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Asymptotic Reasoning

This chapter will introduce, via the consideration of several simple examples,
the nature and importance of asymptotic reasoning. It is necessary that we
also discuss an important feature of many patterns or regularities that we may
wish to understand. This is their universality. “Universality,” as I've noted,
is the technical term for an everyday feature of the world—namely, that in
certain circumstances distinct types of systems exhibit similar behaviors. (This
can be as simple as the fact that pendulums of very different microstructural
constitutions all have periods proportional to the square root of their length.
See section 2.2.) We will begin to see why asymptotic reasoning is crucial to
understanding how universality can arise. In addition, this chapter will begin
to address the importance of asymptotics for understanding relations between
theories, as well as for understanding the possibility of emergent properties.
Later chapters will address all of these roles and features of asymptotic reasoning
in more detail.

2.1 The Euler Strut

Let us suppose that we are confronted with the following physical phenomenon.
A stiff ribbon of steel—a strut—is securely mounted on the floor in front of
us. Someone begins to load this strut symmetrically. At some point, after a
sufficient amount of weight has been added, the strut buckles to the left. See
figure 2.1. How are we to understand and explain what we have just witnessed?

Here is an outline of one response. At some point in the weighting process
(likely just prior to the collapse), the strut reached a state of unstable equilib-
rium called the “Euler critical point.” This is analogous to the state of a pencil
balancing on its sharpened tip. In this latter case, we can imagine a hypothet-
ical situation in which there is nothing to interfere with the pencil-—no breeze
in the room, say. Then the pencil would presumably remain in its balanced
state forever. Of course, in the actual world we know that it is very difficult to
maintain such a balancing act for any appreciable length of time. Similarly,
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Figure 2.1: Buckling strut

molecular collisions will “cause” the strut to buckle either to the left or to the
right. Either of these two buckled states is more stable than the critical state in
that the addition of more weight will only cause it to sag further on the same
side to which it has already collapsed.

So, in order to explain why the strut collapsed to the left, we need to give a
complete causal account that (1) characterizes the details of the microstructural
makeup of the particular strut, (2) refers to the fact that the strut had been
weighted to the critical point, and (3) characterizes the details of the chain of
molecular collisions leading up to the one water vapor molecule, the culprit,
that hits the strut on its right side. If we were actually able to provide all
these details, or at least some relevant portion of them, wouldn’t we have an
explanation of what we observed? Wouldn’t we understand the phenomenon we
have witnessed?

Both common sense and at least one prominent view of the nature of expla-
nation and understanding would have it that we would now understand what we
have seen. By providing this detailed causal account, we will have shown how
the particular occurrence came about. We will have displayed the mechanisms
which underlie the phenomenon of interest. On this view, the world is generally
opaque. Providing accounts like this, however, open up “the black boxes of
nature to reveal their inner workings” (Salmon, 1989, p. 182). We can call this
view a causal-mechanical account.

On Peter Railton’s version of the causal-mechanical account, the detailed
description of the mechanisms that provides our explanation is referred to as an
“ideal explanatory text.”

[A]n ideal text for the explanation of the outcome of a causal pro-
cess would look something like this: an inter-connected series of
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law-based accounts of all the nodes and links in the causal network
culminating in the explanandum, complete with a fully detailed de-
scription of the causal mechanisms involved and theoretical deriva-
tions of all of the covering laws involved.... It would be the whole
story concerning why the explanandum occurred, relative to a cor-
rect theory of the lawful dependencies of the world. (Railton, 1981,
p. 247)

For the strut, as suggested, this text will refer to its instability at the critical
point, to the fact that it is made of steel with such and such atomic and molecular
structure, and to the details of the collision processes among the “air molecules”
leading up to the buckling.

But how satisfying, actually, is this explanation? Does it really tell us the
whole story about the buckling of the strut? For instance, one part of the
“whole story” is how this particular account will bear on our understanding of
the buckling of an “identical” strut mounted next to the first and which buckled
to the right after similar loading. Was what we just witnessed a fluke, or is the
phenomenon repeatable? While we cannot experiment again with the very same
strut—it buckled—we still might like to know whether similar struts behave in
the same way. Going a bit further, we can ask whether our original causal-
mechanical story sheds any light on similar buckling behavior in a strut made
out of a different substance, say, aluminum? I think that the story we have told
has virtually no bearing whatsoever on these other cases. Let me explain.

