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Abstract: Employing recent results of Robinson (2005) we consider the as-
ymptotic properties of conditional-sum-of-squares (CSS) estimates of para-
metric models for stationary time series with long memory. CSS estimation
has been considered as a rival to Gaussian maximum likelihood and Whittle
estimation of time series models. The latter kinds of estimate have been rigor-
ously shown to be asymptotically normally distributed in case of long memory.
However, CSS estimates, which should have the same asymptotic distributional
properties under similar conditions, have not received comparable treatment:
the truncation of the infinite autoregressive representation inherent in CSS es-
timation has been essentially ignored in proofs of asymptotic normality. Unlike
in short memory models it is not straightforward to show the truncation has
negligible effect.

1. Introduction

Consider a real-valued, strictly and covariance stationary time series xt, t ∈ Z. It
is believed that xt has a parametric autoregressive (AR) representation

(1.1)
∞∑

j=0

αj(θ0)xt−j = εt, t ∈ Z.

Here εt is a sequence of zero-mean, uncorrelated and homoscedastic random vari-
ables, with variance σ2

0 , the αj(θ) are given functions with p × 1 vector argument
θ, θ0 is an unknown p × 1 vector, and α0(θ) ≡ 1 for all θ.

The range of structures {αj(θ)} covered by (1.1) is very broad, but of interest
to us are ones which allow xt to have long memory. Usually, these are “fractional”,
where it is assumed that the function

(1.2) α(s; θ) =
∞∑

j=0

αj(θ)sj ,

with complex-valued argument s on the unit circle, is of form

(1.3) α(s; θ) = (1 − s)δ(θ)α∗(s; θ),

where δ(θ) is a scalar function of θ such that

(1.4) 0 < δ(θ0) <
1
2
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and

(1.5) 0 < |α∗(s; θ0)| < ∞, |s| = 1.

It follows that xt has spectral density of form

(1.6) f(λ) =
σ2

0

|α (eiλ; θ0)|2
= σ2

0

∣∣1 − eiλ
∣∣−2δ(θ0)

|α∗ (eiλ; θ0)|2
.

The leading choice of α∗ is a rational function of s, in which case xt is said to be
a fractional autoregressive integrated moving average (FARIMA) model; δ(θ0) is
caled the memory parameter.

Leading methods of estimation of θ0, given observations x1, . . . , xn, are Gaussian
maximum likelihood (ML), and approximations thereto. They are “approximations”
in the sense that under similar conditions they have the same asymptotic normal
distribution as ML, and are thus asymptotically efficient under Gaussianity. At
the same time, under many departures from Gaussianity, though the efficiency
is lost the limit normal distribution of all these estimates is unaffected. Assuming
Gaussianity, asymptotic normality of one form of approximation, a Whittle estimate
involving integration over frequency, was first established by Fox and Taqqu [4], and
then by Dahlhaus [3] in case of ML estimation. Giraitis and Surgailis [5] established
asymptotic normality for the estimate considered by Fox and Taqqu [4] when εt need
not be Gaussian but is independent and identically distributed with finite fourth
moment. Due to the pole in the spectral density at λ = 0 (see (1.6)), the asymptotic
normality proofs are considerably more challenging than those of Hannan [6] for
short memory time series models, incisive though these were for such models.

An alternative estimate that has been considered in the literature is conditional-
sum-of-squares (CSS) estimation, which was previously employed by Box and Jenk-
ins [1] for short memory time series models. Define

et(θ) =
t−1∑
j=0

αj(θ)xt−j ,(1.7)

sn(θ) =
1
n

n∑
t=1

e2
t (θ),(1.8)

and estimate θ0 by

(1.9) θ̂n = arg min
θ∈Θ

sn(θ),

where Θ ⊂ R
p is a compact set.

One can motivate θ̂n by the hope that sn(θ0) is a good approximation to n−1 ×∑n
t=1ε

2
t , which is itself proportional to the exponent in the density function of in-

dependent identically distributed zero-mean normal variates. Thus one hopes that
(after centering at θ0 and n

1
2 norming) θ̂n has the same limit distributional prop-

erties as the Gaussian ML and Whittle estimates mentioned previously.
Given an initial consistency proof of θ̂n, a standard approach to proving as-

ymptotic normality entails applying the mean value theorem to rn(θ̂n) about θ0,
where

(1.10) rn(θ) =
∂sn(θ)

∂θ
=

2
n

n∑
t=1

ht(θ)et(θ),
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for

(1.11) ht(θ) =
∂et(θ)

∂θ
.

