. there is o .

Theorem: Let A be self-adjoint with spectral decomposition A = f xdF,; and let B be bounded,
self-adjoint and AB = BA. Then BE, = E,B.
Proof: If A has pure point spectrum, A = ¥ ax Iy, the proof is elementary. If A is unbounded,
one needs a more careful statement to deal with issues about domains.
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Given f :R? = C,(z,y) — f(z,y), we define f(Ay, As) for two commuting self-adjoint operators
Alv A2 by

(6. F(Ar, A} //fxy ) dody (6, ELE2) | forall ¢, € M. (22)

Sums, scalar multiples, and products of such functions are defined in the obvious way. One shows
that:
[f(Ay, A9)]T = (f*)fA1, As); so that real functions f define self-adjoint operators f(Ay, As)
and functions f for which f*f =1 define unitary operators f(Aj, As);
f(A1, Ag) is positive if f(x,y) > 0 on the cartesian product of the spectra of Ay and A ;
f(A1, Ag) is bounded if f(z,y) is bounded on the cartesian product of the spectra of A; and
As.
Compare items (5) to (8) at the end of Paragraph 5 above.

Similarly of course for functions of three commuting operators, as in the paradigm example:
the Schrodinger representation of position in R3. Consider L?(R3) 2 1 (x) = v¥(x1,z2,73); with
inner product (¢,) = fR3 ¢*(x)(x) dx. For r = 1,2,3, we define the self-adjoint operator @, by
Qr(x) = 2,1(x). Then in the spectral decomposition

Qr—/RxdEx (23)

the projectors E! are defined by :(EL¢)(y) = ¢(y) for y with y, <z, and (EL¢)(y) = 0 for y with
yr > 2. Then one has

(f(Q1,Q2,Q3)Y)(x) = f(z1, 22, 23)Y(X) . (24)

Let Aq, Ao, ..., Ay be mutually commuting self-adjoint operators with pure point spectra; each with
their spectral decomposition, r =1,2,..., N

Ay =1 (25)

Then for all 7, s and j.k, we have: IIET)IJ(-S) = I](-S)I,gr). And for any j, k, ...[, the product 1;1)1122)...IZ(N)
is a projector. Namely, the projector onto the subspace of simultaneous eigenvectors with corre-
sponding eigenvalues, i.e. the space of vectors ¢ with Ay = agl)z/), Axp = a,(f)w, e AN = al(N)z/).
Some of these projectors may be zero: corresponding to combinations of eigenvalues that are not, in
philosophical jargon!, co-possible or compossible.

These subspaces are orthogonal, i.e.

1P 101D 1N = 655660 10 121N (26)

and complete, i.e.
2SS IV Y =1 (27)

If none of these projects onto a subspace of dimension larger than one, we say that {A;, As, ..., An}

is a'complete set of commuting operators! Then choosing eigenvectors of length one. and labelling

them with their eigenvalues, i.e. choosing an orthonormal eigenbasis, we can write in Dirac notation:

11O 1~ 1D o) (0 Dal® o) (28)
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1)a§€2) ...al(N)>

The orthonormal eigenbasis {|a§-
of the functions f(Az1, As, ..., Ax) as diagonal matrices:

} gives a spectral representation of Ay, As, ..., Ay and

(aMal? af™ | £(A1, Az, s AN)0) = f(@Val? af™) (alVal? af™M 0). (29)

The selection of a self-adjoint operator with pure point spectrum, and so of a complete family of
orthogonal eigenspaces, is at the heart of not just

of quantum theory. Besides, the main issues are already clear in the case of finite dimensional Hilbert
spaces. (Indeed, they are clear for real Hilbert spaces: for which, of course, ‘self-adjoint’ is replaced
by ‘symmetric’ in the sense of elementary matrix theory, i.e. the matrix elements a;; obey: a;; = aj;.
Of course, this is not the sense we defined above!)

