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violation means that the Bell correlation attains its maximal value ( v'2) in 
the normal states for the mentioned spacetime regions. By the genericity 
of the violation is meant that the maximal and typical violation is not 
a peculiar feature of a single, particular net of local algebras, but it 
is characteristic of a number of field theories that, in addition to the 
minimal set of axioms of isotony, locality and Poincare covariance, satisfy 
some further conditions. The propositions and theorems that altogether 
embody the typical and maximal violation of Bell's inequality vary in their 
generality and applicability, and they were discovered step-by-step in a 
series of papers in the past decade. Calling a local field theory "good" if, 
in addition to the minimal set of postulates (i)-(v), it has the property of 
weak additivity and is such that both wedge duality and the cone cyclicity 
of the vacuum hold, one may say that "Bell's inequalities are maximally 
and typically violated in every good ARQFT". To be more precise, one has 
the following two typical results. 

Proposition 10.14 Let {N(V)} be a local net in an irreducible vacuum 
representation and assume that the net satisfies wedge duality, and cone 
cyclicity (which is the case if {N(V)} is associated with a Wightman field). 
Then Bell's inequality is maximally violated in all normal states for all 
algebras pertaining to complementary wedge regions W and W'. 

Proposition 10.15 Let {N(V)} be a dilatation-invariant local net in an 
irreducible vacuum representation such that weak additivity and wedge 
duality hold for the net (which is the case if the net {N(V)} is associated 
with a Wightman field). Then Bell's inequality is maximally violated in 
all normal states for all algebras pertaining to spacelike separated tangent 
double cones. 

10.4. Superluminal correlations in quantum field theory 

Let (N, {N(V)}) be a covariant net of (strictly) local von Neumann 
algebras N(V) in the sense of algebraic quantum field theory described 
in Section 10.1, and let V1 and V2 be two spacelike separated spacetime 
regions. If A E N(Vi) and B E N(V2) are two projections in the respective 
algebras and </> is a state on the quasilocal algebra N, then it can happen 
very well that 

</>(AB) > </>(A)</>(B) (10.28) 

If (10.28) is the case, then we say that there is superluminal correlation 
between A and B in state </>. 

A typical example of superluminal correlation is the one predicted by the 
vacuum state </>0 : If V1 and V2 are two spacelike separated tangent double 
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cone regions, or two spacelike separated complementary wedge regions in 
the Minkowski spacetime, then 

¢>o(AB) > ¢>o(A)¢>o(B) (10.29) 

for some projections A E A(VI), B E A(V2). 
The existence of such A, B is a consequence of the fact that the 

vacuum state violates Bell's inequality for the said regions in "every" 
field theory. This is because a product state satisfies Bell's inequality 
(Proposition 10.10), hence if>o cannot be a product state across the algebras 
N(VI),N(V2), and it follows that there exist selfadjoint contractions 
X E N(V1), Y E N(V2) such that 

¢>o( XY) -:j; ¢>o( X)¢>o(Y) 

which implies that 
if>o(P1P2) -:j; ¢>o(P1)¢>o(P2) 

for some spectral projections P~, P2 of X and Y respectively, hence either 

or 

holds. 
Unless one takes the position that correlations need not be explained 

at all, a position taken by Van Fraassen for example [161], if one sees a 
probabilistic correlation, one would like to say either of the following 

1. There exists a direct causal connection between the correlated events. 
2. There exists a probabilistic common cause of the correlation. 

In fact, in the case of superluminal correlations such as the one predicted 
by ARQFT, one would not like to say 1. - and consider it true, too, 
since spacelike separated events are not supposed to causally influence 
each other. Yet, option 1. is not a priori impossible, for it can happen 
that ARQFT does not comply with the no-action-at-a-distance principle, 
despite the fact that this theory was constructed precisely with the aim of 
creating a quantum theory that complies with the no-action-at-a-distance 
principle: There is no apriori assurance that the axioms a net of local 
observable algebras is required to satisfy do indeed exclude unwanted causal 
connections. However, to claim that there is (or that there is no) causal 
connection between spacelike separated events, one has to specify "causal 
connection" or "causal independence" in terms of ARQFT precisely enough 
to be able to prove absence/presence of a causal link. So the presence 
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of superluminal correlations in ARQFT leads naturally to the problem 
of independence of the correlated algebras. We have seen in Section 10.1 
that the spacelike separated algebras satisfy a number of independence 
conditions. The next chapter adds two more to these: logical independence 
and counterfactual probabilistic independnce. It turns out that the spacelike 
separated local algebras in ARQFT satisfy these independence conditions 
as well. 

These "negative" results on option 1 as explanation of the superluminal 
correlation leave one with option 2. With the problem namely, if there is a 
common cause explanation of the correlation. This problem is taken up in 
Chapter 12. We shall see that this problem is entirely open. 

10.5. Bibliographic notes 

The axioms of algebraic quantum field theory were first systematically 
formulated in 1964 in [57]. The theory has since reached maturity and 
is summarized in the monographs of Haag [56] and Horuzhy [72]. For the 
relation of the Wightman axioms to algebraic quantum field theory see [48]. 
The two propositions on the type of local algebras can be found in [47]. The 
notion of C*-independence of local observable algebras was introduced by 
Haag and Kastler in [57] in the framework of algebraic quantum field theory. 
The different notions of independence, including statistical independence 
are reviewed in [151]. The notion of Bell correlation was introduced by 
Summers and Werner in [145], its bounds and value in quantum field theory, 
thus violation of Bell's inequality in field theory, have been extensively 
investigated by Landau [91], and by Summers and Werner in a number of 
papers [145], [146], [147], [148] [149], [152] (see [151] and [150] for reviews). 
The value of the Bell correlation was checked experimentally. The idea of 
the experiment is outlined in the review [40], the results of the experiment 
were published in [6], [7] and [8]. The commonly accepted interpretation of 
the experimental results is that Bell's inequality is violated by Nature. For 
a dissenting view see [156]. 
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Independence in quantum logic approach 

An important notion in physics is the concept of independence of physical 
systems. One typically encounters the problem of independence of systems 
in the situation where Sis a physical system and S1, S2 are two subsystems 
of S. The problem of independence comes then either in the form of the 
need to decide whether S1 and S2 are independent, or in the form of the 
need to impose an independence condition on St, 82, as part of creating a 
suitable model of the systems involved. Relativistic quantum field theory 
is a case in point. We have seen in the last chapter that, on the one hand, 
one imposes the local commutativity (microcausality) condition on the 
net of local algebras, which, together with the other axioms imply other 
(statistical) independence conditions; on the other hand, the existence of 
probabilistic correlations between distant (spacelike separated) projections 
raises the suspicion that the (spacelike separated) local algebras are not, 
after all "independent" in some sense in which one expects them to be. 
Obviously, it is then of interest to clarify the independence relations 
between two subsystems of a larger quantum system, and to do this one 
needs intuitively and physically justifiable, and mathematically operational 
concepts of independence. 

Now the notion of independence is not a theory-independent one. 
Rather, it is to be expected that in different models of even one and 
the same physical system different independence conditions are natural 
and suitable. As we have seen in the previous chapter, if the quantum 
systems are represented by C* -or W* -algebras, then one can formulate 
different, nonequivalent notions of statistical independence notions, such 
as C*-independence, W*-independence, strict locality, W*-independence 
in the product sense and split property. In the quantum logic approach 
to quantum mechanics, a quantum system S and two of its subsystems 
St, S2 are modeled by the orthomodular lattice of projections P(M) of 
the von Neumann algebra M and the projection lattices P(Mt), P(M 2) 

of two von Neumann subalgebras Mt,M 2 of M. These lattices represent 
the logical structure of (some of) the empirically testable propositions 
regarding the observable quantities of the systems, if the observables are 
represented by (the selfadjoint part of) the algebras M 1, M 2 and M, and 
if the states of the system are given by the state spaces of M 1, M 2 and 
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M. It is natural then to ask for a notion of logical independence of the two 
von Neumann sublattices P(M1), P(M2). The aim of this chapter is to 
formulate definitions of independence for a pair of lattices P(M1), P(M2) 

in lattice theoretic terms and to characterize the pairs of independent 
lattices. 

We shall consider two kinds of independence in detail: logical (semantic) 
and counterfactual probabilistic independence, and both independence 
notions will be related to notions of statistical independence. 

In Section 11.1 we first motivate the main definition of the section, the 
Definition 11.6, which expresses that no (non-trivial) proposition in a von 
Neumann lattice P(M1) implies or is implied by any proposition in the von 
Neumann lattice P(M 2), M~,M2 being von Neumann subalgebras of the 
von Neumann algebra M. A result of Murray and von Neumann is then 
recalled that implies that P(M 1), P(M2) are logically independent if M 1 is 
a factor von Neumann algebra and P(M1), P(M 2) commute (Proposition 
11.3). A proof of this is given in the special case where M1 is a subfactor 
in a finite factor M and (M~,M2) is a commuting pair of subalgebras 
(Proposition 11.4 and its proof). Also, logical independence will be related 
in this section to three statistical independence conditions called C*­
independence, W*-independence and strict locality. It turns out that logical 
independence of P(M1), P(M 2) is equivalent to the C*-independence of 
(M~,M2) if the algebras M~,M2 mutually commute (Proposition 11.5). 
Since it is known that W*-independence implies strict locality and strict 
locality implies C*-independence if (M~,M2) is a commuting pair, it 
follows that for commuting algebras M1,M2 the lattices P(M1), P(M2) 
are logically independent if the pair (M~,M2) is either W*-independent 
or fulfils the independence condition strict locality (Proposition 11. 7). 
No relation between strict locality and C*-independence is known if 
M~, M2 are not commuting general von Neumann algebras, however. 
But it will be shown that, whether or not M1 and M 2 commute, the C*­
independence of M~, M2 implies logical independence of P(M1), P(M2) 
if M is a finite dimensional full matrix algebra (Proposition 11.6), and 
that P(M1), P(M2) are logically independent if (M~,M2) is a strictly 
local or W*-independent pair (Proposition 11.8). It would be desirable 
to have suitable further general characterizations of logically independent 
sub-quantum lattices, but this problem remains largely open. Particular 
open questions related to the characterization problem are formulated 
explicitly in Problems 11.1, 11.2, 11.3, 11.4, 11.5 and 11.6. 

