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Summary Instrumental variables estimation is classically employed to avoid simultaneous
equations bias in a stable environment. Here we use it to improve upon ordinary least-squares
estimation of cointegrating regressions between non-stationary and/or long memory stationary
variables where the integration orders of regressor and disturbance sum to less than 1, as happens
always for stationary regressors, and sometimes for mean-reverting non-stationary ones. Unlike
in the classical situation, instruments can be correlated with disturbances and/or uncorrelated
with regressors. The approach can also be used in traditional non-fractional cointegrating
relations. Various choices of instrument are proposed. Finite sample performance is examined.
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1. INTRODUCTION

A cointegrating relation of rank P ≥ 1 between elements of a vector Wt of P + Q observables,
for Q ≥ 1, can be written

AWt = Ut , t = 1, 2, . . . , (1)

where A is a P × (P + Q) matrix of rank P and Ut is a P × 1 unobservable sequence. In frequent
econometric practice, Ut is assumed to be a vector of I(0) variables, and Wt a vector of I(1)
variables. In that case, under minor additional conditions, Stock (1987) showed that ordinary
least-squares (OLS) estimates of a reduced form of (1) are n-consistent, where n is sample size.
This outcome does not require orthogonality between the right-hand side variables and Ut, though
the limit distribution is non-standard. Estimates with optimality properties which make fuller use
of system information have been devised by Johansen (1991), Phillips (1991), for example; these
have mixed normal asymptotics and generate Wald statistics with null χ2 asymptotics. Extensions
to allow Wt to include deterministic, I(0) or I(2) variables have been developed (see e.g. Johansen
1991; Phillips and Hansen 1990).

However, I(1) and I(2) are particular notions of stochastic trending behaviour, while I(0) is
a particular notion of stationarity, and the concept of cointegration is in no way tied to them.
Cointegration involving I(d) processes, for real-valued d, has also been of interest, and has been
investigated in a number of empirical studies, starting with Cheung and Lai (1993). To discuss this
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it is convenient to first give a technical definition of I(0) processes: a vector covariance stationary
process vt, − ∞ < t < ∞, is said to be I(0) if it has zero mean and spectral density matrix that
is positive definite and continuous at zero frequency. Now define formally

�−d =
∞∑
j=0

a j (d)L j , a j (d) = �( j + d)

�(d)�( j + 1)
, (2)

L denoting the lag operator, � = 1 − L and � denoting the gamma function, which satisfies
�(d) = ∞ for d = 0, −1, −2, . . . , and �(0)/�(0) = 1. For any sequence rt, −∞ < t < ∞, define
r#

t = rt 1(t ≥ 1), where 1(·) is the indicator function.
We introduce a fairly general concept of an L × 1 vector fractional process (u(1)

t , . . . , u(�)
t )′,

where the u(�)
t , � = 1, . . . , L , are scalars. If vt is a K × 1 vector I(0) process, 1 ≤ K < ∞, with

kth element vkt , then for � = 1, . . . , L, �−d (�)
k v#

kt is called a basic fractional, F(d (�)
k ) process and

u(�)
t =

K∑
k=1

�−d (�)
k v#

kt (3)

is called an I (d (�)) process, for d (�) = max1≤k≤K d (�)
k ; d is called the ‘integration order’ of an I(d)

process. The F(d (�)
k ) component of (3) with the largest d (�)

k dominates with respect to asymptotic
theory, so reference to other integration orders is suppressed. The truncation in (3) is imposed
due to lack of convergence of the series (2) when d ≥ 1

2 ; to be consistent it applies for any d,
including d ∈ [0, 1

2 ), but for such d we refer to an I(d) as being ‘stationary’, while d = 1
2 is on

the boundary between stationarity and non-stationarity, and d > 1
2 is the ‘non-stationary’ region.

We call (u(1)
t , . . . , u(L)

t ) an I (d (1), . . . , d (L)) process, for L < ∞ (where the ‘degenerate’ case K <

L is included).
With this terminology we take (W ′

t , U ′
t ) in (1) to be an I (δ1, . . . , δ P+Q , γ 1, . . . , γ P ) process,

where cointegration is expressed by

0 ≤ γi < min
j :ai j �=0

δ j , i = 1, . . . , P, (4)

where aij is the (i, j)-th element of A. Note that (1) can result from a linear structural model for
Wt in terms of unobserved F(d) (or I(d)) components (cf. Stock and Watson 1988).

Assuming either parametric or non-parametric autocorrelation in the underlying I(0) sequence,
and allowing the δ i and γ i to be unknown, estimates of coefficients of a reduced form of (1) with
apparently optimal properties have been proposed by Robinson and Hualde (2003), Hualde and
Robinson (2004, 2006), in the case P = Q = 1, and in a rather different setting by Jeganathan
(1999) when P = 1, Q > 1 but all δ i are the same; see also Dolado and Marmol (1997), Kim and
Phillips (2000). Extending to general P, Q, it seems that when δ j > 1

2 for all j (and incorporating
knowledge of ‘overidentifying’ zero elements of A), a non-null aij can be consistently estimated
with rate nδ j −γi when δ j − γi > 1

2 , and with rate n
1
2 when δ j − γi < 1

2 .
Such estimates are relatively complicated to compute. Also, their dependence on nuisance

parameter or non-parametric function estimates might sometimes be associated with poor finite-
sample properties, indeed as the nuisance parameters here include integration orders estimates of
coefficients of a reduced form of (1) might be expected to be worse in finite samples than in the
traditional setting in which Wt, Ut are treated as known to be I(1), I(0), respectively. The optimal
estimates of Robinson and Hualde (2003), Hualde and Robinson (2004) also depend, respectively,
on a correct parametric specification of the short memory component of the series, and smoothing
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numbers. Moreover the optimal estimates have to be initiated by a simple estimate that does not
depend on estimates of the γ i , at least. There is thus still interest in simpler estimates.The most
obvious simple estimate is OLS. However, extending results of Robinson and Marinucci (2001)
(where P = Q = 1), we observe below that in some circumstances OLS converges only slowly,
or not at all.