Let’s consider the case of a virtually identical strut mounted immediately
next to the first. What explains why it buckled to the right after having been
loaded just like the first one? On the view we are considering, we need to
provide an ideal explanatory text, which, once again, will involve a detailed
account of the microstructural make-up of this strut, reference to the fact that
it has been loaded to its critical point, and, finally, a complete causal story of all
the molecular collisions leading up to the striking on the left side by a particular
dust particle. Most of these details will be completely different than in the first
case. Even though both struts are made of steel, we can be sure that there
will be differences in the microstructures of the two struts—details that may
very well be causally relevant to their bucklings. For instance, the location of
small defects or fractures in the struts will most likely be different. Clearly, the
collision histories of the various “air molecules” are completely distinct in the
two cases as well. After all, they involve different particles. The two explanatory
texts, therefore, are by and large completely different. Had we been given the
first, it would have no bearing on our explanation of the buckling of the second
strut.

In the case of an aluminum strut, the explanatory texts are even more dis-
joint. For instance, the buckling load will be different since the struts are made
of different materials. Why should our explanation of the behavior of a steel
strut bear in any way upon our understanding of the behavior of one composed
of aluminum?

At this point it seems reasonable to object: “Clearly these struts exhibit
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similar behavior. In fact, one can characterize this behavior by appeal to Euler’s
formula:!

How can you say the one account has nothing to do with the other? Part of
understanding how the behavior of one strut can bear on the behavior of another
is the recognition that Euler’s formula applies to both.” (Here P, is the critical
buckling load for the strut. The formula tells us that this load is a function
of what the strut is made of as well as certain of its geometric properties—in
particular, the ration I/L?.)

I agree completely. However, the focus of the discussion has shifted in a
natural way from the particular buckling of the steel strut in front of us to
the understanding of buckling behavior of struts in general. These two foci
are not entirely distinct. Nevertheless, nothing in the ideal explanatory text
for a particular case can bear upon this question. “Microcausal” details might
very well be required to determine a theoretical (as opposed to a measured
phenomenological) value for Young’s modulus FE of the particular strut in front
of us, but what, in all of these details, explains why what we are currently
witnessing is a phenomenon to which Euler’s formula applies? The causal-
mechanical theorist will no doubt say that all of the microcausal details about
this strut will yield an understanding of why in this particular case the Euler
formula is applicable: These details will tell us that E is what it is, and when
all the evidence is in, we will simply see that P is proportional to I/L2.

But, so what? Do we understand the phenomenon of strut buckling once
we have been given all of these details? Consider the following passage from
a discussion of explanation and understanding of critical phenomena. (The
technical details do not matter here. It is just important to get the drift of the
main complaint.)

The traditional approach of theoreticians, going back to the founda-
tion of quantum mechanics, is to run to Schrodinger’s equation when
confronted by a problem in atomic, molecular, or solid state physics!
One establishes the Hamiltonian, makes some (hopefully) sensible
approximations and then proceeds to attempt to solve for the en-
ergy levels, eigenstates and so on.... The modern attitude is, rather,
that the task of the theorist is to understand what is going on and to
elucidate which are the crucial features of the problem. For instance,
if it is asserted that the exponent o depends on the dimensionality,
d, and on the symmetry number, n, but on no other factors, then
the theorist’s job is to explain why this is so and subject to what
provisos. If one had a large enough computer to solve Schrédinger’s
equation and the answers came out that way, one would still have no
understanding of why this was the case! (Fisher, 1983, pp. 46-47)

1E is Young’s modulus characteristic of the material. I is the second moment of the strut’s
cross-sectional area. L is the length of the strut.
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If the explanandum is the fact that struts buckle at loads given by Euler’s
formula, then this passage suggests, rightly I believe, that our causal-mechanical
account fails completely to provide the understanding we seek. All of those
details that may be relevant to the behavior of the particular strut don’t serve
to answer the question of why loaded struts in general behave the way that they
do. Actually, what does the explaining is a systematic method for abstracting
from these very details.

The point of this brief example and discussion is to motivate the idea that
sometimes (actually, very often, as I will argue) science requires methods that
eliminate both detail and, in some sense, precision. For reasons that will become
clear, I call these methods “asymptotic methods” and the type(s) of reasoning
they involve “asymptotic reasoning.”