_ we here confine ourselves to some main ideas about _

Recall Philosophical Remark (C) (1), about quantum logic, in Paragraph 4 of Section 1. It
concerned the lattice £ of projectors (equivalently: subspaces) of Hilbert space. Selecting a com-
plete family of orthogonal eigenspaces, {F;} say, amounts to picking a sublattice of L: one that is
Boolean. More precisely:

The other elements of the sublattice are given by all the possible sums
s se atoms.

of intersection N over addition +, an
That is: with E, F, G being three subspaces, E, F,G < H, the distributive laws are:

EN(F+G)=(ENF)+(ENG); and E+ (FNG)=(E+F)N(E+G) (30)

These equations are easily proved for F, F, G mutually orthogonal (as are the atoms); cf. elementary
projector algebra. But they also hold for the various possible sums of atoms. -

Then the first equation of eq. 30 would read: E = 0, and the second
ead: £ = H. Both of which are false.

We say that roughly speaking ‘Boolean’ means that the distributive laws hold: because we are here
neglecting conditions about the behaviour of the complement, i.e. the unary operation on subspaces,
E — E*, or equivalently for projectors, E + 1 — E.

Three final remarks about this lattice-theoretic perspective:

(1): Since_ i.e. two arguments can map to the same value,

a self-adjoint operator B being a function of another A, i.e. B = f(A), means that the sublattice of
L that is defined, as sketched above, by B (with B’s eigenspaces as its atoms) will be a sublattice of

the sublattice defined by A. In short: coarse-graining.

Note also that
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under interpretation/philosophy below. For it means that imposing conditions on the assignment
of values to the operator B (and perhaps some other operator with which B commutes) can have
consequences for the values of operators A and C that do not commute.

(2): Later, when we discuss states i.e. probability distributions for the values of quantities
(and so for the values 1 and 0 for projectors),

o be defined on.

(3): When we consider the algebraic approach to quantum theory, _

The rough picture, here stated only

for bounded operators, is:

(3A): Although the elements of an algebra ‘go beyond’ projectors, by including also self-
adjoint operators (indeed, arbitrary real linear combinations of projectors: which can then be spec-
trally resolved), and then also skew-adjoint operators, the projectors are the building blocks of the
algebra; and so the abelianness of the algebra is caught by the mutual commutation of the projectors.

(3B): The commutation of projectors [E, F] = 0 is equivalent to a neat lattice-theoretic
expression of their ranges (1l-eigenspaces). If we now write E, F for the ranges, it is (using @ to

signal that the summands are orthogonal):

E=(ENF)®(ENFY); and F=(ENF)® (ELtNF). (31)

we note:
The selection of such an operator can be interpreted as choosing to measure the quantity it represents,
i.e. choosing an experimental context. And

_f. e.g. his essay in P.A. Schilpp ed. Albert Einstein: Philosopher-

Scientist

Later. after we introduce states, we will make simultancous measurability more rigorous. As we

For the moment, we just note that for a finite dimensional (indeed
real or complex) Hilbert space, it is natural to define:

(the quantities represented by) two self-adjoint operators A and B are co-measurable
along the following lines:

‘a measurement of one quantity does not disturb a pre-existing value of the other quantity’.
And it is natural to make ‘pre-existing value’ more precise in terms of an outcome/result (“pointer-
reading”) from an immediately preceding measurement process. That is: we imagine a measurement
of A yields some outcome/eigenvalue a; then an immediately succeeding measurement B yields some
outcome/eigenvalue b; and then an immediately succeeding second measurement A is done and yields
some outcome/eigenvalue a’.

So in this scenario with its three successive acts of measurement, it is natural to define:

‘measuring B does not disturb the measurement of A’
as follows:

‘Whatever are the outcomes/eigenvalues a,b of the first two measurements (and whatever
probabilities our theory may ascribe to them), the third measurement (i.e. the final = second
measurement of A) is bound/certain to give the same outcome/eigenvalue as the first one did:
a=a.

So let us say that A and B are co-measurable iff: measuring B does not disturb the measurement
Here, ‘vice versa’ means that also, measuring A does
not disturb the measurement of B. That is. we must have, in an obvious notation: b = b.