The main purpose of the present paper is to show that simple instrumental variable (IV)
estimates, while still having non-standard limit distributions, can have better convergence rates
than OLS, and than the narrow band least-squares (NBLS) estimates of Robinson (1994), Robinson
and Marinucci (2001). In such circumstances, they would thus be expected to provide better initial
estimates in optimal procedures. IV estimation has previously been considered in a cointegration
context, mostly in the traditional case of I(1) observables and I(0) cointegrating errors, but typically
to provide representations of optimal estimates, that may also have an approximate maximum
likelihood interpretation, say (see e.g. Phillips and Hansen 1990; Kitamura and Phillips 1995,
1997; Marmol et al. 2002).

Our IV estimates employ only exclusion and normalization restrictions on A, and do not
attempt to correct for cross-correlation in Ut, so it suffices to individually estimate the equations
of (1). The following section compares rates of convergence of OLS and IV estimates of a single
equation. Section 3 discusses strategies for selecting instruments. Section 4 examines finite sample
performance by means of Monte Carlo simulations. Section 5 offers some concluding remarks.

2. INSTRUMENTAL VARIABLES ESTIMATES

Consider the first equation of (1), with no loss of generality, and write it

yt = β ′xt + ut . (5)

Here ut is the first element of Ut, yt is a scalar and xt and β are q × 1 vectors, where with no loss
of generality we may take (x ′

t , yt)′ to be the leading (q + 1) × 1 sub-vector of Wt, for q ≤ Q, and
no element of β is known to be zero. For brevity write γ = γ 1, and with no loss of generality set

δ1 ≤ δ2 ≤ · · · ≤ δq . (6)

Thus (x ′
t , yt, ut) is an I (δ1, . . . , δq+1, γ ) process. Note from (4) and (6) that

γ < δq+1 ≤ δ1, (7)

δq+1 being the integration order of yt. Cointegration of (x ′
t , ut) is implied by (5) and (7). We have

implicitly adopted the definition used, in a fractional context, by Robinson and Hualde (2003),
rather than, say, that of Johansen (1996) which requires γ < δq .

Given a q × 1 vector sequence zt, t ≥ 1, an IV estimate of β is given by

β̂z = M−1
zx Mzy,

using the generic notation

Mab =
n∑

t=1

at b
′
t ,

for any column vectors at, bt, t ≥ 1, and assuming Mzx is non-singular.
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We consider first the OLS special case β̂x . Denote by G1 and G2 the q × q diagonal matrices
whose ith diagonal elements are, respectively,

n
1
2 1

(
δi <

1

2

)
+ (n log n)

1
2 1

(
δi = 1

2

)
+ nδi 1

(
δi >

1

2

)

and

n1(γ + δi < 1) + (n log n)1(γ > 0, γ + δi = 1) + nγ+δi {1(γ + δi > 1) + 1(γ = 0, δi = 1)}.
If Xn, n ≥ 1, and X are matrices of random variables, having the same dimensions, and gn, n ≥ 1,
are scalars, let Xn ⇒ X denote a suitable notion of weak convergence of Xn to X as n → ∞, and
Xn ≈ gn denote Xn/gn ⇒ X as n → ∞. Write

δ∗ = min
i :δi >

1
2

δi

when the right side exists, and βi , β̂xi for the ith elements of β, β̂x .

Theorem 1 Let (4) and (5) hold, and

G−1
1 Mxx G−1

1 ⇒ �xx , G−1
2 Mxu ⇒ �xu, as n → ∞, (8)

where �xx is a q × q matrix that is almost surely (a.s.) finite and positive definite, and �xu is a
q × 1 vector whose elements are a.s. finite. Then as n → ∞, for i = 1, . . . , q,

β̂xi − βi ≈ 1

(
δi <

1

2

)
+ (log n)−11

(
δi = 1

2

)
+ n1−δi −δ∗1

(
δi >

1

2
, γ + δ∗ < 1

)

+ n1−δi −δ∗ (log n)1

(
γ > 0, δi >

1

2
, γ + δ∗ = 1

)

+ nγ−δi

{
1

(
δi >

1

2
, γ + δ∗ > 1

)
+ 1(γ = 0, δ∗ = 1)

}
. (9)

Theorem 1 extends the result for δ i = 1, γ = 0 (Stock 1987). As in this case, the limit
distribution of β̂xi is non-standard and as well as depending on integration orders and other
properties varies qualitatively across certain subsets of integration order space, as found by
Robinson and Marinucci (2001, 2003). The limit distributions are in no cases normal or mixed-
normal, and thus not useful in statistical inference. The proof of Theorem 1 is in the Appendix,
where also sufficient conditions for (8), and (14) below, are discussed.

When γ + δ i < 1, or γ + δ i = 1 with γ > 0, the ith element of �xu is a constant, and non-zero
unless cov(xit, ut) = 0, where xit is the ith element of xt . �xx has structure

�xx =




�xx1 0 0

0 �xx2 0

0 0 �xx3


 , (10)

where �xxi is qi × 1, i = 1, 2, 3, such that q1 = ∑q
i=1 1(δi < 1

2 ), q2 = ∑q
i=1 1(δi = 1

2 ), q3 =∑q
i=1 1(δi > 1

2 ). The matrices �xx1 and �xx2 are constant, and positive definite. For i such that
γ + δ i = 1 and δi = 1

2 the constant and non-zero/positive definite properties result, despite
the non-stationarity, from domination of the standard deviation by the mean, see Theorems 4.2
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and 5.1 of Robinson and Marinucci (2001). The block-diagonal structure in (10) does not
require any assumptions of orthogonality between elements of xt, but rather is due to the
differing normalizations. The block-diagonality ensures consistency of β̂xi for i >q 1, despite
the inconsistency of β̂xi for i ≤ q 1 (which is due to simultaneous equations bias). For xit on the
stationary–non-stationary boundary β̂xi is log n-consistent. For non-stationary xit with δi > 1

2 , we

obtain the ‘optimal’ n
δi −γ

-consistency of β̂xi when

γ + δ j > 1 or γ = 0, δ j = 1 (11)

for all j such that δ j > 1
2 , but otherwise the rate of β̂xi is restricted: not only if γ + δ i < 1 or γ +

δ i = 1 with γ > 0, but also if γ + δ i > 1 and there is a single δ j > 1
2 such that γ + δ j < 1 or

γ + δ j = 1 with γ > 0. The rates in (9) seem sharp, except in the event of constant elements of
�xx or �xu taking particular values.