In Section 11.2 a counterfactual analysis of the problem of probabilistic 
causal independence between spacelike separated events in algebraic 
relativistic quantum field theory (ARQFT) is proposed. The analysis is 
based on Lewis' idea of chancy causation and on Stalnaker's possible world 
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semantics of counterfactuals. Lewis' theory is specified in terms of ARQFT 
and a precise definition of counterfactual probabilistic causal dependence 
between events understood as projections in the von Neumann algebras 
localized in spacelike separated spacetime regions is given (Definition 
11.10). The general problem of whether there are spacelike separated local 
observable algebras containing projections with conterfactual probabilistic 
dependence between them remains open (Problem 11.6)). It will be 
shown, however, that if the two von Neumann algebras representing the 
local observables belonging to spacelike separated spacetime regions have 
the independence property of C*-independence, then they contain no 
projections with counterfactual probabilistic causal dependence between 
them (Proposition 11.9). Since Bell's inequality is violated in quantum field 
theory even for local algebras having the independence property of C*­
independence, it follows then that violation of Bell's inequality in ARQFT 
does not imply presence of superluminal causation in the counterfactual 
sense in ARQFT (Proposition 11.10). 

11.1. L ical independence in quantum logic 

11.1.1. CAL NOTIONS OF INDEPENDENCE 

As it was see in Chapter 5, in the semantic approach to the physical 
theory the phys· al theory is represented by a semi interpreted language 
(.C, :F, h, f), and t e semantic notions, like the truth of a sentence a E :F, 
the semantic entailm~nt a I= f3 etc. are defined with the help of the map 
h that assigns to every elementary sentence those states in r that make 
true the sentence. It is rather natural to assume that if S is represented by 
the language (.C, :F, h, f), then the two subsystems S1 and S2 are described 
by two "sub-languages" (.C,Ft,h,ft) and (.C,F2,h,f2), with :Ft,:F2 ~ F 
being two closed (with respect to the logical operations in :F) subsets of 
sentences and ft, f 2 being the state space of S1 and S2 • 

In this semantic framework the independence of S1 , S2 should be 
formulated as the "logical independence" of the two sets Ft, :F2 of the 
empirically checkable, meaningful statements on the respective systems. 
The natural notion of independence that comes to mind is that "no (non­
trivial) proposition in :Ft should imply any (non-trivial) proposition in :F2 

and conversely, no (non-trivial) proposition in .1"2 should imply any (non­
trivial) proposition in :Ft". 

There are several options to implement this idea of independence. The 
first is to take "implies" in the sense of semantic entailment: 

Definition 11.1 Ft, :F2 are semantically independent if 

semantic independence: (11.1) 
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for any non-trivial statements a E ;;i,f3 E :F2 where I= is a relation of 
semantic entailment between the sentences. 

Assume now that there exists an implication connective => in the set 
of sentences :F, a two-place connective that expresses formally certain 
features of the implication "if a then {3". Then a second implementaiton 
of the independence idea can be what may be called "independence with 
respect to an implication connective =>", or "=>-independence" for short. 
The idea of =>-independence of :Ft, :F2 is that no (non-trivial) proposition 
in :F1 "implies" any (non-trivial) proposition in :F2, and, conversely, no 
proposition in :F2 "implies" any proposition in :Ft, where "does not imply" 
is now taken in the sense that the inference (with respect to =>) between 
the elements of :Ft and :F2 is not a tautology. 

Definition 11.2 :Ft,:F2 are called =>-independent if 

=>-independence: (a=> {3) and ({3 =>a) are not tautologies (11.2) 

for any (non-trivial) a E :Ft,{3 E :F2 
Finally, another implementation of the independence can be that no 
statement f3 E :F2 follows from the statements in :Ft in the sense that 
both :F1 U {"' a} and :F1 U {a} are satisfiable sets of statements, and 
conversely, no statement a E :F1 follows from the statements in :F2 in this 
sense. 

Definition 11.3 For any set :Fo ~ :F of statements let "' :Fo denote the 
set of statements 

:Fo = {"' I I I E :Fo} 

:Ft, :F2 are called logically independent if 

~u~, "'~u~, ~u"'~, "'~u"'~ 

are all satisfiable sets of sentences. 

Having these independence definitions, it is natural to ask whether they 
are different. Clearly, as long as the key elements in the definitions (I= in 
(11.1), =>in (11.2) and the concept of satisfaction in Definition (11.3)) are 
not linked to each other formally, the three independence notions remain 
unrelated. So the first task is to establish a connection between these 
logical concepts. This can be achieved by considering them in terms of 
the propositional system that the semi-interpreted language determines. 

Recall that in the case of quantum mechanics the set of equivalence 
classes :F'L. of the statements :Fq (with respect to the relation "a is true if 
and only if f3 is true') was shown in Chapter 5 to be isomorphic with the 
orthomodular lattice P(1i) of the set of all projections on the Hilbert space 
1i (more generally, with the orthomodular lattice P(M) of projections of 
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a von Neumann algebra M, see the end of Section 6.2). The equivalence 
was established by the map lhql that assigned every equivalence class those 
states that make true the statements in the equivalence class. Under this 
identification a sentence in :F is satisfiable if it is represented by a non­
zero projection in M, the identity projection I represents the always true 
proposition (tautology) and the semantic entailment a I= f3 turns out to be 
given by the partial ordering on P(1f.) (resp. on P(M)). As it was seen in 
Chapter 8, the semantic content of an implication connective is formulated 
in terms of the implicative criteria (see Section 8.1). So if we consider the 
case when :Ft and :F2 are represented by the orthomodular lattices P(Mt) 
and P(M 2) of two von Neumann subalgebras of the von Neumann algebra 
M, then the independence definitions can be formulated in terms of the 
lattice operations of P(M) as follows. 

Definition 11.1 becomes 

Definition 11.4 P(Mt), P(M2) are semantically independent if 

semantic independence: 

for any elements O,I =J A E P(Mt) and O,I =J BE P(M2). 
The lattice theoretic translation of Definition 11.2 is 

Definition 11.5 P(Mt), P(M2) are called =>-independent if 

=> -independence: (A=> B) =J I and (B =>A) =J I 

for any O,I =J A E Lt and O,I =J BE L2. 
Finally, the Definition 11.3 of logical independence becomes 

(11.3) 

(11.4) 

Definition 11.6 P(Mt) and P(M2) are called logically independent if 
and only iffor any non-zero A E P(Mt) and for any non-zero BE P(M 2) 
it holds that A 1\ B =J 0. 

The content of this last definition can be expressed also by saying that 
P(Mt), P(M2) are logically independent if and only if any pair of non-zero 
propositions (A, B) (A E P(Mt), BE P(M2)) can be jointly true in some 
state of the (joint) system S. For instance, if A represents the proposition 
that "The observable Rt E Mt has value r1 (with probability one)", and1B 
stands for "The observable R2 E M 2 has value r2 (with probability one)", 
then there is at least one state ¢> of the system S in which the proposition 
"The observable Rt E Mt has its value r1 and the observable R2 E M 2 
has its value r 2 (with probability one)" is true. 

Recall (Section 8.1) that one of the implicative criteria, the "law of 
entailment" required of the => implication the following 

(E) if A~ B, then (A=> B)= I 
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It follows at once that if=> satisfies E, then =>-independence of the lattices 
P(M1) and P(M2) implies semantic independence of P(M1), P(M2). If 
=> also satisfies the modus ponens 

(MP) A 1\ (A => B) :s; B 

(see Section 8.1), then 

A :s; B if and only if (A=> B)= I (11.5) 

and in this case the semantic independence and =>-independence of the 
lattices P(M1) and P(M2) are equivalent. 

It is easy to see that the logical independence of P(M1), P(M2) implies 
semantic independence: If A :s; B for some A E P(M1),B E P(M2), then 
A is orthogonal to Bl., consequently AI\Bl. = 0, and since Bl. is in P(M2) 
if B is (because P(M2) is a sublattice), P(M1), P(M2) are not logically 
independent. But the converse is not true, as the following counterexample 
shows. Consider the simplest six-element orthomodular lattice: 

L6 ={A, A\ B,B1. ,O,I} 

with the partial ordering given by 

o:s;x:s;I 
If=> satisfies the minimal implicative criteria (with respect to this :s;), then 
the two sublattices 

L1 = {O,A,A1.,I} 

L2 = {0, B, Bl. ,I} 

are =>-independent (and also semantically independent) but not logically 
independent. 

The next proposition gives a sufficient condition for P(M1), P(M2) 
that implies that the =>-independence of P(MI),P(M2) entails logical 
independence. 

Proposition 11.1 Let us assume that the connective => satisfies the 
minimal implicative criteria. If the lattices P(M1) and P(M2) are such 
that the orthomodular lattice generated by any two elements A E P(M1) 
and B E P(M2) is a distributive sublattice in L, then =>-independence of 
P(M1), P(M2) implies logical independence ofP(MI), P(M2). 

Proof: Assume that P(MI), P(M2) are not logically independent. Then 
there exist non-trivial projections A E P(M1),B E P(M2) such that A 1\ 
B = 0. Using the distributivity assumption we can write then: 

A=AI\I AI\(BVBl.) 

=(AI\B)V(AI\Bl.) = OV(AI\Bl.)=AI\Bl. 
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which imples A ::; BJ. and so by (11.5) we have (A ::} BJ.) = I, and 
consequently P(MI), P(M2) are not =?--independent. 0 

In the projection lattice of a von Neumann algebra a sublattice 
generated by a set of projections is distributive if and only if the projections 
are pairwise commuting (Propositions 4.16 and 4.17), hence as a particular 
case of Proposition 11.1 we have: 

Proposition 11.2 Assume that M 1,M2 are commuting von Neumann 
subalgebras of the von Neumann algebra M. If the lattices P(Mt) and 
P(M2) are =?--independent with respect to any of the quantum conditionals 
(which means in this case that the lattices are independent with respect 
to the classical material implication) then P(Mt), P(M 2) are logically 
independent. 