2.2 Universality

The discussion of Euler struts in the context of the causal-mechanical view
about explanation leads us to worry about how similar behaviors can arise in
systems that are composed of different materials. For instance, we have just
seen that it is reasonable to ask why Euler’s formula describes the buckling load
of struts made of steel as well as struts made of aluminum. In part this concern
arises because we care whether such a phenomenon is repeatable. Often there
are pragmatic reasons for why we care. For instance, in the case of buckling
struts, we may care because we intend to use such struts or things like them
in the construction of buildings. But despite (and maybe because of) such
pragmatic concerns, it seems that science often concerns itself with discovering
and explaining similar patterns of behavior.

As I noted in chapter 1, physicists have coined a term for this type of phe-
nomenon: “universality.” Most broadly, a claim of universality is an expression
of behavioral similarity in diverse systems. In Michael Berry’s words, saying
that a property is a “universal feature” of a system is “the slightly pretentious
way in which physicists denote identical behaviour in different systems. The
most familiar example of universality from physics involves thermodynamics
near critical points” (Berry, 1987, p. 185).

There are two general features characteristic of universal behavior or uni-
versality.

1. The details of the system (those details that would feature in a complete
causal-mechanical explanation of the system'’s behavior) are largely irrel-
evant for describing the behavior of interest.

2. Many different systems with completely different “micro” details will ex-
hibit the identical behavior.

The first feature is, arguably, responsible for the second. Arguments involving
appeal to asymptotics in various forms enable us to see how this is, in fact, so.

It is clear that we can think of the Euler formula as expressing the existence of
universality in buckling behavior. The formula has essentially two components.
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First, there is the system—or material—specific value for Young’s modulus.
And second, there are the “formal relationships” expressed in the formula.

To see how ubiquitous the concept of universality really is, let us consider
another simple example. We want to understand the behavior of pendulums.
Particularly, we want to understand why pendulums with bobs of different col-
ors and different masses, rods of different lengths, often composed of different
materials, all have periods (for small oscillations) that are directly proportional
to the square root of the length of the rod from which the bob is hanging. In
other words, we would like to understand why the following relation generally
holds for the periods, 8, of pendulums exhibiting small oscillations:?

6= ZW\/Z. (2.1)
g

One usually obtains this equation by solving a differential equation for the
pendulum system. The argument can be found near the beginning of just about
every elementary text on classical mechanics. In one sense this is an entirely
satisfactory account. We have a theory—a well-confirmed theory at that—
which through its equations tells us that the relevant features for the behavior
of pendulum systems are the gravitational acceleration and the length of the
bob. In a moment, we will see how it is possible to derive this relationship
without any appeal to the differential equations of motion. Before getting to
this, however, it is worthwhile asking a further hypothetical question. This will
help us understand better the notion of universality and give us a very broad
conception of asymptotic reasoning.

Why are factors such as the color of the bob and (to a large extent) its
microstructural makeup irrelevant for answering our why-question about the
period of the pendulum? There are many features of the bob and rod that
constitute a given pendulum that are clearly irrelevant for the behavior of inter-
est. What allows us to set these details aside as “explanatory noise”? Suppose,
hypothetically, that we did not have a theory that tells us what features are
relevant for specifying the state of a pendulum system. Suppose, that is, that
we were trying to develop such a theory to explain various observed empirical
regularities “from scratch,” so to speak. In such a pseudo-history would a ques-
tion about the relevance of the color of the bob to its period have seemed so
silly? The very development of the theory and the differential equation that
describes the behavior of pendulums involved (the probably not so systematic)
bracketing as irrelevant many of the details and features that are characteristic
of individual systems.

Next, suppose we are in a state of knowledge where we believe or can make
an educated guess that the period of the pendulum’s swing depends only on the
mass of the bob, the length of the pendulum, and the gravitational acceleration.
In other words, we know something about classical mechanics—for instance, we
have progressed beyond having to worry about color as a possible variable to be

2Here “I” denotes the length of the rod and “g” is the acceleration due to gravity.
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considered. Can we, without solving any differential equations—that is, without
appeal to the detailed theory—determine the functional relationship expressed
in equation (2.1)? The answer is yes; and we proceed to do so by engaging
in dimensional analysis (Barenblatt, 1996, pp. 2-5). In effect, the guess we
have just made is sufficient to answer our why-question about the period of a
pendulum.

