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This supplements [4] by providing a Monte Carlo study of finite sample
performance, an application to two empirical time series, and proofs of the
four lemmas in [4].

FINITE-SAMPLE PERFORMANCE

A Monte Carlo study was conducted in order to throw light on the per-
formance of our estimates in small and moderate samples. We considered
several versions of the FARIMA(1, δ0, 0) model, which allows for simultane-
ous variation of both long- and short-range dependence. In (1.2) we have
α(L) = (1 − ϕ0L)−1, β(L) ≡ 1, for ϕ0 = −0.5, 0, 0.5, while the memory
parameter values were δ0 = −0.6, −0.4, 0, 0.4, 0.6, 1, 1.5, 2, covering values
either side of the stationarity and invertibility boundaries, as well as cases
with one or two unit roots, and a value between these. We generated xt,
t = 1, ..., n, for n = 64, 128, 256 from (1.1), (1.2), using independent N(0, 1)
εt. We computed the estimate τ̂ = (δ̂, ϕ̂)′ in (1.5) of τ 0 = (δ0, ϕ0)

′, using
T =[−3, 3]×[−0.999, 0.999] for each of the 8×3 τ 0 values. This was repeated
over 5, 000 independent replications, and Monte Carlo bias and standard de-
viation computed in each of the 8 × 3× 3 = 72 cases. From the same data
sets we also computed these summary statistics for an estimate which cor-
rectly assumes the degree of integer differencing or aggregating needed to
shift the process to the stationarity and invertibility region: we estimated
the memory and autoregressive parameter of the appropriately integer dif-
ferenced or aggregated sequence by the discrete-frequency Whittle pseudo
likelihood estimate (i.e. the untapered version of the estimate in [8]) and
then added to or subtracted from the former the appropriate integer, denot-
ing the resulting estimate τ̂W = (δ̂W , ϕ̂W )′. Though τ̂ and τ̂W are equally
asymptotically efficient, the additional information it employs leads one to
expect τ̂W to be generally more accurate than our τ̂ in finite samples.

Monte Carlo biases of estimates of δ0 are given in Table 1. Nearly all
biases of both estimates are negative, and overall are worst when ϕ0 = 0
and n = 64, though there is considerable improvement with increasing n.
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The latter phenomenon is mostly repeated, albeit less dramatically, for the
other values of ϕ0, such that for n = 256 absolute bias tends to monotonically
increase with ϕ0. The relative performance of δ̂ and δ̂W also differs markedly
between zero and non-zero ϕ0. When ϕ0 = ±0.5, δ̂ is more (less) biased in 38
(6) cases out of 48, whereas when ϕ0 = 0 the corresponding scores are 4 (19)
out of 24 (though mention must be made of the relatively poor performance
here of δ̂ when δ0 = 2). Otherwise, biases of both estimates are fairly stable
across δ0. The overall superiority of δ̂W here might be explained by the fact
that it correctly uses the information on the unit length interval in which δ0
lies.