Then it is easy to connect this defintion of comeasurability o commatation of operators for
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finite dimensional Hilbert space,
i.e. the postulate that a measurement of the system, in any state

(vector) 1, for the quantity represented by A:

(i) projects the system’s state instantaneously into the eigenspace of the eigenvalue obtained
as the measurement’s outcome; and then of course

(ii) re-normalizes the state by dividing it by its own length.
Thus, the Projection Postulate says there is an instantaneous state transition, which is, in a notation
adapted from the above discussion:
Egy

Bl (52)

s

The connection, for finite dimensional Hilbert space, of the above definition of co-measurability,
understood with this Projection Postulate, to commutation of operators is the readily proved equiv-
alence:

Theorem:
course, this latter condition 1s
E; ,EB] =0, for all j,k.)

equivalent to all pairs of spectral projectors commuting: i.e. [ .

we note:
The orthodox view in the quantum textbooks (a kind of ‘precipitate’ of Bohr, Dirac, Heisenberg,
von Neumann; ‘Copenhagen’) is of course that a quantum system in state ¢ only has values for
those physical quantities of which v is an eigenstate/eigenvector: with the value being of course the
corresponding eigenvalue. This is often called _ And for a given state
1, the quantities of which it is an eigenstate are sometimes called ’s eigenquantities.

In particular, the lack of common eigenstates for non-commuting quantities like position and
momentum (suppressing here their having continuous spectra. ..) means that no system has a value
for both position and momentum.

i.e. the appalling possibility that this lack
of values, though it seems acceptable in the atomic realm which is after all unvisualizable etc etc,
could propagate to the macro-realm—and so conflict with the supreme success of classical physics’
ascription to systems of values for both position and momentum. (Cf. Schrédinger’s amazing ‘cat’
paper of 1935) . . .

That is: we
should ascribe values additional to those that are ascribed by the orthodox eigenvalue-eigenstate link.
The natural hope is that there are states that ascribe to every self-adjoint operator an element of

5 spectrim, subject to natural conditions. What natural conditions? The obvious one (sometimes

(After all,
we often envisage measuring f(A) by measuring A and applying f to the outcome.) But even if we
consider only operators with pure point spectrum on a finite dimensional Hilbert space, there are
problems.

That i there ate ‘no-go” theorems that such an assignment, for all the self-adjoint operators,sat-
_ Indeed, it is provably impossible even for some judiciously—
the aspiring solver of the measurement problem might say: ‘unfortunately!’—chosen finite sets of
projectors on all Hilbert spaces of (complex) dimension 3 or more (i.e. C3,C*,...).

_ We will state it later (in Section 5), when we discuss states rigorously.
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in his paper, ‘The problem

of hidden variables in quantum mechanics’, published in Reviews of Modern Physics, in 1966. This
paper was written in 1963: before Bell proved the Bell inequalities—which he did, and published,
in 1965. (The delay in the publication of the 1966 paper was due to the typescript being lost for
about two years in the back of a filing cabinet at the offices of Reviews of Modern Physics!) And
the 1966 paper was written as a defence of the programme of supplementing the orthodox quantum
state, not as an argument against it. For

which he considered tenable, indeed eminently reasonable, despite having a man-
ifest non-locality in its guidance equation for a bipartite system. That is, in the traditional and
best-developed non-relativistic version of the theory: the deterministic spatial trajectory of one part
of such a system (one point-particle, according to the pilot-wave theory) is sensitive to where in
space the other point-particle is. That is: the first particle’s spatial trajectory is instantaneously
sensitive, in the manner of action-at-a-distance (though without any fall-off with distance as one has
in Newtonian gravitation) to where the second particle is located.

He also there stresses that, of course, Bohm in 1952 was well aware
of this non-locality; and he ends by raising the question whether any supplementation of quantum
theory must be in some way non-local. (A footnote added in proof then mentions his previously
published 1965 paper as having answered this question, for one notion of non-locality. Not so much
a case of backwards causation a la science fiction, but merely a disordered filing cabinet ... )

Historically, this latter theorem was very influential in persuading
physicists between ca. 1932 and ca. 1966 that this sort of supplementation of quantum theory could
not work. It is standardly called von Neumann’s no hidden variables theorem.