We have a set of objects that represent units of length, mass, and time. These
are standards everyone agrees upon—one gram, for instance, is 1/1000 of the
mass of a special standard mass in a vault in the Bureau of Weights and Measures
in Paris. Given these standards we will have a system of units for length, mass,
and time (where L is the dimension of length, M is the dimension of mass, and T
is the dimension of time). For our pendulum problem we have guessed that only
the length | of the pendulum, its mass m, and the gravitational acceleration g
should be relevant to its period 8. Note that I, m, and g are numbers holding for
a particular choice of a system of units of measurement (e.g., centimeters, grams,
and seconds). But in some sense that choice is arbitrary. Dimensional analysis
exploits this fundamental fact—namely, that the physics should be invariant
across a change of fundamental units of measurement.

The dimensions for the quantities involved in our problem are the following:3

[6)=T; [l = L; [m] = M; [¢) = LT™>.

Now, consider the quantity {/g. If the unit of length is decreased by a factor
of a, and the unit of time is decreased by a factor of b, then the numerical value
of length in the numerator increases by a factor of a and the numerical value of
acceleration in the denominator increases by a factor ab~2. This implies that
the value of the ratio I/g increases by a factor of b2. Hence, the numerical value
of \/l/_g increases by a factor of b. Since the numerical value for the period, 8,
would also increase by a factor of b under this scenario (decreasing the unit of
time by a factor of b), we know the quantity

m- -2 (2.2)

Vg

remains invariant under a change in the fundamental units. This quantity II is
dimensionless. In the jargon of dimensional analysis, we have “nondimensional-
ized” the problem.

In principle, II depends (just like # under our guess) upon the quantities I,
m, and g: I = II(I, m, g). If we decrease the unit of mass by some factor ¢, of
course, the numerical value for mass will increase by that same factor c. But,
in so doing, neither II nor [ nor g will change in value. In particular, II(!, m, g)
is independent of m. What happens to II if we decrease the unit of length by
some factor a leaving the unit of time unchanged? While the value for length
will increase by a factor of a, the quantity I, as it is dimensionless, remains
unchanged. Hence, II(l,m, g) is independent of I. Finally, what happens to II

def . .
34[e]” = “the dimension of e”.
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if we decrease the unit of time by a factor of b while leaving the unit of length
invariant. We have seen that this results in the numerical value for acceleration
g increasing by a factor of 2. However, II and {, and m remain unchanged.

This establishes the fact that II(I,m, g) is independent of all of its parame-
ters. This is possible only if Il is a constant:

1= = constant. (2.3)

0
Vi7s

l
8 = constant \/;, (2.4)

which, apart from a constant, just is equation (2.1). The constant in (2.4) can
be easily determined by a single measurement of the period of oscillation of a
simple pendulum.

This is indeed a remarkable result. To quote Barenblatt: “[I|t would seem
that we have succeeded in obtaining an answer to an interesting problem from
nothing—or, more precisely, only from a list of the quantities on which the
period of oscillation of the pendulum is expected to depend, and a comparison
(analysis) of their dimensions” (Barenblatt, 1996, p. 5). No details whatsoever
about the nature of individual pendulums, what they are made of, and so on,
played any role in obtaining the solution.

This example is really a special (degenerate) case. In most problems, the
equation for the dimensionless quantity of interest, II, that results from the
analysis will not equal a constant, but rather will be a function of some other
dimensionless parameters:

Hence,

=&, ..,

In such cases, the analysis proceeds by trying to motivate the possibility that
one or more of the II;’s can be considered extremely small or extremely large.
Then one can further reduce the problem by taking a limit so that the II; can be
replaced by a constant: II;(0) = C or II;(c0) = C. This would yield an equation

H= @(Hl,...,Hi_l,C,Hi+1,Hm), (25)

which, one hopes, can be more easily solved. This recipe, however, involves a
strong assumption—one that is most often false. This is the assumption that
the limits II;(0) or II;(co) actually exist. As we will see, when they do not,
dimensional analysis fails and interesting physics and mathematics often come
into play.