TABLE 1. Bias of estimates of δ0
ϕ0 .5 0 -.5

δ0 n 64 128 256 64 128 256 64 128 256

-.6 δ̂ -.052 -.054 -.049 -.113 -.049 -.020 -.041 -.018 -.009

-.6 δ̂W -.019 -.043 -.043 -.244 -.099 -.022 -.058 -.015 -.005

-.4 δ̂ -.049 -.058 -.049 -.105 -.047 -.021 -.037 -.018 -.010

-.4 δ̂W -.007 -.037 -.040 -.192 -.085 -.019 -.031 -.006 .000

0 δ̂ -.056 -.059 -.050 -.106 -.052 -.019 -.037 -.020 -.008

0 δ̂W -.034 -.053 -.050 -.210 -.098 -.026 -.052 -.019 -.008

.4 δ̂ -.051 -.058 -.049 -.115 -.049 -.019 -.039 -.018 -.008

.4 δ̂W -.021 -.054 -.044 -.245 -.104 -.021 -.048 -.015 -.004

.6 δ̂ -.059 -.056 -.048 -.126 -.052 -.019 -.039 -.018 -.008

.6 δ̂W -.027 -.045 -.033 -.240 -.124 -.021 -.037 -.005 .005

1 δ̂ -.071 -.066 -.050 -.115 -.049 -.019 -.046 -.016 -.008

1 δ̂W -.036 -.054 -.052 -.218 -.098 -.029 -.057 -.017 -.008

1.5 δ̂ -.129 -.063 -.051 -.152 -.056 -.021 -.119 -.038 -.011

1.5 δ̂W -.028 -.038 -.040 -.265 -.124 -.021 -.043 -.010 -.002

2 δ̂ -.162 -.150 -.136 -.440 -.246 -.120 -.098 -.017 -.009

2 δ̂W -.043 -.049 -.049 -.210 -.093 -.025 -.052 -.015 -.009

More surprising are the Monte Carlo standard deviations of estimates of
δ0, displayed in Table 2. Again, for both estimates ϕ0 = 0 (overspecification)
with n = 64 is a bad case, there is improvement with increasing n, standard
deviations tend to increase with ϕ0 for large n, and there is reasonable
stability across δ0. However, with the notable exception of the 9 cases when
τ 0 = (1.5,−0.5)′, τ 0 = (2, 0)′, τ 0 = (2, 0.5)′ for n ≥ 128, and τ 0 = (2,−0.5)′

for n = 64, δ̂ is consistently the more precise, in 63 out of 72 cases.
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TABLE 2. Standard deviation of estimates of δ0
ϕ0 .5 0 -.5

δ0 n 64 128 256 64 128 256 64 128 256

-.6 δ̂ .252 .203 .165 .282 .176 .099 .150 .091 .062

-.6 δ̂W .299 .236 .189 .417 .286 .137 .246 .107 .068

-.4 δ̂ .256 .209 .165 .286 .176 .100 .148 .093 .062

-.4 δ̂W .297 .239 .188 .408 .282 .135 .217 .110 .069

0 δ̂ .255 .207 .165 .284 .179 .099 .151 .092 .062

0 δ̂W .293 .235 .186 .406 .284 .135 .219 .106 .067

.4 δ̂ .257 .204 .166 .295 .177 .097 .151 .091 .062

.4 δ̂W .303 .238 .190 .424 .294 .136 .222 .105 .067

.6 δ̂ .255 .207 .165 .305 .185 .102 .152 .091 .062

.6 δ̂W .310 .251 .198 .441 .337 .169 .233 .113 .070

1 δ̂ .255 .212 .166 .286 .179 .102 .172 .091 .061

1 δ̂W .292 .233 .187 .410 .283 .145 .222 .106 .067

1.5 δ̂ .259 .208 .166 .333 .192 .103 .328 .173 .076

1.5 δ̂W .306 .243 .192 .441 .317 .141 .230 .108 .068

2 δ̂ .271 .242 .220 .433 .376 .291 .298 .097 .061

2 δ̂W .290 .232 .187 .404 .281 .128 .222 .104 .067

TABLE 3. Bias of estimates of ϕ0
ϕ0 .5 0 -.5

δ0 n 64 128 256 64 128 256 64 128 256

-.6 ϕ̂ -.001 .022 .031 .095 .043 .017 .039 .018 .009
-.6 ϕ̂W -.034 .007 .021 .213 .091 .022 .064 .022 .010
-.4 ϕ̂ -.003 .025 .030 .087 .039 .017 .036 .017 .008
-.4 ϕ̂W -.039 .004 .019 .166 .077 .017 .049 .018 .007
0 ϕ̂ .004 .025 .032 .088 .043 .016 .036 .017 .008
0 ϕ̂W -.016 .015 .028 .177 .084 .022 .054 .020 .009
.4 ϕ̂ -.003 .026 .031 .095 .043 .016 .037 .017 .008
.4 ϕ̂W -.032 .016 .023 .215 .095 .020 .054 .020 .008
.6 ϕ̂ .006 .022 .030 .106 .044 .017 .035 .016 .008
.6 ϕ̂W -.040 -.004 .006 .221 .122 .027 .057 .021 .008
1 ϕ̂ .016 .035 .031 .094 .043 .016 .042 .016 .007
1 ϕ̂W -.017 .018 .029 .181 .087 .025 .057 .020 .009