No rate improvement in (9) seems possible if δi > 1
2 and γ + δ i > 1 or γ = 0 with δ i = 1

for all i, which includes the traditional case of I(1) regressors and I(0) disturbances. However,
while it is common practice to test the I(1) assumption, and it is frequently not rejected, the tests
commonly used, such as Dickey–Fuller, do not have particularly good power against fractional
alternatives. It may not be possible to rule out the presence of mean-reverting, or even stationary,
xit, and visual discrimination based on the observed trajectory can be hazardous. Improvements to
OLS are possible when for some i , γ + δ i = 1 with γ > 0 or γ + δ i < 1, and the latter inequality
always holds when xit is stationary or when xit is non-stationary and mean-reverting but γ = 0
(and also for sufficiently small positive γ ). To guard against such possibilities we consider the IV
estimate β̂z with zt an I (ξ 1, . . . , ξ q ) process, with

ξ1 ≤ ξ2 ≤ · · · ≤ ξq . (12)

For simplicity we consider only cases in which

δi + ξi > 1, i = 1, . . . , q. (13)

Denote by G3, G 4 and G5 the q × q diagonal matrices with ith diagonal elements nξi , nδi and

n1(γ + ξi < 1) + (n log n)1(γ > 0, γ + ξi = 1) + nγ+ξi {1(γ + ξi > 1) + 1(γ = 0, ξi = 1)},
and by β̂zi the ith element of β̂z .

Theorem 2 Let (4) and (5) hold, and

G−1
3 Mzx G−1

4 ⇒ �zx , G−1
5 Mzu ⇒ �zu, (14)

where �zx is an a.s. finite and non-singular matrix and �zu is an a.s. finite vector. Then as n →
∞, for i = 1, . . . , q,

β̂zi − βi ≈ n1−δi −ξ1 1(ξ1 + γ < 1) + n1−δi −ξ1 (log n)1(γ > 0, ξ1 + γ = 1)

+ nγ−δi {1(ξ1 + γ > 1) + 1(γ = 0, ξ1 = 1)}. (15)

The proof is again left to the Appendix. Again, limit distributions are in general non-standard
and depend on integration orders and other features, and vary qualitatively across regions of
integration order space, as well as with other properties of the instruments zi. Thus again limit
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distributions will not be useful in inference, and we have not felt it worthwhile to take up space
representing them.

The ith element of �zu is constant when γ + ξ i ≤ 1, or when γ + ξ i = 1 with γ > 0. In view
of (12) β̂zi is consistent even in case of stationary xit, while the optimal rate nγ−δi is achieved for
all i when

ξ1 + γ > 1 or γ = 0, ξ1 = 1, (16)

which for ξ 1 > δ∗ is a milder condition than δ∗ + γ > 1 or γ = 0, δ∗ = 1 (cf. (9)). The dependence
of the right-hand side on ξ 1, rather than ξ i , is due to the general non-diagonality of �zx .

The NBLS estimate proposed by Robinson (1994) to consistently estimate cointegrating
relations with stationary I(d) regressors was also shown by Robinson and Marinucci (2001) to
improve convergence rates in the sort of non-stationary environments in which our IV approach
provides improvements over OLS. NBLS also has an IV interpretation and is intuitively appealing,
but its convergence rate (which depends on the rate of a bandwidth number as n → ∞) is not
necessarily better or worse than that of our simple IV estimate β̂z in the stationary regressor case,
and it is worse in the non-stationary case when γ + δ i < 1 or γ + δ i = 1 with γ > 0 for some i,
but (16) holds. Instead of the arbitrariness of bandwidth choice in the NBLS approach, β̂z suffers
from arbitrariness of instrument, but it is computationally simpler, and applied economists may
feel more comfortable with its familiar form.

3. CHOICE OF INSTRUMENT

In classical, stable environments, instruments are ideally chosen to be orthogonal to disturbances,
but highly correlated with the variables they replace. In the unit root cointegration literature this
prescription does not apply: instruments and can be correlated with disturbances, and independent
of regressors (see, e.g. Phillips 1986; Phillips and Hansen 1990). The latter situation is possible
in our more general setting, when δi > 1

2 , ξ > 1
2 for all i. We identify below several strategies for

choosing instruments. All the estimates covered in Theorem 2 are sub-optimal, and it does not seem
possible to find a statistically best choice of instrument zt. Thus there is inevitably considerable
ambiguity in the choice of zt, and our discussion illustrates this, while also identifying advantages,
or disadvantages, of particular ones. In principle the number of possible instruments one might use
is limitless, especially as one could use linear combinations of ones suggested below, or lagged
versions, or IV versions of the narrow-band estimate (17) employed in the Monte Carlo study of
the following section.

(1) Cointegration in (5) requires that at least two elements of (x ′
t , yt) have the same integration

order. In the special case when this is true of all elements, convergence rates are constant
across β̂x . There may be other elements of Wt with different integration orders. Robinson
and Yajima (2002) investigated ‘simple cointegration’, in which (1) consists of subsystems
involving non-overlapping elements of Wt, integration orders being constant within, but
not across, sub-systems. Then if they satisfy (13), variables in one system might be
suitable instruments in another sub-system that involves variables of lower integration
order. Robinson and Yajima (2002) provided an algorithm for partitioning Wt into subsets
with common integration orders, and thence determining the cointegrating rank of each
sub-system.

