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Abstract

Empirical evidence has emerged of the possibility of fractional cointegration such that
the gap, �, between the integration order � of observable time series, and the integration
order  of cointegrating errors, is less than 0.5. This includes circumstances when observ-
ables are stationary or asymptotically stationary with long memory (so � < 1=2), and when
they are nonstationary (so � � 1=2). This �weak cointegration�contrasts strongly with the
traditional econometric prescription of unit root observables and short memory cointegrat-
ing errors, where � = 1. Asymptotic inferential theory also di¤ers from this case, and from
other members of the class � > 1=2, in particular

p
n-consistent and asymptotically normal

estimation of the cointegrating vector � is possible when � < 1=2, as we explore in a simple
bivariate model. The estimate depends on  and � or, more realistically, on estimates of
unknown  and �. These latter estimates need to be

p
n-consistent, and the asymptotic

distribution of the estimate of � is sensitive to their precise form. We propose estimates of
 and � that are computationally relatively convenient, relying on only univariate nonlinear
optimization. Finite sample performance of the methods is examined by means of Monte
Carlo simulations, and several applications to empirical data included.

JEL Classi�cation : C32.
Keywords. Fractional cointegration; Parametric estimation; Asymptotic normality.

�Corresponding author. Tel.: +44-20-7955-7516; fax +44-20-7955-6592. E-mail address:
p.m.robinson@lse.ac.uk



1. Introduction
Cointegration analysis has usually proceeded under the assumption of unit root (I(1)) ob-

servable series and short-memory stationary (I(0)) cointegrating errors. Here, the least squares
estimate (LSE) of the cointegrating vector is not only consistent, but super-consistent (with
convergence rate equal to sample size, n) (Stock, 1987) despite contemporaneous correlation be-
tween regressors and cointegrating errors; optimal estimates, which account for this correlation,
enjoy no better rate of convergence (Phillips, 1991).
It is also possible to consider cointegration in a fractional context. To be speci�c, we consider

the model
�(yt � �xt) = u#1t; t � 1; yt = 0; t � 0;

��xt = u
#
2t; t � 1; xt = 0; t � 0;

�
(1)

for the bivariate observable sequence fyt; xtg. Here � = 1� L; where L is the lag operator;

(1� L)�� =
1X
j=0

aj(�)L
j ; aj(�) =

�(j + �)

�(�)�(j + 1)
; (2)

taking �(�) = 1 for � = 0;�1;�2; :::; and � (0) =� (0) = 1; the # superscript attached to a
scalar or vector sequence vt has the meaning

v#t = vt1(t > 0); (3)

where 1(�) is the indicator function; f(u1t; u2t); t = 0;�1; :::g is an unobservable covariance
stationary bivariate sequence having zero mean and spectral density matrix that is nonsingular
and bounded at all frequencies; and the real numbers  and � satisfy

0 �  < �: (4)

On this basis, we refer to ut = (u1t; u2t)0 as I(0), xt as I(�) and yt � �xt as I(), while for

� 6= 0; (5)

(4) implies that yt is also I(�); under (1), (4) and (5), yt and xt are said to be cointegrated
CI(�; ) (Engle and Granger, 1987), for which it is necessary that yt and xt share the same
integration order (the argument of I(�)). The truncations on the right hand side in (1) ensure
that the model is well-de�ned in the mean square sense, whereas, for example, ���u2t does not
have �nite variance when � � 1=2.
We anticipate

Cov(u1t; u2t) 6= 0; (6)

when, rewriting the �rst equation of (1) as the regression

yt = �xt + v1t, v1t = ��u
#
1t; (7)

the xt and v1t are contemporaneously correlated. When

� < 1=2 (8)
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(6) leads to inconsistency of the LSE due to the fact that xt is asymptotically stationary and
so its sum of squares does not asymptotically dominate that of v1t. To overcome this problem,
Robinson (1994a) showed that a narrow-band frequency-domain least squares estimate (NBLSE)
is consistent, due to dominance near zero frequency of an I() spectral density by an I(�) one.
(He considered the purely stationary situation, where there is no truncation in (1), but our
modi�cation does not a¤ect such basic asymptotic properties.) Robinson and Marinucci (2003)
gave a rate of convergence for this latter estimate, conjecturing its sharpness. Assuming (4), (8)
and  + � < 1=2, Christensen and Nielsen (2004) obtained the asymptotic distribution of the
NBLSE when u1t and u2t are incoherent at frequency 0 (cf. (6)).
Properties of the LSE and NBLSE were also studied by Robinson and Marinucci (2001, 2003)

in case
� > 1=2; (9)

where there is trending nonstationarity. Here, the LSE is consistent, with convergence rate de-
pending on the location of  and � in the non-negative quadrant, but the NBLSE still sometimes
converges faster, and never converges slower, despite dropping high frequency information. Re-
ferring to a sequence m used in the NBLSE such that m�1+m=n! 0 as n!1, the respective
rates are: for  + � < 1, n2��1 (LSE) and n2��1(n=m)1��� (NBLSE); for  + � = 1 but � < 1,
n2��1= log n (LSE) and n2��1= logm (NBLSE); for  = 0, � = 1, both estimates have rate n but
the NBLSE enjoys less �second-order bias�; and for  + � > 1, both have rate n�� .
The question which then arises is whether these rates are optimal, by which we mean whether

they match the rates achieved by the Gaussian maximum likelihood estimate (MLE) under
suitable regularity conditions. They are optimal for the combination + � > 1, �� > 1=2, but
otherwise not. In particular, the n�� rate is optimal for � �  > 1=2 without the restriction
 + � > 1, and Robinson and Hualde (2003) have established it for estimates asymptotically
equivalent to the MLE, allowing for consistent estimation of unknown  and � and a vector �
of unknown parameters describing the autocovariance structure of ut; these estimates of � have
mixed normal asymptotics, and a Wald test statistic with an asymptotic null �2 distribution, as
established earlier in the CI(1; 0) case by Phillips (1991), Johansen (1991). Indeed, Robinson
and Hualde (2003) found the limit distribution una¤ected by the question of whether �,  and
� are known or unknown.
The present paper focuses on the case of �weak fractional cointegration�

�
def
= � �  < 1=2; (10)

where substantially di¤erent asymptotics prevail, impacting also on the question of how � and
 should be estimated. Under (10), since �yt and �xt are I(�), they are asymptotically sta-
tionary, and one anticipates the existence of

p
n-consistent and asymptotically normal estimates

of �; the LSE and NBLSE converge slower than this owing to the dominance of bias due to (6).
Under (10), the gain of a cointegration analysis is clearly less than when � � 1=2, for example
in the CI(1; 0) case. Nevertheless the identi�cation of such structure is useful, and a variety of
empirical evidence appears to support (10).
When cointegrated observables are stationary, and cointegrating errors are not antipersistent

(so (4), (8) hold), (10) is inevitable. Andersen et al (2001) detected stationary long memory
and co-movement in statistics derived from high-frequency transaction prices. Christensen and
Prabhala (1998), Christensen and Nielsen (2004) found integration orders between 0.35 and
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0.4 in implied and realized volatilities, and I(0) cointegrating errors. In Robinson and Yajima�s
(2002) cointegration analysis of spot closing prices of crude oil, most estimated integration orders
were less than 0.5. More generally, interest in the possibility of cointegration between stationary
�nancial series is developing, and Robinson and Marinucci (2003) argued that it can be di¢ cult
to distinguish between a unit root process and some stationary long memory ones.
In other cases of (10), observables are nonstationary. When they have a unit root, so � = 1,

it is implied that cointegrating errors are also nonstationary, albeit mean-reverting, in which
case the cointegrating relation does not have the usual kind of �equilibrium� interpretation.
Nevertheless a dimensionality reduction still occurs, empirical evidence for the phenomenon
can be found, and the case  > 1=2 has been stressed by Mármol and Velasco (2004). Diebold,
Husted and Rush (1991) represented real exchange rates as errors in cointegrated, and apparently
unit-root, nominal exchange rates and prices, and found them in some cases to be nonstationary.
Similar mixed outcomes can be found in work of Cheung and Lai (1993) (investigating the PPP
hypothesis), Baillie and Bollerslev (1994a) and Kim and Phillips (2000) (cointegration between
spot exchange rates), Baillie and Bollerslev (1994b) (analyzing the forward premium) and Crato
and Rothman (1994) (cointegration between exchange rates). On the other hand, there may
be no strong reason to focus on � = 1 in a fractional context; autoregression-based unit root
tests, such as those of Dickey and Fuller (1979), do not have good power against fractional
alternatives, and though fractional-based tests have been developed (see e.g. Robinson, 1994b,
Dolado, Gonzalo and Mayoral, 2002) one can treat � as unknown. In this case, empirical evidence
of � > 1=2 with � < 1=2 was found by Dueker and Startz (1998) (cointegration between US and
Canadian bond rates) and Robinson and Marinucci (2003) (cointegration between stock prices
and dividends, and between monetary aggregates), with estimates of � variously less than and
greater than 1.
Here we are principally concerned with estimating �; under (10). Most of the empirical

studies reported above employ semiparametric estimates of integration orders, with convergence
rates slower than

p
n, so estimates of � depending on them will, like the LSE and NBLSE, be

less than
p
n-consistent. Achieving

p
n-consistency requires a parametric approach. Under both

� < 1=2 and � > 1=2 the Gaussian MLE appears to have optimality properties and to provide
Wald test statistics with null �2 limit distributions, and so should handle multivariate systems
containing more than one cointegrating relation, where both � < 1=2 and � > 1=2 might occur.
However, asymptotic properties of the MLE have yet to be developed, in case of autocorrelated
ut, and in (1) they can be achieved by a computationally simpler approach when � > 1=2, as
described by Robinson and Hualde (2003), whereas this is not the case when � < 1=2.
To describe the theoretical background to inference when � < 1=2, note �rst that if  and

� are known, while ut is known to be white noise with unknown covariance matrix 
, then the
MLE of � is given in closed form, and may be computed as an added-variable LSE, as pursued
in the following section. When  and/or � are unknown, and ut has parametric autocorrelation
(such as following a vector autoregression (VAR)), then the Gaussian MLE of all the unknowns
is again

p
n-consistent and asymptotically normal, but with limit covariance matrix that is not

block-diagonal, so the asymptotic variance of the estimate of � di¤ers from that when  and
� are known. If � < 1=2, a priori, conveying the implication that � and  are both estimated
by optimizing over subsets of the intersection of (4) and (8), asymptotic theory would largely
follow the lines of authors such as Fox and Taqqu (1986) and Hosoya (1997), who were the
�rst to develop such theory for standard scalar and vector long memory time series models
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respectively, the most notable di¤erence being the fact that in our setting xt and yt would be
only asymptotically stationary. If the possibility that � � 1=2 is admitted, and possibly  � 1=2
also, then the situation is more delicate, as discussed in Section 4.
The preceding discussion makes it apparent that when  and � are unknown the issue of

how they are estimated is of greater signi�cance when � < 1=2 than when � > 1=2. It is
essential here (due to correlation between xt and u1t) that they be estimated

p
n-consistently.