1.5 ϕ̂ .076 .030 .032 .133 .049 .018 .128 .039 .011
1.5 ϕ̂W -.032 -.002 .016 .240 .118 .022 .056 .021 .009
2 ϕ̂ .107 .115 .112 .429 .245 .118 .101 .017 .008
2 ϕ̂W -.010 .015 .025 .176 .083 .020 .054 .019 .010
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In Table 3, we compare the estimates of ϕ0 in terms of bias. There are
similar overall patterns to those in Table 1, but now, while ϕ̂ is the more
biased when ϕ0 = 0.5 (in 18 against 6 cases, the latter being ones when
n = 64 and δ0 ≤ 1), for both ϕ0 = 0 and −0.5 ϕ̂ is superior (in 37 against
18 cases, the latter mostly being ones when τ 0 = (1.5,−0.5)′, (2, 0)′. The
Monte Carlo standard deviations of estimates of ϕ0, in Table 4, show a
broadly similar picture to Table 2, with ϕ̂ clearly dominating, though for
ϕ0 = 0 and n = 64 ϕ̂ is even more imprecise.

TABLE 4. Standard deviation of estimates of ϕ0
ϕ0 .5 0 -.5

δ0 n 64 128 256 64 128 256 64 128 256

-.6 ϕ̂ .255 .207 .167 .300 .197 .117 .159 .100 .068
-.6 ϕ̂W .273 .226 .185 .406 .291 .147 .230 .105 .069
-.4 ϕ̂ .258 .211 .166 .303 .195 .118 .156 .098 .067
-.4 ϕ̂W .275 .228 .184 .389 .283 .145 .198 .103 .067
0 ϕ̂ .257 .208 .166 .300 .200 .117 .154 .097 .066
0 ϕ̂W .268 .224 .181 .387 .285 .146 .202 .102 .068
.4 ϕ̂ .260 .208 .167 .311 .199 .115 .156 .098 .065
.4 ϕ̂W .280 .227 .185 .413 .297 .146 .205 .102 .066
.6 ϕ̂ .257 .209 .167 .319 .206 .121 .156 .097 .068
.6 ϕ̂W .288 .243 .195 .416 .333 .176 .219 .106 .068
1 ϕ̂ .255 .210 .166 .304 .199 .120 .177 .096 .065
1 ϕ̂W .268 .223 .181 .389 .285 .154 .207 .101 .066

1.5 ϕ̂ .247 .209 .166 .348 .212 .120 .382 .201 .086
1.5 ϕ̂W .280 .234 .187 .424 .326 .152 .212 .104 .067
2 ϕ̂ .238 .214 .191 .468 .411 .311 .346 .104 .066
2 ϕ̂W .267 .222 .183 .387 .282 .140 .204 .098 .068

With the aim of providing a clearer picture of the pattern of estimates with
respect to variations in τ 0, we plot in Figure 1 the Monte Carlo root mean
square error of δ̂, δ̂W , for n = 128, as a function of 15 values of δ0 (those in
the initial choice plus -0.2, 0.2, 0.8, 1.2, 1.4, 1.6, 1.8) for ϕ0 = −0.5, 0, 0.5. In
each of the plots, the thick line corresponds to results for δ̂, whereas the thin
one records results for δ̂W . As anticipated, the best results are for ϕ0 = −0.5,
δ̂ being superior to δ̂W , except in the region between δ0 = 1.4 and 2. For
δ̂W , results are worst for ϕ0 = 0, when δ̂ clearly dominates (except when
δ0 = 2), whereas when ϕ0 = 0.5, both estimates behave similarly, although
δ̂ is slightly superior overall.
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FIGURE 1. Root Mean Square Error of estimates of δ0

Finally, in Figure 2 we plot corresponding results for ϕ̂, ϕ̂W (recorded
in the thick and thin lines, respectively). The pattern is in all cases almost
identical to that in Figure 1.