(2) Evidently this approach cannot generate instruments for each equation of (1), and
uncertainty about integration orders of observables presents some ambiguity. A simple
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approach is to integrate observables, possibly xt in (5). For simplicity take xt to be scalar,
and define, for any sequence rt, r (α)

t = �−α r#
t , α > 0. Then if xt is I (δ), x (α)

t is I (δ + α).
We might thus choose zt = x (α)

t as an instrument, for suitable α. If it is believed that δ > 1
2 ,

then αi = 1
2 suffices for (13), whereas α = 1 suffices for any δ > 0. Clearly α = 1 is an

attractively simple option.
(3) A similar outcome is achieved by instead integrating the model (5). Taking q = 1 again,

and forming

y(α)
t = βx (α)

t + u(α)
t ,

an IV estimate using xt as instrument for x (α)
t can be written β̃ = ∑n

t=1 xt y(α)
t /

∑n
t=1 xt x

(α)
t .

In view of (2) β̃ = x ′ B(α) y/x ′ B(α)x , where x = (x 1, . . . , xn)′, y = (y1, . . . , yn)′ and
B(α) is the n × n lower-triangular matrix whose tth row is (a0(α), a1(α), . . . , at−1(α),
0, . . . , 0). But this is also an IV estimate for (5) when the instrument for xt is the tth element
of B(α)′x . On the other hand the IV estimate for (5) that uses x (α)

t as instrument for xt is
β̂x (α) = x ′ B(α)′y/x ′ B(α)′x . Clearly β̃ and β̂x (α) have the same convergence rates.

(4) It would be possible to generalize our definition of Wt to allow for deterministic effects, in
particular each element could be a sum of an I(d) variable and a sequence asymptotic to t c, for
some c, where either stochastic or deterministic components may dominate asymptotically.
This suggests using increasing functions of t as instruments. But this can work also for
purely stochastic non-stationary zt, due to a ‘spurious regression’ effect (Phillips 1986).
For example with q = 1, using zt = t ξ− 1

2 for ξ > 1
2 produces the same convergence rate as

an I (ξ )zt (albeit a different type of limit distribution, possibly normal).
(5) The ‘spurious regression’ phenomenon also suggests artificial generation of instruments.

In particular, for non-stationary xit, an I (ξ i ) instrument of the form �−ξi et
# would suffice,

where ξi > 1
2 and e1, e2, . . . , is a sequence from a Monte Carlo random number generator.

Many workers would resist such a device, however, in part because calculations would be
difficult to replicate and empirical findings liable to be greeted with suspicion.

4. FINITE SAMPLE BEHAVIOUR

Our IV proposals are based on consideration of asymptotic rates of convergence, so it is important
to investigate performance in finite samples. We focus only on moderate series lengths n, to gauge
relevance to macroeconomic analysis. For long financial series our convergence rates would be
more directly informative, and simulation evidence of less importance. We compare some of the
choices of instrument described in the previous section, including also OLS, as well as NBLS.
The latter, when q = 1 in (5), is

β̃m =
(

m∑
j=1

|wx (λ j )|2
)−1

Re

{
m∑

j=1

wx (λ j )wy(−λ j )

}
, (17)

where

wa(λ) = (2πn)−
1
2

n∑
t=1

at e
itλ

and λ j = 2π j/n, 1 ≤ m < n/2. The integer m is chosen by the practitioner: for given n, bias tends
to increase, and variance to decrease, with increasing m. If (xt, ut) is an I (δ, γ ) process with γ < δ
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Table 1. Convergence rates of deviations of estimates from β in model (5) with q = 1 in cases (I)–(IV). X=
‘inconsistent’.

γ , δ, χ OLS NBm IVw IV(0.5) IV(1)

0.1,0.3,0.7 X (m/n)0.2 (log n)−1 n−0.1 n−0.2

0.2,0.6,0.9 n−0.2 m0.2 n−0.4 n−0.4 n−0.4 n−0.4

0.4,0.7,0.8 n−0.3 n−0.3 n−0.3 n−0.3 n−0.3

0,1,1 n−1 n−1 n−1 n−1 n−1

(cf. (4)), then under regularity conditions and with m → ∞, m/n → 0 as n → ∞, β̃m is consistent
for β, and moreover

β̃m − β ≈ (n/m)γ−δ1

(
δ <

1

2

)
+ nγ−δm1−γ−δ1

(
δ >

1

2
, γ + δ < 1

)

+ n−11(γ = 0, δ = 1) + (log n/n)1(γ > 0, γ + δ = 1) + nγ−δ1(γ + δ > 1)

(see Robinson 1994; Robinson and Marinucci 2001). These authors also characterized limit
distributions when xt is non-stationary, and Christensen and Nielsen (2004) recently established
asymptotic normality in the stationary case, when also γ + δ < 1/2 and xt and ut are incoherent
at frequency zero. Unlike OLS, NBLS is consistent in case of stationary xt, whereas for non-
stationary xt NBLS converges faster than OLS when γ + δ < 1 or γ > 0, γ + δ = 1, but slower
than IV given a suitable choice of instrument (see (9) and (15)). NBLS has been employed in
a number of empirical investigations (see e.g. Bandi and Perron 2004; Christensen and Nielsen
2004; Robinson and Marinucci 2003), so it seems appropriate to see how it compares with IV in
our numerical study.

Except in our final experiment, all I(d) time series generated were of basic fractional type
with NID(0, 1) I(0) source sequence. We allowed for various integration orders and levels of
cross-correlation between series, and compared Monte Carlo bias and standard deviation (SD)
across 2,000 replications of various estimates computed from n = 64 and n = 128 observations.

Our first version of (5) took q = 1, with β = 2, (ut, xt) ∼ I (γ , δ). As well as computing OLS
(β̂x ) and NB4 and NB5 (where NBm is β̃m (17)), we computed three versions of IV β̂z , denoted
IVw and IV(α) for α = 0.5, 1. IVw uses zt = wt ∼I (χ ) under the assumption that Wt in (1) includes
an additional variable wt; IV(α) takes zt = x (α)

t . Thus, IVw, IV(.5) and IV(1) entail ξ = χ , δ + 0.5
and δ + 1, respectively. We considered four choices of (γ , δ, χ ). In case (a) (γ , δ, χ ) = (0.1, 0.3,
0.7). Here, xt is stationary, wt satisfies δ + ξ = 1 and γ + ξ < 1 (cf. (13), (16)), x (.5)

t satisfies (13)
and γ + ξ < 1 (cf. (16)), and x (1)

t satisfies (13) and (16). In case (b), (γ , δ, χ ) = (0.2, 0.6, 0.9).
Here, xt is non-stationary but satisfies γ + δ < 1 (cf. (11)) while all choices of zt satisfy (13) and
(16). In case (c) (γ , δ, χ ) = (0.4, 0.7, 0.8). Here, (11), (13) and (16) are satisfied. The same is true
in case (d), (γ , δ, χ ) = (0, 1, 1), which covers the usual I(0)/I(1) situation. Convergence rates of
the various estimates are displayed in Table 1.