Closed-form
p
n-consistent estimates of integration orders are available (see Kashyap and Eom,

1988, Moulines and Soulier, 1999), but these do not cover our bivariate situation, and also entail
logging the periodogram, which raises technical di¢ culties not present in estimates based on
quadratic forms, such as the MLE. In our setting some degree of numerical optimization seems
inevitable. Since this is likely to entail an initial search of the parameter space to locate the
vicinity of a global optimum, it is desirable if the computations can be arranged so that only
univariate optimizations are involved. Even after concentrating out parameters, when both
 and � are unknown the Gaussian MLE requires a bivariate optimization under white noise
ut, and at least a trivariate optimization when ut is a VAR, which we allow for. We proposep
n-consistent and asymptotically normal estimates that require only univariate optimizations.
We mention �nally other work on developing asymptotic inference on fractional cointegration,

which employs a di¤erent de�nition of I(d) processes for d 6= 0: for vt � I(0), we have ��dvt �
I(d) for jdj < 1=2 and

Pt
s=1�

1�dvs � I(d) for 1=2 < d < 3=2. This kind of fractional process
has been called �Type I�, and ours �Type II�. Jeganathan (1999, 2001) considered such a
�Type I� version of (1), for jj < 1=2 and �1=2 < � < 3=2; in a purely fractional context,
such that vt in the above de�nition is a white noise sequence. Assuming the distribution of
the white noise inputs is of completely known (not necessarily Gaussian) form, Jeganathan
(1999, 2001) considered limit distribution theory of optimal estimates of �, including the mixed
normal limit �nding when � > 1=2, and Jeganathan (2001), using rates suggested by Robinson
(2000), derived

p
n-consistency and asymptotic normality when � < 1=2; Jeganathan (2001)

also covered the case � = 1=2. Though including some discussion of estimation of  and �,
Jeganathan (1999, 2001) assumed them known in his theory. Aside from this, the Gaussian
version of his estimates is the same as ours in case our ut is white noise, though we do not
assume Gaussianity. For the same, �Type I�, de�nition of fractional processes, but with I(0)
inputs having nonparametric autocorrelation (implying a semiparametric model) Dolado and
Mármol (1996), Kim and Phillips (2000) developed methods and theory in cases when � > 1=2.
The basic structure of our estimates of � is described in the following section. Section 3

provides asymptotic theory in case  and � are known, with proofs and some technical details
left to appendices. Section 4 considers estimation of  and � and the e¤ect on estimating
�. Section 5 contains Monte Carlo evidence of �nite sample behaviour, and Section 6 several
empirical applications.

2. Estimation of �
Write (1) as

zt(; �) = �xt()� + u
#
t ; (11)

where we introduce the notation
vt(c) = �

cv#t (12)
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for a generic sequence vt, and de�ne

zt(c; d) = (yt(c); xt(d))
0; � = (1; 0)0: (13)

We take ut to be generated by the VAR

ut =

pX
j=1

Bjut�j + "t; (14)

where all zeros of detfI2 �
Pp

j=1Bjz
jg lie outside the unit circle, the Bj being 2� 2 matrices,

and Ir the r�r identity matrix, while "t is a bivariate sequence, uncorrelated and homoscedastic
over t, with mean zero and covariance matrix 
. We take (14) to mean white noise ut when
p = 0.
From (11) and (14) we have

zt(; �)�
pP
j=1

Bjzt�j(; �) = �

(
�xt()�

pP
j=1

Bj�xt�j()

)
+ "+t ; t � 1; (15)

where

"+t = u11 (t = 1) +

(
ut �

t�1P
j=1

Bjut�j

)
1 (t = 2; :::; p) + "t1 (t > p) : (16)

Denote by Bij the ith row of Bj . Writing "it for the ith element of "t; for t > p the second
equation of (15) can be written as

xt(�)�
pP
j=1

B2jzt�j(; �) = ��
pP
j=1

B2j�xt�j() + "2t; (17)

whence the �rst equation can be written as

yt() = �xt()+�xt(�)+
pP
j=1

(B1j � �B2j) zt�j(; �)��
pP
j=1

(B1j � �B2j) �xt�j()+"1:2;t; (18)

where "1:2;t = "1t� �"2t, � = E("1t"2t)=E("22t); (18) is a form of error-correction representation.
We wish to cater for the possibility of prior zero restrictions on the Bj which serve to eliminate

some yt�j(), xt�j(), xt�j(�), as this will improve e¢ ciency. Thus we introduce a q� (3p+2)
matrix Q, which is I3p+2 when there are no such restrictions, but for q < 3p + 2, Q is formed
by dropping rows corresponding to the restrictions. Thus we can write (18) as

yt() = �
0QZt(; �) + "1:2;t; (19)

where
Zt(c; d) =

�
xt(c); xt(d); w

0
t�1(c; d); :::; w

0
t�p(c; d)

�0
; (20)

wt(c; d) = (xt(c); xt(d); yt(c))
0
; (21)

and the q � 1 vector � consists of coe¢ cients that are not a priori zero, being (in some cases
nonlinear) functions of �, �, and the Bij .
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Since E("1:2;tZt(; �)) = 0, we consider the (possibly constrained) LSEb�(c; d) = G(c; d)�1g(c; d); (22)

taking (c; d) = (; �), (;e�), (e; �) or (e;e�), depending on whether  and/or � are known or
estimated by e;e�, and

G(c; d) = Q
1

n

nP
t=p+1

Zt(c; d)Z
0
t(c; d)Q

0; g(c; d) = Q
1

n

nP
t=p+1

Zt(c; d)yt(c): (23)

For example, in case p = 1, if u1t is white noise while u2t is AR(1), then q = 3 and (18) becomes

yt() = �xt() + �xt(�)� �B221xt�1(�) + "1:2;t; (24)

where B22j is the second element of B2j . Notice that �, � and B221 are all identi�ed in (24),
but it is apparent from comparison of (18) with (19) that in general, while � and � are expected
to be identi�ed, only some elements of the Bj are. However, we are treating the Bj as nuisance
parameters, indeed it is principally � that is of interest, so we stress

b�(c; d) = 10G(c; d)�1g(c; d); (25)

where 1 = (1; 0; :::; 0)0.
In case p = 0, b�(; �) actually provides the Gaussian MLE of �, given knowledge of ; � but

lack of knowledge of 
. For p � 1, it is less e¢ cient than the MLE for this case, but still
p
n-

consistent and computationally considerably simpler. Notice that over-speci�cation of p results
in a further e¢ ciency loss, but under-speci�cation produces inconsistency. In moderate sample
sizes, a modest choice of p, even p = 1, might thus be a wise precaution. On the other hand, one
could also regard (14) as approximating a more general in�nite AR process with nonparametric
I(0) autocorrelation.

3. Asymptotic Theory with Known ; �

The present section establishes the
p
n-consistency and asymptotic normality of b�(; �), and

hence of b�(; �). We assume in addition to the description of (14) that the "t are stationary and
ergodic with �nite fourth moment, satisfying also

E ("tj Ft�1) = 0; E ("t"
0
tj Ft�1) = 
 (26)

almost surely, where Ft is the �-�eld of events generated by "s, s � t, and also assume that
conditional (on Ft�1) third and fourth moments and cross-moments of elements of "t equal the
corresponding unconditional moments. Thus, the "t essentially behave like an iid sequence up
to 4th moments. Noting from (1) that

xt() =
t�1P
j=0

aj(�)u2;t�j ; t > 0; = 0; t � 0; (27)

de�ne

xt() =
1P

j=max(t;0)

aj(�)u2;t�j ; ext() = xt() + xt(); (28)

7



so that because of (10), ext(), t = 0;�1; :::, is a covariance stationary sequence. Likewise, so is
eyt() = �ext() + u1t; (29)

as is u2t. Now de�ne

ewt = (ext(); u2t; eyt())0 ; eZt = �ext(); u2t; ew0t�1; :::; ew0t�p�0 ; (30)

� = E( eZt eZ 0t); 	 = E
�
"21:2;t eZt eZ 0t� : (31)

The proof of the following theorem is left to Appendix A.

Theorem 3.1 Under (1), (4), (5), (10) and the conditions in the sentence containing (26), if
 and � are known

n1=2
nb�(; �)� �o!d N

�
0; (Q�Q0)�1Q	Q0(Q�Q0)�1

�
; (32)

as n!1, and the covariance matrix on the right hand side is consistently estimated by

G(; �)�1K(; �)G(; �)�1; (33)

where

K(c; d) = Q
1

n

nP
t=p+1

b"21:2;t(c; d)Zt(c; d)Z 0t(c; d)Q0; (34)

in which b"1:2;t(c; d) = yt(c)� b�(c; d)0QZt(c; d): (35)

Remark 3.1 As anticipated, for p � 1, b�(; �) is ine¢ cient relative to the Gaussian MLE,
because it ignores the nonlinear restrictions on �.

Remark 3.2 Over-parameterization in the Bj results in further loss of e¢ ciency. Consider
the case where, in the estimation, the Bj are taken to be diagonal, with also u1t white noise
and u2t AR(p), to extend (24). Then if in fact u2t is also white noise the limiting variance of
n1=2fb�(; �)� �g is

!21:2=f!22
1P

j=p+1

a2j (�)g; (36)

where !22 = E("22t); !
2
1:2 = E("21:2;t); (36) is increasing in p. As a simpler alternative to (33),

(34), we can consistently estimate (36) by

b!21:2(; �) (10G(; �)1)�1 ; (37)

where b!21:2(; �) = 1

n

nP
t=p+1

b"21:2;t(; �): (38)
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Note that (36) and (37) also apply in case p = 0 is correctly taken in the estimation, whenb�(; �) is equivalent to the Gaussian MLE, and (36) becomes
!21:2=

�
2�4�!22
�

B (1=2� �; 1=2� �)� 1
�
: (39)

Note also that (36) and (39) do not depend on fourth cumulants of "t. If ut is not white noise,
the limiting variance of n1=2fb�(; �) � �g, namely 10(Q�Q0)�1Q	Q0(Q�Q0)�11 (see (32)), in
general depends on the fourth cumulant of "1:2;t, "1:2;t, "2t and "2t, though of course the latter
is zero under Gaussianity.

Remark 3.3 On the other hand, under-parameterization of the Bj produces inconsistency
of b�(; �), as when ut is actually AR(p + 1). Our AR approach is computationally convenient,
and is in a long tradition of macroeconometric estimation of linear simultaneous equations
systems, as well as relating to Johansen�s (1991) approach to CI(1; 0) cointegration. With an
ARMA approach, over-parameterization of both AR and MA orders would have more serious
consequences than those discussed in Remark 3.2.

Remark 3.4 So long as p � 1 and some Bj are non-diagonal, the endogeneity property (6)
holds even when 
 is diagonal, i.e. � = 0.

Remark 3.5 Though we assume (10) throughout, when in fact � > 1=2, �̂(; �) is as e¢ cient as
the Gaussian MLE. In particular, it can be shown to approximate the estimate of Robinson and
Hualde (2003), which for � >1/2 has a limiting mixed normal distribution when the estimates
of the parameters describing the short memory process ut converge suitably fast, but need not
themselves be asymptotically e¢ cient.