FIGURE 2. Root Mean Square Error of estimates of ϕ0

EMPIRICAL EXAMPLE

We now report an empirical application to US quarterly income and con-
sumption data 1947Q1-1981Q2 (n = 138), which was previously analyzed
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by [3], for example. By means of traditional testing procedures [3] found
evidence of a unit root in both series, and the semiparametric fractional
approach of [5] tended to support this conclusion. Our analysis did not.
We determined θ (s;ϕ) from the data, our approach permitting comparison
among competing parametric models. This was achieved by first obtaining
a preliminary estimate of δ0, which was used to filter the series to have, ap-
proximately, short memory, and then employing the model choice procedure
of [1] to select p1 and p2. For this purpose we cannot use a

√
n−consistent

parametric estimate of δ0 (for example, one based on a FARIMA(0, δ0, 0))
because under-specification of p1 or p2, or over-specification of both, results
in inconsistent estimation of δ0. Instead, we employed a semiparametric esti-
mate of δ0, which converges more slowly but does not require short memory
specification and is thus more robust. In addition, we examine the issue of
truncation, which is inherent to model (1.1), and arises because the model
reflects the data start-time: given a sample xt, t = 1, ..., n, the first obser-
vation of the filtered sequence ∆d {xt1 (t > 0)} equals the unfiltered x1, the
second is a linear combination of x1, x2, and so on. We check stability with
respect to omitting from the analysis l initial observations of the filtered
series.

We look first at the income series. We computed the local Whittle or semi-
parametric Gaussian estimate (see e.g. [6]) on first-differenced observations
∆xt, followed by adding back 1 (an alternative semiparametric estimate,
which is valid also under nonstationarity, and thus avoids the initial first-
differencing, was proposed and justified by [7]). In order to reflect possible
sensitivity to choice of bandwidth m (the number of low Fourier frequencies
employed) and because the choice of m only indirectly affects the final out-
come, rather than employing an optimal, data-dependent m, we tried three
different values, m = 8, 17, 34, obtaining estimates δ̃ = 1.107, 1.017, 1.084,

respectively. Using these δ̃, the filtered ∆δ̃ {xt1 (t > 0)} were generated, and
from their simple and partial correlograms we identified in the spirit of [1]
the parametric model θ (s;ϕ). For the various estimates of δ0, the methodol-

ogy suggested that θ (s;ϕ0) =
(
1− ϕ0s

10
)−1

might be adequate. We report
our estimates of δ0, ϕ0 in Table 5, along with t-ratios (denoted by tδ, tϕ)
corresponding to the null hypotheses H0 : δ0 = 1, H0 : ϕ0 = 0, where
denominators are corresponding elements of the 2-dimensional square ma-
trix

∑n

t=10+l
∂εt(τ̂ )/∂τ (∂εt(τ̂ )/∂τ )′ /

∑n

t=10+l
ε2t (τ̂ ), where τ̂ = (δ̂, ϕ̂)′.

For l > 2, the corresponding null hypotheses are in all cases rejected at 1%
significance level, thus casting doubt on the unit root hypothesis.
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TABLE 5. Parameter estimates for the income series

l 1 2 3 4 5 6 7 8 9 10

δ̂ 1.12 1.14 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.16
tδ 2.29 2.54 2.62 2.62 2.62 2.67 2.66 2.64 2.66 2.68
ϕ̂ .204 .257 .236 .235 .235 .233 .247 .249 .245 .242
tϕ 2.55 3.43 3.02 3.01 3.01 3.01 3.18 3.13 3.07 3.03