The appeal to limiting cases, whether regular (where the limits II;(0) or
I1;(o0) do exist) or singular (where those limits fail to exist), constitutes paradigm
instances of asymptotic reasoning. We will see many examples of such reasoning
later. The important point to note here has to do with the relationship between
universality and asymptotic reasoning of this sort. It is often the case that the
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result of this kind of reasoning about a given problem is the discovery of some
relationship like (2.3) or, more generally, like (2.5). In other words, asymptotic
analysis often leads to equations describing universal features of systems. This
happens because these methods systematically eliminate irrelevant details about
individual systems.

Before leaving this section on universality, let me try to forestall a particular
misunderstanding of what universality is supposed to be. As the discussion of
the “pseudo history” of the pendulum theory is meant to show, it is not only a
feature of highly technical physical phenomena. Universality as expressed in 1
and 2 holds of everyday phenomena in science. While many everyday patterns
exhibit universality, they are not, therefore, mundane. The simple observable
fact that systems at different temperatures tend toward a common temperature
when allowed to interact with each other is an everyday occurrence. As an in-
stance, just think of a glass of ice water coming to room temperature. Surely
this regularity is universal—whether we consider ice or a rock at a cooler tem-
perature interacting with the warmer room, the same pattern is observed. One
should not be misled by the everyday nature of this pattern into thinking that
the explanation for the pattern is at all trivial. Deep results in statistical me-
chanics involving asymptotics are necessary to explain this phenomenon. (This
particular explanation will be discussed in section 8.3.) I think that despite the
everyday occurrences of universal behavior, philosophers of science have not, by
and large, understood how such patterns and regularities are to be explained.
I will have much more to say about this type of explanation in chapter 4 and
elsewhere throughout the book.

Let’s turn now to a brief discussion of what may seem to be a completely
different topic—theoretical reduction. As we will see, however, there are inti-
mate connections between questions about the explanation of universality and
the various ways different theories may be related to one another.

2.3 Intertheoretic Relations

Philosophers of science have always been concerned with how theories of one
“domain” fit together with theories of some other. Paradigm examples from
physics are the relations obtaining between classical thermodynamics and sta-
tistical mechanics; between the Newtonian physics of space and time and the
“theory” of relativity; between classical mechanics and quantum mechanics; and
between the ray theory of light and the wave theory. Most philosophical discus-
sions of these interrelations have been framed in the context of questions about
reduction. Do (and if so how) the former members of these pairs reduce to the
latter members? “Reduction,” here, is typically understood as some variant of
the following prescription:

A theory T reduces to a theory T if the laws of T' are derivable (in
some sense) from those of T
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This conception of reduction may require the identification (or nomic corre-
lation) of properties in the reduced theory (T") with those in the reducing (T').
With this requirement may come all sorts of difficulties, both conceptual and
technical in nature. Much also will depend upon what sort of derivability is
required and how strict its requirements are. These are all details that I think
we can safely avoid at this point in the discussion. Most philosophical accounts
of reduction along these lines also require that the reducing theory ezplain the
reduced theory—or at least explain why it works as well as it does in its domain
of applicability.

For example, the special theory of relativity is supposed to reduce Newtonian
space and time. This reduction is accomplished by “deriving” Newtonian laws
where the derivation involves some kind of limiting procedure. In particular, one
shows that the Newtonian theory “results” when velocities are slow compared
with the speed of light. In so doing the reduction also is supposed to explain the
(approximate) truth of the Newtonian conception of space and time. It explains
why, for instance, we can think of space and time as divided unambiguously
into spaces at distinct times, even though according to special relativity the
conception of absolute simultaneity required for this conception does not exist.
Clearly questions about the relationships between properties and concepts in
the two theories will immediately come to the fore.

Physicists, typically, use the term “reduction” in a different way than do
philosophers.* For each of the theory pairs mentioned in the earlier paragraph,
the physicist would speak of the second member of the pair reducing to the first.
Reduced and reducing theories are inverted in comparison to the philosophers’
way of understanding reduction. For example, physicists refer to the “fact”
that quantum mechanics reduces to classical mechanics in some kind of corre-
spondence limit—say where we let Planck’s constant & — 0.5 Another example
is the reduction of special relativity to Newtonian space and time in the limit
(v/c)? = 0.

