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LONG RANGE DEPENDENCE
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Long range dependence, or long memory, usually refers to a strong correlation
between distant observations in a time series. Evidence of long range dependence has
been found in diverse fields, such as geophysics, agriculture, chemistry, economics and
finance.

An early empirical investigation of river discharges provided the initial impetus
for serious theoretical study; it has continued to influence the development of the
subject. A long historical series of annual flood levels of the River Nile, recorded at
the Roda Gorge at Cairo, suggested evidence of dependence over long intervals of
time, with stretches when floods are high, and others when they are low; on the other
hand, there was no regularity in their occurrence or duration, so that the series did
not exhibit periodicity. For discrete, equally-spaced observations, letting X; denote
the level at time ¢ and X = n~! Y7, X; the sample mean based on a sample of size

n, the adjusted rescaled range statistic,

max 3 (Xi—X)— min 3 (X - X)

R/S = {% fj(Xt—Y)Q}% : (1)

t=1

was found empirically to behave like n’l, % < H < 1; see Hurst (1951). However,
if X, is a sequence of independent (Gaussian) random variables, it can be shown

theoretically that R/S behaves like n3.
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The parameter H, known as the Hurst coefficient, arises in a time series model for
X; that can explain this behaviour. Let X;, t = 0,£1, ..., be a stationary Gaussian
process, so that a complete description of its probabilistic structure is provided by
specifying its mean p and autocovariance function v, = cov(X;, X;;5), neither of

which depend on t. If X, is a fractional noise, having autocovariance
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{Is + 1P —2[sP +]s =17}, s = 0,41, ., (2)

then the R/S statistic (1) exhibits the nf power law behaviour described, for large
n. Moreover, for H = %, it follows from (2) that v, = 0, for all s # 0, so that X; is

an independent sequence, whereas for % < H < 1 we have

Yo~ v H2H = 1) [s*"72, as [s| — oo, (3)
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where “~” means that the ratio of left- and right-hand sides tends to one. The
asymptotic behaviour in (3) indicates that the autocovariance decreases with long

lags, but that it does so very slowly indeed, so that

2 Vs =00 (4)

As the earlier discussion indicates, one might estimate H by log(R/S)/logn.

The model (2) is connected with the interesting physical property of self-similarity.
An underlying continuous-time process Y (t) is called self-similar with parameter H
if Y(at) and oY (t) have identical finite-dimensional distributions for all a > 0; thus
the distributions have the same shape irrespective of the frequency of sampling. If
Y'(t) also has stationary increments, then X; = Y (¢) — Y(¢ — 1) has autocovariance
function (2).

We can think of (4) as a time domain long range dependence property. An alter-
native, closely related, one is formulated in the frequency domain. Suppose that the
stationary series X; has a spectral density, denoted f(\), 7 < A < 7, so that we can
write

Vs = /7r f(A)cossAdA, s =0,+£1,... .
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Then the non-summability condition (4) is equivalent to an unbounded spectral den-

sity at zero frequency,
f(0) = oo.

This is true if, for example, with % < H <1,
FO) ~ CX2H as X — 04, (5)

for a positive, finite C'.
A statistic that provides some indication of the magnitude of f()) is the peri-
odogram, ,
I\ = ﬁ 3 (X~ X)e
In time series from diverse applications, plots of I(\) (or a smoothed version which
can provide a more reliable estimate of a finite f()\)) can appear consistent with the
power law behaviour near frequency zero indicated in (5). Mathematically, the latter

property often co-exists with (cf (3))

’2H—2

Vs~ ClS , as § — 00, (6)

for some finite, positive c¢. Both (5) and (6) indicate that the degree of dependence
varies directly with H.
Recent research has focussed on models that are more naturally expressed in terms

of the fractional differencing parameter d, which relates very simply to H,

1
d=H — —. 7
> 7)
Letting L denote the lag operator, so that LX; = X;_;, we have formally the binomial

expansion
d(d—1)

L? —
o o

(1-L)¥%=1—-dL+

If the ‘d-th fractional difference’ of X, is a sequence of uncorrelated random variables,