Summing up the relations between the three independence notions in 
the context of quantum logic: 

1. Semantic and =?--independence of P(Mt), P(M2) are equivalent if::} 
satisfies the minimal implicative criteria. 

2. If::} satisfies the minimal implicative criteria, and P(Mt), P(M2) are 
mutually commuting, then the three independence conditions coincide; 
this is the case in particular when P(M) is a Boolean algebra (logic 
of a classical mechanical system). 

3. In the non-distributive, truly quantum case, logital independence is 
strictly stronger than semantic or =?--independence, even if::} satisfies 
minimal implicative criteria. 

It is this stronger notion of logical independence which we now turn to. 

11.1.2. LOGICAL AND STATISTICAL INDEPENDENCE 

Let us see an example of logically non-independent subalgebras first. Let 
Q and P be the canonically conjugate position and momentum operators 
of a free particle moving in one dimension: Q and P are defined on (some 
suitable dense set 'D of) the Hilbert space L2(1R, J.L) by 

(P f)(x) = -if'(x) (Qf)(x) = xf(x) fE'D 

and let pQ and pP be the spectral measures of Q and P (see Chapter 2). 
Let Mt = MQ and M2 = Mp be the von Neumann algebras generated 
by the spectral projections of Q and P: 

M Q = {PQ (d) I d real Borel set }" 

Mp = {PP(d) I d real Borel set }" 
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Let us also define 

Mq ={X E B(1i) I XPQ(d) = PQ(d)X for all real Borel sets d} 

Mp = {X E B(1i) I XPP(d) = PP(d)X for all real Borel sets d} 

(B(1i) denoting the set of all bounded operators on 1-l, and S' denoting the 
first and S" = ( S')' denoting the second commutant of a set S of bounded 
operators on 1-l.) 

By eq. (2.19) the two von Neumann sublattices P(Mq), P(Mp) 
generated by the spectral projections of Q and P respectively are not 
logically independent. 

Note that the lattices P(Mq), P(Mp) are also not independent 
logically, since it holds that 

P(Mq) ~ P(Mq) P(Mp) ~ P(Mp) 

and logical non-independence is inherited by super-lattices: if £1 and 
£2 contain sublattices £10 and £20 that are not logically independent, 
then £1,£2 are also not logically independent. Consequently, the two 
von Neumann sublattices P(Mq ), P(Mp) generated by the spectral 
projections of Q and P respectively are not logically independent. In fact, 
these lattices are very strongly not independent logically, since they contain 
an abundance of projections that do not have non-zero greatest lower 
bound. The logical non-independence of Mq and Mp is due to the strong 
correlation between complementary quantities, which is a consequence of 
the well known non-commutativity of Q and P: [ Q, P] = if (on a suitable 
subset of L2 (1R,J.L)). 

This leads to the question: are P(Mt) and P(M2) logically independent 
if they mutually commute, i.e. if AB = BA for all A E P(M 1) and 
for all B E P(Mt)? The answer is no, since mutual commutativity of 
P(Mt), P(M2) is not sufficient to imply 

P(Mt) n P(M2) = {O,I} 

which is a necessary condition for two sublogics to be logically independent: 
if there is a non-trivial element A in P(M1) n P(M 2 ), then Al. also is in 
P(Mt)n'P(M2), and AI\Al. = 0, thus P(Mt), P(M 2) cannot be logically 
independent. (Note that mutual commutativity of P(Mt), P(M 2) is not 
only not sufficient to imply logical independence of P(Mt), P(M 2 ), it is 
not even necessary for P(M 1), P(M 2) to be logically independent, see the 
example preceeding Problem 2). This leads to the 

Problem 11.1 What additional conditions to mutual commutativity 
imply then logical independence? 
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A partial answer to this question is contained in the next proposition. 

Proposition 11.3 If Mt is a factor von Neumann algebra in the von 
Neumann algebra M, and the lattices P(Mt) and P(M2) are commuting, 
then P(Mt) and P(M2) are logically independent. 

This proposition is implied by a result of Murray and von Neumann 
(Corollary to Theorem III, in [104]): Let M ~ B(1i) be a factor von 
Neumann algebra, and A E M,B E M' (recall that M' denotes the 
commutant of M). If AB = 0, then either A= 0 orB = 0. In particular, 
the next proposition, which is just the special case of Proposition 11.3, is 
implied by this result of Murray and von Neumann; however, because of 
the significance of the finite von Neumann algebras for quantum logic, a 
proof of it is given below. 

Proposition 11.4 Let M be a finite factor von Neumann algebra and M t 

be a subfactor in M. If M2 commutes with Mt, then P(Mt), P(M2) are 
logically independent. 

Proof: Note first that logical independence is inherited by pairs of 
subalgebras: If P(Mt), P(M2) are logically independent and Mw,M2o 
are von Neumann subalgebras of Mt and M2, respectively, then P(Mw) 
and P(M 20 ) also are logically independent. Thus it suffices to show that 
Mt and N = M~ nM 2M2 are logically independent (M~ nM denoting 
the elements in M that commute with every element in M t)· Let M t V N 
denote the von Neumann subalgebra in M generated by Mt and N', and 
let r be the unique, faithful, tradal state on M. The restriction of r 
to Mt V N is also a faithful tradal state on Mt V N', and there exists 
then a unique r-preserving conditional expectation from M t V N onto the 
subfactor M t of M t V N (Proposition 8.6). By a theorem of Takesaki 
(Corollary 1 in [157]) r factorizes on Mt,N'; that is, 

r(AB) = r(A)r(B) A E Mt,B EN' 

Since r is faithful, it follows that 

0 tf r(A)r(B) = r(AB) = r(A A B) if A, B tf 0 

which implies (A A B) tf 0 if A,B tf 0. o 

Remark : As we have seen (see the table in Section 6.1), there are two 
types of finite factors: The set of all bounded operators B(1in) on an n­
dimensional Hilbert space 1in (these are the discrete, type In finite factors) 
and the type lit factors (continuous case). Proposition 11.3 holds trivially 
if the algebra M t is irreducible in a type lit factor M: i.e. if (by definition 
of irreducibility) the relative commutant (M~ n M) of Mt in M is equal 
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to { 0, J}. By results of the index theory of type Il1 factors, M 1 cannot be 
an arbitrary subfactor in M if M1 is not irreducible in the type Il1 factor 
M: if the index of M1 is smaller than 4, then M1 is irreducible in M 
(Corollary 2.2.4 in [78]). However, if M is the unique hyperfinite type Il1 
factor R, then there exist non-irreducible subfactors M1 C R with index 
greater than 4 (see [78]). Thus the Proposition 11.3 holds non-trivially in 
these latter cases. 

Remark : Note that the projection lattices of type 111 (factor) von 
Neumann algebras, the "continuous geometries", are just the lattices that 
Birkho:ff and von Neumann considered as (irreducible) quantum logics 
(Chapter 7). As it was seen in Section 6.1 the lattice P(M) of a type 111 

factor von Neumann algebra M differs from the Hilbert lattice P(1f.) of all 
projections on the Hilbert space 1f. in that P(M) has no atoms and it is 
modular, unlike P(1f.), which is not modular if 1f. is infinite dimensional, 
and which is atomic irrespective of the dimension of 1f.. If P(M1), P(M2) 
are logically independent, and both P(M1) and P(M2) contain a non­
trivial element, then neither P(M1) nor P(M2) can contain any atom of 
P(M). Because of the symmetrical role of P(MI) and P(M2) to see this 
it is enough to show that if 0, I 'f:. A1 E P(M1) is a non-trivial element and 
Ao E P(M2) is an atom in P(M), then P(M1), P(M2) are not logically 
independent. It holds that 

(11.6) 

and since Ao is an atom, it follows from (11.6) that either A1 AAo = 0, which 
means that P(MI), P(M2) are not logically independent, or A1 AA0 = A0 , 

which implies A1 ~ Ao, and then for the non-zero element A[ we have 
A[ A Ao = 0, thus, again, P(MI), P(M2) are not logically independent. 
Neither P(M1) nor P(M2) contains an atom of P(M) if M is a type 111 

factor, since there are no atoms at all in P(M) in this case; it is not true, 
however, that P(MI), P(M2) cannot be logically independent non-trivially, 
if P(M) is an atomic lattice (see examples below). 

Next we relate logical independence to the statistical independence 
condition known as C*-independence. Recall that C*-independence of the 
C*-subalgebras A, B of the C*-algebra C means that for any state </>1 on A1 

and for any state </>2 on A2 there is a state</> on C such that </>(A)= <f>1(A) 
and </>(B)= </>2(B) (A E A17B E A2) (Definition 10.3). 

Clearly, if Mt,M2 are mutually commuting C*-independent von 
Neumann algebras, then P(MI), P(M2) are logically independent by 
the Schlieder-Ross Theorem (Proposition 10.5), since A A B = AB for 
commuting A and B. The converse also is true, for assume that Mt,M2 are 
commuting and not C*-independent. Then XY = 0 for some 0 'f:. X E M 1 
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and 0 -::J Y E M 2 , and then the non-zero range projection (left support) 
s1(Y) of Y (which lies in M 2) and the non-zero range projection of X* 
(which belongs to Mt, and which is the right support sr(X) of X) are 
related as 

s1(Y) ~ ker(X) = I- range(X*) 
= sr(X)l. 

and it follows that s1(Y) :::; sr(X)l., that is s1(Y) and sr(X) are orthogonal. 
Consequently s1(Y) 1\ sr(X) = 0, and so P(M1), P(M2) are not logically 
independent. So we have 

Proposition 11.5 If Mt,M2 is a commuting pair of von Neumann 
subalgebras of the von Neumann algebra M, then the pair (P(MI), P(M2)) 
is logically independent if and only if Mt,M2 are C*-independent. 

In particular, the logics P(M(VI)), P(M((V2)) associated to the von 
Neumann algebras M(VI),M(V2) oflocal observables localized in spacelike 
separated wedge and double cone regions V1, V2 in the Minkowski space 
in the sense of algebraic quantum field theory (Chapter 10) are logically 
independent, since the algebras M(VI),M(V2) commute by the axiom of 
microcausality and they also are known to be C*-independent. The algebras 
M(V1),M(V2) being type III typically, the von Neumann lattice P(M(V1U 
V2)) does not contain atoms. 