In general this other sense of reduction has it that a “more refined,” more en-
compassing (and typically more recent) theory, Ty, corresponds to a “coarser,”
less encompassing (and typically earlier) theory, T,, as some fundamental pa-
rameter (call it €) in the finer theory approaches a limiting value. Schematically,
the physicists’ sense of reduction can be represented as follows:

lim Ty = T.. (2.6)
€—0
The equality in (2.6) can hold only if the limit is “regular.” In that case, on my
view, it is appropriate to call the limiting relation a “reduction.” If the limit in
(2.6) is singular, however, the schema fails and I think it is best to talk simply
about intertheoretic relations. Let me give a brief explication of these notions.

If the solutions of the relevant formulas or equations of the theory Ty are

such that for small values of ¢ they smoothly approach the solutions of the
4See (Nickles, 1973) for an important discussion of these different senses.
5There are questions about what this can really mean: How can a constant change its

value? There are also questions about whether the claim of reduction is true, even once we
have decided what to say about the varying “constant” problem.
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corresponding formulas in T, then schema (2.6) will hold. For these cases we
can say that the “limiting behavior” as € — 0 equals the “behavior in the limit”
where ¢ = 0. On the other hand, if the behavior in the limit is of a fundamentally
different character than the nearby solutions one obtains as € — 0, then the
schema will fail.

A nice example illustrating this distinction is the following: Consider the
quadratic equation

2241 —€9=0.

Think of € as a small expansion or perturbation parameter. The equation has
two roots for any value of € as € — 0. In a well-defined sense, the solutions
to this quadratic equation as ¢ — 0 smoothly approach the solutions to the
“unperturbed” (e = 0) equation

2+2=0;
namely, x = 0, —1. On the other hand, the equation
ex?4+1x-9=0

has two roots for any value of € > 0 but has for its “unperturbed” solution only
one root; namely, x = 9. The equation suffers a reduction in order when € = 0.
Thus, the character of the behavior in the limit € = 0 differs fundamentally
from the character of its limiting behavior. Not all singular limits result from
reductions in order of the equations, however. Nevertheless, these latter singular
cases are much more prevalent than the former.

The distinction between regular and singular asymptotic relations is the same
as that discussed in the last section between problems for which dimensional
analysis works, and those for which it does not. The singular cases are generally
much more interesting, both from a physical and a philosophical perspective, in
that it is often the case that new physics emerges in the asymptotic regime in
which the limiting value is being approached.

From this brief discussion, we can see that asymptotic reasoning plays a
major role in our understanding of how various theories “fit” together to de-
scribe and explain the workings of the world. In fact, the study of asymptotic
limits is part and parcel of intertheoretic relations. One can learn much more
about the nature of various theories by studying these asymptotic limits than
by investigating reductive relations according to standard philosophical models.
This point of view will be defended in chapters 6 and 7.

2.4 Emergence

Questions about reduction and the (im)possibility of identifying or otherwise
correlating properties in one theory with those in another are often related to
questions about the possibility of emergent properties. In this section I will
briefly characterize what I take to be a widely held account of the nature of
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emergence and indicate how I think it will need to be amended once one takes
asymptotic limiting relations into account.

It is a presupposition of the “received” account of emergence that the world
is organized somehow into levels. In particular, it is presupposed that entities at
some one level have properties that “depend” in some sense on properties of the
entities’ constituent parts. Jaegwon Kim (1999, pp. 19-20) has expressed the
“central doctrines of emergentism” in the following four main claims or tenets:

1. Emergence of complex higher-level entities: Systems with a higher-level of
complexity emerge from the coming together of lower-level entities in new
structural configurations.

2. Emergence of higher-level properties: All properties of higher-level entities
arise out of the properties and relations that characterize their constituent
parts. Some properties of these higher, complex systems are “emergent,”
and the rest merely “resultant.”

3. The unpredictability of emergent properties: Emergent properties are not
predictable from exhaustive information concerning their “basal condi-
tions.” In contrast, resultant properties are predictable from lower-level
information.

4. The unexplainability /irreducibility of emergent properties: Emergent prop-
erties, unlike those that are merely resultant, are neither explainable nor
reducible in terms of their basal conditions.

Kim also notes a fifth tenet having to do with what sort of causal role emergent
properties can play in the world. Most emergentists hold that they must (to be
genuinely emergent) play some novel causal role.

5. The causal efficacy of the emergents: Emergent properties have causal
powers of their own—novel causal powers irreducible to the causal powers
of their basal constituents (1999, p. 21).