We also varied the cross-correlation structure of the NID(0, 1) innovations of ut, xt, wt, denoted
vut , v xt , vwt , respectively. In case (i) we took vut , v xt , vwt to be mutually independent, so that
OLS is consistent even when xt is stationary and wt is ‘spurious’. In cases (ii)–(iv), cov (vut , vwt )
= cov(v xt , vwt ) = 0.5 throughout, but we varied ρ = cov (vut , v xt ), taking ρ = 0.5, 0.7, 0.9,
respectively. These four cases are indicated in Tables 2 and 3 by the ρ column, where the different
treatment of other correlations in case (i) must be borne inmind.
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Table 2. Monte Carlo bias and SD of estimates of β in model (5) with q = 1 in cases (a)–(d) and (i)–(iv),
with n = 64, and 2,000 replications.

Bias SD

γ , δ, χ ρ OLS NB4 NB5 IVw IV(0.5) IV(1) OLS NB4 NB5 IVw IV(0.5) IV(1)

0.1,0.3,0.7 0 −1.98 0.002 −0.002 0.021 −0.003 0.002 3.13 0.101 .114 0.646 0.194 0.187

0.5 4.60 0.048 0.058 0.098 0.075 −0.064 10.27 0.521 .511 1.00 0.846 0.724

0.7 7.14 −0.054 0.051 0.094 0.073 0.068 15.97 0.577 0.491 0.954 0.832 0.702

0.9 7.96 0.058 0.059 0.092 −0.071 0.056 17.98 0.618 0.635 0.994 0.782 0.697

0.2,0.6,0.9 0 −0.007 0.008 −0.006 −0.052 −0.010 0.008 0.272 0.197 0.142 0.523 0.298 0.355

0.5 0.070 −0.045 0.049 0.051 −0.056 0.042 0.787 0.311 0.530 0.610 0.688 0.546

0.7 0.077 −0.028 −0.032 0.041 0.038 −0.031 0.694 0.286 0.332 0.485 0.666 0.518

0.9 −0.080 0.039 0.035 0.041 0.037 0.031 0.731 0.240 0.421 0.515 0.507 0.577

0.4,0.7,0.8 0 −0.007 0.008 −0.006 −0.060 −0.009 −0.008 0.360 0.182 0.173 0.510 0.356 0.321

0.5 −0.074 −0.057 0.065 0.068 −0.062 0.058 0.953 0.585 0.691 0.818 0.712 0.745

0.7 0.059 0.043 −0.037 −0.046 −0.044 0.041 0.821 0.501 0.606 0.589 0.576 0.511

0.9 0.062 0.042 0.040 −0.040 0.041 0.037 0.725 0.496 0.519 0.554 0.529 0.495

0,1,1 0 −0.004 0.002 0.002 −0.003 0.006 0.005 0.087 0.016 0.014 0.021 0.058 0.053

0.5 −0.009 0.005 0.002 −0.005 −0.009 0.008 0.082 0.041 0.046 0.071 0.091 0.078

0.7 0.005 0.007 0.009 0.006 0.006 0.006 0.072 0.048 0.034 0.038 0.095 0.083

0.9 −0.007 0.006 0.006 −0.006 0.005 0.005 0.081 0.033 0.049 0.026 0.053 0.062

Table 2 presents Monte Carlo results when n = 64. In case (a), where xt is stationary, OLS
unsurprisingly performs increasingly poorly as ρ increases, with respect to bias as well as SD.
IVw registers considerable improvement, though IV(α) does better, especially when α = 1, the
results reflecting the ordering of rates in Table 1. However, the NBm are clearly superior, indicating
an advantage in this case for those computationally more complex estimates. The pattern as ρ

increases across cases (ii)–(iv) is not very clear where the IV and NBLS estimates are concerned:
sometimes the best results are found when ρ = 0.9. In case (b) the rather narrow inferiority of
OLS seen in Table 1 is borne out in the Monte Carlo results. Generally in cases (b)–(d) there is
not much to choose between NBLS and IV, with the latter sometimes superior, but in cases (b)
and (c) the same ordering of IV estimates as in case (a) is found. Notice that SD can be affected
by choice of zt even when convergence rate is not, and this may explain why IVw is less variable
than OLS even in case (d). Table 3 contains corresponding results for n = 128. The fact that the
bias of OLS is not reduced is unsurprising. Bias is otherwise on the whole somewhat reduced,
as is SD, except for the NBLS estimates; this reflects the fact that under suitable conditions the
asymptotic variance of NBm is of order m−1. We also obtained results with zt = x (2)

t and some
deterministic zt; these are unreported because in the former case they differed little from those
for zt = x (1)

t , and in the latter case because they were systematically worse than those for the
stochastic zt.

We also investigated effects of differential integration orders in multiple regression models.
We first took q = 3 in (5), β 1 = 2.5, β 2 = 2, β 3 = 1.5, and γ = 0.1, δ1 = 0.4, δ2 = 0.7, δ3 = 1.
Thus we have a stationary regressor, a non-stationary mean-reverting one and a unit root one. We
considered four different covariance structures for the NID(0, 1) innovations vut , v i t of ut and
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Table 3. Monte Carlo bias and SD of estimates of β in model (5) with q = 1 in cases (a)–(d) and (i)–(iv),
with n = 128, and 2,000 replications.