4. The Case of Unknown ; �
The main practical interest in fractional cointegration centres on the realistic situation in

which  and/or � are unknown. We shall focus on the case where both  and � are unknown,
as being the most di¢ cult both computationally and theoretically.
First, suppose that ut is correctly taken to be white noise, with unknown covariance matrix


 satisfying (6). Considering the Gaussian log-likelihood, both 
 and � can be concentrated
out to leave an objective function of  and �. The resulting estimates of  and � might then
be plugged into (25). Instead, we propose estimates of  and � that require two univariate
nonlinear optimizations, in place of one bivariate one. The computational advantage in this
would be intensi�ed in extensions to systems involving a greater number of integration orders.
Write the second likelihood equation of (1) as

xt(�) = "2t; t � 1: (40)

We estimate � by e�0 = argmin
d2D

S0(d); (41)

for a closed interval D and (cf. Beran, 1995),

S0(d) =
nP
t=1
x2t (d): (42)
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We then estimate  by e0 = argmin
c2C

T0(c); (43)

for a closed interval C (presumably a subset of [0;e�0]) and
T0(c) =

nP
t=1

n
yt(c)� b�(c;e�0)xt(c)� b�(c;e�0)xt(e�0)o2 ; (44)

where b�(c; d) is given by (25), taking p = 0; and b�(c; d) is the second element of b�(c; d) in this
case. The presence of c as argument in yt(c), and indeed of d in xt(d) of (42), presents no barrier
to consistent estimation because, for example, yt(c) involves c only in the coe¢ cients of lagged
values yt�1; yt�2; :::; not yt.
In case of VAR ut, we develop further the triangular structure of (1) by assuming

Bj is upper-triangular, j = 1; :::; p: (45)

This corresponds to a kind of causal structure, with yt formed from yt�1; yt�2; ::: and xt; xt�1; :::,
but xt being determined by

xt(�)� �0RXt(�) = "2t; (46)

with
Xt(d) = (xt�1(d); :::; xt�p(d))

0; (47)

and R an r � p matrix with R = Ip in case r = p; but for r < p; R is formed by dropping
speci�ed rows from Ip, in case B22j = 0 for some j, the r � 1 vector � collecting the B22j that
are not a priori zero. The prescription (46) includes the case of diagonal Bj , does not seem
an excessive requirement given the allowance for non-diagonal 
, and introduces an element of
parsimony.
De�ne b�(d) = H(d)�1h(d); (48)

where

H(d) = R
1

n

nP
t=p+1

Xt(d)X
0
t(d)R

0; h(d) = R
1

n

nP
t=p+1

Xt(d)xt(d): (49)

First estimate � by e�p = argmin
d2D

Sp(d); (50)

where

Sp(d) =
nP

t=p+1

n
xt(d)� b�(d)0RXt(d)o2 : (51)

Then estimate  by ep = argmin
c2C

Tp(c); (52)

where

Tp(c) =
nP

t=p+1

n
yt(c)� b�(c;e�p)0QZt(c;e�p)o2 : (53)
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As abbreviating notation, we denote throughout, for any p � 0, e� = e�p, e = ep. The proof
of the following theorem is omitted for the following reasons. When � < 1=2 (and D � (0; 1=2))
the proof of limit behaviour of e� does not greatly di¤er from proofs of Fox and Taqqu (1986),
Giraitis and Surgailis (1990); their xt is actually stationary, not just asymptotically, and their
objective functions di¤er from (42) and (51), though with p = 0 their estimates have equal
asymptotic e¢ ciency to our e�0. When the possibility that � > 1=2 is allowed in the choice of
D, there is a di¢ culty in proving consistency of e� if D includes d � � � 1=2, due to a lack of
uniform convergence of Sp(d) on D. Since � is unknown, there is no guarantee of avoiding this
problem. Velasco and Robinson (2000) established consistency, and thence asymptotic normality
with

p
n rate, of an alternative estimate of � allowing D to be arbitrarily large, but for �Type

I� processes and employing tapering (which tends to in�ate variance). Hualde and Robinson
(2004) have recently done the same for e� in our setting, with the unimportant di¤erence that
their linear process for xt has scalar innovation, and is not nested in a non-diagonal bivariate
system. In our setting, and whether or not D � (0; 1=2), the proof of Theorem 4.1 proceeds
by establishing consistency of e�, following Hualde and Robinson (2004), then consistency of e,
allowing for the extra complexity involved in working with residuals, and then employing the
Cramer-Wold device and relatively straightforward and tedious arguments.

Theorem 4.1 Under (1), (4), (5), (10), (45), the conditions in the sentence containing (26)
and  2 C, � 2 D,

n1=2

24 b�(e;e�)� �e � e� � �
35!d N (0; ABA0) ; (54)

as n ! 1, where A is a 3 � (q + 2) matrix and B is a (q + 2) � (q + 2) matrix, for which
consistent estimates bA and bB are presented in Appendix B.

Remark 4.1 Analytic formulae, in either the time or frequency domain, for A and B are
excessively complicated, and thus omitted. The estimate bA bB bA0 provided by Appendix B is
guaranteed non-negative de�nite.

Remark 4.2 As well as being useful in inference on �, the theorem could also be applied in
inference on  and �, for example to set a con�dence interval for � which could be useful in
judging the suitability of the weak cointegration speci�cation (10).

Remark 4.3 On the other hand, our estimation procedure, though not our asymptotic theory,
can also be used when � > 1=2, though alternative, possibly computationally more convenient,
methods, are available here. In fact, Robinson and Hualde (2003) showed that in this case the
asymptotic distributions of b� (; �) and b�(e;e�) are the same, due to e, e� still beingpn-consistent.
Remark 4.4 Robinson and Hualde (2003) suggest use of residuals from the LSE or NBLSE
of � in the estimation of  when � > 1=2. However, the LSE and NBLSE are less-than-

p
n-

consistent under (10), and so it appears that the resulting estimates of  will not achieve thep
n-consistency needed to provide a

p
n-consistent estimate of �.
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Remark 4.5 Even when ut is white noise, b�(e;e�), e� and e are ine¢ cient relative to the
Gaussian MLE; intuitively, this is due to the estimation of � from only the second equation
of (1) (i.e. (41)), whereas the �rst equation also contains relative information. However, the
estimates can be updated to e¢ ciency by a single Newton step.

Remark 4.6 The paper has taken existence of cointegration, and � < 1=2, for granted. In
practice these properties will have to be established, and our estimation of � will form the �nal
step. Some discussion of methodology has already appeared in Marinucci and Robinson (2001),
Robinson and Yajima (2002) and Robinson and Marinucci (2003). This has stressed a semi-
parametric approach, recognizing that a parametric model for ut (i.e. knowledge of p in our
VAR case) is unlikely to be known a priori. A natural starting point is to test the necessary
requirement of equality of integration orders of xt and yt. The literature on asymptotic inference
for multivariate fractional models is rather small, and some of it assumes lack of cointegration,
but the approaches of Robinson and Yajima (2002) and Hualde (2002) are available. Given a
positive outcome, a test for existence of cointegration, such as those of Marinucci and Robinson
(2001), Robinson and Yajima (2002), Mármol and Velasco (2004) can be conducted. Given a
positive outcome, one can reject � = 1=2 against the alternative � < 1=2 if a suitably stan-
dardized ��� �� 1=2 is signi�cantly negative relative to the standard normal distribution, �� and
� being semiparametric estimates of � and , employing residuals yt � ��xt based on an initial
consistent ��, such as the NBLSE. Then, using proxies yt(�)� ��xt(�) and xt(�) for u1t and u2t
respectively, the AR order of ut can be identi�ed, for example as described in the empirical
examples of Section 6.

5. Monte Carlo Evidence
With the main aim of investigating the �nite sample performance of our estimates of � and

associated rules of inference, a Monte Carlo experiment was carried out. There are two parts to
our investigation, the �rst comparing our proposed estimates (with known and unknown inte-
gration orders) with the simplest one, the LSE, and the second evaluating in a simple framework
the ine¢ ciency of b�(; �) mentioned in Remark 3.1 with respect to two asymptotically e¢ cient
estimates of �. In data generation from (1), (14), we took p = 1 throughout, with

B1 = diag fb1; b2g ; (55)

where each bi took values 0, 0.5, 0.9. The case b1 = b2 = 0 actually corresponds to p = 0 in
(14), where ut is a white noise vector. Likewise, b1 = 0, b2 6= 0 corresponds to (24). We have
employed in (55) abbreviating notation compared to (24), so b2 = B221. The "t in (14) were
generated as Gaussian with E("21t) = E("

2
2t) = 1 and E("1t"2t) = �, taking values -0.5, 0, 0.5,

0.75, via the g05ezf routine of the Fortran NAG library. We varied � in order to assess possible
�simultaneous equation bias�, xt and u1t being orthogonal only when � = 0. We employed four
(; �) combinations:

(; �) = (0; 0:4) , (0:2; 0:4) , (0:4; 0:8) , (0:7; 1) ; (56)

for all of which � < 1=2. Notice that variances of all estimates, both in �nite samples and
asymptotically, will inevitably vary across parameter values. For example, because the E("2it)
are �xed throughout, E("21:2;t) will decrease in j�j, while E(u2it) will increase in bi. Finite sample
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biases of our estimates will doubtless also be a¤ected by such variation, though in a more subtle
manner. We took � = 1.
For each combination of parameter values, 1000 series of fyt; xtg of lengths n = 64; 128; 256

were generated. Fractional series were generated as in (27), using a0 (�) = 1, aj+1 (�) =
((j + �)=(j + 1))aj (�), j � 1, for � > 0. For each series, in the �rst part of the experiment we
computed estimates of the following three types:
(i) The LSE,

�0 =
nP
t=1
xtyt=

nP
t=1
x2t : (57)

(ii) The Infeasible estimate �I = b�(; �) based on correct speci�cation and mis-speci�cation
and/or over-speci�cation.
(iii) The Feasible estimate �F = b�(e;e�) based on correct speci�cation and mis-speci�cation
and/or over-speci�cation.
By �correct speci�cation�we mean that all prior zero restrictions on B1 in (55), including the

non-diagonal ones and any diagonal ones, are incorporated in the estimation, but not equality
restrictions. By �mis-speci�cation�we mean that for b1 6= 0 and b2 6= 0 we took Zt (c; d) =
(xt (c) ; xt (d))

0. By �over-speci�cation� we mean that for b1 = b2 = 0 we took Zt (c; d) =�
xt (c) ; xt (d) ; w

0
t�1 (c; d)

�0
. Knowledge of � = 0 was never used. Table 1 records convergence

rates of the LSE and, under the heading �optimal�, of �I , �F .

(Table 1 about here)

We now describe how e� and e in �F were computed. In estimating �, we �xed D = [��1; �+1]
in (50). A D of length 2 may often be adequate. In estimating , we �xed C =[e��2:05;e��0:05]
in (52). The upper bound seems reasonable since a very small � is unlikely to be detectable,
indeed there is then near loss of identi�ability and very poor behaviour of estimates of �.
The estimates �I , �F (but not �0) are invariant to (; �) combinations with the same �,

provided the fractionally integrated processes are generated from the same ut sequence. Thus
we do not report results for (; �) = (0:4; 0:8) in tables where only �I and �F are involved.
Similarly, e� � � is invariant to �, so the reported results apply to any �, whereas e �  is
invariant to (; �) combinations with the same �, so we again omit results for (; �) = (0:4; 0:8) :

(Tables 2-7 about here)

Tables 2-7 report Monte Carlo bias (de�ned as the estimate minus the true value) of �0, �I
and �F , each table referring to a particular (b1; b2) combination with either correct speci�cation,
mis-speci�cation or over-speci�cation. Only some of the (b1; b2) combinations covered in the
experiment are included, in order to conserve on space. Generally, �I performs best, followed
by �F , with �0 worst.
We discuss �rst the cases of correct speci�cation (Tables 2-5). The relative performance of

�0, �I and �F mentioned above is maintained in the full white noise case b1 = b2 = 0 (Table 2),
and in the AR case (Tables 3-5) when � 6= 0, but not when � = 0 with b1 = b2 6= 0, where �0
is best. For b1 = b2 = 0:9, � = 0:4 and small n, �0 usually beats �F even when � 6= 0 (Table
3). For b1 = 0, b2 6= 0 (Table 4), we are close to the white noise outcome, but when b1 6= 0,
b2 = 0 the bias of �0 decays very slowly, and is unacceptably large when b1 = 0:9 (Table 5).
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Focussing now more on variation across (; �), the bias of �I decreases in �, as is the case for
�F when b1 = b2 = 0. With AR structure, the worst performance of �F is generally found for
(; �) = (0:2; 0:4) or (0:7; 1). As for �0, bias varies with collective memory  + � when � = 0,
but when � 6= 0, (0; 0:4) and (0:2; 0:4) are the worst cases, unsurprisingly in view of the LSE�s
inconsistency here. Generally, �F works best under � = 0:4. With respect to variation in �,
overall, the bias shares the sign of � in case of �0, �I , but is opposite in case of �F , except for
the case b1 = 0:9, b2 = 0. �I is relatively insensitive to �, though for b1 = 0:9, b2 = 0 (Table
5), bias increases in j�j, as is the case for �0, but no clear pattern can be found in the results
for �F , though there is evidence of increase in bias with j�j. Looking at variation across (b1; b2),
AR structure tends to reduce bias in �0 but increase it, and possibly change its sign, in �I . For
�F , the worst performances occur when b1 6= 0, but even here bias decays rapidly as n increases,
as it does also for �I .
Mis-speci�cation (Table 6) has surprisingly little e¤ect on �I , but seriously damages �F ,

especially when � is small, (0:2; 0:4) being clearly the worst case, though again bias decreases
with n. As anticipated, over-speci�cation (Table 7) makes little di¤erence to �I , which does
much better than �0, but �F is damaged (especially for � = 0:4) by poor estimates of the
integration orders. However, small reductions on the optimizing intervals C, D, cause very
signi�cant improvements in �F (and in fact in the estimates of , �):