Another example of C*-independent pair of algebras is the pair 

more generally, the pair 

(B(1i)®I, I®B(1i)) 

in B(1i)®B(1i). Here Mn is the algebra of complex n-by-n matrices, and 
the two algebras (Mn ®I) and (I® Mn) is considered as subalgebras of the 
matrix algebra 

Mn®Mn = Mn2 

The case n = 2 is the well known Bohm-Bell joint system of (the spin part 
of) two spin half particles. Since (Mn ®I) and (I® Mn) commute, 

P(Mn ®I), P(I ® Mn) 

form a logically independent pair of quantum logic, which is immediately 
clear also without invoking Proposition 11.4: if (A® I) and (I® B) are 
projections in (Mn ®I) and (I® Mn), respectively, then 

(A® I) 1\ (I® B)= (A® B) -::J 0 
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In this example P(Mn2) is an atomic lattice but neither P(Mn ®I) nor 
P(I ® Mn) contains an atom of P(Mn2) (cf. the second Remark after 
Proposition 11.4). Note that Mn ®I is a subfactor in Mn2, thus the logical 
independence of the pair (Mn ®I), (I® Mn) follows from Proposition 11.3, 
too. 

It is known [151] that there are C*-independent pairs of algebras that 
do not commute. Consider now the five dimensional Euclidean space 1R 5 

(denote the axis in 1R5 by Xi, i = 1, ... 5), let A be the X1,X2 plane 
and B0 the plane at angle 1r /5 to A which contains the X1 axis, and let 
B = B0 + X 5 • Then the two lattices (A,A.L,O,I) and (B,B.L,o,I) do not 
commute and are logically independent. (This is because (AAB) is equal to 
the Xt axis, the X4 axis is in A.L A B.L, Xs is in both A.L A Band A A B.L.) 
So one is led to the following two problems: 

Problem 11.2 What is the relation of the notion of C*-independence to 
logical independence in general, i.e. in the case where P(Mt), P(M2) are 
not supposed to be mutually commuting? 

Problem 11.3 What additional conditions to the logical independence of 
the pair (P(Mt), P(M2)) imply that the two von Neumann lattices P(Mt) 
and P(M2) commute? 

Note that while it is true that the Schlieder-Roos theorem remains valid 
without the assumption of mutual commutativity of the algebras involved, 
this fact together with Proposition 11.5 does not give an answer to the 
question in Problem 11.2 because if M 1 does not commute with M 2, then, 
if A E M 1 and B E M 2 are projections, then AB =I A A B (AB is not a 
projection, not even selfadjoint, if A and B do not commute). 

Partial answer to Problem 11.2 is given by the next 

Proposition 11.6 Let M be a finite dimensional full matrix algebra and 
Mt,M 2 be two, not necessarily commuting von Neumann subalgebras of 
M. If the pair (Mt,M 2) is C*-independent, then P(Mt), P(M2) are 
logically independent. 

Proof: The assertion of the proposition is a consequence of the fact that 
the projection lattice of a finite dimensional full matrix algebra is a so­
called Jauch-Piron lattice: The lattice P(M) of an arbitrary von Neumann 
algebra M is a Jauch-Piron lattice by definition if every state on M is a 
Jauch-Piron state. (Definition 3.23). A state ¢> is Jauch-Piron (Definition 
3.22) if it satisfies the following condition: whenever A, B E P(M) are such 
that 

¢>(A) =¢>(B)= 0 

it holds that 
¢>(A VB)= 0 
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Equivalently: 
¢(A)= ¢(B)= 1 

implies 
¢(AI\B)=1 

Since for any element X in a C* -algebra there is a state ¢ such that 

¢(XX*) =II X 112 

for any A E M1 and BE M2, there exist states cP1 and cP2 on M1 and M2, 
respectively, such that ¢1(A) = 1 and ¢2(B) = 1. By the C*-independence 
of the pair P(M1), P(M2) there is a joint extension ¢of cP1 and ¢2, and 
since ¢is Jauch-Piron, it follows that 

¢(A 1\ B)= 1 

hence A 1\ B 'f:. 0. 0 

Remark: The above argument shows that somewhat more is true than 
what is stated in Proposition 11.6: If M is such that P(M) is a Jauch­
Piron lattice, then two sub-von Neumann lattices P(M1), P(M2) are 
logically independent whenever Mt,M 2 are C*-independent. A complete 
characterization of the Jauch-Piron property is known in the von Neumann 
algebra category: If M does not contain an 12 direct summand, then P(M) 
is Jauch-Piron if and only if it is the direct sum of a commutative algebra 
and finitely many finite dimensional factors [59]. For all such von Neumann 
algebras Proposition 11.6 applies. Since the projection lattice of a finite von 
Neumann algebra is not necessarily Jauch-Piron, one is led to the following 

Problem 11.4 Does C*-independence of the von Neumann algebras M1 
and M2 imply logical independence of P(M1) and P(M2), if (Mt, M2) is 
a not necessarily commuting pair of von Neumann subalgebras of a finite 
von Neumann algebra M? 

The two other statistical independence conditions that are relevant for 
logical independence are: W*-independence (Definition 10.4) and strict 
locality (Definition 10.6). 

It is easy to see that if M1,M2 are commuting, then strict locality of 
Mt,M2 implies C*-independence of M~,M2: Assume that M acts on the 
Hilbert space 1-l, and let 0 'f:. A E P(M1) and 0 'f:. B E P(M2) be arbitrary 
projections. Let ¢2 be a vector state on M 2 given by a vector in B. By 
strict locality there exists a normal state ¢ on M such that ¢(A) = 1 and 
¢(B) = ¢2(B) = 1. Since ¢is normal, it is given by a density matrix w, 
which can be written in its spectral resolution as w = L:i >.iPi. Since ¢(A)= 
¢(B) = 1 and I:i Ai = 1, it follows that every projection Pi is contained 
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in both A and in B, so if AB = A A B were equal to 0, then w would 
be zero and 4> would be zero, which contradicts </>(A) = </>(B) = 1. Thus 
AB =/: 0 for any two projections. By the reasoning preceding Proposition 
11.5 one concludes that Q1Q2 =/: 0 for any 0 =/: Q1 E M1 and for any 
0 =/: Q2 E M 2, and so by the Schlieder-Roos theorem (Proposition 10.5) 
M~, M2 are C*-independent. It follows then that 

Proposition 11.7 P(Mt), P(M2) are logically independent if (M1,M2) 
is a strictly local pair of commuting von Neumann algebras. 

While it is known that strict locality implies C*-independence even if 
M17M2 do not commute (Corollary 10 in [51), it does not follow from this 
alone that if M 1 and M 2 are not commuting and strictly local, then they 
are logically independent, again because if A and B do not commute, then 
AB =/: A A B. Thus the following problem arises: 

Problem 11.5 What is the relation of logical independence to strict 
locality in the general case, i.e. if M~,M2 are not assumed to be mutually 
commuting? 

The answer to this problem is given by the next proposition: 

Proposition 11.8 Let M be an arbitrary von Neumann algebra and M1 
and M2 be two, not necessarily commuting von Neumann subalgebras of 
M. Then the pair (P(M1), P(M2)) is logically independent if (M~,M2 ) 
is a W* -independent or strictly local pair. 

Proof: The proposition is an immediate consequence of the fact that every 
normal state on a von Neumann algebra is a Jauch-Piron state. (The proof 
of this fact is the same as the proof of Proposition 4.6 . ) Assume that M 
acts on the Hilbert space 1t, and let A, B be two non-zero projections in 
M1 and M2 respectively. Then there are non-zero unit vectors e E A and 
17 E B, and for the corresponding vector (hence normal) states we and w11 

we have we(A) = 1 and w11(B) = 1. If M 1,M2 are W*-independent, then 
there exists a normal extension 4> of we and w11 , and since 4> is Jauch-Piron, 
it holds that </>(A A B)= 1, hence A A B =/: 0. Let (M~,M2) be a strictly 
local pair and let A, B be as before. If we now take the state we on M~, 
then strict locality ensures the existence of a normal state 4> on M such 
that 4>( B) = 1, and again the Jauch-Piron property of 4> implies A A B =/: 0. 
0 

11.2. Counterfactual probabilistic independence 

The chief aim of this section is to analyze the problem of causal dependence 
between spacelike separated events - as these events are described in the 
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operator algebraic framework of relativistic quantum field theory. By 
a "counterfactual analysis" is meant elaborating in Stalnaker's possible 
world semantics of counterfactuals Lewis' idea of "counterfactual chancy 
causation" as this is proposed in [93). 

11.2.1. CONCEPT OF COUNTERFACTUAL PROBABILISTIC 
INDEPENDENCE 

The idea of the counterfactual chancy causation is due to David Lewis. 
According to his analysis, an event F causes the event E counterfactually, 
if the probability that E happens would be greater if F occured than it 
would be ifF did not occur. This idea can be formulated somewhat more 
explicitly as follows 

Definition 11.7 We say that the event E is caused by the event F in 
the sense of counterfactual probabilistic causation, if the following two 
counterfactuals with probabilistic consequents are true: 

O(F)- Prob(O(E)) = r - (O(F))- Prob(O(E)) = s (11.7) 

for some real numbers r,s such that r > s, where O(F) (resp. -O(F)) is 
the proposition stating that the event F occurs (resp. does not occur), and 
Prob() is the chance function (probability) that E occurs. 

Lewis points out that chances, and probabilities, are time dependent; 
consequently, "The actual chance of E [i.e. Prob(O(E)) in the first 
counterfactual in (11.7)) is to be its chance at the time immediately after 
F; and the counterfactual is to concern chance at that same time." ([93), 
p. 176-177) Butterfield, too, requires the Prob() function to be "... the 
chance function just after the time ( specelike hypersurface) that F occurs 
or does not occur, as the case may be." ([36] p. ) But just when precisely 
is "the time immediately after F"? It must be a well-defined time if the 
probabilities are indeed time dependent, otherwise Prob(E) in the above 
definition of counterfactual causal dependence, thus Definition 11.7 itself 
becomes indefinite. It is worrysome then that "time just after the time an 
event occurs" does not seem to be well defined, since there is no such thing 
as the "time immediately after a given time". 