The main part of the proof then involves establishing that n
1
2 rn(θ0) converges in

distribution to a zero-mean normal vector. If the εt are assumed to be conditionally
homoscedastic martingale differences, and conditions ensuring that ht(θ) has finite
variance are imposed, such convergence is easily seen to hold (see e.g. [2]) for

(1.12) r∗n(θ0) =
2
n

n∑
t=1

htεt,

where ht = ht(θ0). However this is only useful if also

(1.13) r∗n(θ0) − rn(θ0) = op

(
n− 1

2

)
,

in other words, if the effect of replacing et = et(θ0) by εt is sufficiently small. Unlike
the htεt, the htet and ht(et − εt) are not zero-mean, orthogonal random variables.
We can employ the Schwarz inequality:

(1.14) E |r∗n(θ0) − rn(θ0)| ≤ 2n−1
n∑

t=1

[
E(et − εt)2E ‖ht(θt(θ0)‖2

] 1
2

.

Then if, say, it were true that E(et − εt)2 = Op(t−1−η) for some η > 0, the right
hand side of (1.14) would be Op(n− 1

2−
η
2 ), and (1.13) established. For short memory

models E(et − εt)2 typically decays fast enough, indeed even exponentially. But
under quite general conditions permitting long memory (see [8]),

(1.15) E(et − εt)2 ≤ Kt−1

only, where K is an arbitrarily large generic constant, which is insufficient to es-
tablish (1.13) using (1.14).

A more delicate proof of (1.13) is required, and this was given by Robinson [8].
As discussed there, this delicacy relates to that seen in the proofs of Fox and Taqqu
[4] and others for alternative estimates of θ0. Indeed, given that these estimates and
CSS should have the same limit distributional properties, it would be extraordinary
if the proof for CSS were very much easier than for the other estimates.

A central limit theorem for θ̂n is given in Section 3. Prior to that, in the follow-
ing section, we provide the almost sure convergence of θ̂n (under somewhat more
general conditions). Hannan [6] proved this for various estimates, assuming strict
stationarity and ergodicity, which is consistent with long memory. However, he did
not cover CSS estimation.

2. Almost sure convergence

In the present section we do not require that xt necessarily has spectral density of
form (1.6), with (1.5) holding, but simply that it is a zero-mean strictly stationary,
ergodic process with AR representation (1.1), with the sentence after (1.1) holding,
and also θ0 ∈ Θ, for all θ ∈ Θ\{θ0}

(2.1) α(s; θ) �= α(s; θ0)
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on a subset of |s| = 1 of positive measure, |α(s; θ)| is continuous in θ for all s : |s| =
1, and

(2.2)
∞∑

j=0

sup
θ∈Θ

|αj(θ)| < ∞.

Condition (2.1) is a standard identifiability condition, and (2.2) is reasonable in that
long memory models (e.g. (1.6), such as FARIMAs) typically have AR representa-
tions with summable coefficients. Note that this setup allows the spectral density
to have poles at non-zero frequencies (as in certain cyclic and seasonal models),
whereas (1.6) does not, in view of (1.5).

Theorem 1. Under the above conditions

(2.3) lim
n→∞

θ̂n = θ0, a.s.

Proof. Theorem 1 of Hannan [6] and Theorem 1 of Fox and Taqqu [4] cover the
estimate

(2.4) θ̃n = arg min
Θ

s†n(θ),

where s†n(θ) is the objective function for the integral form of Whittle estimate, i.e.
σ2

N (θ) of Hannan [6] or σ2
N (θ) of Fox and Taqqu [4]. We can write

(2.5) s†n(θ) = cn(0)ξ0(θ) + 2
n−1∑
j=1

cn(j)ξj(θ),

where

cn(j) =
1
n

n−j∑
t=1

xtxt+j , 0 ≤ j ≤ n − 1,(2.6)

ξj(θ) =
∞∑

k=0

αk(θ)αk+j(θ).(2.7)

From Theorem 1 of Hannan [6], and its proof, it is clear that it suffices to show
that

(2.8) lim
n→∞

sup
Θ

∣∣s†n(θ) − sn(θ)
∣∣ = 0, a.s.

Now

s†n(θ) − sn(θ) =
1
n

n∑
t=1

x2
t

∞∑
k=n−t+1

α2
k(θ)

+
2
n

n−1∑
j=1

n−j∑
t=1

xtxt+j

∞∑
k=n−t−j+1

αk(θ)αk+j(θ)(2.9)

=
4∑

i=1

ain(θ),
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where

a1n(θ) = γ(0)




1
n

n−1∑
j=1

jα2
j (θ) +

∞∑
j=n

α2
j (θ)


 ,(2.10)

a2n(θ) =
1
n

n∑
t=1

{
x2

t − γ(0)
} ∞∑

k=n−t+1

α2
k(θ),(2.11)

a3n(θ) =
2
n

n−1∑
j=1

γ(j)
n−j∑
t=1

∞∑
k=n−t−j+1

αk(θ)αk+j(θ),(2.12)

a4n(θ) = 2
n−1∑
j=1




1
n

n−j∑
t=1

(xtxt+j − γ(j))
∞∑

k=n−t−j+1

αk(θ)αk+j(θ)


 ,(2.13)

where

(2.14) γ(j) = cov(x0, xj).