(Tables 8-11 about here)

Tables 8-11 contain Monte Carlo standard deviations (SD) for only a subset of the combina-
tions for which bias results were displayed. As noted before, variability is considerably a¤ected
by parameter values, and the relative performance of �0, �I and �F can be illustrated by fo-
cussing on only few cases. In fact, �0 was superior to �I for most combinations, including those
not displayed, with �F a poor third. With correct speci�cation, this was most notably evident
for small n and b1 = b2 6= 0 (Table 9), in part due to the proliferation in regressors, �ve in �I and
�F versus one in �0, with variability in e� and e considerably in�ating SD of �F relative to �I .
Precision also increases with increasing n, and when one or both of the bi is zero (see Tables 8
and 10), the performance of �I and �F improves relative to that of �0. On the other hand, with
over-speci�cation (Table 11), �I and �F unsurprisingly deteriorate further, and generally larger
sample sizes will be required in order for their faster convergence rate to consistently deliver
smaller SD than �0. Nevertheless, it must be borne in mind that the paper�s motivation is not
to minimize variance but rather to achieve

p
n-consistency and asymptotic normality in a fairly

general context, which the LSE �0 does not provide.
We now examine the usefulness of the limit distributional properties of �I and �F by exam-

ining the size of Wald tests. We computed

WI =
(�I � �)2 n

[G(; �)�1K(; �)G(; �)�1](1)
, WF =

(�F � �)2 nh bA bB bA0i
(1)

; (58)

where [�](i) denotes ith diagonal element. Empirical sizes, with respect to nominal sizes � = 0:05
and 0:1, again across 1000 replications, are reported in Tables 12-17, for each of the (b1; b2) for
which biases were given.

(Tables 12-17 about here)
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With correct speci�cation, even for b1 = b2 = 0 (Table 12), sizes of the infeasible statisticWI

are somewhat too large, and autocorrelation in ut exacerbates this, with the case b1 6= 0, b2 = 0
again worse than b1 = 0, b2 6= 0, but not necessarily worse than b1 = b2 6= 0 (Tables 13-15).
Results for � = 0:1 are clearly better than for � = 0:05. Overall, there is improvement as n
increases, and even for small n the performance of WI seems quite satisfactory. Predictably,
mis-speci�cation (Table 16) plays havoc, producing sizes that are unacceptably high, especially
for � = 0:05. With over-speci�cation, performance is again good, though we would not expect
high power.
For the feasible statistic WF , with correct speci�cation and no autocorrelation in ut (Table

12), sizes are worse than for WI , with less evidence of settling down as n increases and more
variation across parameter values, and they are sometimes actually less than nominal values.
With autocorrelation (Tables 13-15), sizes are emphatically too small and mostly further from
the nominal values than the corresponding WI are in the opposite direction, though this is by
no means always the case, and sometimes the results are extraordinarily good. As expected, the
e¤ect of mis-speci�cation is more dramatic than for WI . With over-speci�cation (Table 17),
sizes are mainly less than nominal values, but in general approximate them as n increases. Our
overall experience with WF is quite encouraging.
While we have stressed estimation of �, estimates of � and  would also be of interest in an

empirical analysis of fractional cointegration, and so we also give some space to the performance
of e� and e, and to Wald tests for � and  based on Theorem 4.1.

(Tables 18 and 19 about here)

Tables 18 and 19 report Monte Carlo bias and SD of e� for the same values of b2 (0, 0.5, 0.9)
and n (64, 128, 256) as before, again based on 1000 replications. However, we �x � = 0:5 here,
using the same estimates of e� computed in this case for the feasible estimates �F and Wald
statistics WF discussed previously. We report results for minimization of both S0 (d) and S1 (d)
(see (42), (51)), so that S0 (d) with b2 = 0 and S1 (d) with b2 6= 0 both correspond to correct
speci�cation, S1 (d) with b2 = 0 to over-speci�cation, and S0 (d) with b2 6= 0 to mis-speci�cation.
Biases from S0 (d) with b2 = 0 look satisfactory even for n = 64, and decrease in n. For

S1 (d) with b2 = 0:5, 0:9, there is some deterioration, but performance is still acceptable. For
S1 (d) with b2 = 0 results are worse, but small reductions in D have a large positive impact one�. In this case the negative bias of e� is somehow expected, as the estimated (non-existent) AR
component in u2t accounts for some of the autocorrelation structure. Unsurprisingly, there is
severe bias, increasing with b2, when S0 (d) is used with b2 6= 0. SD in the correctly speci�ed
and over-speci�ed cases is, as expected, worse for AR ut.

(Tables 20 and 21 about here)

Tables 20 and 21 report Monte Carlo sizes of Wald statistics for �;

W� =
(e� � �)2nh bA bB bA0i

(3)

; (59)

based on Theorem 4.1, with respect to nominal sizes � = 0:05, 0:1 respectively. As expected,
under mis-speci�cation they are far too large. Otherwise, while still too large (especially for

15



over-speci�cation) in some cases they are not bad, and decrease in n, ones for � = 0:1 being
best.

(Tables 22-25 about here)

Tables 22-25 give corresponding results for e, with b1 = b2 = b taking values 0, 0.5, 0.9. Our
estimation procedure being sequential, we consider two categories, S0 (d) followed by T0 (c) (44),
and S1 (d) followed by T1 (c) (53), so that in the former case there is correct speci�cation for
b = 0 and mis-speci�cation for b 6= 0, and in the latter, over-speci�cation for b = 0 and correct
speci�cation for b 6= 0. The bias and SD results of Tables 22 and 23 exhibit some variation
across (; �), and surprisingly biases are much less for b = 0:9 than for b = 0:5, possibly due to
cancellation. For the Wald statistic

W =
(e � )2nh bA bB bA0i

(2)

; (60)

more size variation is also found, in Tables 24 and 25, than forW�, with results for b = 0:9 being
substantially better than for other cases under correct speci�cation.

(Table 26 about here)

For the second part of the study, we focus on a situation where it is straightforward to derive
asymptotically e¢ cient estimates of �, and we compare their Monte Carlo variance with that of
�I . We consider only the case where in (55), b1 = 0:5; 0:9, b2 = 0. The �rst e¢ cient estimate
we calculate is the Gaussian MLE with known b1, which, in view of (18) is identical to the LSE
of � in the equation

yt ()� b1yt�1 () = � (xt ()� b1xt�1 ()) + �xt (�) + "1:2t: (61)

We also consider a two-stage approach where in the �rst step we estimate b1 by

bb1 = Pn
t=2 bu1tbu1;t�1Pn
t=2 bu21;t�1 , bu1t = yt ()� �Ixt () ; (62)

and in the second compute the estimate of � as in the infeasible situation but replacing b1 bybb1. We report in Table 26 the �e¢ ciency ratios�r1 and r2, which are the Monte Carlo variance
of �I divided by either that of the Gaussian MLE with known b1 (r1) or that of the feasible
estimate (r2). Note that r1 and r2 are invariant to the value of E("22t), provided the estimates
are computed from the same ut sequence. In general, results are little a¤ected by changes in
�, and the loss of e¢ ciency of �I is larger for smaller � and larger b1. As expected, �I is more
ine¢ cient relative to the infeasible MLE, and this is accentuated the larger and smaller b1 and
� are respectively. In the comparison with the infeasible MLE, the e¢ ciency loss is reduced as
n increases, the reverse happening for the feasible estimate. On the limited evidence provided
by our simple experiment, it seems worth improving e¢ ciency by incorporating restrictions on
�. Undoubtedly more iterations could further improve matters.

6. Empirical Examples
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Using a methodology involving the LSE and NBLSE of �, and semiparametric estimates
of �, Robinson and Marinucci (2003) found evidence that � < 1=2 in some of the bivariate
macroeconomic series originally examined by Engle and Granger (1987), Campbell and Shiller
(1987), who investigated only the possibility of CI (1; 0) cointegration. This experience motivates
application of our present approach to the same data.
The main departure from the methodology of the previous section was an attempt at greater

realism by determining p in (14) from the data, rather than assuming its value a priori. For
this purpose, we need proxies for the uit, which can only be obtained by operating on the
observed yt, xt, series with preliminary estimates of �,  and �. To estimate � here we used
the LSE �0, given by (57) (and computed by Robinson and Marinucci, 2003). To estimate 
and �, we used semiparametric estimates (already computed by Marinucci and Robinson, 2001,
Robinson and Marinucci, 2003) in order to provide robustness against a range of short-memory
speci�cations for ut. Speci�cally, the estimates of  and � computed by these authors were of log
periodogram (LP) and semiparametric Gaussian (SG) type (of the precise form considered by
Robinson, 1995a,b), using various bandwidths and based either on raw data/residuals or on �rst
di¤erenced ones followed by adding back 1. For asymptotic theory under stationarity we appeal
to Robinson (1995a,b), and under nonstationarity, to Velasco (1999a,b). Using preliminary
estimates of , �, �, sample correlograms and partial correlograms were computed (to lag length
36) in order to identify, in the spirit of Box and Jenkins (1971), the AR orders of the uit. For
each data set, this was done for both the smallest and largest of the various univariate estimates
of memory parameters based on the xt/residuals provided by Marinucci and Robinson (2001),
Robinson and Marinucci (2003). When this led to contradictory models for the uit the analysis
was continued with both.
We also took this opportunity to examine the matter of truncation, which in one form or

another always arises with fractional models, and perhaps most acutely when nonstationary data
are involved. When estimated innovations from a stationary fractional model are computed, the
(in�nite) AR representation has to be truncated because the data begin at time �1�, not at
time ��1�. In our model (1) for nonstationary data, the truncation is actually inherent in the
model, so strictly speaking there is no �error�associated with it. However, the model re�ects
the time when the data begin, and if we were to drop the �rst observation, say, and start at
the next one, the degree of �ltering applied to all subsequent observations would change, and
this could have a marked e¤ect, especially with nonstationary data, even though �ltering is here
applied after de-meaning. To check for stability with respect to this phenomenon, we thus report
computations based on the last n0 = n� j observations, for j = 0; 1; :::; 10.
We look �rst at Engle and Granger�s (1987) quarterly consumption and income data, 1947Q1-

1981Q2 (n = 138). They found evidence of CI (1; 0) cointegration, but did not investigate
fractional possibilities. Marinucci and Robinson�s (2001) analysis tends to support the notion
of � = 1, but not of  = 0, with positive estimates of  that sometimes fall in the nonstationary
region, thereby hinting that � < 1=2 is possible.
Taking y=consumption, x=income, the LSE of �, from Robinson and Marinucci (2003), is

0:229. The two preliminary estimates of � taken from Marinucci and Robinson (2001) were 0.89
(LP applied to �rst di¤erences of x and adding back 1, with bandwidth 22) and 1.08 (SG applied
to �rst di¤erences of x and adding back 1, with bandwidth 40). In each case, the corresponding
correlograms and partial correlograms suggested modelling u2t as white noise. The preliminary
estimates of  were 0.19 (LP applied to raw residuals with bandwidth 22) and 0.87 (SG applied
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to �rst di¤erenced residuals and adding back 1, with bandwidth 40). This large gap results in
identi�cation of an AR(1) u1t in the �rst case, and white noise u1t in the second. In view of
these investigations, we carried out two distinct cointegration analyses, one with p = 0 in (14),
the other with p = 1 in (14) with B1 = diag (b1; 0).