This ambiguity in connection with Lewis' (and Butterfield's) definition 
of counterfactual causal dependence can (and will below) be circum vented 
by a consequent application of the point of view of relativity theory, where 
there is no "time" (as a frame independent parameter); rather, time is 
viewed as being encoded in the location of the event in the spacetime. This is 
the case also in ARQFT, to which the above Definition 11.7 will be applied 
here. Furthermore, the exact "time" of occurrence of an event in ARQFT 
is not well-defined for an additional reason: ARQFT is a "smeared" theory: 
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the physically meaningful entities are considered in ARQFT not as being 
specified at single spacetime points but as belonging to (open, bounded) 
regions in spacetime. Therefore, the events in ARQFT, too, are specified 
only up to the precision of occurring in certain spacetime regions, they 
can not be considered as being allocated to a definite single point in the 
spacetime. Thus "the time" of the occurrence of F and E does not make 
sense ifF and E are events in ARQFT (not even if a frame is fixed); on 
the other hand, their "smeared" location in time is an organic part of their 
definition as events belonging to a spacetime region. This explains how 
"time" features in the consideratios to follow although it is not mentioned 
explicitly. 

The meaning of the counterfactual notion of chancy causation as 
given by Definition 11.7 is not fixed until one gives a prescription for 
the evaluation of the truth of the two counterfactuals (11. 7). Here the 
idea is taken seriously that counterfactuals are to be evaluated according 
to possible world semantics. In particular, we use Stalnaker's semantics. 
Recall (see Section 8.1) that in the Stalnaker's semantics one assumes 
that there exists a set W of all physically possible worlds, and for every 
proposition 0 a function So: W --+ W, the so-called Stalnaker selection 
function is given, which assigns to every proposition 0 and every world w 
the possible world So( w) in W which is 'most similar' to w and in which 
0 is true. The counterfactual 0 --+ R is then defined to be true at world w 
iff R is true at world So(w). Under Stalnaker's semantics Definition 11.7 
takes on the following form: 

Definition 11.8 We say that there exists counter/actual probabilistic 
causal dependence between the events F and E at world w iff the two 
counterfactuals 

O(F)--+ Prob(O(E)) = r - (O(F))--+ Prob(O(E)) = s (11.8) 

are true in the sense of Stalnaker semantic for some r > s with some 
selection function S x. 

The above definition gives the condition for counterfactual probabilistic 
dependence to exist between two events at a given world. The counterfactual 
probabilistic dependence (in the sense of the above definition) is thus not 
a property of the pair of the events but a relation between a pair of 
events and a given possible world. This possible-world-dependent notion 
of counterfactual dependence turns out to be too week to serve as a 
basis to define (by negation) a notion of counterfactual probabilistic 
independence between local observable algebras that fits naturally into 
the hierarchy of other (statistical) independence conditions definable for a 
pair of algebras of observables. The next definition yields a stronger notion 



INDEPENDENCE IN QUANTUM LOGIC APPROACH 207 

of counterfactual probabilistic dependence that makes the counterfactual 
probabilistic dependence a property of a pair of events. 

Definition 11.9 The event E is said to depend on Fin the counterfactual 
probabilistic sense if and only if for every possible world w the above two 
counterfactuals (11.8) are true (in the sense of Stalnaker's semantics with 
some selection function) with rands (possibly depending on w) such that 
r ~ s (with r = s only in the trivial case r = s = 0). 

Definition 11.9 is still not a mathematical definition; to obtain one we wish 
to specify it in ARQFT. This is done in the next section. 

11.2.2. COUNTERFACTUAL PROBABILISTIC INDEPENDENCE IN 
QUANTUM FIELD THEORY 

We wish to apply the above sketched theory of counterfactual chancy 
causation to ARQFT. To do that the following assumptions/identifications 
are made: 

1. The possible local events F, E, Z, etc. in a spacetime region V and 
the corresponding propositions O(F),O(E),O(Z) spelling out the fact 
that F, E and Z are the case are identified with the projections in the 
von Neumann .algebra N(V) pertaining to V. 

2. A possible world is represented by a vector state given by a vector 
e E 1i over the quasilocal algebra N. Thus the the possible worlds are 
in 1-1 correspondence with the vectors in 1{. 

3. Probabilities are determined by (vector) states and (vector) states by 
probabilities, i.e. given the probabilities Prob( Z) of all events Z in a 
local algebra N(V) there is a vector e in 1i such that 

(e, ze} 
Prob(Z) = II e II (11.9) 

and each state e defines the probabilities of all events via the formula 
(11.9). If 11 e II= o, i.e. if the state is given by the zero vector in 1t, 
then the probability of every event is defined to be zero. 

4. For a given Z and possible world e the Stalnaker selection function is 
given by 

Sz(e) = ze. (11.10) 

This choice of the selection function means in particular that the world 
e is a Z-world iff Prob(Z) = 1 at world e (except for the world 
e = O, which is a Z-world for every Z by definition and at which, by 
definition, the probability of every event is zero). 
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Since it is the above identifications that give content to the definition of 
counterfactual probabilistic (in)dependence, a few words in their support 
are very much in order. 

The identification 1. is standard, it is the backbone of quantum logic. 
And so is the definition of Z-world in 4.: The common interpretation of 
a quantum proposition is that it is represented by the (closed) subspace 
(equivalently: by the projection on the subspace) that is spanned by those 
(vector) states in which the proposition Z is true. The only non-standard 
feature in 1. is that the set of events is now not (isomorphic to) the lattice 
P(1i) of all projections on a Hilbert space, since the local algebras in 
quantum field theory are typically type III algebras. The von Neumann 
lattices of the local algebras thus have properties different from P(1i). For 
instance they are not atomic, and every projection in the von Neumann 
lattic of a type III algebra are infinite. (This latter fact will be used below 
to show that local algebras belonging to spacetime regions that are causally 
dependent are not independent in the counterfactual probabilistic sense.) 

The identification in 3. means assuming that ARQFT is capable of 
saying (through the vector states) all physically meaningful probability 
statements. 

The identification 2. is a natural consequence of how ARQFT is assumed 
to describe physical reality: The physical, intuitive picture behind the 
formalism of ARQFT is that a concrete net oflocal algebras fixes the locally 
observable physical quantities, and a "real", actual physical situation in 
which these observable quantities have a definite (expectation) value is 
obtained once we fix the state of the quantum( field) system. 

The identification 4. is crucial since the meaning of the counterfactual 
is encoded in the selection function. Note that specifying the state space 
of a quantum system as the set of possible worlds in connection with a 
counterfactual analysis is not uncommon: As we have seen in Section 8.1 
one chooses the set of (pure) states as the set of possible worlds and proves 
that the (Mittelstaedt) quantum conditional is a counterfactual conditional 
in the sense of Stalnaker semantics if the selection function is exactly the 
one given by (11.10) (see Proposition 8.5). Given an event Z and a vector 
~, this selection function picks the vector in Z that is closest in Hilbert 
space norm to ~. So the similarity between possible worlds is measured in 
the Hilbert space norm. 

Having the identifications one can transform Definition 11.9 into the 
following 

Definition 11.10 Let E, F E M be two projections. We say that E 
depends on F in the counter/actual probabilistic sense iff for any ~ E 1i the 
following two counterfactuals are true in the sense of Stalnaker's semantics 
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with (11.10) as the selection function 

F- Prob(E) = r pl.- Prob(E) = s (11.11) 

for some real numbers r,s (in general, depending on~) such that r 2: s (with 
r = s only in the trivial case r = s = 0). We say that there is counterfactual 
probabilistic causal dependence between the two local algebras N(V1),N(V2) 
iff there exist two non-trivial projections A E N(Vt), B E N(V2) such 
that either A depends on B or B depends on A (in the counterfactual 
probabilistic sense specified above). Accordingly, we say that the two 
algebras are free of counter/actual probabilistic causal dependence iff there 
is no counterfactual probabilistic dependence between them. ARQFT is 
said to be free of counterfactual probabilistic superluminal causation iff 
any two local algebras N(Vi) and N(V2) belonging to spacelike separated 
regions Vi and V2 are free of counterfactual causal dependence. 

The question to ask now is this: 
Problem 11.6 Is ARQFT free of counterfactual superluminal causal 
dependence in the sense of the above definition? 

As mentioned we are not able to give a general "no" or "yes" answer to 
this question. What is shown below is that if the two spacelike separated 
local algebras are statistically independent in the sense of C* -independence, 
then they are free of counterfactual causal dependence. 

Proposition 11.9 If (N(Vt),N(V2)) is a C*-independent pair of local 
algebras belonging to spacelike separated regions Vt, V2 , then the pair is free 
of counter/actual causal dependence. 

Proof: We must show that for any pair of non-trivial projections A E 
N(Vt), B E N(V2) there exists a vector ~ E 1i such that Prob(B) at the 
world SA(~)= A~ is equal tor and Prob(B) at the world SAJ.(~) = Al.~ 
is equal to s with some s and r such that s > r. Since Prob(B) at world 
SA(~) is just 

(A~,BA~) 

II A~ II 
and similarly Prob(B) at world SAJ.(~) is just 

(AL~,BAL~) 

II Al.~ II 
we must find a ~ such that for some s > r the following hold: 

(~,ABA~) 

II A~ II 
(~,Al. BAl.~) 

II Al.~ II 

r 

= s 

(11.12) 

(11.13) 
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Since N(Vt) commutes with N(V2) by the axiom of microcausality and 
since N(Vt),N(V2) are C*-independent by assumption we have by the 
Schlieder-Roos theorem (Proposition 10.5) that 

Hence there exists a non-zero vector e that belongs to both Al. and B, 
therefore for this vector (11.12) and (11.13) hold with r = 0 and s = 1. 0 

This little argument shows that somewhat more is true than what is 
stated in the above Proposition: If the two von Neumann algebras N,M 
are such that for any 0 '/: A E N and 0 '/: B E M we have A A B '/: 0, then 
the two algebras are free of counterfactual probabilistic dependence. Recall 
that the pair (N,M) satisfying the condition 

AAB'/:0 

is called a logically independent pair (Definition 11.6), and it is known that 
for two von Neumann algebras Nand M to be logically independent mutual 
commutativity of Nand M is not needed: If the pair is W*-independent, 
or if both are finite dimensional matrix algebras and are C*-independent, 
then the pair is logically independent, whether or not N commutes with M 
(Propositions 11.6 and 11. 7). Thus mutual commutativity is not necessary 
for counterfactual probabilistic independence. 