For the consumption series results are provided in Table 6. As before,
we computed three different δ̃ = 0.855, 0.976, 1.127, for m = 8, 17, 34,
respectively. We again identified θ (s;ϕ) based on the corresponding resid-
uals, but now the greater variation of the δ̃, leads to two different speci-

fications, namely θ (s;ϕ0) = (1 − ϕ
(1)
0 s)−1 (suggested by δ̃ = 0.855) and

θ (s;ϕ0) = (1 − ϕ
(8)
0 s8)−1 (suggested by δ̃ = 0.976, 1.127). Given the dis-

crepancy, we let the two short run models compete in our parametric spec-

ification, setting θ (s;ϕ0) = (1 − ϕ
(1)
0 s − ϕ

(8)
0 s8)−1, obtaining parametric

estimates δ̂, ϕ̂(1), ϕ̂(8). As before, t-ratios for identical null hypotheses are

provided, supporting clearly the specification with ϕ
(1)
0 = 0, a unit root

being again strongly rejected.

TABLE 6. Parameter estimates for the consumption series

l 1 2 3 4 5 6 7 8 9 10

δ̂ 1.07 1.10 1.11 1.11 1.12 1.12 1.15 1.14 1.15 1.15
tδ 2.33 2.74 2.78 2.76 2.70 2.63 2.79 2.65 2.72 2.63

ϕ̂(1) -.016 -.054 -.068 -.072 -.074 -.075 -.092 -.064 -.054 -.041
tϕ(1) -.178 -.600 -.750 -.785 -.807 -.809 -1.01 -.674 -.570 -.423

ϕ̂(8) -.164 -.196 -.213 -.220 -.221 -.223 -.225 -.220 -.240 -.233
tϕ(8) -2.06 -2.50 -2.62 -2.67 -2.68 -2.64 -2.77 -2.70 -3.01 -2.89

PROOFS OF LEMMAS IN SECTION 5

PROOF OF LEMMA 1. Clearly,

(0.1) cj (τ ) =
j∑

k=0

φk (ϕ)aj−k,
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writing aj = aj (δ0 − δ), so that for any δ ∈ I, by Stirling’s approximation

sup
ϕ∈Ψ

|cj (τ )| ≤ K
j−1∑

k=0

(j − k)δ0−δ−1 sup
ϕ∈Ψ

|φk (ϕ)|

≤ K
[j/2]∑

k=0

(j − k)δ0−δ−1 sup
ϕ∈Ψ

|φk (ϕ)|

+K
j−1∑

k=[j/2]

(j − k)δ0−δ−1 sup
ϕ∈Ψ

|φk (ϕ)| .(0.2)

(0.2) is bounded by

Kjδ0−δ−1
∞∑

k=1

k−1−ς +Kj−1−ς
j−1∑

k=[j/2]

(j − k)δ0−δ−1 = O
(
jmax(δ0−δ−1,−1−ς)

)
,

because ς > 1/2 and the second sum is O
(
jδ0−δ

)
if δ < δ0, O (log j) if

δ = δ0, and O (1) if δ > δ0. The proof of (5.2) is almost identical on noting

cj+1−cj = φj+1 (ϕ)+
j∑

k=1

φk (ϕ) (aj+1−k − aj−k) , aj+1−aj = O
(
jδ0−δ−2

)
.

PROOF OF LEMMA 2. From (5.1), (0.1)

εt (τ
∗) =

t−1∑

j=0

aj

t−j−1∑

k=0

φk (ϕ0)ut−j−k =
t−1∑

j=0

ajεt−j + vt (δ) ,

where

(0.3) vt (δ) = −
t−1∑

j=0

aj

∞∑

k=t−j

φk (ϕ0)ut−j−k.

Thus

sup
δ0−κ≤δ<δ0−

1
2
+η

|vt (δ)| ≤ K
t∑

j=1

jκ−1

∣∣∣∣∣∣

∞∑

k=t−j

φk (ϕ0)ut−j−k

∣∣∣∣∣∣
.