(Table 27 about here)

In case u1t and u2t are both white noise, Table 27 reports values of the following statistics
with n replaced by n0 = n � j, j = 0; :::; 10: b� = b�(e;e�), e�, e, and their estimated standard
errors SE(b�), SE(e�), SE(e) from Theorem 4.1, b� = b�(e;e�), which is the estimated coe¢ cient of
xt(e�) in (18) for p = 0 with e, e�, replacing , �, and the correlation Corr ("1t; "2t) is estimated
by

r = b�(e;e�)(b�22=b�11) 12 ; (63)

where b�11 = n�1X0

t

�
yt(e)� b�(e;e�)xt(e)�2 ; b�22 = n�1X0

t
x2t (
e�); (64)

with
P0

t meaning summation over the last n
0 observations.

As n0 falls, b� and e� tend to increase, and e to decrease, but there is high stability for
n0 � 133, and generally the changes are insigni�cant relative to standard errors, b� for n0 = 128
being one standard error larger than b� for n0 = 138 (and also somewhat larger than the LSE).
The estimates of � and  are certainly consistent with � < 1=2. More especially, exploiting the
standard errors provided by our approach, the hypothesis that � = 1 seems rejectable against
� > 1, but (though we do not report standard errors of e� = e� � e, which could be computed
using Theorem 4.1) there is no evidence against � < 1=2. Substantial negative contemporaneous
correlation between u1t and u2t is suggested. Dropping the �rst observation does not a¤ect e�,
since x1 (d) = x1 for any d.

(Table 28 about here)

The analysis with AR(1) u1t in Table 28 presents a very di¤erent picture. Here, we also
report bb1 and c�b1, which are estimated coe¢ cients of yt�1(e) and �xt�1(e) in the regression
(cf. (18)) used to compute b� and b�, and b�11 in r is now the sample average of the squared
residuals from the regression of yt(e) � b�(e;e�)xt(e) on yt�1(e) � b�(e;e�)xt�1(e). In view of
the AR(1) component, we e¤ectively lose one observation, so n0 goes from 127 to 137, the
e¤ect of then dropping the �rst observation being very striking, but the estimates subsequently
exhibiting little variation across n0. As u2t is still supposed to be white noise, the estimates
of � are identical to those in Table 27, but those of  are all now less than zero, although not
signi�cantly, Engle and Granger�s (1987) CI (1; 0) conclusion now being supported. The AR
component in u1t clearly accounts for the bulk of the autocorrelation in cointegrating errors,
resulting in the small estimates of , which are based on AR-transformed data. The MLE, which
estimates  simultaneously with b1 and the other parameters, would allow AR and fractional
features to compete more favourably, though, as discussed in Section 1, it would require much
heavier computation. Notice that c�b1 looks quite consistent with b� and bb1, possibly providing
some support for the present speci�cation. Note also that the various b� are larger than before,
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but that, if indeed � > 1=2, their standard errors have to be interpreted with caution, as b� is
then no longer asymptotically normal.
Engle and Granger (1987) found no evidence of CI (1; 0) cointegration between logM1 (y)

and logGNP (x), on the basis of 90 quarterly observations, 1959Q1-1981Q2. Marinucci and
Robinson�s (2001) fractional analysis admitted the possibility of cointegration, with � < 1=2. In
our preliminary analysis of autocorrelation in ut, we took from their estimates of � the values
1.22 (SG applied to �rst di¤erences of x and adding back 1, using bandwidth 30) and 1.36
(LP applied to �rst di¤erences of x and adding back 1, using bandwidth 22), and from their
estimates of  the values 0.76, 1.2, both LP estimates but applied respectively to raw residuals
using bandwidth 22, and �rst di¤erences of residuals and adding back 1, using bandwidth 16.
Employing also the LSE of �, 0.643, we found no evidence of autocorrelation in ut, so proceeded
to a cointegration analysis on the basis of p = 0 in (14). The results are reported in Table 29.
We found large variation across the largest n0, but a good degree of stability is then achieved,
with substantially larger values of e� and e (and of their standard errors). Clearly, e� signi�cantly
exceeds 1, while e does not, and the resulting e� = e� � e are extremely close to the threshold
value of 1/2. There is considerable negative correlation between u1t and u2t, and for the smaller
n0, b� is close to the LSE.

(Tables 29 and 30 about here)

Finally, we looked at the n = 116 annual observations, 1871-1986, on stock prices (y) and
dividends (x), analysed by Campbell and Shiller (1987). Their �ndings with respect to CI (1; 0)
cointegration were inconclusive, but Marinucci and Robinson�s (2001) and Robinson and Mar-
inucci�s (2003) analyses again suggested the possibility of cointegration with � < 1=2. The
preliminary estimates of � taken from Marinucci and Robinson (2001) were 0.86 and 0.95, being
SG based on �rst di¤erences of x and adding back 1, with bandwidths respectively 30 and 40.
The preliminary estimates of  were 0.57, 0.77, being LP on �rst di¤erences of residuals and
adding back one, with bandwidth 30, and SG on raw residuals with bandwidth 22, respectively.
We also used the LSE of �, 31. In this case, both  estimates suggested white noise u1t, while
the � estimates variously suggested white noise and AR(1) u2t, but our subsequent fractional
cointegration analysis produced e and e� that were too close to admit the likelihood of any coin-
tegration. Thus, we report, in Table 30, only the results with both u1t and u2t white noise.
There is little variation with n0, and strong support for the unit root hypothesis on �, and,
since e is signi�cantly larger than 1/2 at the 5% level, cointegration with � < 1=2 is certainly a
possibility. We �nd that b� is somewhat larger than the LSE value, though not signi�cantly so.
Appendix A: Proof of Theorem 3.1
We prove �rst that � is nonsingular, which ensures existence of the inverses in (32). De�ne

�+ = E
� eZ+t eZ+0t � ; eZ+t = � ew0t; ew0t�1; :::; ew0t�p�0 : (A.1)

It clearly su¢ ces to show that �+ is positive de�nite. De�ning

�
+
= E

�
ZtZ

0
t

�
; Zt =

�
w0t; w

0
t�1; :::; w

0
t�p
�0
; (A.2)
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for wt = (ext(); u2t; u1t)0, from (29) it su¢ ces to show that �+ is positive de�nite, and similarly,
de�ning

�
++

= E
�
RZtZ

0
tR

0
�
; (A.3)

where R is a full rank 3 (p+ 1)� 3 (p+ 1) matrix whose columns are orthonormal vectors such
that

RZt = [x()
0; u02; u

0
1]
0
; (A.4)

where x() = (ext(); :::; ext�p())0, u2 = (u2t; :::; u2;t�p)
0, u1 = (u1t; :::; u1;t�p)

0, it su¢ ces to

show that �
++

is positive de�nite. De�ne the vectors

e(�) =
�
1; ei�; :::; eip�

�0
; d(�) = (1� ei�)��e(�); (A.5)

and the 3(p+ 1)� 2 matrix

E(�) =

�
00 00 e(�)0

d(�)0 e(�)0 00

�0
; (A.6)

where 00 is a 1 � (p + 1) vector of zeros. De�ne by f(�) the spectral density matrix of ut, and
note from positive de�niteness of 
 and �niteness of the Bj that the smallest eigenvalue of the
Hermitian matrix f(�) is bounded from below by a positive constant c, uniformly in �. Then
we can write

�
++

=

Z �

��
E(�)f(�)E(��)0d�; (A.7)

which for some c > 0 exceeds

c

Z �

��
E(�)E(��)0d� = c

24 C D 0
D0 Ip+1 0
0 0 Ip+1

35 (A.8)

by a non-negative de�nite matrix, where 0, C and D are (p+1)�(p+1) matrices, having (i; j)th
elements 0,

P1
`=0 a`a`+ji�jj and aj�i1(j � i) respectively, with aj = aj(�). It thus su¢ ces to

show that C �DD0 is positive de�nite. But for a (p+ 1)� 1 vector � = (�i),

� 0(C �DD0)� =
1P̀
=1

�
a`�p+1 + :::+ a`+p�1

�2
; (A.9)

which is positive unless � = 0 because a`=a`�1 = (`+ � � 1)=` is strictly increasing in ` � 1 for
� < 1.
We now have to show that

1

n

P 0Zt(; �)Z
0
t(; �)!p �; (A.10)

n�1=2
P 0Zt(; �)"1:2;t !d N(0;	); (A.11)

writing
P 0 =

Pn
t=p+1. To prove (A.11), note �rst that it su¢ ces to show

n�1=2
P 0 eZt"1:2;t !d N(0;	); (A.12)
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because

E
n�1=2P 0

n
Zt(; �)� eZto "1:2;t2 � K

n

P 0E
Zt(; �)� eZt2

� K

n

P 0
pP
j=1

Ex2t�j()

� K

n

P 0
pP
j=1

Z �

��

����� 1P
s=t�j

ase
�is�

�����
2

kf(�)k d�

� K

n

nP
t=1

1P
s=t
a2s ! 0; (A.13)

as n!1; by the Toeplitz lemma, the last inequality following because f(�) is bounded due to
the assumption on the B`. Write eZt = Zat + Zbt, where the �rst two elements of Zat, and the
last 3p elements of Zbt, equal corresponding ones of eZt. Thus Zbt is Ft�1-measurable and

E
�
"1:2;t eZt) jFt�1� = E ("1:2;tZat) + ZbtE ("1:2;t jFt�1 ) = 0; a:s: (A.14)

Further,

E
�
"21:2;t eZt eZ 0

t jFt�1
�

= E
�
"21:2;tZatZ

0
at

�
+ E

�
"21:2;tZat

�
Z 0bt

+ZbtE
�
"21:2;tZ

0
at

�
+ E("21:2;t)ZbtZ

0
bt; a:s:; (A.15)

and so
1

n

P 0
h
E
n
"21:2;t eZt eZ 0t jFt�1o� E n"21:2;t eZt eZ 0toi!p 0; (A.16)

because Zbt and ZbtZ 0bt � E(ZbtZ 0bt) are stationary and ergodic with zero means. Since (A.15)
has expectation 	, (A.12) then follows from the Cramer-Wold device and Theorem 1 of Brown
(1971), noting that the Lindeberg condition in the latter reference is trivially satis�ed because
"1:2;t eZt is stationary with �nite variance. Thus (A.11) is proved. The proof of (A.10) follows
from (A.13) and elementary inequalities. This concludes the proof of (32). The proof of the
�nal statement of the theorem is omitted as it is standard given (32) and its proof.