It remains to prove

(2.15) lim
n→∞

sup
θ∈Θ

|ain(θ)| = 0 a.s., i = 1, 2, 3, 4.

As the proofs for i = 1, 2 are similar to but simpler than those for i = 3, 4, we give
only the latter. We have

(2.16) sup
Θ

|a3n(θ)| ≤ 2
n

n−1∑
j=1

|γ(j)|




∞∑
j=0

sup
θ∈Θ

|αj(θ)|




2

.

The quantity in braces is finite and since, by the Riemann-Lebesgue theorem, ex-
istence of a spectral density implies limj→∞ γ(j) = 0, it follows from the Toeplitz
lemma that (2.16) → 0 as n → ∞. Next, by summation-by-parts

a4n(θ) = −2
n−1∑
j=1

n−j−1∑
t=1

t

n
{ct(j) − γ(j)}αn−t−j+1(θ)αn−t+1(θ)

(2.17)

+ 2
n−1∑
j=1

1
n

n−j∑
t=1

{xtxt+j − γ(j)}
∞∑

k=1

αk(θ)αk+j(θ).

The modulus of the first term on the right has supremum, over Θ, bounded by

(2.18) K

n∑
t=1

sup
1≤j≤n

|ct(j) − γ(j)| sup
Θ

|αn−t+1(θ)|

using (2.2). Using (2.2) again, and Theorem 1 of Hannan [7] and the Toeplitz
lemma, it follows that (2.18) is o(1) a.s. The second term in (2.17) can be similarly
handled.

3. Asymptotic normality

We assume now in addition that xt has spectral density (1.6), with (1.4), (1.5)
satisfied, that θ0 is an interior point of Θ, that the εt in (1.1) are independent with
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zero mean, variance σ2
0 and uniformly bounded fourth moment, that α(s; θ) is twice

continuously differentiable in θ, and that the matrix

(3.1) Ω =
1
2π

∫ π

−π

[
log

∣∣1 − eiλ
∣∣2

−2 ∂
∂θ log

∣∣α (
eiλ; θ0

)∣∣
] [

log
∣∣1 − eiλ

∣∣2
−2 ∂

∂θ log
∣∣α (

eiλ; θ0

)∣∣
]′

dλ

is positive definite.

Theorem 2. Under the above conditions, as n → ∞ n
1
2 (θ̂n − θ0) converges in

distribution to a p-variate normal vector with zero mean and covariance matrix
Ω−1.

Proof. As discussed in Section 1, we have

(3.2) 0 = rn(θ̂n) = rn(θ0) + T̃n(θ̂n − θ0),

where T̃n is the matrix formed by evaluating, for i = 1, . . . , p, the i-th row of the
matrix Tn(θ) = (∂2/∂θ∂θ

′
)sn(θ) at θ = θ̃i, where ‖θ̃i − θ0‖ ≤ ‖θ̂n − θ0‖, ‖ · ‖

denoting Euclidean norm.
Define

(3.3) ζj =
∂

∂θ
αj(λ; θ),

so that

(3.4) ht =
t−1∑
j=1

ζjxt−j ,

and define also

ρt =
∞∑

j=1

ζjxt−j ,(3.5)

rn =
1
n

n∑
t=1

ρtεt.(3.6)

Write rn(θ0) − rn = r1n + r2n + r3n, where

r1n = 2n−1
n∑

t=1

(ht − ρt)εt,(3.7)

r2n = 2n−1
n∑

t=1

ρt(et − εt),(3.8)

r3n = 2n−1
n∑

t=1

(ht − ρt)(et − εt).(3.9)

We show that rin = op(n− 1
2 ), i = 1, 2, 3. To deal with r1n, we may write

(3.10) ht − ρt = −
∞∑

j=t

ζjxt−j = −
∞∑

j=1

χjtε−j ,
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where

(3.11) χjt =
j∑

k=0

ζk+jβj−k.

Since

(3.12) E ‖ht − ρt‖2 = σ2
0

∞∑
j=1

‖χjt‖2 ≤ K
(log t)2

t

as noted on p. 1824 of [8], and εt is independent of ht − ρt, it follows that

(3.13) E ‖r1n‖2 ≤ K

n2

n∑
t=1

t−1 ≤ K
log n

n2
.

Next, we can write

(3.14) et − εt = −
∞∑

j=1

λjtε−j ,

where

(3.15) λjt =
j∑

k=0

αk+jβt−k.

Thus, from Lemma 16 of Robinson [8],

(3.16) E ‖r2n‖2 ≤ K
(log n)3

n2
.

Finally,

E ‖r3n‖ ≤ 1
n

n∑
t=1

(
E ‖ht − ρt‖2

E (et − εt)
2
) 1

2

≤ K

n

n∑
t=1

log t

t

≤ K
(log n)2

n
,(3.17)

using (3.12) and also Lemma 14 of Robinson [8]. This completes the proof that
rin = op(n− 1

2 ), i = 1, 2, 3. The remainder of the proof is easier, and more standard,
and is omitted.
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