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Chapter I. Space 

likened to the method in elementary analytic geometry which estab­
lishes an equivalence between a formula with two or three variables 
and a curve or a surface. The imagination is thus given conceptual 
support that carries it to new disco,·eries. In analogy to the auxiliary 
concept of the curvature of a surface, which is measured by the 
reciprocal product of the main radii of curvature, Riomann introduced 
the auxiliary concept of curvature of space, which is a much more 
complicated mathematical structure. Euclidean space, then, has a 
curvature of degree zero in analogy to the plane, which is a surface 
of zero curvature. Euclidean space occupies the middle ground 
between the spaces of positive and negative curvatures: it can be shown 
that this classification corresponds to the three possible forms of the 
axiom of the parallels. In the space of positive curvature 110 parallel 
to a given straight line exists; in the space of zero curvature one parallel 
exists; in the space of negath·c curvature more tha11 011e parallel exists. 
In general, the curvature of space may vary from point to point in a 
manner similar to the point to point variation in the curvature of a 
surface; but the spaces of consta11t curvature have a special significance. 
The space of constant negative curvature is that of Bolyai-Lobat­
schewsky; the space of constant zero curvature is the Euclidean space; 
the space of constant positive curvature is called spherical, because it is 
the three-dimensional analogue to the surface of the sphere. The 
analytical method of Riemann has led to the discovery of more types 
of space than the synthetic method of Bolyai and Lobatschewsky, 
which led only to certain spaces of constant curvature. Modern 
mathematics treats all these types of space on equal terms and develops 
and manipulates their properties as easily as those of Euclidean 
geometry. 

§ 3. THE PROBLEM OF PHYSICAL 
GEOMETRY 

Let us now return to the question asked at the end of § 1. The 
geometry of physical space had to be recognized as an empirical 
problem; it is the task of physics to single out the actual space, i.e., 
physical space, among the possible types of space. It can decide this 
question only by empirical means: but how should it proceed? 

The method for this investigation is given by Riemann's mathe­
matical procedure: the decision must be brought about by practical 
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§ 3. The Problem of Physical Geometry 

measurements in space. In a similar way as the inhabitants of a 
spherical surface can find out its spherical character by taking measure­
ments, just as we humans found out about the spherical shape of our 
earth which we cannot view from the outside, it must be possible to 
find out, by means of measurements, the geometry of the space in 
which we live. There is a geodetic method of measuri11g space analogous 
to the method of measuring the st~rface of the earth. However, it would 
be rash to make this assertion without further qualification. For a 
clearer understanding of the problem we must once more return to the 
example of the plane. 

A' 

P' Q• 
G . 

I ' E 
B p Q A c 

Fig. 2. Projection of a non-Euclidean geometry on a plane. 

Let us imagine (Fig. 2) a big hemisphere made of glass which merges 
gradually into a huge glass plane; it looks like a surface G consisting 
of a plane with a hump. Human beings climbing around on this 
surface would be able to determine its shape by geometrical measure­
ments. They would very soon know that their surface is plane in the 
outer domains but that it has a hemispherical hump in the middle; they 
would arrive at this knowledge by noting the differences between their 
measurements and two-dimensional Euclidean geometry. 

An opaque plane E is located below the surface G parallel to its plane 
part. Vertical light rays strike it from above, casting shadows of all 
objects on the glass surface upon the plane. Every measuring rod 
which the G-people are using throws a shadow upon the plane; we would 
say that these shadows suffer deformations in the middle area. The 
G-people would measure the distances A' B' and /J'C' as equal in 
length, but the corresponding distances of their shadows A B and BC 
would be called unequal. 

let us assume that the plane E is also inhabited by human beings 
and let us add another strange assumption. On the plane a mysterious 
force varies the length of all measuring rods moved about in that plane, 
so that they are always equal in length to the corresponding shadows 
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Chapter I. Space 

projected from the surface G. Not only the measuring rods, however, 
but all objects, such as all the other measuring instruments and the 
bodies of the people themselves, are affected in the same way; these 
people, therefore, cannot directly perceive this change. What kind 
of measurements would the £-people obtain? In the outer areas of 
the plane nothing would be changed, since the distance P'Q' would 
be projected in equal length on PQ. But the middle area which lies 
below the glass hemisphere would not furnish the usual measurements. 
Obviously the same results would be obtained as those found in the 
middle region by the G-people. A;;sume that the two worlds do not 
know anything about each other, and that there is no outside observer 
able to look at the surface E-what would the £-people assert about the 
shape of their surface? 

They would certainly say the same as the G-people, i.e., that they 
live on a plane having a hump in the middle. They would not notice 
the deformation of their measuring rods. But why would they not 
notice this deformation? 

We can easily imagine it to be caused by a physical factor, for 
instance by a source of heat under the plane E, the effects of which 
are concentrated in the middle area. It expands the measuring rods 
so that they become too long when they approach A. Geometrical 
relations similar to those we assumed would be realized; the distances 
CB and BA would be covered by the same measuring rod and heat 
would be the mysterious force we imagined. 