Appendix B: De�nition of Â and B̂
For brevity we write ~G = G(~; ~�), ~� = �̂(~; ~�), ~H = H(~�), ~� = �̂(~�).
We have

bA =
24 â01 â2 â3
00 â4 â5
00 0 â6

35 ; (B.1)

where

â01 = 10 ~G�1; â2 = �10~�c~s�1cc ; (B.2)

â3 = 10~�c~s
�1
cc ~scd~s

�1
dd � 1

0~�d~s
�1
dd ; â4 = �~s�1cc ; (B.3)

â5 = ~s�1cc ~scd~s
�1
dd ; â6 = �~s�1dd ; (B.4)
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in which

~�c = ~G�1
�
~gc � ~Gc~�

�
; ~�d = ~G�1

�
~gd � ~Gd~�

�
; (B.5)

~gc = Q
1

n

P 0
n
Ztc(~)yt(~) + Zt(~; ~�)ytc(~)

o
; (B.6)

~Gc = Q
1

n

P 0
n
Ztc(~)Z

0
t(~;

~�) + Zt(~; ~�)Z
0
tc(~)

o
Q0; (B.7)

~gd = Q
1

n

P 0Ztd(~�)yt(~); (B.8)

~Gd = Q
1

n

P 0
n
Ztd(~�)Z

0
t(~;

~�) + Zt(~; ~�)Z
0
td(
~�)
o
Q0; (B.9)

with

ytc(~) = log(1� L)yt(~); (B.10)

Ztc(~) = log(1� L) fxt(~); 0; xt�1(~); 0; yt�1(~); :::; xt�p(~); 0; yt�p(~)g0 ;
(B.11)

Ztd(e�) = log(1� L)
n
0; xt(e�); 0; xt�1(e�); 0; :::; 0; xt�p(e�); 0o0 ; (B.12)

and where escc = 1

n

P 0~v2tc; escd = 1

n

P 0~vtc~vtd; esdd = 1

n

P 0 ~w2td; (B.13)

with

~vtc = ytc(~)� ~�
0
cQZt(~;

~�)� ~�0QZtc(~); (B.14)

~vtd = �~�0dQZt(~; ~�)� ~�
0
QZtd(~�); (B.15)

~wtd = xtd(~�)� ~�
0
dRXt(

~�)� ~�0RXtd(~�); (B.16)

xtd(~�) = log(1� L)xt(~�); (B.17)

Xtd(~�) = log(1� L)Xt( ~d); (B.18)
~�d = ~H�1(~hd � ~Hd~�); (B.19)

~hd = R
1

n

P 0
n
Xtd(~�)xt(~�) +Xt(~�)xtd(~�)

o
; (B.20)

~Hd = R
1

n

P 0
n
Xtd(~�)X

0
t(
~�) +Xt(~�)X

0
td(
~�)
o
R0: (B.21)

We also have

bB = 1

n

P 0

24 "̂1:2;t(~; ~�)QZt(~; ~�)

"̂1:2;t(~; ~�)~vtc
"̂2t(~�) ~wtd

3524 "̂1:2;t(~; ~�)QZt(~; ~�)

"̂1:2;t(~; ~�)~vtc
"̂2t(~�) ~wtd

350 ; (B.22)

where
"̂2t(d) = xt(d)� ~�

0
RXt(d): (B.23)
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TABLE 1
CONVERGENCE RATES

(; �) (0; 0:4) (0:2; 0:4) (0:4; 0:8) (0:7; 1)
Optimal n:5 n:5 n:5 n:5

LSE, � 6= 0 inconsistent inconsistent n:4 n:3

LSE, � = 0 n:5 n:5 n:4 n:3

TABLE 2
MONTE CARLO BIAS, b1 = b2 = 0, correct speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 .000 .061 -.338 -.002 .017 -.320 -.003 .008 -.307
.2 .4 .000 .124 -.401 -.005 .077 -.387 -.010 .048 -.377

-.5 .4 .8 .000 .061 -.193 -.002 .017 -.151 -.003 .008 -.120
.7 1 .000 .101 -.220 -.003 .040 -.176 -.006 .020 -.142
0 .4 -.006 -.006 -.007 -.001 .000 -.003 -.001 -.001 .000
.2 .4 -.014 -.038 -.011 .000 -.001 -.005 -.003 -.007 .000

0 .4 .8 -.006 -.006 -.015 -.001 .000 -.009 -.001 -.001 -.002
.7 1 -.009 -.020 -.031 .000 .000 -.023 -.002 -.003 -.005
0 .4 .001 -.089 .337 .005 -.016 .320 .003 -.009 .308
.2 .4 -.001 -.179 .394 .009 -.081 .384 .006 -.056 .376

.5 .4 .8 .001 -.089 .192 .005 -.016 .155 .003 -.009 .120
.7 1 .000 -.142 .214 .006 -.043 .182 .004 -.025 .143
0 .4 .002 -.123 .511 .003 -.029 .481 .002 -.010 .460
.2 .4 .003 -.212 .599 .007 -.125 .578 .006 -.077 .562

.75 .4 .8 .002 -.123 .287 .003 -.029 .226 .002 -.010 .176
.7 1 .003 -.194 .315 .005 -.073 .258 .004 -.028 .206
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TABLE 3
MONTE CARLO BIAS, b1 = b2 = 0:9, correct speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 -.015 .165 -.161 -.003 .102 -.136 -.005 .078 -.120
.2 .4 -.041 .121 -.293 -.008 .096 -.266 -.006 .120 -.248

-.5 .4 .8 -.015 .165 -.147 -.003 .102 -.113 -.005 .078 -.088
.7 1 -.024 .190 -.207 -.005 .080 -.166 -.006 .134 -.131
0 .4 -.026 -.086 -.014 -.016 -.039 -.005 -.008 -.005 .000
.2 .4 -.057 -.155 -.027 -.033 -.098 -.012 -.009 -.010 -.001

0 .4 .8 -.026 -.086 -.025 -.016 -.039 -.014 -.008 -.005 -.003
.7 1 -.036 .036 -.043 -.022 -.093 -.030 -.008 .002 -.006
0 .4 .016 -.208 .158 .004 -.145 .137 .005 -.073 .120
.2 .4 .028 -.118 .281 .010 -.168 .267 .008 -.122 .247

.5 .4 .8 .016 -.208 .140 .004 -.145 .116 .005 -.073 .090
.7 1 .019 -.269 .195 .006 -.144 .170 .006 -.081 .134
0 .4 .027 -.278 .237 .010 -.149 .202 .007 -.068 .176
.2 .4 .047 -.092 .421 .020 -.143 .390 .010 -.158 .364

.75 .4 .8 .027 -.278 .206 .010 -.149 .165 .007 -.068 .129
.7 1 .034 -.278 .283 .013 -.215 .236 .008 -.139 .192

TABLE 4
MONTE CARLO BIAS, b1 = 0, b2 = 0:5, correct speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 -.001 .036 -.142 .000 .044 -.128 .000 .032 -.119
.2 .4 -.002 .058 -.203 .001 .065 -.189 -.001 .058 -.181

-.5 .4 .8 -.001 .036 -.083 .000 .044 -.065 .000 .032 -.052
.7 1 -.001 .057 -.106 .000 .065 -.085 .000 .050 -.069
0 .4 -.001 -.003 -.004 .001 .001 -.001 .001 .000 .000
.2 .4 .001 -.018 -.008 .004 -.007 -.003 .003 .006 .000

0 .4 .8 -.001 -.003 -.008 .001 .001 -.005 .001 .000 -.001
.7 1 .000 -.012 -.017 .002 .000 -.012 .002 .004 -.002
0 .4 .006 -.034 .142 .004 -.030 .129 .001 -.029 .119
.2 .4 .016 -.037 .201 .010 -.045 .189 .004 -.044 .180

.5 .4 .8 .006 -.034 .082 .004 -.030 .067 .001 -.029 .052
.7 1 .009 -.048 .102 .006 -.053 .088 .002 -.041 .069
0 .4 .004 -.061 .216 .002 -.059 .192 .000 -.047 .178
.2 .4 .011 -.089 .305 .006 -.094 .283 .001 -.085 .269

.75 .4 .8 .004 -.061 .123 .002 -.059 .097 .000 -.047 .076
.7 1 .006 -.093 .151 .003 -.091 .124 .001 -.073 .100
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TABLE 5
MONTE CARLO BIAS, b1 = 0:9, b2 = 0, correct speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 -.118 -.189 -.758 -.040 -.099 -.755 -.014 -.046 -.746
.2 .4 -.264 -.323 -1.05 -.110 -.155 -1.11 -.054 -.084 -1.14

-.5 .4 .8 -.118 -.189 -1.05 -.040 -.099 -.965 -.014 -.046 -.852
.7 1 -.172 -.329 -1.51 -.066 -.142 -1.41 -.029 -.064 -1.26
0 .4 .006 .006 -.039 .005 .042 -.015 .005 .011 -.002
.2 .4 -.002 -.063 -.065 .009 .019 -.030 .005 .000 -.005

0 .4 .8 .006 .006 -.119 .005 .042 -.082 .005 .011 -.013
.7 1 .003 -.073 -.251 .006 .029 -.210 .005 .008 -.038
0 .4 .129 .111 .714 .052 .124 .740 .018 .038 .741
.2 .4 .258 .189 .970 .126 .167 1.07 .056 .067 1.12

.5 .4 .8 .129 .111 .994 .052 .124 .981 .018 .038 .854
.7 1 .177 .173 1.42 .079 .147 1.46 .032 .052 1.27
0 .4 .167 .190 1.09 .065 .128 1.11 .022 .039 1.11
.2 .4 .363 .300 1.48 .172 .237 1.61 .079 .074 1.68

.75 .4 .8 .167 .190 1.48 .065 .128 1.42 .022 .039 1.25
.7 1 .242 .291 2.08 .106 .197 2.05 .043 .058 1.83

TABLE 6
MONTE CARLO BIAS, b1 = b2 = 0:5, mis-speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 .000 1.13 -.242 -.001 .981 -.221 -.003 .851 -.208
.2 .4 .000 1.95 -.346 -.003 1.84 -.328 -.009 1.64 -.316

-.5 .4 .8 .000 1.13 -.167 -.001 .981 -.132 -.003 .851 -.105
.7 1 .000 1.51 -.212 -.002 1.30 -.170 -.005 1.10 -.138
0 .4 -.005 1.79 -.008 .000 1.59 -.003 .000 1.40 .000
.2 .4 -.010 3.40 -.016 .002 3.30 -.006 -.001 3.06 -.001

0 .4 .8 -.005 1.79 -.017 .000 1.59 -.010 .000 1.40 -.002
.7 1 -.007 2.50 -.033 .000 2.20 -.024 .000 1.91 -.005
0 .4 .004 2.45 .240 .006 2.10 .222 .003 1.98 .208
.2 .4 .008 5.04 .337 .013 4.73 .326 .007 4.45 .314

.5 .4 .8 .004 2.45 .164 .006 2.10 135 .003 1.98 .105
.7 1 .005 3.54 .204 .008 3.03 177 .004 2.78 .140
0 .4 .004 2.71 .365 .003 2.33 .332 .002 2.21 .310
.2 .4 .009 5.88 .513 .008 5.46 .487 .006 5.04 .469

.75 .4 .8 .004 2.71 .244 .003 2.33 .196 .002 2.21 .154
.7 1 .006 3.97 .300 .005 3.40 .250 .003 3.12 .201
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TABLE 7
MONTE CARLO BIAS, b1 = b2 = 0, over-speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 .020 .207 -.338 .013 .248 -.320 .021 .149 -.307
.2 .4 .065 .012 -.401 .042 .042 -.387 .035 -.017 -.377

-.5 .4 .8 .020 .207 -.193 .013 .248 -.151 .021 .149 -.120
.7 1 .035 .179 -.220 .022 .205 -.176 .026 .124 -.142
0 .4 -.032 -.056 -.007 -.006 -.059 -.003 .007 -.140 .000
.2 .4 -.036 -.058 -.011 .023 -.083 -.005 .027 -.108 .000

0 .4 .8 -.032 -.056 -.015 -.006 -.059 -.009 .007 -.140 -.002
.7 1 -.034 -.043 -.031 .003 -.101 -.023 .014 -.115 -.005
0 .4 .006 -.291 .337 .017 -.323 .320 -.005 -.290 .308
.2 .4 .021 -.092 .394 .061 -.151 .384 .004 -.155 .376

.5 .4 .8 .006 -.291 .192 .017 -.323 .155 -.005 -.290 .120
.7 1 .012 -.259 .214 .032 -.288 .182 -.001 -.263 .143
0 .4 -.018 -.288 .511 .002 -.319 .481 -.016 -.187 .460
.2 .4 -.034 -.103 .599 .016 -.102 .578 -.021 -.178 .562

.75 .4 .8 -.018 -.288 .287 .002 -.319 .226 -.016 -.187 .176
.7 1 -.023 -.191 .315 .007 -.319 .258 -.017 -.210 .206

TABLE 8
MONTE CARLO S.D., b1 = b2 = 0, correct speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 .178 .429 .109 .112 .169 .084 .076 .104 .065
.2 .4 .419 .788 .131 .274 .470 .102 .193 .318 .077

-.5 .4 .8 .178 .429 .154 .112 .169 .122 .076 .104 .092
.7 1 .259 .583 .270 .167 .286 .237 .116 .183 .188
0 .4 .212 .321 .107 .128 .151 .073 .086 .093 .049
.2 .4 .489 .817 .141 .310 .469 .105 .217 .284 .076