Bias SD

γ , δ, χ ρ OLS NB4 NB5 IVw IV(0.5) IV(1) OLS NB4 NB5 IVw IV(0.5) IV(1)

0.1,0.3,0.7 0 1.26 0.001 0.002 0.014 0.002 0.002 2.17 0.092 0.085 0.575 0.139 0.128

0.5 4.33 0.040 0.040 0.097 0.074 0.063 9.69 0.504 0.463 0.985 0.779 0.713

0.7 6.91 −0.051 0.048 0.092 0.071 0.069 15.95 0.509 0.463 0.938 0.725 0.633

0.9 7.86 0.053 0.056 0.090 0.060 0.048 17.58 0.536 0.587 0.929 0.728 0.602

0.2,0.6,0.9 0 0.004 −0.005 0.005 0.040 0.008 0.008 0.118 0.112 0.201 0.412 0.301 0.265

0.5 0.060 0.038 0.040 0.043 0.050 0.034 0.711 0.145 0.349 0.542 0.425 0.502

0.7 0.062 0.025 0.039 0.034 0.040 0.029 0.618 0.267 0.344 0.339 0.626 0.433

0.9 0.068 0.037 0.031 0.031 0.033 0.030 0.606 0.303 0.401 0.478 0.460 0.493

0.4,0.7,0.8 0 0.003 −0.007 0.005 0.050 0.007 0.006 0.180 0.157 0.187 0.611 0.281 0.242

0.5 0.045 0.054 0.061 −0.051 0.058 −0.051 0.675 0.622 0.674 0.601 0.690 0.653

0.7 0.052 0.032 0.029 0.038 0.029 0.024 0.794 0.435 0.514 0.523 0.490 0.481

0.9 0.059 0.040 0.035 0.034 0.038 0.036 0.638 0.481 0.492 0.521 0.505 0.421

0,1,1 0 0.001 0.002 0.002 0.001 −0.005 0.004 0.010 0.010 0.012 0.019 0.051 0.047

0.5 0.003 0.002 0.001 0.004 0.005 −0.004 0.055 0.012 0.029 0.091 0.071 0.095

0.7 0.001 0.006 −0.009 0.006 0.006 −0.004 0.045 0.029 0.020 0.026 0.076 0.067

0.9 0.002 0.003 0.003 −0.005 0.005 0.004 0.052 0.029 0.044 0.021 0.059 0.051

xit, i = 1, 2, 3. Using the notation ρ i = cov(vut , v i t ), ρ i j = cov(v i t , v j t ), these are as
follows:

Case (I): ρ i = ρ12 = ρ13 = 0, i = 1, 2, 3; ρ23 = 0.5.
Case (II): ρ i = ρ i j = 0.5, i = 1, 2, 3, j �=i .
Case (III): ρ2 = ρ3 = ρ i j = 0.5, i = 1, 2, 3, j �=i ; ρ1 = 0.7.
Case (IV): ρ2 = ρ3 = ρ i j = 0.5, i = 1, 2, 3, j �=i ; ρ1 = 0.9.

In case (I) there is correlation only between the non-stationary regressors x 2t and x 3t , whereas
in the other three cases all innovation correlations are 0.5 except for that between vut and v1t ,
which varies.

Table 4 contains rates of convergence of OLS and IV(α), α = 0.5, 1, where IV(α) is β̂z with
zt = (x (α)

1t , x (α)
2t , x (α)

3t )′: IV(.5) overcomes the inconsistency in the OLS estimate of β 1, and
improves on the rates of the OLS estimates of β 2 and β 3, while a small further improvement
is registered by IV(1). Tables 5–7 compare finite sample performance of these estimates, each
table including results for both n = 64 and 128, and the four increasing values of ρ1 indexing
cases (I)–(IV). Apart from the poor performance of the OLS estimate of β 1 in case (I), the
results seem quite consistent with the asymptotics. In case (I) OLS of β 2 and β 3 does well, but
in the other cases IV(.5) is better and IV(1) better still, perhaps more than one might anticipate
from Table 4. More surprising is the systematic way in which SD falls from OLS through IV(.5)

to IV(1).
Our next experiment focussed more explicitly on the curse-of-dimensionality dangers of

multiple regression, taking q = 8 in (5). To keep the design simple, the elements of xt were
mutually independent, and I(δ) for the same δ and the same scale, and they were independent
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Table 4. Convergence rates of deviations of estimates from β 1, β 2, β 3 in model (5) with q = 3. X=
‘inconsistent’.

Parameter OLS IV(0.5) IV(1)

β 1 X n−0.3/log n n−0.3

β 2 n−0.4 n−0.6/log n n−.6

β 3 n−0.7 n−0.9/log n n−0.9

Table 5. Monte Carlo bias and SD of estimates of β 1 in model (5) with q = 3 in cases (I)–(IV), with n =
64 and 128, and 2,000 replications.

Bias SD

n ρ 3 OLS IV(0.5) IV(1) OLS IV(0.5) IV(1)

64 0 4.93 0.021 −0.010 14.6 0.224 0.139

0.5 −5.88 0.085 0.070 19.7 0.869 0.748

0.7 4.01 0.073 0.064 17.7 0.777 0.638

0.9 5.27 0.076 0.065 18.8 0.764 0.665

128 0 4.37 −0.014 0.009 7.36 0.108 0.101

0.5 4.45 −0.080 0.067 8.69 0.817 0.720

0.6 −4.94 −0.069 0.062 16.5 0.700 0.635

0.9 5.34 0.072 0.064 18.1 0.719 0.628

Table 6. Monte Carlo bias and SD of estimates of β 2 in model (5) with q = 3 in cases (I)–(IV), with n =
64 and 128, and 2,000 replications.