But could the £-people discover this force? Before we answer this 
question we ha\'e to formulate it more precisely. If the £-people 
knew that their surface is really a plane, they could, of course, notice 
the force by the discrepancy between their observed geometry and 
Euclidean plane geometry. The question, therefore, should read: 
how can the effect of the force be discovered if the nature of the 
geometry is not known? Or better still: how can the force be detected 
if the nature of the geometry may not be used as an indicator? 

If heat were the affecting force, direct indications of its presence 
could be found which would not make use of geometry as an i11direct 
method. The £-people would discover the heat by means of their 
sense of temperature. But they would be able to demonstrate the 
heat expansion independently of this sensation, due to the fact that 
heat affects different materials in different ways. Thus the £-people 
would obtain one geometry when using copper measuring rods and 
another when using wooden measuring rods. In this way they would 
u 



§ 3. The Problem of Physical Geometry 

notice the existence of a force. Indeed. direct e\'idence for the presence 
of heat is based on the fact that it affects different materials in differmt 
ways. The fact that the difference in temperature at the points A 
and C is demonstrable by the help of a thermometer is based on this 
phenomenon; if the mercury did not expand more than the glass tube 
and the scale of the thermometer, the instrument would show the same 
reading at all temperatures. Even the physiological effect of heat 
upon the human body depends upon differences in the reactions of 
different nerve endings to heat stimuli. 

Heat as a force can thus be demonstrated directly. The forces, 
however, which we introduced in our example, cannot be demonstrated 
directly. They have two properties: 

(a) They affect all materials in the same way. 
(b) There are no insulating walls. 

'We have discussed the first property, but the second one is also neces­
sary if the deformation is to be taken as a purely metrical one; it will 
be presented at greater length in § 5. For the sake of completeness the 
definition of the insulating wall may be added here: it is a covering 
made of any kind of material which does not act upon the enclosed 
object with forces having property a. Let us call the forces which 
have the properties a and b universal forCt"s; all other forces arc called 
differential forces. Then it can be said that only differential forces, 
but not universal forces, are directly demonstrable. 

After these considerations, what can be stated about the shape of 
the surfaces E and G? G has been described as a surface with a hump 
and E as a plane which appears to have a hump. By what right do 
we make this assertion? The measuring results arc the same on both 
surfaces. If we restrict ourselves to these results, we may just as well 
say that G is the surface with the "illusion" of the hump and E the 
surface with the" real" hump. Or perhaps both surfaces have a hump. 
In our example we assumed from the beginning that E was a plane 
and G a surface with a hump. By what right do we distinguish between 
E and G? Does E differ in any respect from G? 

These considerations raise a strange question. We began by asking 
for the actual geometry of a real surface. \Ve end with the question: 
Is it meaningful to assert geometrical differences with respect to real 
surfaces? This peculiar indeterminacy of the problem of physical 
geometry is an indication that something was omitted in the formulation 
of the problem. We forgot that a unique answer can only be found if 
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Chapter I. Space 

the question has been stated exhaustively. Evidently some assump­
tion is missing. Since the determination of geometry depends on the 
question whether or nut two distance:. arc really equal in length (the 
distances AB and BC in Fig. 2), we have to know beforehand what it 
means to say that two distances arc "really equal." Is really equal 
a meaningful concept? We have seen that it is impossible to settle 
this question if we admit universal forces. Is it, then, permissible to 
ask the question? 

Let us therefore inquire into the epistemological assumptions of 
measurement. For this purpose an indispensable concept, which has 
so far been overlooked by philosophy, must be introduced. The con­
cept of a coordinativc tlejinilion is csscnt ial for the solution of our 
problem. 

§ 4. COORDINATIVE DEFINITIONS 
Defining usually means reducing a concept to other concepts. In 

physics, as in all other fields of inquiry, wide usc is made of this pro­
cedure. There is a second kind of definition, however, which is also 
employed and which derives from the fact that physics, in contra­
distinction to mathematics, deals with real objects. Physical know­
ledge is characterized by the fact that concepts are not only defined 
by other concepts, but arc also coordinated to real objects. This 
coordination cannot be replaced by an explanation of meanings, it 
simply states that IIJis co11cept is coordinated to this particular tlu"11g. 
In general this coordination is not arbitrary. Since the concepts arc 
interconnected by testable relations, the coordination may he verified 
as true or false, if the requirement of uniqueness is added, i.e., the rule 
that the same concept must always denote the same object. The 
method of physics consists in establishing the uniqueness of this 
coordination, as Schlick 1 has clearly shown. But certain preliminary 
coordinations must be determined before the method of coordination 
can be carried through any further; these first coordinations are there­
fore definitions which we shall call coortli11alive defi11iiio11s. They arc 
arbitrary, like all definitions; on their choice depends the conceptual 
system which develops with the progress of science. 

Wherever metrical relations are to be established, the use of 
coordinative definitions is conspicuous. If a distance is to be measured, 

1M. Schlick, Allgemeine ErkemrltJislthrt, Springer, Berlin 1918. Ziti. 10. 
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