Now

V ar




∞∑

k=t−j

φk (ϕ0)ut−j−k


 ≤ K

∞∑

k=t−j

φ2k (ϕ0) ≤ K (t− j)−1−2ς .
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Thus

sup
δ0−κ≤δ<δ0−

1
2
+η

|vt (δ)| = Op



t−1∑

j=1

jκ−1 (t− j)−1/2−ς


 = Op

(
tκ−1

)
,

as in the proof of Lemma 1, noting that 1 + ς > 3/2. Finally, by (0.3)

vt (δ0) = −
∞∑

k=t

φk (ϕ0)ut−j−k = Op
(
t−1/2−ς

)
,

by previous arguments.

PROOF OF LEMMA 3. Since εt (τ ) = ξ (L;ϕ) εt (τ
∗), following similar

steps as in [2] (p.346),

wε(τ ) (λ) = ξn−1

(
eiλ;ϕ

)
wε(τ∗) (λ) + Un (λ; τ ) ,

where ξn−1 (z;ϕ) =
∑n−1
j=0 ξj (ϕ) zj and

Un (λ; τ ) = −n− 1
2

n−1∑

k=1

ξk (ϕ) eikλ
n∑

t=n−k+1

εt (τ
∗) eitλ,

so that (5.3) holds with

Vn (τ ) =
n∑

j=1

(∣∣∣ξn−1
(
eiλj ;ϕ

)∣∣∣
2
−
∣∣∣ξ
(
eiλj ;ϕ

)∣∣∣
2
)
Iε(τ∗) (λj) +

n∑

j=1

|Un (λj ; τ )|2

+2Re





n∑

j=1

ξn−1

(
eiλj ;ϕ

)
wε(τ∗) (λj)Un (−λj; τ )



 .(0.4)

The third term of (0.4) is

−2

n

n−1∑

k=0

n∑

t=1

n−1∑

l=1

n∑

s=n−l+1

ξk (ϕ) ξl (ϕ) εt (τ
∗) εs (τ

∗)
n∑

j=1

ei(k+t−l−s)λj

= −2
n−1∑

k=1

n−1∑

l=1

ξk (ϕ) ξl (ϕ)
n+min(k−l,0)∑

s=n−l+1

εs+l−k (τ ∗) εs (τ
∗) ,

where by Lemma 2

(0.5) εs (τ
∗) =

s−1∑

j=0

ajεs−j + vs (δ) .
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By summation by parts, for s ≥ 2, the first term on the right of (0.5) is

as−1

s−1∑

j=0

εs−j −
s−2∑

j=0

(aj+1 − aj)
j∑

k=0

εs−k,

so that

E sup
δ0−κ≤δ<δ0−

1
2
+η

∣∣∣∣∣∣

s−1∑

j=0

ajεs−j

∣∣∣∣∣∣
≤ sup

δ0−κ≤δ<δ0−
1
2
+η

|as−1|E

∣∣∣∣∣∣

s−1∑

j=0

εs−j

∣∣∣∣∣∣

+
s−2∑

j=0

sup
δ0−κ≤δ<δ0−

1
2
+η

|aj+1 − aj |E
∣∣∣∣∣∣

j∑

k=0

εs−k

∣∣∣∣∣∣
.

It can be readily shown that V ar

(∑s−1

j=0
εs−j

)
= O (s), whereas, uniformly

in j, V ar

(∑j

k=0
εs−k

)
= O (j), so that

E sup
δ0−κ≤δ<δ0−

1
2
+η

∣∣∣∣∣∣

s−1∑

j=0

ajεs−j

∣∣∣∣∣∣
≤ K sup

δ0−κ≤δ<δ0−
1
2
+η


sδ−

1
2 +

s−2∑

j=1

jδ−
3
2




≤ K
(
log s1 (κ = 1/2) + sκ−1/21 (κ > 1/2)

)
,(0.6)

whereas by Lemma 2

E sup
δ0−κ≤δ<δ0−

1
2
+η

|vs (δ)| ≤ Ksκ−1.