V;, with zero mean and common variance, so
(1 - L>dXt = ‘/;57 (8)
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then, for 0 < d < %, X; has spectral density f()\) satisfying (5), while also (6)
holds, with the identity (7); see Adenstedt (1974). Moreover, (5) and (6) are also
satisfied if V; is, more generally, a correlated, stationary sequence that is short range
dependent, asymptotically having spectral density that is everywhere continuous, and
thus bounded. This is the case when V; is an autoregressive moving average sequence,
so that

a(L)V; = b(L)Uy, (9)

where the U, are uncorrelated with zero mean and common variance and a(L) =
1—->%_1a;L7 and b(L) = 1 —39_, b;L7 are polynomials of finite degrees, p and ¢,
with all zeros outside the unit circle. The requirement on a(L) entails stationarity,
while that on b(L) entails invertibility and identifiability. The resulting fractionally
integrated autoregressive moving average model for X, obtained by combining (8)
and (9),

(1— L)%(L)X, = b(L)Uy, (10)

constitutes the most popular parameterization of long range dependence, though
alternatives, besides (2), have been advanced.

In practice d and other parameters in (10) are unknown, but can be estimated by
an approximation to Gaussian maximum likelihood, known as Whittle estimation.

The spectral density of X; given by (10) has the form
b( ei)\)

a(e)

where ¢ denotes the vector of unknown parameters, 0 = (d, a1, ..., ap, by, ..., by, a?),

2
, T< AL,

o? ,

f0) = 2= [1— e
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—2d

where 02 = V(U;). A Whittle objective function is

L0) =5 Jlog f(Ay:0) + 20 (11)
~A S ACVHON B
where \; = 27j/n; note that the mean-correction in I(});) is redundant for j =

1,..,n — 1. The periodogram I();) can be rapidly computed by the fast Fourier
transform, even when n is quite large. We estimate § by the value Q minimizing

L(0); in practice no closed-form solution exists, and numerical methods are needed.
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For the purpose of statistical inference on 6, it is known that, for Gaussian X, 6

can be treated as approximately normally distributed with mean 6 and covariance

w1 (Olog f(A;30)) (Olog F(A;30))']
e NG

for large n; see Fox and Taqqu (1986). The same large-sample properties often hold

matrix

even when X, is non-Gaussian, though the approximate covariance matrix may involve
an additional term besides (12), depending on fourth cumulants. It is not required
that X; have a known mean, the omission of the frequency for j = 0 (and equally,
by periodicity, that for j = n) automatically corresponding to a mean-correction.
Alternative methods of estimating ¢ are available but they will be less efficient than
Whittle estimation when X, is Gaussian, while possibly lacking some of the advan-
tages it continues to enjoy even when X, is non-Gaussian.

In practice the autoregressive and moving average orders p and ¢ in (10) are likely
to be unknown. It is possible to adapt methods for choosing p and ¢, based on the ob-
served data, that have been derived in the short range dependent autoregressive mov-
ing average context (9). However, there is still a danger of under- or over-specifying
p and ¢, which can lead to invalidation of the statistical properties described above.
In studies of long range dependence, d is the parameter of greatest interest, but mis-
specification of a(L) and b(L) which essentially describe the short range dependent
component of X;, can seriously bias the estimation of d.

Semiparametric estimation of d is a way around this difficulty. Recalling the prop-
erty (5), which holds over many models besides (10), under the identity (7), we
consider a local Whittle estimate which rests only on the approximation of f(\) near

frequency zero (cf. (11))

L(d,C) = g {1og(0A;2d) + %} (13)

where m is an integer which is much smaller than n; see Kiinsch (1987). We estimate
C' and d by (numerically) minimizing (13). Under mild regularity conditions, for large

m and n we can treat the estimate of d as normal with mean d and variance 1/4m;

5



see Robinson (1995). This argument requires m to be of smaller order than n, so that
in view of (12) the parametric estimate described previously is the more precise. It
is inadvisable to choose m too large as bias can then result, especially if the spectral
density also contains peaks at non-zero frequencies. However, the longer the series
length n, the larger we can choose m because (13) involves frequencies up to 2rm/n, so
that in very long series the extra robustness gained by the semiparametric approach
may be worthwhile. Automatic, data-dependent, methods for choosing m, which
balance the bias and imprecision that would be incurred by respectively choosing too
large and too small a value, are available. An alternate method of estimating d that
also uses only low frequencies, log periodogram regression, is longer established and

more popular, but less efficient than the local Whittle estimate.
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