Here again,

whatever the advocate of hidden variables envisages
as a state, they should accept that states ascribe expectations to self-adjoint operators, subject to
the following linearity condition. Namely: a state ascribes as the expectation Exp(A+ B) of the sum
of self-adjoint operators A, B, the sum of their individual expectations. So Exp(A + B) = Exp(A)
+ Exp(B).

greed: quantum states—
whether vector states as discussed so far, or density matrices, to be discussed later—do obey this
linearity condition, even if A and B do not commute. But, says Bell, that is a peculiarity of the
quantum formalism, and by no means a compulsory feature of states as ascriptions of expectation
values. (Cf 1966, Section III, p. 449, column 1. Incidentally, Einstein pointed out the same Achilles
heel to Bargmann in conversation in the 1940s ... )

_ As we say in England: ‘swallow it, hook line and sinker’ . . . We will return to

19


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield



this irony ...
Fifth: Finally, there is a further irony in relation to the first one above, about Bell’s 1966

paper proving the relevant corollary of Gleason’s positive theorem. _
it of the Kochen-Specker paper of the following year (1967) i also to prove this corollary. Thi
paper is rightly lauded. Its merits include: ...

(a) Tt connects the corollary to the quantum logic, lattice-theory, approach sketched above.
The non-Boolean lattice of projectors with its delicately interlaced Boolean sub-lattices, is treated
in a kindred manner to differential geometry’s treatment of a manifold with its delicately interlaced
charts. In particular, the operations, like taking the sum of two projectors, are partial. They are

restricted to the summands being both in some Boolean sub-lattice. Thus _

(b) It exhibits a specific finite set of projectors to which the values 1 and 0 cannot be
assigned without violating the (apparently natural) assumptions like FUNC, above. It even relates
these projectors to a specific quantum system (orthohelium). ...

(c) It is mathematically elegant and has engendered an enormous literature, pursuing e.g.
the physical idea of ‘contextuality’, and invoking advanced mathematical fields like topos theory ...
falls squarely within—and has

had its great influence within—the quantum logic tradition. It does not discuss, as Bell 1966 does,

For operators A1, Ao, ..., Ay with continuous spectra, the definition of a complete set is given by the
condition in the Theorem at the end of Paragraph 8, above: viz. that every bounded operator B

Ay, Ag,y .oy AN).
if on L?(R), we define

Theorem: every bounded operator B that commutes with ( is a function of Q.
We briefly connect with the Dirac notation which brings out the analogy with a complete set of
enuting operators, with puse poit spectr. {Thus we write:

(z]y) =9(x) and (2|Q¢)=z(z|¢) and (x| f(Q)Y) = f(z){z|¢). (33)

Of course, @ has no eigenvectors. (For if 21 (x) = at)(x), then ¢(z) = 0 for = # a, and so: |[¥||? = 0.)
But we use delta functions, so that writing

ad(x—a) = zd(x—a) (34)
“justifies” our writing
Qla)=ala) and <a|¢>=¢(a)=/R5(wa)¢(w)dw- (35)
And similarly
1!1(93)=/R¢(a)5(xa)da “justifies” |¢>=/R<a|¢>|a>da; (36)

so that any vector ¢ can be “thought of” as a linear combination of delta-functions Thus delta-
functions are like an orthonormal basis of eigenfunctions.

We similarly use delta-functions to express operators, especially their spectral resolutions. Thus
for each a € R, let us define the ‘dyad’ |a)(a| by its action

(la){al)(x) = Pla)d(z-a) ie. (la)(al)d = (alP)la). (37)
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Then with E, in the spectral family for Q, we can write for all ¢: (Ex¥)(y) = [*_ ¥(a)d(y—a) da =
7 (a)(a|¥)(y)da. So we can write

Exz/ |a)(a|da ; and similarly QE/xdExzf z|z)(x|de. (38)
R R

—00

In the same way, the three operators @, on L?(R3) 3 v(x) = v(x1, 22, 73), defined at the end of
Paragraph 7 by (Q,v)(x) = x,¢(x) are a complete set of commuting operators, with pure continuous
spectra. On analogy with eq. 33 to 38, writing Q := (Q1, Q2, Q3), we write:

(x[9) =1(x) and (x[Qy) =x(x[¢) and (x|f(Q)¢) = f(x)(x[v). (39)

The operators @ have no eigenvectors. But we again use delta functions, and write |a) for §(x—a);
so that writing

ad(x—a) = xd(x—a) (40)
“Justifies” our writing
Qla) =ala) and (alv)=vla) = | sx-a)ulx)dx. (41)
And similarly
00 = [ vlaitxa)da ustifes” 1) = [ (al)la)da (42)

so that any vector ¥ can be “thought of” as a linear combination of delta-functions Thus delta-
functions are like an orthonormal basis of eigenfunctions.

We similarly use delta-functions to express operators. So we write

Eg(f) :/ |a)(a|da ; and similarly Q:/ x|x)(x|dx. (43)
ar<zx R3

11.
fR3 ¢*(x)(x) dx. For r = 1,2, 3, we define the operator P, by

; with inner product (¢,v) =

—i 0 P(x); or, writing P := (P, P, P3) : (P)(x) := —iVY)(x) . (44)

(b)) 1= =iy -

(We set h equal to 1: the Fourier transformations will give us enough 27s to worry about!) These
operators P, are self-adjoint. For they have the symmetric property (¢, P.¢) = (Pr¢, 1) (integration

by parts), and they have dense domain, so that PJ is defined; and one can show that P,T = P,; cf.
Paragraphs 3 and 7 of Section 2.

The spectral representation of these operators is given by Fourier transforms of the spectral
representation of the operators Q,, (Q,v)(x) = x,1(x), discussed at the end of Paragraph 10. The
main theorem is:
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Besides,

(%) = (27) /_ "y /_ " ks _n dis expl(ik - x) (Fip) (k) (46)

converges to .

A vector v is in the domain of P, iff k,(F)(k) is square-integrable: in which case (cf. integration
by parts with boundary term vanishing)

(FPas) () = ke (Fi)(K) (47)
Accordingly, we write
(Fo)0 = (2m)F [ expl-ikx) () dx (49)
and
v = (2n) 4 [ explikx) (P10 d. (49)

Since F' preserves norm and has an inverse, it is wnitary, and so preserves inner products; cf.
Paragraph 4 of Section 2. So we have

[ w0 (o) dk = [ ox) v ax. (50)
We write the inverse of F' as
(F o)) = (r) [ expliicx) 000 dics e as (Fl9)(0) = (Fo)(-x). (5)
Eq. 61 implies that
(Pr)) = (2m)E [y explike ) () ) dc (52)
and that in three dimensions

—iV(x) = (27)"2 / k exp(ik - x) (Fb) (k) dk . (53)

Writing (Q,¢)(x) = z,9(x), eq. 47 then implies

FP=QFiie: P=F'QF. (54)

This now implies how to express the spectral decomposition of P, in terms of that of @, = [ z dEa(cT);

as follows. Ome checks that {F_IEQ(CT)F} is a spectral family, because F is unitary and {Ea(f)} is a
spectral family, Then using F~!' = F, we compute:

(6, Puib) = (6, F1Q, ) = (P, Qu i) = / rd(F, EOFip) = / vd(¢, F'EQFY) . (55)
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So the spectral decomposition of P, is:

(56)

11.B: Completeness:— We can now repeat for momentum, P := (P, P, P3), the discussion of
complete commuting operators and their functions, that we had for position Q := (Q1, Q2, Q3). Cf.
the end of Paragraph 7 (especially eq. 22 to 24), and the end of Paragraph 10 (especially eq. 39 to
43).