Then since

E sup
δ0−κ≤δ<δ0−

1
2
+η

∣∣∣∣∣∣

n+min(k−l,0)∑

s=n−l+1

εs+l−k (τ ∗) εs (τ
∗)

∣∣∣∣∣∣

≤ Kl
(
logn1 (κ = 1/2) + nκ−1/21 (κ > 1/2)

)2
+ Kl,

we have

E sup
δ0−κ≤δ<δ0−

1
2
+η

ϕ∈Ψ

∣∣∣∣∣∣

n−1∑

k=1

n−1∑

l=1

ξk (ϕ) ξl (ϕ)

n+min(k−l,0)∑

s=n−l+1

εs+l−k (τ ∗) εs (τ
∗)

∣∣∣∣∣∣

≤ K
(
log2 n1 (κ = 1/2) + n2κ−11 (κ > 1/2)

)
sup
ϕ∈Ψ

∞∑

k=0

|ξk (ϕ)|
∞∑

l=0

l |ξl (ϕ)|

≤ K
(
log2 n1 (κ = 1/2) + n2κ−11 (κ > 1/2)

)
.
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Following similar steps to previous ones, it is immediate to show that

sup
δ0−κ≤δ<δ0−

1
2
+η

ϕ∈Ψ

n∑

j=1

|Un (λj; τ )|2 = Op
(
log2 n1 (κ = 1/2) + n2κ−11 (κ > 1/2)

)
.

Finally

sup
δ0−κ≤δ<δ0−

1
2
+η

ϕ∈Ψ

∣∣∣∣∣∣

n∑

j=1

(∣∣∣ξn−1
(
eiλj

)∣∣∣
2
−
∣∣∣ξ
(
eiλj

)∣∣∣
2
)
Iε(τ∗) (λj)

∣∣∣∣∣∣

≤ sup
λ∈[−π,π]
ϕ∈Ψ

∣∣∣∣
∣∣∣ξn−1

(
eiλ
)∣∣∣
2
−
∣∣∣ξ
(
eiλ
)∣∣∣
2
∣∣∣∣ sup
δ0−κ≤δ<δ0−

1
2
+η

n∑

t=1

ε2t (τ ∗) .

By previous results

sup
δ0−κ≤δ<δ0−

1
2
+η

n∑

t=1

ε2t (τ ∗) = Op
(
n log2 n1 (κ = 1/2) + n2κ1 (κ > 1/2)

)
,

and noting that

sup
λ∈[−π,π]
ϕ∈Ψ

∣∣∣∣
∣∣∣ξn−1

(
eiλ;ϕ

)∣∣∣
2
−
∣∣∣ξ
(
eiλ;ϕ

)∣∣∣
2
∣∣∣∣ = O

(
n−ς

)
= o (1) ,

the first term on the right of (0.4) is of smaller order, to conclude the proof.

PROOF OF LEMMA 4. The proof is very similar to that of Lemma 1. The
only point worth mentioning is the calculation of the order of magnitude of
∂ (aj+1 (c)− aj (c)) /∂c and ∂2 (aj+1 (c)− aj (c)) /∂c

2. First, ∂ (aj+1 (c)− aj (c)) /∂c
is

(0.7) ψ (j + 1 + c)aj+1 (c)− ψ (j + c) aj (c)− ψ (c) (aj+1 (c)− aj (c)) .

The third term in (0.7) is O
(
jc−2

)
, whereas since

|ψ (j + 1 + c)− ψ (j + c)| ≤ K
∣∣ψ′ (j + c)

∣∣ ≤ K (j + 1)−1 ,

and
|ψ (j + c)| ≤ K log (j + 1) ,

then

(aj+1 (c)− aj (c))ψ (j + 1 + c) + aj (c) (ψ (j + 1 + c)− ψ (j + c))
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is O
(
jc−2 log j

)
. Thus (0.7) is O

(
jc−2 log j

)
. Second, it can be shown that

∂2

∂c2
(aj+1 (c)− aj (c))

= ψ (j + 1 + c)
∂aj+1 (c)

∂c
− ψ (j + c)

∂aj (c)

∂c
+ o

(
jc−2 log2 j

)

= O
(
jc−2 log2 j

)
,

by similar steps to those in the treatment of (0.7).
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