The two conditions (11.12) and (11.13) show the content of the 
counterfactual probabilistic dependence under the present specification: 
B depends on A if and only if conditionalizing any probability of B by A 
using the Liiders rule, the A-conditional probability of B is never smaller 
than the similarly obtained A 1. -conditional probability of B. The necessary 
and sufficient condition for counterfactual probabilistic dependence to exist 
between two algebras is therefore that the two algebras contain non-trivial 
projections A E N(Vt) and B E N(V2) such that B ~ A. This is because 
in this case Al. ~ Bl. and so for any e: 

(e,ABAe) > (e,Al.BAl.e) = O 
11 Ae 11 - 11 Al.e 11 

(11.14) 

In harmony with Proposition 11.9, if N(Vt),N(V2) are C*-independent 
then there are no projections A E N(Vt),B E N(V2) such that A ~ B 
or B ~ A: If A ~ B then there are two states 4>t and 4>2 on N(Vt) and 
N(V2) respectively such that 4>t(A) = 1 and 4>2(B) = 0, and these two 
states cannot have a joint extension. 

It is known that algebras belonging to spacelike separated double 
cones and spacelike separated wedges are C*-independent. Therefore, the 
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algebras belonging to these spacetime regions are free of counterfactual 
probabilistic causal dependence. On the other hand, Bell's inequality is 
(maximally) violated (in some states) for observables localized in strictly 
spacelike separated double cones and wedges; what is more, Bell's inequality 
is maximally violated in every normal (hence also every vector) state 
for algebras belonging to complementary wedges and spacelike separated 
tangent double cones. Consequently we have the following 

Proposition 11.10 Violation of Bell's inequality in quantum field theory 
for observables belonging to spacelike separated spacetime regions does not 
entail probabilistic counterfactual superluminal causation in quantum field 
theory in the sense specified in Definition 11.1 0. 

While one expects spacelike separated C*-independent local algebras to 
be independent in the probabilistic counterfactual causal sense, one does 
not expect the same for algebras that are not located in spacelike separated 
regions. Let C be a bounded open region in the Minkowski spacetime such 
that c- \ C is large enough to contain an open bounded region V (recall 
that c- is the the causal hull of C). (There is such a C: for instance one 
can choose a "cylinder" of height 2a and width 2b: 

C:: {x EM 

c-is then the "diamond" determined by the cylinder.) Since the region V 
is causally dependent on C, one expects the two local algebras N(V) and 
N( C) not to be free of counterfactual probabilistic causal dependence. This 
is indeed so: Take a non-trivial projection B in N(V). The local algebras 
being type III , they contain only infinite projections and so by the Halving 
Lemma ([83] p. 412., or [153] p. 23.) there exist an infinite projection A E 
N(V) such that both A and B - A are infinite projections and 

B"' A"' (B- A) 

(rv being the Murray- von Neumann equivalence relation on the projection 
lattice, see Section 6.2). By isotony and local primitive causality we have 

so the projection B can be considered as belonging to N(C), hence we 
have found two non-trivial projections A E N(V),B E N(C) such that 
A < B, consequently the two algebras N(V) and N( C) are not free of 
counterfactual causal dependence. This means in particular that Definition 
11.10 does distinguish pairs of algebras that belong to causally dependent 
regions from those that are expected to be independent. 
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Since the pair of algebras M2 ® I, I ® M2 (M2 being the algebra 
of complex two-by-two matrices) are C*-independent, it follows formally 
form Proposition 11.9 that, on the present specification of counterfactual 
probabilistic causation, there is no counterfactual causation involved in the 
Bohm-Bell system either. This is in contrast to the conclusion of [36] that 
there is superluminal causal dependence (in counterfactual probabilistic 
sense) between the events in the two wings in the Bohm-Bell system. 
This contrast is only formal, however, for two reasons: First, the present 
analysis does not apply to the Bohm-Bell system at all, since the system 
M2 ®I, I® M 2 is not relativistic in the sense that M 2 ®I and I® M2 
cannot be considered as N(Vt) and N(V2) for some (open, bounded) regions 
V1, V2 in the Minkowski spacetime (because the local algebras in ARQFT 
are not type I von Neumann algebras). Second, in the present paper's 
specification the notion of counterfactual probabilistic dependence between 
events (algebras) differs from and is stronger than Butterfield's definition 
of counterfactual dependence. In fact, because of the universal quantifier 
over the possible worlds in Definition 11.9 and in Definition 11.10, one may 
consider the present specification of counterfactual probabilistic dependence 
to be too strong. That it is strong indeed is also reflected by the fact 
that the violation of this dependence, hence counterfactual probabilistic 
independence of commuting local algebras, is implied by C*-independence, 
which is the weakest statistical independence condition in the hierarchy 
of the statistical independence notions. So one should further look for 
possible weakenings of the definitions given in this section. There is a 
natural constraint that any possible weakening should meet, however: the 
resulting notion of counterfactual probabilistic (in )dependence of algebras 
should distinguish local observable algebras that belong to causally non­
independent regions from those that are associated with spacelike separated 
ones. 

We conclude with mentioning that there exist other independence 
concepts not mentioned here; such as Stochastic Einstein Locality (SEL) 
[67), [126], its strengthening called Stochastic Haag Locality [103) and of 
different versions [38] of these notions. SEL requires, roughly, that, if for 
any event E, the behavior of the physical system is fixed throughout the 
backward light cone of E, then the probability of E is already determined 
uniquely. As it turns out ARQFT does satisfy the SEL property. Thus, if one 
considers the SEL property as an appropriate prohibition of superluminal 
causation, then one must conclude that ARQFT is free of superluminal 
causation also in the sense of SEL - despite violations of Bell's inequalities. 

It would be desirable to know the relation of prohibition of superluminal 
causation by SEL and by absence of probabilistic counterfactual causal 
dependence. The difficulty in this problem comes mainly from the fact 
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that SEL is formulated in terms of models of ARQFT considered as a 
formal language, whereas counterfactual causal dependence is analyzed 
in terms of possible worlds. Thus, to investigate their relation one has 
to either reformulate SEL in terms of counterfactuals, which is done in 
[38], or define counterfactual dependence, and in particular the possible 
worlds, in terms of models of ARQFT, which is done in [128]. Both 
approaches seem to distort in some way the content of the original notions 
of SEL and counterfactual dependence, respectively. The deviations from 
the original SEL of the various "counterfactualized" SEL notions, which 
are acknowledged and considered advantaguous in [38], weaken any claim 
concerning the equivalence of SEL and absence of counterfactual causal 
dependence. The definition of counterfactual causal dependence in [128] 
deviates from a Lewisian analysis in the sense that the counterfactual 
conditionals are not evaluated in a strict manner within the possible 
world semantics. Thus it seems that the SEL property and the absence 
of probabilistic counterfactual dependence are different prohibitions of 
superluminal causation. Further arguments for this independence can be 
found in [128]. 

11.3. Bibliographic notes 

The problem of logical independence in quantum logic was raised in [129] 
and [130], where the Definition 11.6 is taken from, The propositions 
characterizing logical independence are also taken from [129] and [130]. 
The Schlieder property first appears in [140], the Schlieder-Roos Theorem 
was proved by Roos in [138] and it is described also in [72]. The Jauch-Piron 
property is analyzed in the von Neumann algebra framework in [4], [59], 
[34]; for a discussion of the Jauch-Piron property in more general context 
see [33]. Lewis' theory of counterfactual probabilistic (in)dependence is 
applied to the Bell system in [36] and [37]. The Definition 11.10 and all 
the propositions on the absence of counterfactual probabilistic dependence 
in ARQFT are taken from [131]. Concerning the different concepts of 
statistical independence (in the algebraic approach to quantum mechanics) 
see the comprehensive review [151]. 





CHAPTER 12 

Reichenbach's common cause principle and quantum field theory 

As we have seen in Chapter 10, Bell's inequalities are violated in relativistic 
quantum field theory, and this has the consequence that quantum field 
theory predicts superluminal correlations i.e. correlations between events 
as represented by projections lying in local von Neumann algebras belonging 
to spacelike separated spacetime regions. We also have seen in the previous 
chapter that an explanation of the superluminal correlations by assuming 
that there is a direct causal influence between the correlated events is 
unlikely to be correct, since the correlated algebras do satisfy a number of 
independence conditions. The aim of this chapter is to investigate another 
possible way of explaining the correlations in question: the explanation 
by a probabilistic common cause. Now it is far from obvious what is 
meant by a "probabilistic common cause" of a probabilistic correlation. We 
shall utilize here the classic analysis given by Reichenbach in 1956 [136]. 
Our aim is to specify Reichenbach's notion of a probabilistic common 
cause in terms of ARQFT in order to raise the problem of whether the 
superluminal correlations predicted by ARQFT can be causally explained 
in field theory in the sense of Reichenbach's probabilistic theory of common 
cause, suitably adapted to ARQFT. In what follows, first we summarize 
briefly Reichenbach's common cause principle, and in particular his notion 
of "screening off" (Section 12.1 ). We shall distinguish two types of screening 
off: the strong one, in which the causing event actually implies both of 
the correlated events; and the genuinely probabilistic case, in which the 
probabilistic cause does not entail any of the correlated events. This 
is followed in Section 12.2 by an explicit definition of Reichenbach's 
principle of common cause in ARQFT ("Screening off Principle", Definition 
12.1). We wish to stress that we are not able to give an answer to the 
apparently difficult question (Problem 12.2 in Section 12.2) of whether 
the superluminal correlations predicted by ARQFT have a probabilistic 
common cause in general. It is shown in Section 12.2, however, that if each 
single superluminal correlation predicted by the vacuum state between 
events in N(Vt) and N(V2) has a genuinely probabilistic common cause, 
then the local algebras N(Vt) and N(V2) must be statistically independent 
in the sense of C*-independence. It follows then that the existence of truly 
probabilistic common causes entails that the algebras satisfy a number of 
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equivalent independence conditions (see the concluding remarks). 