It is evident from tenets 1-4 that the relation of the whole to its parts is
a major component of the contemporary philosophical account of emergentism.
Paul Teller (1992, p. 139), in fact, holds that this part/whole relationship is
fundamental to the emergentist position: “I take the naked emergentist intuition
to be that an emergent property of a whole somehow ‘transcends’ the properties
of the parts.” Paul Humphreys in “How Properties Emerge” (1997) discusses
a “fusion” operation whereby property instances of components at one level
“combine” to yield a property instance of a whole at a distinct higher level.
While Humphreys speaks of fusion of property instances at lower levels, he
rejects the idea that emergents supervene on property instances at the lower
levels.

The part/whole aspects of the emergentist doctrine are clearly related to the
conception of the world as dividing into distinct levels. I have no quarrel with
the claim that the world divides into levels, though I think most philosophers are
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too simplistic in their characterization of the hierarchy.® However, I do disagree
with the view that the part/whole aspects stressed in tenets 1 and 2 are essential
for the characterization of all types of emergence and emergent properties. There
are many cases of what I take to be genuine emergence for which one would be
hard-pressed to find part/whole relationships playing any role whatsoever. I
also think that many of these cases of emergence do not involve different levels
of organization. It will come as no surprise, perhaps, that these examples arise
when one considers asymptotic limits between different theories.

The third and fourth tenets of emergentisim refer to the unpredictability and
the irreducibility /unexplainability of genuinely emergent properties. Much of
the contemporary literature is devoted to explicating these features of emergen-
tism.” By considering various examples of properties or structures that emerge
in asymptotic limiting situations, we will see in chapter 8 that these tenets of
emergentism also require emendation. In the course of this discussion we will
also come to see that the close connections between reduction and explanation
must be severed. In many instances, it is possible to explain the presence of
some emergent property or structure in terms of the base or underlying theory;
yet the property or structure remains irreducible.

Furthermore, attention to asymptotic limits will reveal that there are bor-
derlands between various theories in which these structures and properties play
essential explanatory roles. Recognition of this fact may take us some distance
toward interpreting (or re-interpreting) the fifth tenet of emergentism noted
by Kim. This is the claim that emergent properties must possess novel causal
powers—powers that in some sense are not reducible to the causal powers of
their basal constituents. Instead of speaking of novel causal efficacy, I think
it makes more sense to talk of playing novel explanatory roles. Reference to
these emergent structures is essential for understanding the phenomenon of in-
terest; and, furthermore, no explanation can be provided by appealing only to
properties of the “basal constituents,” if there even are such things in these
cases.

One example I will discuss in detail is that of the rainbow. There are certain
structural features of this everyday phenomenon that I believe must be treated
as emergent. Such features are not reducible to the wave theory of light. The
full explanation of what we observe in the rainbow cannot be given without
reference to structures that exist only in an asymptotic domain between the
wave and ray theories of light in which the wavelength of the light A — 0. This
is a singular limiting domain, and only attention to the details of this asymptotic
domain will allow for a proper understanding of the emergent structures.

Furthermore, we will see that the emergent structures of interest—those
that dominate the observable phenomena—typically satisfy the requirements of
universality. In other words, the emergent structures are by and large detail-

6 A notable exception is William Wimsatt. See his article Wimsatt (1994) for an extended
discussion of the idea of levels of organization.

TKim (1999, pp. 2-3) argues, persuasively I think, that so-called nonreductive physicalism
discussed in the philosophy of mind/psychology literature is the modern brand of emergentism.
This literature focuses on questions of reduction and explanation.
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independent and are such that many distinct systems—distinct in terms of their
fundamental details—will have the same emergent features.

2.5 Conclusion

This chapter has suggested that our philosophical views about explanation,
reduction, and emergence would better represent what actually takes place in
the sciences were they to recognize the importance of asymptotic reasoning.
The explanation of universal phenomena, as much of the rest of the book will
try to argue, requires principled means for the elimination of irrelevant details.
Asymptotic methods developed by physicists and mathematicans provide just
such means. Furthermore, much of interest concerning intertheoretic relations
can be understood only by looking at the asymptotic limiting domains between
theory pairs. This is something upon which virtually no philosophical account
of theory reduction focuses. Chapters 6 and 7 discuss in detail the importance
of this view of intertheoretic relations. Finally, chapter 8 will expand on the
claims made here to the effect that genuinely emergent properties can be found
in the singular asymptotic domains that exist between certain pairs of theories.
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