Bias SD

n ρ 3 OLS IV(.5) IV(1) OLS IV(.5) IV(1)

64 0 0.016 0.016 0.009 0.298 0.217 0.110

0.5 −0.093 0.078 −0.062 1.02 0.692 0.731

0.7 0.089 0.064 0.054 0.996 0.731 0.616

0.9 0.098 0.063 0.051 1.21 0.704 0.631

128 0 0.015 0.011 0.009 0.253 0.103 0.089

0.5 0.088 0.074 0.062 0.962 0.652 0.697

0.6 0.087 0.060 0.047 0.901 0.627 0.568

0.9 0.096 0.060 −0.046 0.928 0.616 0.593

also of ut, which was I (γ ). We took β = (2, 2.5, 1.5, 3, 3.5, 1, 4, 8)′, and employed three (γ , δ)
combinations. As in the previous experiment, we compared OLS, IV(.5) and IV(1). As expected
the results are similar across the elements of the β estimates, albeit with some variation in the
direction of bias, and we report in Tables 8 and 9 only results for the first two elements, which
seem to exhibit the bias variation. OLS is seriously biased for the stationary case (γ , δ) = (0.1,
0.4), despite the independence between xt and ut (as found in previous experiments) with IV(.5)
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Table 7. Monte Carlo bias and SD of estimates of β 3 in model (5) with q = 3 in cases (I)–(IV), with n =
64 and 128, and 2,000 replications.

Bias SD

n ρ 3 OLS IV(0.5) IV(1) OLS IV(0.5) IV(1)

0 0.009 0.014 0.008 0.199 0.183 0.108

0.5 0.078 −0.057 −0.046 0.825 0.673 0.581

64 0.7 0.082 0.056 0.045 0.889 0.693 0.652

0.9 0.083 0.057 0.042 0.890 0.711 0.534

0 0.008 0.009 −0.005 0.130 0.137 0.091

0.5 0.072 0.053 0.042 0.797 0.648 0.548

128 0.6 0.074 −0.051 −0.041 0.828 0.674 0.639

0.9 0.079 0.054 0.040 0.838 0.733 0.522

Table 8. Monte Carlo bias and SD of estimates of β 1 in model (5) with q = 8, n = 64, 128, with ρ i =
ρ i j ≡ 0 and 2,000 replications.

Bias SD

γ , δ n OLS IV (0.5) IV (1) OLS IV (0.5) IV (1)

0.1, 0.4 64 −0.955 0.011 0.010 1.13 0.156 0.149

128 0.750 0.010 0.009 0.880 0.142 0.138

0.4, 0.7 64 0.016 0.008 −0.008 0.155 0.131 0.133

128 0.012 0.005 0.005 0.129 0.121 0.116

0,1 64 −0.007 0.004 0.004 0.088 0.086 0.081

128 0.003 0.003 0.002 0.042 0.036 0.038

and IV(1) making considerable improvements; they also significantly reduce SD. For the other (γ ,
δ) combinations OLS performs reasonably, but the IV estimates do somewhat better. In all cases
there is improvement with increasing n. On the whole, IV(1) does slightly better than IV(.5).

Spurious regression was mentioned in the preceding section. This was originally identified
as an issue in case of regression between independent I(1) processes. More recently, Cappuccio
and Lubian (1997), Tsay and Chung (2000) have studied its effects in the context of stationary
and non-stationary fractional processes, focussing on the behaviour of OLS regression estimates
(as well as more basic statistics, and OLS-based statistics such as t-ratios). We compare our IV
estimates with OLS and NBLS. The model is (5) with q = 1 and β = 0, and xt and yt = ut are
independent I(δ) processes. (Thus, this is actually not a cointegrated model.) In Table 10 IVw uses
an instrument wt that is I(χ ); the (δ, χ ) combinations are (a′): (0.3, 0.7); (b′): (0.6, 0.8); (c′): (0.7,
0.9); and (d′): (1, 1). Spurious effects are, as expected, greatest in the ‘most non-stationary’ unit
root case (d′), and we find that NBLS and our IV estimates manage to noticeably reduce them,
with NBLS doing best, followed by the IV(α) estimates. The same general pattern is repeated for
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Table 9. Monte Carlo bias and SD of estimates of β 2 in model (5) with q = 8, n = 64, 128, with ρ i =
ρ i j ≡ 0 and 2,000 replications.

Bias SD

γ , δ n OLS IV (0.5) IV (1) OLS IV (0.5) IV (1)

0.1, 0.4 64 0.883 −0.011 0.011 1.13 0.181 0.168

128 0.697 0.010 −0.010 0.805 0.134 0.122

0.4, 0.7 64 0.019 0.006 −0.006 0.170 0.126 0.130

128 0.011 0.003 0.002 0.148 0.118 0.115

0,1 64 −0.009 0.004 0.003 0.093 0.073 0.072

128 0.005 −0.002 0.002 0.046 0.038 0.031

Table 10. Monte Carlo bias and SD of estimates of β in model (5) with q = 1, in cases (a’)–(d’), with n =
64, 128, and 2,000 replications.

Bias SD

δ, χ n OLS NB4 NB5 IVw IV(0.5) IV(1) OLS NB4 NB5 IVw IV(0.5) IV(1)

0.3, 0.7 64 −0.016 0.014 0.013 −0.014 0.014 −0.014 0.220 0.191 0.185 0.217 0.216 0.211

128 0.013 0.011 0.011 0.011 0.010 0.010 0.171 0.163 0.168 0.170 0.164 0.159

0.6, 0.8 64 0.047 0.038 −0.040 0.046 0.038 0.040 0.561 0.491 0.506 0.546 0.495 0.501

128 −0.041 0.030 0.031 −0.040 0.033 0.031 0.519 0.427 0.437 0.521 0.504 0.501

0.7, 0.9 64 −0.086 −0.072 0.076 0.083 0.079 0.074 0.683 0.574 0.580 0.670 0.649 0.624

128 0.064 0.053 −0.052 0.058 −0.060 0.059 0.678 0.673 0.598 0.628 0.610 0.608

1,1 64 0.098 0.080 0.080 0.084 0.082 0.081 1.01 0.808 0.855 0.970 0.932 0.878

128 −0.065 −0.046 0.047 0.053 0.050 −0.047 0.940 0.786 0.792 0.937 0.812 0.815

the other parameter values, with both bias and SD decreasing as δ decreases. Throughout there is
some improvement with increasing n.