0 .4 .8 .212 .321 .171 .128 .151 .128 .086 .093 .093
.7 1 .305 .518 .322 .189 .269 .278 .130 .150 .214
0 .4 .184 .484 .112 .113 .175 .084 .073 .099 .063
.2 .4 .426 .892 .136 .276 .514 .104 .187 .313 .078

.5 .4 .8 .184 .484 .160 .113 .175 .127 .073 .099 .092
.7 1 .266 .673 .283 .168 .307 .247 .112 .176 .192
0 .4 .140 .593 .114 .087 .196 .091 .058 .101 .075
.2 .4 .328 .811 .116 .213 .535 .092 .146 .354 .073

.75 .4 .8 .140 .593 .140 .087 .196 .111 .058 .101 .086
.7 1 .203 .733 .226 .129 .401 .188 .088 .193 .152
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TABLE 9
MONTE CARLO S.D., b1 = b2 = 0:9, correct speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 .918 2.88 .164 .480 1.62 .112 .271 .784 .075
.2 .4 1.78 4.15 .300 .961 1.85 .225 .557 1.03 .159

-.5 .4 .8 .918 2.88 .225 .480 1.62 .161 .271 .784 .108
.7 1 1.19 3.46 .374 .633 1.70 .296 .363 .886 .216
0 .4 1.06 2.98 .192 .553 1.54 .122 .306 .878 .079
.2 .4 2.04 3.67 .354 1.10 2.12 .253 .634 1.26 .177

0 .4 .8 1.06 2.98 .282 .553 1.54 .191 .306 .878 .120
.7 1 1.37 3.21 .483 .729 1.78 .370 .411 .847 .249
0 .4 .901 3.81 .172 .472 1.55 .115 .266 .877 .075
.2 .4 1.76 3.59 .319 .953 2.04 .233 .553 1.02 .161

.5 .4 .8 .901 3.81 .241 .472 1.55 .170 .266 .877 .109
.7 1 1.17 3.44 .405 .625 1.75 .313 .358 .862 .219
0 .4 .717 2.67 .138 .372 1.30 .093 .212 .914 .066
.2 .4 1.39 2.94 .248 .747 1.56 .179 .441 .986 .131

.75 .4 .8 .717 2.67 .195 .372 1.30 .128 .212 .914 .088
.7 1 .930 2.79 .331 .491 1.50 .232 .286 1.12 .169

TABLE 10
MONTE CARLO S.D., b1 = 0:9, b2 = 0, correct speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 .608 1.72 .434 .346 .899 .338 .210 .431 .249
.2 .4 1.09 2.12 .831 .642 1.23 .714 .403 .749 .555

-.5 .4 .8 .608 1.72 1.18 .346 .899 1.04 .210 .431 .818
.7 1 .761 1.98 2.23 .438 1.03 2.16 .270 .564 1.81
0 .4 .666 2.34 .466 .399 .927 .373 .239 .479 .280
.2 .4 1.14 2.18 .864 .711 1.33 .764 .443 .750 .615

0 .4 .8 .666 2.34 1.36 .399 .927 1.18 .239 .479 .907
.7 1 .813 1.86 2.70 .496 1.10 2.60 .301 .555 2.09
0 .4 .615 1.84 .450 .358 .864 .353 .205 .384 .262
.2 .4 1.09 2.00 .849 .657 1.25 .729 .408 .691 .585

.5 .4 .8 .615 1.84 1.24 .358 .864 1.08 .205 .384 .816
.7 1 .768 1.74 2.38 .451 1.03 2.27 .268 .504 1.85
0 .4 .529 1.70 .383 .295 .774 .297 .166 .325 .217
.2 .4 .986 1.95 .769 .590 1.27 .652 .362 .651 .508

.75 .4 .8 .529 1.70 .974 .295 .774 .835 .166 .325 .678
.7 1 .681 1.72 1.89 .391 .966 1.72 .228 .445 1.44
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TABLE 11
MONTE CARLO S.D., b1 = b2 = 0, over-speci�cation

n 64 128 256
�  � �I �F �0 �I �F �0 �I �F �0

0 .4 1.78 2.41 .109 1.07 1.53 .084 .670 1.13 .065
.2 .4 3.46 2.92 .131 2.14 1.79 .102 1.36 1.13 .077

-.5 .4 .8 1.78 2.41 .154 1.07 1.53 .122 .670 1.13 .092
.7 1 2.30 2.65 .270 1.41 1.50 .237 .887 .999 .188
0 .4 2.04 3.09 .107 1.19 1.75 .073 .748 1.23 .049
.2 .4 4.03 3.57 .141 2.37 2.20 .105 1.52 1.53 .076

0 .4 .8 2.04 3.09 .171 1.19 1.75 .128 .748 1.23 .093
.7 1 2.66 3.51 .322 1.56 1.89 .278 .988 1.25 .214
0 .4 1.74 2.73 .112 1.06 1.82 .084 .668 1.35 .063
.2 .4 3.39 3.13 .136 2.12 1.90 .104 1.35 1.45 .078

.5 .4 .8 1.74 2.73 .160 1.06 1.82 .127 .668 1.35 .092
.7 1 2.26 3.10 .283 1.40 1.73 .247 .881 1.38 .192
0 .4 1.42 2.05 .114 .831 1.60 .091 .519 1.33 .075
.2 .4 2.74 2.32 .116 1.67 1.47 .092 1.05 1.22 .073

.75 .4 .8 1.42 2.05 .140 .831 1.60 .111 .519 1.33 .086
.7 1 1.83 2.17 .226 1.09 1.45 .188 .686 1.20 .152

TABLE 12
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0, correct speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

�  � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .076 .137 .072 .091 .068 .059 .124 .174 .124 .142 .122 .102
-.5 .2 .4 .076 .130 .059 .099 .058 .075 .134 .164 .117 .141 .130 .115

.7 1 .073 .137 .066 .102 .060 .077 .129 .175 .118 .139 .128 .116
0 .4 .078 .093 .053 .080 .057 .055 .136 .152 .112 .122 .125 .117

0 .2 .4 .077 .055 .054 .033 .062 .034 .133 .082 .104 .073 .114 .066
.7 1 .076 .074 .058 .060 .053 .055 .134 .128 .105 .102 .120 .099
0 .4 .074 .131 .055 .080 .055 .066 .136 .164 .119 .122 .117 .097

.5 .2 .4 .073 .114 .055 .094 .054 .081 .141 .146 .120 .135 .111 .108
.7 1 .068 .115 .055 .083 .050 .080 .140 .154 .121 .127 .116 .116
0 .4 .075 .124 .059 .076 .063 .037 .136 .153 .112 .104 .116 .067

.75 .2 .4 .073 .170 .058 .146 .069 .093 .143 .207 .113 .183 .116 .137
.7 1 .076 .145 .060 .111 .064 .075 .143 .178 .113 .148 .110 .116
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TABLE 13
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0:9, correct speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

�  � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .114 .020 .092 .027 .084 .037 .184 .035 .161 .060 .132 .069
-.5 .2 .4 .109 .029 .098 .037 .074 .049 .180 .053 .158 .066 .138 .082

.7 1 .112 .029 .097 .032 .082 .044 .182 .047 .161 .065 .136 .078
0 .4 .122 .024 .080 .022 .077 .028 .187 .053 .150 .044 .129 .066

0 .2 .4 .125 .025 .092 .017 .063 .009 .191 .036 .146 .030 .130 .025
.7 1 .125 .037 .079 .022 .075 .016 .192 .051 .146 .046 .122 .044
0 .4 .112 .024 .097 .030 .067 .033 .177 .049 .160 .055 .145 .052

.5 .2 .4 .118 .020 .094 .031 .071 .055 .182 .053 .161 .060 .139 .076
.7 1 .121 .025 .090 .033 .073 .046 .179 .046 .165 .059 .133 .072
0 .4 .115 .018 .100 .023 .079 .022 .185 .041 .161 .041 .151 .048

.75 .2 .4 .107 .038 .096 .066 .081 .107 .188 .074 .162 .098 .146 .149
.7 1 .112 .034 .101 .049 .079 .053 .181 .066 .159 .078 .141 .092

TABLE 14
EMPIRICAL SIZES OF WI AND WF , b1 = 0, b2 = 0:5, correct speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

�  � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .067 .076 .067 .049 .055 .057 .125 .103 .117 .081 .100 .088
-.5 .2 .4 .067 .051 .063 .036 .055 .047 .119 .068 .119 .056 .094 .072

.7 1 .067 .063 .066 .044 .058 .052 .122 .082 .120 .067 .103 .073
0 .4 .069 .041 .067 .046 .059 .038 .113 .065 .122 .072 .106 .078

0 .2 .4 .066 .022 .064 .022 .065 .017 .114 .030 .120 .035 .112 .035
.7 1 .070 .035 .067 .035 .065 .025 .114 .048 .125 .056 .107 .056
0 .4 .062 .070 .054 .056 .049 .053 .124 .098 .115 .078 .105 .075

.5 .2 .4 .061 .046 .053 .039 .049 .041 .127 .065 .110 .057 .103 .060
.7 1 .066 .062 .051 .051 .047 .044 .127 .087 .118 .063 .102 .067
0 .4 .073 .092 .055 .059 .054 .063 .145 .116 .107 .082 .096 .083

.75 .2 .4 .069 .079 .054 .066 .057 .064 .131 .102 .104 .091 .099 .087
.7 1 .067 .088 .058 .055 .051 .049 .137 .113 .106 .078 .103 .068
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TABLE 15
EMPIRICAL SIZES OF WI AND WF , b1 = 0:9, b2 = 0, correct speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

�  � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .101 .036 .081 .030 .068 .030 .171 .059 .140 .055 .115 .070
-.5 .2 .4 .105 .030 .087 .025 .060 .017 .178 .055 .139 .040 .123 .031

.7 1 .101 .033 .086 .031 .061 .033 .175 .065 .140 .055 .119 .062
0 .4 .097 .032 .086 .037 .071 .042 .162 .062 .157 .080 .125 .074

0 .2 .4 .090 .031 .091 .025 .077 .020 .166 .057 .150 .044 .127 .039
.7 1 .092 .034 .089 .034 .070 .030 .155 .056 .150 .066 .124 .056
0 .4 .112 .037 .073 .028 .053 .038 .165 .054 .141 .057 .101 .071

.5 .2 .4 .097 .019 .078 .029 .064 .018 .161 .044 .139 .051 .120 .045
.7 1 .109 .026 .082 .030 .060 .034 .164 .050 .147 .062 .110 .059
0 .4 .117 .025 .082 .022 .051 .026 .185 .047 .133 .048 .104 .060

.75 .2 .4 .107 .022 .078 .026 .065 .024 .173 .044 .133 .038 .114 .037
.7 1 .111 .019 .081 .029 .058 .031 .184 .047 .143 .058 .106 .053

TABLE 16
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0:5, mis-speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

�  � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .274 .072 .250 .244 .255 .813 .349 .179 .333 .498 .341 .957
-.5 .2 .4 .258 .001 .228 .009 .228 .085 .331 .017 .317 .053 .317 .239

.7 1 .270 .025 .243 .068 .233 .392 .343 .056 .331 .215 .334 .682
0 .4 .258 .477 .245 .807 .248 .988 .344 .621 .319 .882 .325 .995

0 .2 .4 .242 .160 .214 .277 .229 .459 .327 .258 .296 .404 .310 .679
.7 1 .255 .302 .229 .565 .241 .842 .339 .435 .308 .701 .322 .956
0 .4 .264 .702 .246 .904 .248 .988 .356 .767 .324 .938 .324 .992

.5 .2 .4 .245 .295 .230 .399 .224 .631 .341 .371 .303 .467 .317 .733
.7 1 .253 .498 .239 .726 .239 .944 .347 .598 .306 .778 .325 .962
0 .4 .274 .767 .244 .941 .251 .997 .360 .820 .329 .965 .333 .997