Thus we recall eq. 22’s definition of a function f(A;, A2) of two commuting operators Aj, Ay

in terms of inner products (¢, Eg(cl)El(/z)w). Thus functions of the three two commuting operators
P1, P», P3 are defined by integrals with respect to inner products

(¢, (F'ENFFERFFESF) ) = (Fo, BEVEP EP Fy) . (57)

So for any function f;R3 — C, the operator f(P) = f(Pi, P, P) is determined by inner products:

0. @) = [ [ [ 1020, d.(Po. EDEPESFo) = (58)
(F, f(Q1,Q2,Q3) FY) = (¢, F ' f(Q)F )
So
fP)=Ff(QF. (59)
Comparing this with eq.s 47 and 61 respectively, we deduce:
(FfP))(k) = f(k)(Fy)(k) (60)
and
(F(P)p)(x) = (2m) 2 / f(k) exp(ik - x) (F¢)(k) dk . (61)

in Paragraph 10 (especially the beginning)

that position illustrates the result

Thus since @)1, Q2, Q3 is a complete set of operators, so is Py, P, Ps.
For if B is a bounded operator that commutes with the three operators P, then FBF~! is a bounded
operator that commutes with the three operators FPF~! = Q. So there is a function f of three
variables such that FBF~! = f(Q). And so, eq. 59 implies:

B=F'f(QF = f(P). (62)

i.e with the variable k,
or in three dimensions k, replacing the variables x or x respectively in eq. 33 to 43. We do not need
to exhibit the details; (for which, cf. e.g. Jordan Linear Operators for Quantum Mechanics, the end
of Section 18, pp. 64-66). Thus for example, the analogue of eq. 43 is, as one would expect:

F'EMFE = / |k)(k|dk ;and similarly (63)
kr<z

P:F—lQFz/ k|k)(k|dk.
R3
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g th and that thls is reconcﬂed with people S often talklng about ‘two theories
using dlfferent Hilbert spaces’ by the fact that the theories also involve quantities i.e. operators.

Indeed: Later, it will be important that
- i.e. a quantum field or a quantum statistical mechanical system in the limit of infinitely
many components (e.g. an infinite lattice), _
physical behaviours of he system-unitarily incquivalent algebras. Notc that here “infusitely oy
degrees of freedom’ does not mean (it means ‘more than’!) ‘needing an infinite-dimensional Hilbert
space’. For even a non-relativistic quantum point-particle on a line needs the latter, i.e. L?(R). So
one says: a quantum field is an ‘infinite (or: infinite-dimensional) quantum system’ ;and a quantum
point-particle is a ‘finite (or: finite-dimensional) quantum system’.

But in a sense that can be made precise in various ways, especially in the famous _

EaHERGOE (vhich wo vill disciss later): HiEe-AHGRSionAY qiAA SySton do6s nof need

4 Operator algebras

We first give a glimpse of this field, introducing some jargon; then expound Schur’s lemma for sets
of operators; then discuss von Neumann algebras in more detail; and finally, give more detail about
operator topologies.

1: Glimpsing operator algebras: von Neumann’s theorem:—
Given a self-adjoint operator A, the polynomials in A thus form a complex algebra, closed under
taking adjoints (called a x — algebra). If A is bounded, this algebra has a norm. We can take the
completion of the algebra in this norm: since a normed vector space that is complete in its norm is
called a Banach space, this algebra is then called a Banach *-algebra. This is an abelian algebra, i.e.
for any elements X,Y, we have XY =Y X.

It is also an example of the abstract concept of a C*-algebra: which is defined as any Banach *-
algebra whose norm (i) is sub-multiplicative (cf the last inequality in eq. 5), and (ii) obeys ||A*A|| =
[A]P%.

In quantum theory on Hilbert space, C*-algebras of operators are important. But they have the
disadvantage that they do not in general contain projectors, not even the spectral projectors of their
self-adjoint elements. Fortunately, there is an alternative “cousin” notion of algebra, von Neumann
algebra, such that any von Neumann algebra is generated by the projections it contains.

Von Neumann algebras are characterised in a concrete way, i.e. as sub-algebras of B(H) for a
given H; in terms of a different topology on operators than the norm (also called ‘uniform’) topology
we have been implicitly using hitherto.

Thus we say that a sequence {A,} converges to A in H’s weak topology iff, for all |1),|¢) € H:
[(|(A, — A)|p)| — 0.} Then we define a von Neumann, or W* algebra to be a *-algebra that is a

!This definition simplifies slightly by defining convergence in terms of sequences not nets. For details of the emen-
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