Our final experiment partially relaxes the Gaussian prescription by allowing the disturbances
ut to have innovations from a t5 distribution, so they have finite moment of order 4 only. One
expects deterioration of OLS estimates in the presence of fat tails, and we wish to examine how
the IV and NBLS estimates compare. The experiment is also designed so as to allow comparisons
with Tables 2 and 3: we have q = 1, β = 2, and take the same (γ , δ, ξ ) combinations as there,
though we now only consider the correlation ρ = 0.5 between ut and xt. There is little difference
in the biases from those of Tables 2 and 3, but unsurprisingly the standard deviations increase.
Except when (γ , δ, χ ) = (0, 1, 1), OLS clearly performs worst and the two versions of NBLS
narrowly outperform the IV estimates.

5. FINAL COMMENTS

We have shown that IV estimates of cointegrating relations can improve on OLS when the latter
falls short of optimal rate. Our fractional integration setting illustrates much of the scope of the
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Table 11. Monte Carlo bias and SD of estimates in model (5) with q = 1 in cases (a)–(d), with t5 errors,
with n = 64, 128, and 2,000 replications.

Bias SD

γ , δ, χ n OLS NB4 NB5 IVw IV(0.5) IV(1) OLS NB4 NB5 IVw IV(0.5) IV(1)

0.1, 0.3, 0.7 64 5.20 0.062 0.066 0.078 0.075 0.074 12.38 1.08 1.24 1.53 1.32 1.27

128 4.90 0.048 0.047 0.099 0.079 0.044 10.85 0.963 0.912 1.38 1.12 1.01

0.2, 0.6, 0.9 64 0.081 0.059 0.058 0.075 0.069 0.068 1.96 0.627 0.651 0.850 0.872 0.864

128 0.078 0.042 0.044 0.047 0.052 0.054 1.53 0.539 0.494 0.800 0.761 0.797

0.4, 0.7, 0.8 64 0.085 0.063 0.064 0.070 0.071 0.069 1.94 1.11 1.12 1.15 1.13 1.13

128 0.049 0.054 0.064 0.052 0.060 0.053 1.34 1.02 0.985 1.18 1.08 1.09

0,1,1 64 0.007 0.006 0.005 0.008 0.007 0.006 0.212 0.191 0.207 0.234 0.219 0.211

128 0.003 0.003 0.004 0.006 0.005 0.005 0.154 0.155 0.168 0.197 0.174 0.181

approach but is not essential, the methods applying also in the more traditional case of integer
orders: to guard against the possibility that a regressor is I(0) rather than I(1) (or I(1) rather than
I(2)) an I(1) (or I(2)) instrument might be employed. Several choices of instrument are proposed,
including a variable that appears elsewhere in the system, and fractional or integer integration
of the regressor. In a Monte Carlo study, NBLS estimates, employed in a number of recent
empirical studies, sometimes perform better, but perhaps not sufficiently to offset the advantages
of simplicity and familiarity of IV. Of the instruments employed, the simple and always-available
one of partially summing the regressor seems generally to perform best.
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APPENDIX

Proof of Theorem 1Write

β̂x − β = G−1
1

(
G−1

1 Mxx G−1
1

)−1
G−1

1 G2
(
G−1

2 Mxu
)
.

From (8) this is dominated as n → ∞ by G−1
1 �−1

xx G−1
1 G2�xu. Now G−1

1 G 2 has ith diagonal
element
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n
1
2 1

(
δi <

1

2

)
+ (n/ log n)

1
2 1

(
δi = 1

2

)
+ n1−δi 1

(
δi >

1

2
, γ + δi < 1

)
+ n1−δi (log n)1(γ > 0, δi = 1) + nγ {1(γ + δi > 1) + 1(γ = 0, δi = 1)}.

By the block-diagonality of �xx , β̂xi − βi = Op(1) for i = 1, . . . , q 1, and β̂xi − βi =
Op((log n)−1) for i = q 1 + 1, . . . , q 1 + q 2. In general �xx3 is not a diagonal matrix. Denoting
by H the matrix consisting of the last q3 rows and columns of G−1

1 G 2, a typical element cij of
�−1

xx3 H satisfies

ci j ≈ n1−δ∗1(γ + δ∗ < 1) + n1−δ∗ (log n)1(γ > 0, γ + δ∗ = 1)

+ nγ {1(γ + δ∗ > 1) + 1(γ = 0, δ∗ = 1)}), i, j > q1 + q2.

The proof is now readily completed. �

Proof of Theorem 2

Write

β̂z − β = G−1
4

(
G−1

3 Mzx G−1
4

)−1
G−1

3 G5
(
G−1

5 Mzu
)
.

By (14) this is dominated by G−1
4 �−1

zx G−1
3 G 5�zu as n → ∞. The ith diagonal element of

G−1
3 G 5 is

n1−ξi 1(γ + ξi < 1) + n1−ξi (log n)1(γ > 0, γ + ξi = 1)

+ nγ {1(γ + ξi > 1) + 1(γ = 0, ξi = 1)}.
Bearing in mind the general non-diagonality of �zx , and (12), the proof is readily completed. �

Sufficient conditions for (8) and (14): We need to discuss the underlying I(0) vector generating
xt, yt and, when it is involved, zt (bearing in mind (3) and that zt may have a common or overlapping
I(0) source with xt and yt). Denote by vt this I(0) vector, and assume that

vt = µ +
∞∑

j=−∞
A jεt− j ,

∞∑
j=0

∞∑
k= j+1

{‖Ak‖2 + ‖A−k‖2
}

< ∞,

where the Aj are square matrices, the ε t are i.i.d. vectors with zero mean, covariance matrix �

and finite moments of all orders,
∑∞

j=−∞ A j and � are of full rank, and µ is a mean vector.
These conditions are sufficient for (8) and (14). They are designed principally to utilize results
of Marinucci and Robinson (2000) (see also Akonom and Gourieroux 1987) to the extent that
convergence of fractional Brownian motion of xt, ut or zt underlies (8) and (14), but they also
imply conditions for Theorems 4.1–4.5 and Theorem 5.1 of Robinson and Marinucci (2001),
which (8) and (14) also use. They easily cover Gaussian ARMA vt.

C© Royal Economic Society 2006