12.1. Reichenbach's common cause principle 

Let A and B be two events and p( A) and p( B) be their probabilities. If 
the joint probability p( AB) of A and B is greater than the product of the 
single probabilities, i.e. if 

p(AB) > p(A)p(B) (12.1) 

then the events A and B are said to be correlated. According to Reichenbach 
([136], Section 19), a probabilistic common cause type explanation of a 
correlation like (12.1) means finding a third event C (cause) such that the 
following (independent) conditions hold: 

p(ABIC) = p(AIC)p(BIC) 
p(ABICl.) = p(AICl.)p(BICl.) 

p(AIC) > p(A!Cl.) 

p(BIC) > p(B!Cl.) 

(12.2) 

(12.3) 

(12.4) 

(12.5) 

where p(XIY) denotes here the conditional probability of X on condition 
Y, and it is assumed that none of the probabilities p( X), (X = A, B, C) is 
equal to zero. 

Proposition 12.1 If the conditional probabilities p(AIC) are defined in the 
standard way as p(AIC) = p(AC)fp(C) etc., then the conditions (12.2}­
{12.5} imply {12.1). 

Proof: One can write 

p(A) = p(AIC)p(C) + p(AICl.)p(Cl.) (12.6) 

p(B) = p(BIC)p(C) + p(B!Cl.)p(Cl.) (12.7) 

p(AB) = p(ABIC)p(C) + p(ABICl.)p(Cl.) (12.8) 

So using (12.2)-(12.3) we have 

p(AB)- p(A)p(B) = 

p(AIC)p(BIC)p(C) + 
p(AICl.)p(BICl.)p(Cl.) -

[p(AIC)p(C) + p(AICl.)p(Cl.)] X 

x[p(BIC)p(C) + p(BICl.)p(Cl.)] 

= p(C)p(Cl.)[p(AIC)- p(AICl.)] X [p(BIC)- p(BICl.)] 
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Since both p( C) and p( C .L) are assumed to be non-zero, the right hand side 
of (12.9) is non-zero by (12.4)-(12.5) and the statement follows. 0 

The condition (12.2) has become known as "screening off", it expresses 
" ... the fact that relative to the cause C the events A and B are mutually 
independent" ([136] p. 159); that is to say, the common cause event 
C "screens off" the correlation in the sense that conditionalizing the 
probability measure p by C, the conditioned probability p( •IC) renders the 
two events A and B statistically independent. One way to interpret the 
screening off condition (12.2) is to re-write it as 

p(AIBC) 
p(BIAC) 

p(AIC) 
p(BIC) 

(12.9) 

(12.10) 

Conditions (12.9)-(12.10) can be read as saying that "knowing the cause C 
already yields enough information to predict the probability of the event 
A( B), information on B(A) is redundant". 

Notice that there exist two opposite ways the screening off condition 
(12.2) can be satisfied: 

(i) It can happen that, in addition to being a probabilistic common cause, 
the event C (thought of as an element in a Boolean algebra) is 
contained both in A and in B, C ~ A, C ~ B, and, as another 
extreme, 

(ii) it can also happen that C is a probabilistic cause that is contained 
neither in A nor in B. 

Case (i) means that the event Cis not simply a probabilistic common cause 
but a cause that necessarily entails the events A and B, and the screening 
off condition (12.2) holds then in a trivial way (i.e. with the conditional 
probabilities all being equal to 1 ). Given a correlation between A and B, if 
a probabilistic common cause C can be found such that (in addition to the 
conditions (12.2)-(12.5)) C ~ A and C ~ B also is the case, then we say 
that the correlation can be screened off in the strong sense. We refer to the 
situation (ii) by calling C a truly (genuinely) probabilistic common cause. 

Note that, given a statistically correlated pair of events A, B in a 
classical probability space (0, J.L) with a Boolean algebra Q of events and 
a probability measure J.L on 0, a common cause C( f; A, B) in the sense 
of Reichenbach's definition does not necessarily exist: The set of events 
might be too small to contain a common cause. This leads to the question 
of whether the probability space can be enlarged so that the larger space 
contains a common cause of a given correlation. More precisely, we have the 
following problem, which to our best knowledge has not been investigated 
in the literature, and seems to be open. 
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Problem 12.1 Let (fl,J.t) be a classical probability space such that for 
some A, B E n we have 

J.t(AB) > J.t(A)J.t(B) 

Does there exist a probability space (O',J.t') and an embedding of n into 0' 
by a Boolean algebra homomorphism h such that 

J.t(A) = J.t'(h(A)) 

and such that (O',J.t') contains a common cause C f:. h(A),h(B) of the 
correlation 

J.t(AB) = J.t1(h(A)h(B)) 
> J.t(A)J.t(B) = J.t1(h(A))J.t'(h(B)) 

in the sense of Reichenbach's definition of common cause? 

Should it turn out that there is an affirmative answer to the question in 
the above problem, this would have the philosophical consequence that it 
is not possible to prove conclusively that the world is is such that distant 
probabilistic correlations do not have a probabilistic common cause; for 
one could always argue then that there exist as yet undiscovered events 
interpretable as (probabilistc) common causes. 

Another question in connection with the Reichenbachian scheme of the 
common cause is the following. Supose that we are given the real numbers 

T ABIC.L' T AIC.L' TBIC.L 

and that these numbers satisfy the Reichenbachian conditions (12.2)-(12.5) 
with the substitutions indicated by the subscripts attached to the numbers. 
Does there exist then a probability space ( n, J.t) such that there exists events 
A, B, C, CL E n with the property 

J.t(AB) TAB 

J.t(A) TA 

J.t( B) TB 

J.t(ABIC) TABIC 

J.t(A!C) TAlC 

J.t(BIC) TBIC 

J.t(AB!Cl.) = T ABIC.L 

J.t(AICl.) T AIC.L 

J.t(BICL) TBIC.L 
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In other words, the problem is whether any set of numbers satisfying the 
Reichenbachian conditions can be considered as probabilities in the sense 
of classical probability theory. Clearly, it is not obvious that the answer 
is positive, for there are restrictions coming from the assumption that the 
numbers are probabilities: One has to show that there exist numbers J.t( C), 
J.t( Cl. ), J.t( A A C) and J.t( A A Cl.) etc. for all possible combinations of events 
using the connectives A, V and the operation J.., and one has to show, 
further, that these numbers exist consistently, i.e. that J.t has the properties 
of a probability measure. 

12.2. Do superluminal correlations have a probabilistic common 
cause? 

As we have seen in Section 10.4, ARQFT predicts superluminal correlations, 
i.e. correlations of the following sort: 

</>(AB) > </>(A)</>(B) (12.11) 

where </>is a state on the quasilocal von Neumann algebra M determined 
by a covariant net {N(V)}, V $; M) oflocal observable algebras, and where 
A E N(V1) and B E N(V2) are projections from the local algebras N(Vi) 
and N(VI) belonging to spacelike separated spacetime regions V1 and V2 • 

We wish to raise here the problem whether the correlations of the type 
( 12.11) can be explained by finding a common cause in Reichenbach's sense. 
To make this problem precise, we have to adopt Reichenbach's notion 
of common cause to the situation in ARQFT. This is done in the next 
definition. 

Definition 12.1 Let Vi and V2 be two spacelike separated (open, bounded) 
spacetime regions, BLC(Vi) and BLC(~) be their backward light cones, 
and {N(V)} be a net of local von Neumann algebras satisfying the 
standard axioms. We say that the pair of algebras N(Vi),N(V2 ) satisfies 
{Reichenbach's) Screening off Principle if and only if for any state</> over 
the quasilocal algebra N and for any pair of projections A E N(Vi) 
BE N(V2) we have the following: if 

</>( AB) > </>(A)</>( B) 

then there exists a projection C in the von Neumann algebra N(V) that is 
associated with a region V lying within the intersection 

BLC(VI) n BLC(~) 

such that 
<!>(c) t= o t= <!>( cl.) 

and C satisfies the following conditions: 
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(i) C commutes with both A and B 
(ii) the conditions below (analogous to (12.2), (12.3), (12.4) and (12.5)) 

hold: 

</>(ABC) 
= 

</>( AC) </>( BC) 
(12.12) 

</>(C) </>(C) </>(C) 
</>(ABCJ.) 

= 
</>( ACJ.) </>( BCJ.) 

(12.13) 
</>( Cl.) </>( CJ.) </>( CJ.) 

<!>( AC) 
> 

<f>(ACJ.) 
(12.14) 

</>(C) </>( CJ.) 
<f>(BC) 

> 
<f>(BCJ.) 

(12.15) 
</>(C) <!>( CJ.) 

We say that the Screening off Principle holds in ARQFT iff for every pair 
of spacelike separated spacetime regions Vi, V2 the Screening off Principle 
holds for the pair N(Vi),N(V2). Just like in the case of Reichenbach's 
formulation, one can distinguish the strong and genuinely probabilistic 
versions of probabilistic common cause in ARQFT, and one can speak 
accordingly of the Screening off Principle holding in ARQFT in the strong 
and genuinely probabilistic sense. 

The Screening off Principle as specified above differs slightly from 
Reichenbach's in two respects: First, since ARQFT is a non-commutative 
theory, one has to require explicitly the commutativity of the events 
involved - unless one is willing to expand Reichenbach's scheme and 
replace it by a theory of "non-commutative screening off", involving non­
commutative conditionalization, which we do not wish to consider here. 
(See the paper [155] for an analysis of some technical difficulties concerning 
the generalization of Reichenbach's scheme to non-distributive event 
structures.) Second, the common cause event C is required in the above 
definition to lie in the common causal past of the two correlated events. 
This latter condition was not part of Reichenbach's original theory. It could 
not be because that theory was not formulated within the framework of 
Minkowski spacetime. But it is clear that as soon as one is in a theory 
where there is an underlying causal structure to consider, like in ARQFT, 
the condition that C be causally not disconnected from either A or B 
must be required, otherwise one could hardly talk about a common cause 
explanation in relativistic sense. 