.75 .2 .4 .249 .320 .221 .407 .218 .661 .336 .403 .310 .495 .313 .768
.7 1 .262 .544 .240 .734 .238 .963 .350 .623 .318 .815 .318 .978
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TABLE 17
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0, over-speci�cation

� :05 :10
n 64 64 128 128 256 256 64 64 128 128 256 256

�  � WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .091 .013 .072 .034 .066 .031 .143 .035 .109 .065 .112 .067
-.5 .2 .4 .084 .014 .065 .046 .053 .074 .139 .034 .115 .083 .099 .124

.7 1 .088 .018 .067 .047 .058 .051 .137 .039 .112 .084 .105 .097
0 .4 .078 .027 .061 .022 .050 .036 .127 .046 .115 .041 .100 .064

0 .2 .4 .072 .021 .054 .040 .047 .054 .135 .048 .107 .068 .086 .102
.7 1 .075 .022 .052 .029 .049 .050 .132 .040 .104 .064 .094 .079
0 .4 .068 .027 .063 .026 .056 .028 .124 .047 .118 .051 .105 .061

.5 .2 .4 .071 .028 .064 .032 .061 .046 .113 .042 .116 .057 .110 .087
.7 1 .065 .024 .056 .035 .060 .039 .120 .046 .110 .061 .110 .074
0 .4 .085 .031 .072 .025 .060 .018 .144 .051 .129 .054 .113 .042

.75 .2 .4 .074 .026 .073 .045 .057 .048 .138 .052 .126 .076 .114 .087
.7 1 .080 .026 .080 .039 .058 .033 .143 .060 .125 .065 .112 .063

TABLE 18
MONTE CARLO BIAS of e�, � = 0:5

n 64 128 256
estimationnb2 0 .5 .9 0 .5 .9 0 .5 .9

S0 (d) -.016 .403 .852 -.001 .415 .868 -.003 .417 .875
S1 (d) -.325 -.170 .161 -.286 -.121 .114 -.207 -.072 .059

TABLE 19
MONTE CARLO S.D. of e�, � = 0:5

n 64 128 256
estimationnb2 0 .5 .9 0 .5 .9 0 .5 .9

S0 (d) .110 .149 .107 .072 .102 .075 .046 .070 .057
S1 (d) .419 .258 .286 .409 .216 .237 .373 .182 .165

TABLE 20
EMPIRICAL SIZES (� = 0:05) OF W�, � = 0:5

n 64 128 256
estimationnb2 0 .5 .9 0 .5 .9 0 .5 .9

S0 (d) .087 .806 1.00 .061 .941 1.00 .085 1.00 1.00
S1 (d) .367 .170 .158 .382 .149 .159 .276 .135 .106

TABLE 21
EMPIRICAL SIZES (� = 0:10) OF W�, � = 0:5

n 64 128 256
estimationnb2 0 .5 .9 0 .5 .9 0 .5 .9

S0 (d) .130 .837 1.00 .117 .955 1.00 .104 1.00 1.00
S1 (d) .444 .201 .205 .419 .190 .195 .304 .162 .122
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TABLE 22
MONTE CARLO BIAS of e, � = 0:5, b1 = b2 = b
n 64 128 256

estimation  �nb 0 .5 .9 0 .5 .9 0 .5 .9
0 .4 -.038 .396 .842 -.012 .416 .868 -.003 .421 .874

S0 (d), T0 (c) .2 .4 -.048 .368 .825 -.018 .400 .857 -.005 .413 .870
.7 1 -.040 .387 .839 -.012 .410 .865 -.005 .418 .872
0 .4 -.250 -.309 .044 -.192 -.218 .066 -.105 -.153 .042

S1 (d), T1 (c) .2 .4 -.422 -.345 .001 -.361 -.255 .025 -.256 -.177 .012
.7 1 -.336 -.325 .026 -.279 -.233 .049 -.176 -.164 .030

TABLE 23
MONTE CARLO S.D. of e, � = 0:5, b1 = b2 = b
n 64 128 256

estimation  �nb 0 .5 .9 0 .5 .9 0 .5 .9
0 .4 .123 .126 .128 .081 .087 .087 .053 .062 .062

S0 (d), T0 (c) .2 .4 .112 .117 .114 .077 .086 .083 .055 .063 .060
.7 1 .118 .122 .123 .079 .087 .086 .058 .065 .064
0 .4 .330 .260 .252 .309 .223 .183 .279 .195 .136

S1 (d), T1 (c) .2 .4 .378 .239 .225 .370 .214 .157 .347 .195 .113
.7 1 .355 .248 .240 .340 .220 .170 .316 .195 .126

TABLE 24
EMPIRICAL SIZES (� = 0:05) OF W , � = 0:5, b1 = b2 = b

n 64 128 256
estimation  �nb 0 .5 .9 0 .5 .9 0 .5 .9

0 .4 .114 .951 1.00 .096 1.00 1.00 .075 1.00 1.00
S0 (d), T0 (c) .2 .4 .105 .946 1.00 .091 1.00 1.00 .084 1.00 1.00

.7 1 .110 .945 1.00 .075 .999 1.00 .092 1.00 1.00
0 .4 .243 .273 .115 .352 .263 .094 .322 .249 .080

S1 (d), T1 (c) .2 .4 .388 .301 .108 .471 .297 .074 .455 .271 .068
.7 1 .329 .274 .104 .400 .268 .089 .362 .254 .073

TABLE 25
EMPIRICAL SIZES (� = 0:10) OF W , � = 0:5, b1 = b2 = b

n 64 128 256
estimation  �nb 0 .5 .9 0 .5 .9 0 .5 .9

0 .4 .182 .970 1.00 .136 1.00 1.00 .148 1.00 1.00
S0 (d), T0 (c) .2 .4 .174 .963 1.00 .144 1.00 1.00 .129 1.00 1.00

.7 1 .163 .958 1.00 .139 1.00 1.00 .182 1.00 1.00
0 .4 .330 .329 .152 .421 .324 .126 .375 .304 .110

S1 (d), T1 (c) .2 .4 .450 .349 .136 .533 .357 .104 .501 .331 .099
.7 1 .380 .329 .140 .453 .328 .118 .416 .312 .099
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TABLE 26
EFFICIENCY RATIOS

b 0.5 0.9
n 64 128 256 64 128 256 64 128 256 64 128 256

�  � r1 r1 r1 r2 r2 r2 r1 r1 r1 r2 r2 r2
0 .4 1.18 1.12 1.15 1.06 1.12 1.10 7.46 5.12 3.63 1.38 3.40 3.14

-.5 .2 .4 5.97 5.00 4.23 1.00 1.43 2.37 45.9 33.6 25.8 1.09 16.3 19.8
.7 1 1.86 1.54 1.40 .988 1.09 1.15 16.6 11.6 8.52 1.35 7.47 7.30
0 .4 1.22 1.13 1.12 1.00 1.07 1.05 6.77 5.14 3.60 1.67 3.20 3.26

0 .2 .4 6.11 5.06 4.27 1.07 1.29 2.32 37.9 31.3 23.8 1.91 11.5 20.3
.7 1 1.97 1.57 1.38 .931 1.02 1.13 14.3 11.3 8.16 2.12 6.82 7.41
0 .4 1.13 1.14 1.16 1.01 1.11 1.13 7.64 5.10 3.63 1.44 3.69 3.03

.5 .2 .4 6.19 4.61 4.19 1.04 1.35 2.12 45.7 32.8 27.4 .900 4.71 18.8
.7 1 1.83 1.50 1.39 .961 1.07 1.12 16.9 11.5 8.76 1.26 7.01 7.11
0 .4 1.16 1.18 1.23 1.16 1.21 1.23 9.14 5.77 3.91 1.53 3.67 2.72

.75 .2 .4 6.11 4.49 4.15 .985 1.39 1.66 61.1 44.2 35.3 .669 15.1 18.5
.7 1 1.79 1.42 1.38 1.09 1.07 1.01 21.6 14.4 10.4 1.21 7.99 6.80

TABLE 27
CONSUMPTION AND INCOME: ut WHITE NOISE

n0 138 137 136 135 134 133 132 131 130 129 128b� .223 .222 .251 .252 .251 .248 .247 .242 .243 .245 .246
SE(b�) .027 .031 .024 .022 .023 .022 .023 .021 .022 .023 .023e� 1.07 1.07 1.09 1.15 1.15 1.17 1.18 1.18 1.18 1.18 1.18
SE(e�) .028 .028 .059 .068 .073 .080 .083 .082 .083 .082 .084e .714 .745 .715 .692 .694 .696 .696 .685 .692 .694 .693
SE(e) .084 .092 .087 .087 .089 .090 .090 .089 .093 .093 .093b� -.024 -.055 -.085 -.090 -.090 -.086 -.085 -.072 -.073 -.073 -.074
r -.195 -.189 -.297 -.311 -.310 -.294 -.285 -.247 -.251 -.250 -.253

TABLE 28
CONSUMPTION AND INCOME: u1t AR(1), u2t WHITE NOISE

n0 137 136 135 134 133 132 131 130 129 128 127b� .163 .257 .264 .267 .263 .265 .258 .261 .262 .263 .262
SE(b�) .179 .055 .054 .057 .053 .056 .051 .056 .055 .055 .054e� 1.07 1.09 1.15 1.15 1.17 1.18 1.18 1.18 1.18 1.18 1.18
SE(e�) .028 .059 .068 .073 .080 .083 .082 .083 .082 .084 .084e -.101 -.167 -.183 -.184 -.184 -.179 -.193 -.180 -.184 -.189 -.186
SE(e) .234 .187 .181 .183 .185 .193 .180 .193 .192 .191 .192bb1 .798 .843 .842 .839 .837 .832 .845 .842 .842 .842 .843c�b1 .116 .221 .228 .230 .226 .226 .223 .225 .226 .227 .226b� .009 -.088 -.102 -.104 -.102 -.105 -.093 -.096 -.094 -.095 -.094
r .009 -.128 -.122 -.119 -.126 -.127 -.128 -.128 -.119 -.117 -.121
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TABLE 29
LogM1 AND LogGNP: ut WHITE NOISE

n0 90 89 88 87 86 85 84 83 82 81 80b� .704 .740 .578 .564 .608 .640 .638 .644 .643 .649 .658
SE(b�) .077 .145 .040 .058 .058 .054 .054 .061 .061 .061 .061e� 1.06 1.06 1.91 1.88 1.74 1.63 1.64 1.63 1.63 1.61 1.59
SE(e�) .057 .057 .025 .121 .117 .068 .083 .082 .086 .084 .076e .884 .928 1.12 1.16 1.11 1.09 1.09 1.11 1.10 1.10 1.09
SE(e) .108 .122 .121 .121 .131 .136 .138 .140 .140 .139 .139b� -.134 -.222 -.261 -.268 -.315 -.352 -.350 -.379 -.376 -.391 -.408
r -.839 -.543 -.402 -.413 -.455 -.475 -.473 -.507 -.504 -.515 -.522

TABLE 30
STOCK PRICES AND DIVIDENDS: ut WHITE NOISE

n0 116 115 114 113 112 111 110 109 108 107 106b� 32.7 32.7 32.2 31.9 31.7 31.8 31.7 32.0 32.1 32.1 32.1
SE(b�) 7.56 7.64 7.80 7.83 7.81 7.93 7.91 7.99 8.02 7.99 8.01e� 1.04 1.04 1.08 1.09 1.09 1.09 1.09 1.09 1.10 1.10 1.10
SE(e�) .077 .077 .090 .092 .092 .092 .093 .093 .095 .095 .095e .749 .751 .751 .752 .751 .752 .752 .751 .749 .749 .749
SE(e) .114 .116 .116 .117 .116 .117 .117 .116 .116 .116 .116b� -8.97 -9.52 -9.13 -8.82 -8.56 -8.67 -8.54 -8.52 -.8.64 -8.59 -8.69
r -.299 -.283 -.272 -.263 -.256 -.259 -.255 -.252 -.255 -.253 -.256
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