We are now in the position to ask 

Problem 12.2 Does ARQFT satisfy the Screening off Principle? 

As we have indicated already, we are not able to answer this question, 
nor do we know of any result that would give a partial answer, positive or 
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negative. What will be seen below is that the existence of a genuinely 
probabilistic common cause of every vacuum correlation entails C*­
independence of the algebras involved. 

Proposition 12.2 Let Vi, V2 be two open, bounded spacelike separated 
spacetime regions and N(Vi),N(V2) be the two von Neumann algebras in 
a net of von Neumann algebras in an irreducible vacuum representation of 
a net of local C* -algebras satisfying the standard conditions described in 
Chapter 10. If each single correlation between projections of N(Vi),N(V2) 
predicted by the vacuum state has a genuinely probabilistic common cause 
explanation in the sense described in the Definition 12.1, then the two 
algebras N(V!),N(V2) are C*-independent. 

Proof: The statement is an easy consequence of the powerful, non-trivial 
Schlieder-Roos and Reeh-Schlieder theorems. Recall that the Schlieder­
Roos theorem (Proposition 10.5)) says that if At and A2 are mutually 
commuting C*-algebras (i.e. XY = Y X for all X E A~, Y E A2), then C*­
independence of A~,A2 is equivalent to the following condition ("Schlieder 
property"): XY f:. 0 whenever 0 f:. X E A~, 0 f:. Y E A2. The Reeh­
Schlieder theorem (Proposition 10.1) says that the vacuum vector 0 0 is 
both cyclic and separating for any local algebra belonging to a region V 
with non-empty causal complement; in other words, no non-zero positive 
element in A(V) can annihilate the vacuum vector: if 0 ~ X E N(V) and 
X00 = 0 then X = 0. By the Schlieder-Roos theorem it is enough to 
show that the assumptions in the proposition imply the Schlieder property. 
The reasoning preceding Proposition 11.5 shows that to prove the Schlieder 
property, it is enough to prove it for projections only; so let A E A(V1 ) and 
B E A(V2 ) be arbitrary non-zero projections. We must show that AB f:. 0. 
Consider now the vacuum state 

X~---+ (Oo, XOo) = c/>o(X) 

One of the following three equations holds. 

(Oo, ABOo) 

(Oo,ABOo) 
(no, ABilo) 

> (Oo, AOo)(Oo, BOo) 
(no, AOo)(Oo, BOo) 

< (no, AOo)(Oo, BOo) 

(12.16) 

(12.17) 

(12.18) 

The right hand sides of all of the above equations is strictly positive by the 
Reeh-Schlieder theorem, therefore if either (12.16) or (12.17) is the case 
then 

(no, ABOo) > 0 



222 CHAPTER 12 

and so AB =f:. 0. If equation (12.18) is the case, then one checks easily that 

(12.19) 

By assumption there is a genuinely probabilistic common cause of the 
correlation (12.19), i.e. there exists a C projection in a local algebra A(V), 
where 

V ~ BLC(Vi) n BLC(V2) 

such that C commutes with both A and B, satisfying C ~ Al. and C ~ B, 
and such that 

(flo, A 1. BCOo) (flo, A l.Cflo} (flo, BCOo} 
(12.20) 

(Oo,Cflo} (flo, COo} (Oo,Cflo} 
(flo, Al. BCl.flo} (flo, Al.Cl.flo} (flo, BCl.flo} 

(12.21) 
(Oo,Cl.flo} (flo, Cl.flo} (Oo,Cl.flo} 

(00 , A l.Cflo} 
> 

(flo, Al.Cl.flo} 
(12.22) 

(flo, COo} (flo, COo) 

(00 ,BC0o) 
> 

(flo, BCl.Oo} 
(12.23) 

(flo, COo} (Oo,Cflo} 

By an elementary rewriting of (12.20) one can verify easily that the 
following also holds: 

(flo, ABCOo} _ (flo, A COo} (flo, BCOo} 
(flo, COo} (flo, COo} (flo, COo} 

(12.24) 

(flo, BCOo} is non-zero by (12.23), hence, if (flo, ACOo} is shown to be 
non-zero, then the right hand side of (12.24) is not equal to zero, and the 
proof is then complete. If (flo, ACOo} were equal to zero, then (since AC 
is a projector, hence non-negative) AC = 0 would follow by the Reeh­
Schlieder Theorem; but AC = 0 implies C ~ Al., which can not be the 
case, since C was assumed to be a genuinely probabilistic common cause 
of the correlation (12.19). 0 

Statistical independence is a property that is typically expected to 
hold for local algebras pertaining to spacelike separated, i.e. causally 
disconnected spacetime regions. The Screening off Principle, on the other 
hand, involves causally connected regions and algebras. The Proposition 
12.2 connects the two notions, and it shows that C*-independence of 
spacelike separated algebras is necessary for the Screening off Principle 
(in the genuinely probabilistic sense) to hold in ARQFT. (It is also clear 
from the proof that the above proposition remains valid by replacing the 
vacuum state by any other faithful state.) Since in the context of ARQFT 
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C*-independence, W*-independence and strict locality are equivalent 
(Proposition 10.6), it follows then that validity of the Screening off Principle 
in ARQFT (in the probabilistic sense) implies both W*-independence and 
strict locality of the local algebras confined in spacelike separated spacetime 
regions. 

However, the proof of the Proposition 12.2 also indicates that C*­
independence (hence also W*-independence and strict locality) is unlikely 
to be sufficient for the Screening off Principle to hold: One of the properties 
of the probabilistic common cause, namely that the common cause C 
belongs to the common causal past of the correlated events, was not used 
in inferring the C*-independence property. 

Since the Screening off Principle appears to be stronger than C*­
independence, a natural question is whether it implies that stronger 
independence conditions hold. Since it is known that W*-independence in 
the product sense (hence also the so-called "split property", see Definitions 
10.5 and 10.7 and the Proposition 10.8) is a strictly stronger independence 
condition than W*-independence, if W*-independence in the product sense 
or the split property could be inferred from the Screening off Principle, 
then one could conclude that the Screening off Principle does not hold in 
general, since it is known that the split property fails for tangent spacetime 
regions. It is not known, whether the Screening off Principle implies any 
of the stronger statistical independence conditions. Most pressing would 
be to know, however, whether the Screening off Principle can hold at all, 
at least for some pairs of spacelike separated spacetime regions. It is not 
inconceivable that the Screening off Principle is independent of the other 
standard axioms formulated on the net of local von Neumann algebras. 
This would mean that those axioms are not rich enough to characterize 
exhaustively the causal structure of the local algebras, for they leave it 
open whether the world of quantum fields is such that distant correlations 
have a common cause or not. 

The results on the violation of Bell's inequality in ARQFT imply that, 
if for a given state </> there exists a single, common probabilistic common 
cause C (in the sense of Definition) of all correlations predicted by </>, 
then the C-conditioned state </>( •I C) is a product state across the algebras 
A(Vi), A(V2). Since a product state satisfies Bell's inequality, and since for 
tangent spacelike separated wedge and double cone regions every normal 
state maximally violates Bell's inequality, there exists no normal state 
over local algebras in the said regions such that the correlations predicted 
by it have a common common cause. But the assumption that all the 
superluminal correlations predicted by a given state in ARQFT have a 
common common cause, seems totally unwarranted. Not only isn't there 
anything in the Reichenbachian notion of common cause that would justify 
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this assumption, the common cause principle doesn't even seem to contain 
any hint as to how the different common causes 

CA1 ,B' cA" ,B11 

' ... 
of different correlated pairs 

(A', B'); (A", B") ... 

(possibly containing even incompatible elements) might be related to each 
other. This dependence of the common cause on the pair of the correlated 
events and the unrelatedness of the causes of correlations of different event­
pairs not simply blocks the inference from the assumption of existence of 
common causes to the value of the Bell correlation, but it makes unclear 
in which state one should check the value of the Bell correlation: given 
a state, the vacuum </>o say, and assuming that there exist probabilistic 
common causes 

CA1,B1 CA11 ,B11 

' ... 
of all the correlated pairs 

(A', B'); (A", B") ... 

we have the conditioned states 

</>o( •ICA',B'),</>o( •ICA",B") ... 

Which of these states should satisfy Bell's inequality (10.9)? In fact we 
know (since all these states are normal) that each violates Bell's inequality 
(10.9) (for complementary wedges and spacelike separated tangent double 
cones). But why shouldn't they - assuming only (12.12)-(12.15) to hold 
with A',B',C';A",B",C" ... ? 

In short, under the present specification of Bell's inequality and of 
the concept of Reichenbachian common cause, it is impossible to give 
meaning to the claim "Bell's inequality is implied by Reichenbach's 
common cause principle"; hence, on the present interpretation, violation 
of Bell's inequality does not imply the impossibility of Reichenbachian 
common causes of superluminal correlations. Whether such (not common) 
Reichenbachian probabilistic common causes exist in ARQFT remains an 
open question. 

12.3. Bibliographic notes 

Reichenbach's notion of probabilistic common cause was formulated in 
[136], and it was formulated without regard to quantum correlations. For 
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a philosophical critique of Reichenbach's notion of probabilistic common 
cause see [139]. The Definition 12.1 and Proposition 12.2 are taken from 
[133]. The relation of the screening off property to Bell's inequality (in 
non-relativistic quantum mechanics) is analyzed by Butterfield in [35] and 
by van Fraassen in [162]. The conclusion in both of these papers is that 
the assumption of existence of Reichenbachian common causes of quantum 
correlations does imply Bell's inequality. In both papers common cause 
is understood, however, as common common cause. In a recent paper 
Belnap and Szabo have proved that the non-probabilistic superluminal 
correlations occurring in the Greenberger-Horne-Zeilinger (GHZ) situation 
do not have a non-probabilistic common common cause [16], where the 
notion of (non-probabilistic) common cause is formulated in terms of 
the branching spacetime theory [15]. Remarkably, in that paper it also 
remains open, however, whether a non-common common cause (in the 
non-probabilistic sense) for the GHZ correlations exists. 
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